Dr. rer. nat. Favio E. Miranda Perea

Departamento de Matemáticas, Facultad de Ciencias

Universidad Nacional Autónoma de México

Artículos con arbitraje


  • Lourdes del Carmen González Huesca, Favio E. Miranda Perea, P. Selene Linares Arévalo .
    Axiomatic and dual systems for constructive necessity, a formally verified equivalence.
    Journal of Applied Non-Classical Logics, Vol. 29(3), pp. 255--287. August 2019.  doi

  • Favio E. Miranda Perea, Lourdes del Carmen González Huesca, P. Selene Linares Arévalo .
    Dual and Axiomatic Systems for Constructive S4, A Formally Verified Equivalence.
    Por aparecer en Electronic Notes in Theoretical Computer Science. Elsevier.

  • Favio E. Miranda Perea, Lourdes del Carmen González Huesca, P. Selene Linares Arévalo .
    On Interactive Proof-search for Constructive Modal Necessity.
    Por aparecer en Electronic Notes in Theoretical Computer Science. Elsevier.

  • Favio E. Miranda Perea, Lourdes del Carmen González Huesca, P. Selene Linares Arévalo .
    On Interactive Proof-search for Equational Reasoning.
    Por aparecer en Logical Journal of the IGPL. Cambridge University Press.

  • G. Campero-Arena, J. Cancino, M. Hrusak, D. Meza-Alcántara, F.E. Miranda-Perea.
    Topological Properties of Incomparable Families.
    Colloquium Mathematicum.
    Vol 156(2019), pp. 313-323.
    Instytut Matematyczny PAN 2019.   doi

  • G. Campero-Arena, J. Cancino, M. Hrusak, F.E. Miranda-Perea.
    Incomparable Families and Maximal Trees.
    Fundamenta Mathematicae. Vol 234(1), pp. 73-89.
    Instytut Matematyczny PAN 2016.  doi

  • Favio E. Miranda Perea, P. Selene Linares Arévalo, Atocha Aliseda
    How to Prove It in Natural Deduction: A Tactical Approach
    Proceedings of the Fourth International Conference on Tools for Teaching Logic (TTL 2015) pp. 157-166.
    Institut de Recherche en Informatique et Systemes Aleatories. Universite de Rennes 1.  arxiv

  • Favio E. Miranda Perea, Lourdes del Carmen González Huesca.
    Mendler-style Iso-(Co)inductive Predicates: a strongly normalizing approach.
    Electronic Proceeedings in Theoretical Computer Science, Vol. 81, pp. 30--46. March. 2012.  doi

  • Favio E. Miranda Perea.
    Two Extensions of System F with (Co)iteration and Primitive (Co)recursion Principles.
    Theoretical Informatics and Applications. Vol 43(4)
    EDP Sciences 2009. doi

  • Favio E. Miranda Perea, Lourdes del Carmen Gonzalez Huesca
    Selective Memoization with Box Types.
    Electronic Notes in Theoretical Computer Science. Vol. 256
    Elsevier Science Holland 2009. doi

  • Favio E. Miranda Perea.
    Some Remarks on Type Systems for Course-of-value Recursion.
    Electronic Notes in Theoretical Computer Science. Vol 247.
    Elsevier Science Holland 2009.  doi

  • Favio E. Miranda Perea.
    Realizability for Monotone and Clausular (Co)inductive Definitions.
    Electronic Notes in Theoretical Computer Science Vol 123.
    Elsevier Science Holland 2005. doi

  • Favio E. Miranda Perea.
    A Curry-style Realizability Interpretation for Monotone Inductive Definitions.
    In Malvina Nissim (Editor.)
    Proceedings of the Seventh ESSLLI Student Session.
    Trento Italy. 5th.-16th. August 2002
    Versión original: pdf       Versión extendida: pdf

  • Favio E. Miranda Perea.
    Towards Modified Realizability for Monotone Inductive Definitions.
    En Memorias del 3er Encuentro Internacional de Ciencias de la Computacion (ENC01)
    Aguascalientes, Ags. Mexico. Vol. II. Sociedad Mexicana de Ciencias de la Computación 2001

Reportes de investigación y manuscritos:


  • Favio E. Miranda Perea, Lourdes del Carmen González Huesca.
    Mendler-style Iso-(Co)inductive Predicates: a strongly normalizing approach (Extended Version)
    June 2011.

  • Favio E. Miranda Perea, Carlos Torres A., Lourdes del Carmen González Huesca, A. Liliana Reyes Cabello.
    On Logics with Monotone Inductive Definitions
    Technical report 04/10. Mathematics Department, Faculty of Science UNAM

  • Favio E. Miranda Perea, Lourdes del Carmen González Huesca.
    Categorical Type Systems for Course-of-Value Recursion
    Technical report 03/10. Mathematics Department, Faculty of Science UNAM. In personal revision may 2011.

Tesis Doctoral: