

Topology and its Applications 58 (1994) 157-172

p-Fréchet–Urysohn property of function spaces

Salvador Garcia-Ferreira^a, Angel Tamariz-Mascarua^{*,b}

^a Instituto de Matematicas, Ciudad Universitaria (UNAM), Mexico, D.F. 04510, Mexico ^b Departamento de Matemations, Facultad de Ciencias, Ciudad Universitaria (UNAM), Mexico, D.F. 04510, Mexico

(Received 13 April 1992; revised 9 August 1993)

Abstract

In this paper, we study the *p*-Fréchet–Urysohn property of function spaces, for $p \in \beta(\omega) \setminus \omega$. We prove that $C_{\pi}(X)$ is *p*-Fréchet–Urysohn if and only if X has (γ_p) , where (γ_p) is the natural *p*-version of property (γ) (this is a generalization of a result due to Gerlits and Nagy). We note the following implications: X is second countable $\Rightarrow X$ has (γ_p) for some $p \in \beta(\omega) \setminus \omega \Rightarrow X^n$ is Lindelöf for all $1 \le n < \omega$. We deal with the question when is $C_{\pi}(\mathbb{R})$ a *p*-Fréchet–Urysohn space. It is shown that there is $p \in \beta(\omega) \setminus \omega$ such that $C_{\pi}(\mathbb{R})$ is *p*-Fréchet–Urysohn; if *p* is semiselective, then every subset X of \mathbb{R} satisfying (γ_p) has measure zero and if *p* is selective, then X is a strong measure zero set; and we can find $p \in \beta(\omega) \setminus \omega$ such that $C_{\pi}(\mathbb{R})$ is *p*-Fréchet–Urysohn and is not strongly *p*-Fréchet–Urysohn. Finally, we prove that \mathbb{R}^{ω} does not have (γ_p) whenever *p* is a *P*-point of $\beta(\omega) \setminus \omega$.

Key words: Function space; ω -cover; FU(p)-space; γ_p -property; Rudin–Keisler order; Rapid; Semiselective; Selective; P-point; Q-point

AMS (MOS) Subj. Class.: 04A20, 54C40, 54D55

1. Introduction and preliminaries

In this paper we consider only completely regular Hausdorff spaces. For $A \subseteq X$, Cl(A) stands for the closure of A in X and, for $x \in X$, $\mathcal{N}(x)$ is the set of neighborhoods of x in X. For a space X we define $C_{\pi}(X)$ to be the set of all continuous real valued functions on X endowed with the topology of pointwise

^{*} Corresponding author. The author is pleased to thank the Department of Mathematics of CINVES-TAV for generous hospitality and support during the academic year of 1991–92.

^{0166-8641/94/\$07.00 © 1994} Elsevier Science B.V. All rights reserved SSDI 0166-8641(93)E0104-V

convergence. If $f: X \to Y$ is a continuous function then $\overline{f}: \beta X \to \beta Y$ denotes the Stone-Čech extension of f. The remainder of βX is $X^* = \beta X \setminus X$. For $p \in \omega^*$, $\xi(p)$ denotes the subspace $\omega \cup \{p\}$ of $\beta(\omega)$. For $p, q \in \omega^*$ we define $p \leq_{RK} q$, the Rudin-Keisler ordering, if there is a function $f: \omega \to \omega$ such that $\overline{f}(q) = p$. If p, $q \in \omega^*$, then $p \approx_{RK} q$ means that $p \leq_{RK} q$ and $q \leq_{RK} p$ (equivalently, there is a permutation σ of ω such that $\overline{\sigma}(p) = q$). The type of $p \in \omega^*$ is $T(p) = \{q \in \omega^* : p \approx_{RK} q\}$. If $p \in \omega^*$, then p is a *P*-point if for every partition $\{A_n: n < \omega\}$ of ω with $A_n \notin p$, for each $n < \omega$, there is $A \in p$ such that $|A \cap A_n| < \omega$ for all $n < \omega$; p is a *Q*-point if for each $n < \omega$; p is rapid if for every function $f: \omega \to \omega$ there is $A \in p$ such that $|A \cap A_n| \leq 1$ for each $n < \omega$; p is rapid if for every function $f: \omega \to \omega$ there is $A \in p$ such that $|A \cap f(n)| \leq n$ for each $n < \omega$; p is semiselective if p is a *P*-point and rapid; and p is selective if p is a *P*-point and a *Q*-point. Observe that every *Q*-point is rapid and so every selective ultrafilter is semiselective. Kunen (see [5] or [8,9.6]) showed that the selective ultrafilters on ω^* are precisely the RK-minimal points of ω^* .

A collection \mathcal{G} of subsets of X is an ω -cover of X if for every finite subset F of X there is $G \in \mathcal{G}$ such that $F \subseteq G$.

The authors of [16] introduced the following property for a space X:

 (γ) if \mathscr{G} is an open ω -cover of X, then there is a sequence $(G_n)_{n < \omega}$ in \mathscr{G} such that $X = \text{Lim } G_n$, where

 $\operatorname{Lim} G_n = \{ x \in X \colon (\exists m < \omega) (\forall n > m) [x \in G_n] \}.$

It is shown in [15,16] that a space X has $(\gamma) \Leftrightarrow C_{\pi}(X)$ is sequential $\Leftrightarrow C_{\pi}(X)$ is a Fréchet–Urysohn space: the second equivalence was also proved in [23].

In [3], Bernstein introduced for $p \in \omega^*$ the *p*-limit notion of a sequence of points in a space X: x = p-lim x_n if for each $V \in \mathcal{N}(x)$ we have that $\{n < \omega: x_n \in V\} \in p$. Bernstein's concept suggests the following generalization of sequential and Fréchet-Urysohn spaces:

Definition 1.1. Let $p \in \omega^*$ and X a space.

(1) (Kombarov [17]) X is *p*-sequential if for every nonclosed subset A of X there is a sequence $(x_n)_{n < \omega}$ in A and $x \notin A$ such that x = p-lim x_n .

(2) (Comfort-Savchenko) X is an FU(p)-space if for every $A \subseteq X$ and $x \in Cl(A)$ there is a sequence $(x_n)_{n \le \omega}$ in A such that x = p-lim x_n .

It is then natural to define the *p*-version of property (γ) :

Definition 1.2. Let $p \in \omega^*$ and let X be a space.

(1) If $(G_n)_{n < \omega}$ is a sequence of nonempty subsets of X, then

 $\operatorname{Lim}_{p} \quad G_{n} = \{ x \in X \colon \{ n < \omega \colon x \in G_{n} \} \in p \}.$

(2) X has (γ_p) if for every open ω -cover \mathscr{G} of X there is a sequence $(G_n)_{n < \omega}$ in \mathscr{G} such that $X = \lim_{n \to \infty} G_n$.

1.3. Observe that if $(G_n)_{n < \omega}$ is a sequence of subsets of a space X and $p \in \omega^*$, then $\lim_{n \to \infty} G_n = \bigcup_{A \in p} \bigcap_{n \in A} G_n$.

The following lemma will be useful.

Lemma 1.4. Let $p \in \omega^*$ and X a space. Then $X = \underline{\lim}_p G_n$ if and only if $X = \bigcup_{n \in A} G_n$ for every $A \in p$.

Proof. (\Rightarrow) Let $A \in p$ and $x \in X$. By assumption, $\{n < \omega : x \in G_n\} \in p$. Hence, we may pick $m \in A$ such that $x \in G_m$. Thus, $X = \bigcup_{n \in A} G_n$.

(⇐) If there is $x \in X$ such that $B = \{n < \omega : x \in G_n\} \notin p$, then $x \notin \bigcup_{n \in A} G_n$, where $A = \omega \setminus B$, which is a contradiction. \Box

The next theorem establishes the connection between the Rudin-Keisler order on ω^* and properties (γ_n) .

Theorem 1.5. Let $p, q \in \omega^*$. If $p \leq_{RK} q$, then every space with (γ_p) has (γ_q) .

Proof. Let X be a space with (γ_p) and let $f: \omega \to \omega$ be onto such that $\overline{f}(q) = p$. Let \mathscr{G} be an open ω -cover of X. Then there is a sequence $(G_n)_{n < \omega}$ in \mathscr{G} such that $X = \underline{\lim}_p G_n$. For each $n < \omega$, set $F_n = G_{f(n)}$. If $x \in X$, then $A = \{n < \omega : x \in G_n\} \in p$ and so $f^{-1}(A) = \{m < \omega : x \in G_{f(m)} = F_m\} \in q$. Thus, $X = \underline{\lim}_q F_n$. \Box

We do not know whether the converse to Theorem 1.5 holds:

Question 1.6. Let $p, q \in \omega^*$. If every space with (γ_p) has (γ_q) , must we have that $p \leq_{\text{RK}} q$?

It should be remarked that if $X = \lim_{\alpha \to \infty} {}_{\rho}G_n$ then $\mathscr{G} = \{G_n : n < \omega\}$ is an ω -cover of X. Thus, in a space satisfying (γ_p) every open ω -cover has a countable ω -subcover. This last property is denoted by (ε) in [16], where it is shown that a space X has $(\varepsilon) \Leftrightarrow X^n$ is Lindelöf for each $1 \le n < \omega \Leftrightarrow$ the tightness of $C_{\pi}(X)$ is countable (the last equivalence was proved by Arkangel'skii [2, 4.1.2] and Pytkeev [22]). It is evident that every closed subspace of a space with (ε) has (ε) too; more general:

Lemma 1.7. If X has (ε) , then every F_{σ} -subset of X has (ε) too.

Proof. Let $F = \bigcup_{n < \omega} F_n$ such that F_n is a closed subset of X for each $n < \omega$, and let $1 \le m < \omega$. Then we have that

 $F^m = \bigcup \{F_{n_1} \times \cdots \times F_{n_m}: n_j < \omega \text{ for } 1 \leq j \leq m\},\$

and each $F_{n_1} \times \cdots \times F_{n_m}$ is a closed subset of X^m . Since X^m is Lindelöf, we have that each $F_{n_1} \times \cdots \times F_{n_m}$ is Lindelöf and so F^m is Lindelöf. \Box

The following questions appear to be natural.

(I) Is it true that a space X has (γ_p) if and only if $C_{\pi}(X)$ is an FU(p)-space? (II) If $C_{\pi}(X)$ is p-sequential, must $C_{\pi}(X)$ be an FU(p)-space?

In Section 2, we answer question (I) in the affirmative (Theorem 2.10). We do not know the response to the second one. Also, in Section 2, we show that if X has (ε) and $w(X) \leq 2^{\omega}$, then there is $p \in \omega^*$ such that $C_{\pi}(X)$ is an FU(p)-space (Theorem 2.3). In particular, $C_{\pi}(\mathbb{R})$ is an FU(p)-space for some $p \in \omega^*$. However, we prove that if p is semiselective, then $C_{\pi}(\mathbb{R})$ is not an FU(p)-space (Corollary 3.9).

The authors are grateful to the referee for valuable remarks and for improving an earlier version of Lemma 3.14.

2. Property $(\gamma_{\rm p})$ and function spaces

In this section, we shall show that a space X has (γ_p) if and only if $C_{\pi}(X)$ is an FU(p)-space, for $p \in \omega^*$. First, we give some basic results concerning properties (γ_p) .

Theorem 2.1. Let $p \in \omega^*$.

(a) Property (γ_n) is preserved under continuous functions.

(b) If F is a F_{σ} -subset of a space X with (γ_p) , then F has (γ_p) .

(c) If X has (γ_p) , then X^n has (γ_p) for each $1 \le n \le \omega$.

Proof. (a) Let X be a space with (γ_p) and let $f: X \to Y$ be a continuous function from X onto a space Y. Let \mathscr{G} be an open ω -cover of Y. We have that $\mathscr{F} = \{f^{-1}(G): G \in \mathscr{G}\}$ is an open ω -cover of X. Since X has (γ_p) there is a sequence $(F_n)_{n < \omega}$ in \mathscr{F} such that $X = \underline{\lim}_{p} F_n$. For each $n < \omega$, we have that $F_n = f^{-1}(G_n)$ for some $G_n \in \mathscr{G}$. It is then evident that $Y = \lim_{p} G_n$.

(b) Assume that X has (γ_p) and $F = \bigcup_{n < \omega} F_n$, where F_n is a closed subset of X and $F_n \subseteq F_{n+1}$, for $n < \omega$. Let \mathscr{G} be an open ω -cover of F. By Lemma 1.7, \mathscr{G} has a countable ω -subcover $\mathscr{G}' = \{G_n: n < \omega\}$. For each $n < \omega$ we choose an open subset K_n of X such that $G_n = K_n \cap F$ and set $H_n = K_n \cup (X \setminus F_n)$. We note that $\mathscr{H} = \{H_n: n < \omega\}$ is an open ω -cover of X. By hypothesis, there is a sequence $(H_{n_k})_{k < \omega}$ in \mathscr{H} such that $X = \underset{p}{\text{Lim}} {}_pH_{n_k}$. Let us check that $F = \underset{p}{\text{Lim}} {}_pG_{n_k}$. If $x \in F$, then we have that $\{k < \omega: x \in H_{n_k}\} \in p$ and $x \in F_m$ for some $m < \omega$. Hence,

 $\{k < \omega \colon m \leq n_k, x \in H_{n_k}\} \subseteq \{k < \omega \colon x \in G_{n_k}\} \in p.$

(c) Assume that X has (γ_p) . It suffices to show that $X \times X$ has (γ_p) . Indeed, fix an open base \mathscr{B} of X closed under finite unions. Let \mathscr{G} be an open ω -cover of $X \times X$. Set $\mathscr{B}' = \{B \times B : B \in \mathscr{B}, B \times B \subseteq G \text{ for some } G \in \mathscr{G}\}$. We claim that \mathscr{B}' is an ω -cover of $X \times X$. Let $\{(x_0, y_0), \ldots, (x_r, y_r)\} \subseteq X \times X$. By assumption, there is $G \in \mathscr{G}$ such that

$$\{(x_i, y_j): i, j < r\} \cup \{(x_i, x_j): i, j < r\} \cup \{(y_i, y_j): i, j < r\} \cup \{(y_i, x_j): i, j < r\} \subseteq G.$$

We may find $A_i, B_i \in \mathscr{B}$ for $i \leq r$ so that $(x_i, y_j) \in A_i \times B_j \subseteq G$, $(y_i, x_j) \in B_i \times A_j \subseteq G$, $(x_i, x_j) \in A_i \times A_j \subseteq G$ and $(y_i, y_j) \in B_i \times B_j \subseteq G$, for each $i, j \leq r$. Define $B = (\bigcup_{i \leq r} A_i) \cup (\bigcup_{i \leq r} B_i)$. Then, $B \in \mathscr{B}$ and $B \times B = (\bigcup_{i, j \leq r} A_i \times B_j) \cup (\bigcup_{i, j \leq r} A_i \times A_j) \cup (\bigcup_{i, j \leq r} B_i \times B_j) \subseteq G$. Thus, \mathscr{B}' is an open ω -cover of $X \times X$ and hence $\mathscr{D} = \{B \in \mathscr{B} \colon B \times B \in \mathscr{B}'\}$ is also an ω -cover of X. We then have that there is a sequence $(B_n)_{n < \omega}$ in \mathscr{D} such that $X = \underline{\lim}_p B_n$. For each $n < \omega$, choose $G_n \in \mathscr{S}$ so that $B_n \times B_n \subseteq G_n$. If $(x, y) \in X \times X$, then $\{n < \omega \colon x \in B_n\} \cap \{m < \omega \colon y \in B_m\} \subseteq \{k < \omega \colon (x, y) \in B_k \times B_k\} \in p$. Therefore, $X \times X = \lim_p (B_n \times B_n) = \lim_p G_n$. \Box

Lemma 2.2. Let $p \in \omega^*$, X a space with (ε) and \mathscr{B} a base of X closed under finite unions. We have that X has (γ_p) if and only if for every countable open ω -cover $\{B_n: n < \omega\} \subseteq \mathscr{B}$ of X there is $q \in \omega^*$ such that $q \leq_{\mathsf{RK}} p$ and $X = \lim_{\alpha \to \infty} B_n$.

Proof. (\Rightarrow) Let $\{B_n: n < \omega\}$ be an open ω -cover of X. By hypothesis there is a sequence $(B_{n_k})_{k < \omega}$ of $\{B_n: n < \omega\}$ such that $X = \lim_{k \to \infty} B_{n_k}$. Define $f: \omega \to \omega$ by $f(k) = n_k$ for each $k < \omega$, and $q = \overline{f}(p)$. If $x \in X$, then $\{k < \omega: x \in B_{n_k}\} \in p$ and since $q = \overline{f}(p)$, $\{f(k) < \omega: x \in B_{n_k}\} = \{f(k) < \omega: x \in B_{f(k)}\} \in q$. Hence, $\{n < \omega: x \in B_n\} \in q$. Thus, $X = \lim_{k \to \infty} B_n$.

(⇐) Let \mathscr{G} be an open ω -cover of X and consider the set $\mathscr{D} = \{B \in \mathscr{B} : B \subseteq G \text{ for some } G \in \mathscr{G}\}$. Notice that \mathscr{D} is also an open ω -cover of X. Since X has (ε) , we may assume that $\mathscr{D} = \{B_n : n < \omega\}$. By assumption there is $q \in \omega^*$ and a function $f: \omega \to \omega$ such that $\overline{f}(p) = q$ and $X = \underset{q \in W}{\text{Lim}} {}_{q}B_n$. For $x \in X$, we have that $A = \{n < \omega : x \in B_n\} \in q$ and so $f^{-1}(A) = \{k < \omega : x \in B_{f(k)}\} \in p$. Thus, $X = \underset{p \in W}{\text{Lim}} {}_{p}B_{f(k)}$. For each $k < \omega$ choose $G_k \in \mathscr{G}$ so that $B_{f(k)} \subseteq G_k$. Therefore, $(G_k)_{k < \omega}$ is a sequence in \mathscr{G} and $X = \underset{p \in G_k}{\text{Lim}} {}_{p}G_k$. \Box

Theorem 2.3. If X has (ε) and $w(X) \leq 2^{\omega}$, then there is $p \in \omega^*$ such that X has (γ_p) .

Proof. Let \mathscr{B} be a base of X closed under finite unions and $|\mathscr{B}| \leq 2^{\omega}$. Let \mathscr{D} be the set of all countable open ω -covers of X with elements in \mathscr{B} . It is clear that $|\mathscr{D}| \leq 2^{\omega}$. Now, each $b \in \mathscr{D}$ will be enumerated as follows: if b is infinite, then $\{B_n: n < \omega\}$ will be a faithful enumeration of b and if b is finite, then $\{B_n: n < \omega\}$ will be an enumeration of b so that each element of b appears infinite many times in the enumeration. Fix $b = \{B_n: n < \omega\} \in \mathscr{D}$. For each $x \in X$ put $S(x) = \{n < \omega: x \in B_n\}$ and $\mathscr{F}_b = \{S(x): x \in X\}$. Since b is an ω -cover of X and $\{B_n: n < \omega\}$ is a nice enumeration of b, \mathscr{F}_b is a filter subbase in ω which can be extended to a free filter on ω . Hence, for each $b \in \mathscr{D}$, we may choose $q_b \in \omega^*$ such that $\mathscr{F}_b \subseteq q_b$. We then have that $X = \underset{q_b}{\text{Lim}} \underset{q_b}{q_b} B_n$, for each $b \in \mathscr{D}$. Since $|\{q_b: b \in \mathscr{D}\}| \leq |\mathscr{D}| < 2^{\omega}$, by 10.9 of [8] or 6.4 of [5], there is $p \in \omega^*$ such that $q_b \leq_{\mathsf{RK}} p$ for each $b \in \mathscr{D}$. The conclusion follows from Lemma 2.2. \Box

Corollary 2.4. If X is a countable space, then there is $p \in \omega^*$ such that $C_{\pi}(X)$ has (γ_p) .

Proof. If X is countable, then $C_{\pi}(X) \subseteq \mathbb{R}^{\omega}$ and so $C_{\pi}(X)$ is second countable. By Theorem 2.3, there is $p \in \omega^*$ such that $C_{\pi}(X)$ has (γ_p) . \Box

We turn now to the principal result of this section (Theorem 2.10). We prove this theorem by using arguments that are similar to those applied in the proof of Theorem 2 ((γ) \Leftrightarrow (iv)) in [16]. For the sake of completeness, we present the proof with all the details. The following lemmas constitute the essential modifications to prove our theorem.

For a space $X, \varepsilon > 0$ and $f \in C_{\pi}(X)$, the set $\{x \in X : |f(x)| < \varepsilon\}$ is denoted by $\operatorname{coz}_{\varepsilon} f$. If F is a finite subset of X and V is an open subset of \mathbb{R} , then we put $[F, V] = \{f \in C_{\pi}(X) : f(F) \subseteq V\}$. A subbase of $C_{\pi}(X)$ is the set $\{[F, V] : F \subseteq X \text{ is finite and } V \subseteq \mathbb{R} \text{ is open}\}$.

Lemma 2.5. Let $\emptyset \neq \Phi \subseteq C_{\pi}(X)$, $f \in \operatorname{Cl} \Phi$ and $\varepsilon > 0$. Then $\mathscr{G}(\Phi, f, \varepsilon) = \{\operatorname{coz}_{\varepsilon}(g - f): g \in \Phi\}$ is an open ω -cover of X.

Proof. Fix $x_0, \ldots, x_n \in X$. Since $f \in C!$ Φ there is $h \in W \cap \Phi$, where $W = [x_0, (f(x_0) - \varepsilon, f(x_0) + \varepsilon)] \cap \cdots \cap [x_n, (f(x_n) - \varepsilon, f(x_n) + \varepsilon)]$. Then, $|f(x_j) - h(x_j)| < \varepsilon$ for each $j \le n$; that is, $x_0, \ldots, x_n \in \cos_{\varepsilon}(h - f)$. \Box

Lemma 2.6. Let $f \in C_{\pi}(X)$, $\varepsilon > 0$ and \mathcal{H} an open ω -cover of X with $X \notin \mathcal{H}$. If $\Phi(\mathcal{H}, f, \varepsilon) = \{g \in C_{\pi}(X): \cos_{\varepsilon}(g - f) \subseteq H \text{ for some } H \in \mathcal{H}\}$, then $f \in \mathbb{C}$ $\Omega(\mathcal{H}, f, \varepsilon) \setminus \Phi(\mathcal{H}, f, \varepsilon)$ and $\mathcal{G}(\Phi(\mathcal{H}, f, \varepsilon), f, \delta)$ refines \mathcal{H} for each $\delta > 0$.

Proof. Let $F = \{x_0, \ldots, x_n\} \subseteq X$ and

$$W = \left[x_0, \left(f(x_0) - \rho, f(x_0) + \rho \right) \right] \cap \cdots \cap \left[x_n, \left(f(x_n) - \rho, f(x_n) + \rho \right) \right].$$

Since \mathcal{H} is an ω -cover there is $H \in \mathcal{H}$ such that $F \subseteq H$ and since X is Tychonoff there is a continuous function $g: X \to [0, \varepsilon]$ such that $g(x_j) = 0$ for $j \leq n$, and $g(x) = \varepsilon$ for all $x \in X \setminus H$. Then, $f - g \in W \cap \Phi(\mathcal{H}, f, \varepsilon)$. Thus, $f \in \operatorname{Cl} \Phi(\mathcal{H}, f, \varepsilon)$ and since $X \notin \mathcal{H}$ then $f \notin \Phi(\mathcal{H}, f, \varepsilon)$. \Box

Lemma 2.7. Let $p \in \omega^*$, X a space, $f \in C_{\pi}(X)$ and $(f_n)_{n < \omega}$ a sequence in $C_{\pi}(X)$. Then $f = p - \lim_{n \to \infty} f_n$ if and only if $\lim_{n \to \infty} \sum_{\varepsilon} (c_n - f) = X$ for each $\varepsilon > 0$.

Proof. (\Rightarrow) Let $\varepsilon > 0$ and $x \in X$. By assumption we have that $\{n < \omega: f_n \in [x, (f(x) - \varepsilon/2, f(x) + \varepsilon/2)]\} \in p$ and so $\{n < \omega: |f_n(x) - f(x)| < \varepsilon\} = \{n < \omega: x \in \cos_{\varepsilon}(f_n - f)\} \in p$. Thus, $X = \underline{\lim}_{p} \cos_{\varepsilon}(f_n - f)$.

(⇐) Let $\{x_0, ..., x_k\} \subseteq X$, $\varepsilon > 0$ and $W = \bigcap_{j \leq k} [x_j, (f(x_j) - \varepsilon, f(x_j) + \varepsilon)]$. For each $j \leq k$ we have that $\{n < \omega: x_j \in \cos_{\varepsilon}(f_n - f)\} \in p$ and so

$$\bigcap_{j \leq k} \{n < \omega \colon |f_n(x_j) - f(x_j)| < \varepsilon \} \subseteq \{n < \omega \colon f_n \in W\} \in p.$$

Therefore, f = p-lim f_n . \Box

The following lemma generalizes Lemma 2.7 and plays a very important role in the proof of Theorem 2.10 below.

Lemma 2.8. Let $p \in \omega^*$, X a space, $f \in C_{\pi}(X)$, $(f_n)_{n < \omega}$ a sequence in $C_{\pi}(X)$ and $(\varepsilon_n)_{n < \omega}$ a sequence of positive real numbers. If for every $\varepsilon > 0$ we have that $\{n < \omega: \varepsilon_n < \varepsilon\} \in p$ and $X = \lim_{n \to \infty} \log_{\varepsilon_n}(f_n - f)$, then f = p-lim f_n .

Proof. Let $W = \bigcap_{j \leq k} [x_j, (f(x_j) - \varepsilon, f(x_j) + \varepsilon)]$, where $\{x_0, \dots, x_k\} \subseteq X$ and $\varepsilon > 0$. Since $\lim_{k \neq n} \operatorname{coz}_{\varepsilon_n} (f_n - f) = X$, we have that $\{n < \omega: x_0, \dots, x_k \in \operatorname{coz}_{\varepsilon_n} (f_n - f)\} \in p$. This implies that

$$\{n < \omega \colon |f_n(x_j) - f(x_j)| < \varepsilon_n < \varepsilon\} \subseteq \{n < \omega \colon f_n \in W\} \in p$$

for every $j \leq k$. That is, f = p-lim f_n . \Box

The next corollary is a direct application of Lemma 2.8.

Corollary 2.9. Let $p \in \omega^*$, $f, (f_n)_{n < \omega}$ and $(\varepsilon_n)_{n < \omega}$ as in Lemma 2.8. If $\varepsilon_0 > \cdots > \varepsilon_n > \cdots > 0$ and $\varepsilon_n \to 0$, then f = p-lim f_n .

Theorem 2.10. Let $p \in \omega^*$. Then $C_{\pi}(X)$ is an FU(p)-space if and only if X has (γ_p) .

Proof. (\Rightarrow) Assume that $C_{\pi}(X)$ is an FU(p)-space and let \mathscr{G} be an open ω -cover of X such that $X \notin \mathscr{G}$. If $\Phi = \Phi(\mathscr{G}, 0, 1)$, then $0 \in \operatorname{Cl} \Phi \setminus \Phi$ (see Lemma 2.6). Since $C_{\pi}(X)$ is an FU(p)-space there is a sequence $(f_n)_{n < \omega}$ in Φ such that $0 = p\operatorname{-lim} f_n$. For each $n < \omega$ choose $G_n \in \mathscr{G}$ such that $\operatorname{coz}_1 f_n \subseteq G_n$. We verify that $X = \operatorname{Lim}_p G_n$. Indeed, fix $x \in X$. Since $0 = p\operatorname{-lim} f_n$, $\{n < \omega : |f_n(x)| < 1\} \in p$. Hence,

 $\{n < \omega \colon x \in \operatorname{coz}_1 f_n\} \subseteq \{n < \omega \colon x \in G_n\} \in p.$

(⇐) Let $\Phi \subseteq C_{\pi}(X)$ such that $0 \in \operatorname{Cl} \Phi \setminus \Phi$. Without loss of generality we may assume that X is infinite. Let $\{x_n: n < \omega\}$ be an infinite subset of X such that $x_n \neq x_m$ for $n < m < \omega$. By Lemma 2.5, for each $n < \omega$, $\mathscr{G}_n = \mathscr{G}(\Phi, 0, \varepsilon_n)$ is an open ω -cover of X, where $\varepsilon_n = 1/2^n$. Define, for each $n < \omega$, $\mathscr{U}_n = \{G \setminus \{x_n\}: G \in \mathscr{G}_n\}$ and $\mathscr{U} = \bigcup_{n < \omega} \mathscr{U}_n$. It is not hard to prove that \mathscr{U} is an open ω -cover of X. Since X has (γ_p) there is a sequence $(U_k)_{k < \omega}$ in \mathscr{U} such that $X = \lim_{p \to \infty} pU_k$. For each $k < \omega$ there is $f_k \in \Phi$, $n_k < \omega$ and $G_k \in \mathscr{G}_{n_k}$ such that $U_k = G_k \setminus \{x_{n_k}\}$ and $G_k = \operatorname{coz}_{\varepsilon_{n_k}} f_k$. Thus, $X = \lim_{p} (\operatorname{coz}_{\varepsilon_{n_k}} f_k)$. Suppose that there is $\varepsilon > 0$ such that $\{k < \omega: \varepsilon < \varepsilon_{n_k}\}$ $\in p$. Then there is $m < \omega$ such that $A = \{k < \omega: n_k = m\} \in p$ and so $X = \bigcup_{k \in A} U_k$ and $U_k \in \mathscr{U}_m$ for each $k \in A$, which is a contradiction since $x_m \notin U$ for all $G \in \mathscr{U}_m$. Thus, $\{k < \omega: \varepsilon_{n_k} < \varepsilon\} \in p$ for all $\varepsilon > 0$. The conclusion follows from Corollary 2.9.

Malykhin and Shakhmatov [18] have shown that if we add a single Cohen real to a countable model of MA + \neg CH, then in the generic extension there exist two spaces X and Y such that $C_{\pi}(X)$ and $C_{\pi}(Y)$ are Fréchet-Urysohn (hence, FU(p)-spaces for all $p \in \omega^*$) and $C_{\pi}(X) \times C_{\pi}(Y)$ has uncountable tightness; in particular, it is not an FU(p)-space for each $p \in \omega^*$. Van Douwen remarked (see [6, p. 1222]) that the results of [21] imply the existence of spaces X and Y of weight not bigger than 2^{ω} such that X and Y have (ε) and $X \times Y$ is not Lindelöf. In virtue of Theorems 2.3 and 2.10, we may find $p \in \omega^*$ so that $C_{\pi}(X)$ and $C_{\pi}(Y)$ are FU(p)-spaces and, by [2, 4.1.2], the tightness of $C_{\pi}(X \times Y)$ is uncountable; that is, $C_{\pi}(X \times Y)$ cannot be a FU(p)-space.

As a consequence of Theorem 2.10 we have the following result similar to Theorem 1 in [24]:

Corollary 2.11. Let $p \in \omega^*$. If $C_{\pi}(X)$ is an FU(p)-space, then $C_{\pi}(X)^{\omega}$ is so.

Proof. Assume that $C_{\pi}(X)$ is an FU(p)-space. By Theorem 2.10, we have that X has (γ_p) and, by Theorem 2.1(c), $X \times X$ has (γ_p) . We may assume that X is infinite. Choose a countably infinite discrete subset D of X. Since $X \times D$ is an F_{σ} -subset of $X \times X$, we obtain that $X \times D \cong X \times \omega$ has (γ_p) . From Theorem 2.10 it follows that $C_{\pi}(X \times \omega) \cong C_{\pi}(X)^{\omega}$ is an FU(p)-space. \Box

A generalization of Theorem 2.3 can be achieved by using Theorem 2.10 and Theorem 3.12 from [14] as follows:

Theorem 2.12. If $d(X) = \omega = L(X^n)$ for all $1 \le n \le \omega$, then there is $p \in \omega^*$ such that X has (γ_p) .

Proof. If $d(X) = L(X^n) = \omega$ for all $1 \le n < \omega$, then $|C_{\pi}(X)| \le 2^{\omega}$ and, by a theorem of Arhangel'skii and Pytkeev [2,4.1.2], $t(C_{\pi}(X)) = \omega$. Applying 3.12 from [14], there is $p \in \omega^*$ for which $C_{\pi}(X)$ is an FU(p)-space. By virtue of Theorem 2.10, X has (γ_p) . \Box

Now, we consider the following generalization of (γ') in [16]:

 (γ'_p) if $(\mathscr{G}_n)_{n < \omega}$ is a sequence of open ω -covers of X, then for each $n < \omega$ there is $G_n \in \mathscr{G}_n$ such that $X = \lim_{p \to \infty} G_n$.

It is shown in [16] that X has $(\gamma) \Leftrightarrow X$ has $(\gamma') \Leftrightarrow C_{\pi}(X)$ is a strictly Fréchet– Urysohn space (X is a strictly Fréchet–Urysohn space if $x \in Cl(A_n)$ for $n < \omega$ implies that $x_n \to x$, where $x_n \in A_n$ for $n < \omega$). By slightly modifing the proof of Theorem 2.10, we have:

Theorem 2.13. Let $p \in \omega^*$ and X a space. Then X has (γ'_p) if and only if $C_{\pi}(X)$ is a strictly FU(p)-space.

Also, Gerlits and Nagy [16] proved that a subset of \mathbb{R} with (γ) has the Rothberger property C'' (hence, it is a strong measure zero set): a space X has C'' provided that for each sequence $(\mathscr{G}_n)_{n < \omega}$ of open covers of X there is a sequence $(G_n)_{n < \omega}$, with $G_n \in \mathscr{G}_n$ and $X = \bigcup_{n < \omega} G_n$. Daniels [9,p.100] gave a more direct proof of this result. The argument used in Daniels' proof also shows:

Theorem 2.14. Let $p \in \omega^*$. If $X \subseteq \mathbb{R}$ has (γ'_p) , then X has C'' and hence X has strong measure zero.

We remark, by Theorems 2.3, 2.10, 2.13 and 2.14, that there is $p \in \omega^*$ such that $C_{\pi}(\mathbb{R})$ is an FU(p)-space and is not a strictly FU(p)-space. On the other hand, the authors of [16] established the equivalence of the Fréchet–Urysohn property and the strictly Fréchet–Urysohn property on the spaces of continuous functions; more general, Nyikos [20] proved that every Fréchet–Urysohn topological group is strictly Fréchet–Urysohn.

3. The reals \mathbb{R} and property (γ_p)

In [7, Q. 484], the following question is posed.

(III) Does $\xi(p)$ embed as a closed subspace into a *p*-sequential group?

It is well known that X is a closed subspace of the topological group $C_{\pi}(C_{\pi}(X))$, for each space X. This makes natural to ask:

Question 3.1. For each $p \in \omega^*$ does $C_{\pi}(\xi(p))$ have (γ_p) ?

We will answer this question in the negative fashion when p is a semiselective ultrafilter on ω . Unfortunately, we do not know any example of a point $p \in \omega^*$ for which $C_{\pi}(\xi(p))$ has (γ_p) yet. Nevertheless, by Corollary 2.4, for each $p \in \omega^*$ there is $q \in \omega^*$ such that $C_{\pi}(\xi(p))$ has (γ_q) .

3.2. Let $p \in \omega^*$. It is known that $C_{\pi}(\xi(p))$ is linearly isomorphic to the product $\mathbb{R} \times C^0_{\pi}(\xi(p))$, where $C^0_{\pi}(\xi(p)) = \{(x_n)_{n < \omega} \in \mathbb{R}^{\omega}: (\forall \varepsilon > 0)(\exists A \in p)[|x_n| < \varepsilon \text{ for all } n \in A]\}$. We can identify p with the closed subset $\{\chi_A: A \in p\}$ of $C^0_{\pi}(\xi(p))$, where $\chi_A(n) = 0$ if $n \in A$ and $\chi_A(n) = 1$ if $n \notin A$ for $n < \omega$. Also, the topology of p as a subspace of 2^{ω} coincides with the topology on p inherited from $C^0_{\pi}(\xi(p))$.

Lemma 3.3. Let $p, q \in \omega^*$. If $p \subseteq 2^{\omega}$ satisfies (γ_q) then $p \leq_{RK} q$.

Proof. Assume that $p = \{\chi_A: A \in p\} \subseteq 2^{\omega}$ satisfies (γ_q) . For $n < \omega$, set $G_n = \{\chi_A \in p: n \in A\}$ and notice that G_n is an open subset of p. If $A_0, \ldots, A_k \in p$ and $m \in \bigcap_{j=0}^k A_j$, then $\{\chi_{A_0}, \ldots, \chi_{A_k}\} \subseteq G_m$. Hence, $\mathscr{G} = \{G_n: n < \omega\}$ is an open ω -cover of p. Then, there is a sequence $(G_{n_j})_{j < \omega}$ in \mathscr{G} such that $p = \underset{q}{\text{Lim}} {}_q G_{n_j}$. Define $f: \omega \to \omega$ by $f(j) = n_j$ for each $j < \omega$. We claim that $\overline{f}(q) = p$, In fact, if $A \in p$, then $f^{-1}(A) = \{j < \omega: f(j) = n_j \in A\} = \{j < \omega: \chi_a \in G_{n_j}\} \in q$. Thus, $\overline{f}(q) = p$; that is, $p \leq_{\text{RK}} q$. \Box

In 3.2, we pointed out that p as a subspace of 2^{ω} can be embedded as a closed subspace of $C_{\pi}(\xi(p))$ for each $p \in \omega^*$. This observation and Lemma 3.3 imply:

Corollary 3.4. Let $p, q \in \omega^*$. If $C_{\pi}(\xi(p))$ has (γ_q) then $p \leq_{\mathsf{RK}} q$.

166 S. Garcia-Ferreira, A. Tamariz-Mascarua / Topology and its Applications 58 (1994) 157–172

Corollary 3.5. For every $p \in \omega^*$ there is a subset X of \mathbb{R} such that X does not have (γ_p) .

Proof. Let $p \in \omega^*$. Choose $q \in \omega^*$ such that $p <_{RK} q$. We have that $q \subseteq 2^{\omega} \subseteq \mathbb{R}$, where $2^{\omega} = \{\sum_{n=1}^{\infty} i_n/3^n : i_n = 0 \text{ or } i_n = 2, \text{ for } 1 \leq n < \omega\}$ and $q = \{\sum_{n=1}^{\infty} i_n/3^n : \{n < \omega : i_n = 0\} \in q\}$. If q has (γ_p) , by Lemma 3.3 we obtain that $q \leq_{RK} p$, which is a contradiction. Thus, X = q does not have (γ_p) . \Box

Galvin and Miller [13] pointed out that the combinatorial principle P(c) is equivalent to the statement: every subspace X of \mathbb{R} of cardinality less that the continuum has (γ) . In this equivalence, we may replace (γ) by (γ_p) for any $p \in \omega^*$.

For each space X we can embed \mathbb{R} as a closed subspace of $C_{\pi}(X)$: we identify each $r \in \mathbb{R}$ with the constant function of $C_{\pi}(X)$ of value r. From Theorem 2.1(b) it follows that \mathbb{R} has (γ_p) whenever $C_{\pi}(\xi(p))$ has (γ_p) for $p \in \omega^*$. Thus, Question 3.1 can be reduced to the following:

(IV) Does \mathbb{R} have (γ_p) for each $p \in \omega^*$?

Next, we shall show that \mathbb{R} does not have (γ_p) whenever every RK-predecessor of p is rapid (this is the case when p is semiselective and when $p = q^{\omega}$ for some selective ultrafilter q). It is interesting to note that (by Theorem 2.3) there is $p \in \omega^*$ such that \mathbb{R} has (γ_p) , and that \mathbb{R} cannot have (γ) since every space with (γ) is zero-dimensional [16, p.157].

Theorem 3.6. If all RK-predecessors of $p \in \omega^*$ are rapid, then every subset of \mathbb{R} with (γ_p) has measure zero. In particular, \mathbb{R} does not have (γ_p) .

Proof. Let X be a subset of \mathbb{R} with (γ_p) . Without loss of generality we may assume that $X \subseteq [0, \infty)$. Fix $\varepsilon > 0$ and, for each $n < \omega$, we let

$$\begin{aligned} \mathscr{G}'_{n} &= \left\{ \left[0, \, \varepsilon/n^{2} 2^{n+1} \right) \right\} \\ &\cup \left\{ (k\varepsilon/n^{2} 2^{n+2}, \, (k+2)\varepsilon/n^{2} 2^{n+2}) \colon 1 \leq k \leq n^{3} 2^{n+2} - 3 \right\} \\ &\cup \left\{ (\varepsilon n - \varepsilon/n^{2} 2^{n+1}, \, \varepsilon n] \right\}, \end{aligned}$$

and

$$\mathscr{G} = \left\{ \bigcup_{j=1}^{k} I_j \colon I_j \in \mathscr{G}'_n \text{ for } 1 \leq j \leq k \leq n \text{ and } I_i \cap I_j = \emptyset \text{ for } i \neq j \right\}.$$

Observe that if $G \in \mathcal{G}_n$ and if μ is the Lebesgue measure on \mathbb{R} , then $\mu(G) \leq \varepsilon/n2^{n+1}$, for $n < \omega$. It is not hard to show that $\mathcal{G} = \bigcup_{n < \omega} \mathcal{G}_n$ is an open ω -cover of X. Now, enumerate faithfully \mathcal{G} by $\{G_n: n < \omega\}$. In virtue of Lemma 2.2 there is $q \in \omega^*$ such that $q \leq_{\mathrm{RK}} p$ and $X \subseteq \underline{\lim}_q G_n$. Define $f: \omega \to \omega$ by $f(k) = \max\{n < \omega: G_n \in \mathcal{G}_k\}$ for each $k < \omega$. Since q is rapid, there is $A \in q$ such that $|A \cap f(k)| \leq k$ for all $k < \omega$. For $k < \omega$ we set $A_k = \{n < \omega: G_n \in \mathcal{G}_k\}$ which is a finite subset of ω . If $n \in A_k$, then $G_n \in \mathcal{G}_k$ and $n \leq f(k)$, for $n, k < \omega$. Thus, $|A \cap A_k| \leq |A \cap A_k|$

 $|f(k)| \leq k$ for all $k < \omega$. For each $k < \omega$, put $A \cap A_k = \{n(k, 1), \dots, n(k, r_k)\}$, where $r_k \leq k$. We have that $A = \bigcup_{k < \omega} A_k$ and so $X \subseteq \bigcup_{k < \omega} \bigcup_{j=1}^{r_k} G_{n(k,j)}$. Since

$$\mu\left(\bigcup_{j=1}^{r_k} G_{n(k,j)}\right) \leqslant \sum_{j=1}^{r_k} \mu(G_{n(k,j)}) \leqslant r_k \varepsilon / k 2^{k+1} \leqslant \varepsilon / 2^{k+1}$$

for each $k < \omega$, we have that $\mu(X) \leq \sum_{j=1}^{\infty} \varepsilon/2^{k+1} = \varepsilon/2 < \varepsilon$. Therefore, $\mu(X) = 0$, as required. \Box

For a selective $p \in \omega^*$ we have a stronger result:

Theorem 3.7. If $p \in \omega^*$ is selective and X has (γ_p) , then X has property C". Hence, every subset of \mathbb{R} with (γ_p) has strong measure zero..

Proof. Let $(\mathscr{G}_n)_{n < \omega}$ be a sequence of open covers of X. Let $\{A_k: k < \omega\}$ be a partition of ω in infinite subsets. For each $k < \omega$ we define $\mathscr{D}_k = \{\bigcup_{j < m_k} G_j: \exists m_k \leq k \text{ and for each } j \leq m_k, \exists t_j \in A_k \text{ with } G_j \in \mathscr{G}_{t_j}\}$. Observe that $\bigcup_{k < \omega} \mathscr{D}_k$ is an open ω -cover of X for $k < \omega$. We may assume that X is infinite. Then, choose an infinite subset $\{x_k: k < \omega\}$ of X. Now, for $k < \omega$, let us set $\mathscr{F}_k = \{G \setminus \{x_k\}\}$: $G \in \mathscr{D}_k\}$. It is clear that \mathscr{F}_k does not cover X for each $k < \omega$, and $\mathscr{F} = \bigcup_{k < \omega} \mathscr{F}_k$ is an open ω -cover of X. By assumption there is a sequence $(H_n)_{n < \omega}$ in \mathscr{F} such that $X = \underline{\lim}_p \mu_n$. For $k < \omega$ let $B_k = \{n < \omega: H_n \in \mathscr{F}_k\}$. Since p is selective and $B_k \notin p$ for each $k < \omega$, there is $B \in p$ such that $|B \cap B_k| \leq 1$ for all $k < \omega$. For $k < \omega$ we set $B \cap B_k = \{n_k\}$. We have that for each $k < \omega$, $H_{n_k} = \bigcup_{j < m_k} G_j^{n_k}$, where $G_j^{n_k} \in \mathscr{F}_{t(j,n_k)}$ and $t(j, n_k) \in A_{n_k}$ for $j \leq m_k \leq n_k$. Thus, $X = \bigcup_{k < \omega} H_{n_k} = \bigcup_{k < \omega} H_{n_k} = \bigcup_{k < \omega} \bigcup_{j < m_k} G_j^{n_k}$ and $t(i, n_{k_0}) \neq t(j, n_{k_1})$ whenever $k_0 \neq k_1$, $i < m_{k_0}$ and $j < m_{k_1}$, as required. \Box

The following lemma is known and it is a consequence of the facts that every RK-predecessor of a *P*-point if a *P*-point and every RK-predecessor of a rapid ultrafilter via a finite-to-one function is rapid. Here, we include a proof.

Lemma 3.8. If $p \in \omega^*$ is semiselective, then every RK-predecessor of p is semiselective.

Proof. Assume that $p \in \omega^*$ is semiselective and let $q \leq_{RK} p$. It is not hard to prove that q is a P-point as well. So, we only need to show that q is rapid. Indeed, let $f: \omega \to \omega$ be a function and let $g: \omega \to \omega$ be onto such that $\overline{g}(p) = q$. Since p is a P-point and $g^{-1}(n) \notin p$ for $n < \omega$, there is $A \in p$ such that $|A \cap g^{-1}(n)| < \omega$. Hence, without loss of generality we may suppose that $g^{-1}(n)$ is finite for all $n < \omega$. Now, define $h: \omega \to \omega$ by $h(n) = \max\{k < \omega: q(k) \leq f(n)\}$ for each $n < \omega$. Since p is rapid there is $B \in p$ such that $|B \cap h(n)| \leq n$ for all $n < \omega$. For $n < \omega$, if $k \in B$ and $g(k) \leq f(n)$, then $k \leq h(n)$ and $k \in B \cap h(n)$; hence, $|g(B) \cap f(n)| \leq |B \cap h(n)| n$ for each $n < \omega$, and $g(B) \in q$. \Box As an immediate consequence of Theorem 3.6 and Lemma 3.8 we have:

Corollary 3.9. If $p \in \omega^*$ is semiselective, then \mathbb{R} does not have (γ_p) .

Next, we will show in Lemmas 3.12 and 3.15 that \mathbb{R} does not have $(\gamma_{p^{\theta}})$ for all $\theta \leq \omega$, whenever p is a selective ultrafilter on ω . We need the following definition and lemmas.

Definition 3.10. For $p, q \in \omega^*$, the *tensor* product of p and q is $p \otimes q = \{A \subseteq \omega \times \omega : \{n < \omega : \{m < \omega : (n, m) \in A\} \in q\} \in p\}.$

Observe that $p \otimes q$ is an ultrafilter on $\omega \times \omega$, and it can be viewed as an ultrafilter on ω via a fixed bijection between ω and $\omega \times \omega$. This product \otimes is not an associative operation on ω^* . Nevertheless, \otimes induces a semigroup structure on the set of types of ω^* by setting $T(p) \otimes T(q) = T(p \otimes q)$ for $p, q \in \omega^*$. Thus, if $p \in \omega^*$ then p^n stands for any point in $T(p)^n$ for $1 \le n < \omega$. For each $p \in \omega^*$ Booth [4] defined $T(p)^{\omega}$ as follows: choose an embedding $e: \omega \to \omega^*$ such that $e(n) \approx_{\rm RK} p^n$ for $1 \le n < \omega$, then $T(p)^{\omega} = T(\overline{e}(p))$. As above, p^{ω} stands for a point in $T(p)^{\omega}$ for $p \in \omega^*$.

We omit the proof of the following two lemmas.

Lemma 3.11 (Miller [19]). Let p, $q \in \omega^*$. Then $p \otimes q$ is rapid if and only if q is rapid.

Lemma 3.12 [14]. If $p \in \omega^*$ is selective and $1 \le n \le \omega$, then the set of all RK-predecessors of p^n is $P_{RK}(p^n) = \bigcup_{1 \le k \le n} T(p)^k$.

The next result is a direct application of Theorem 3.6 and Lemmas 3.11 and 3.12.

Corollary 3.13. If $p \in \omega^*$ is selective, then \mathbb{R} does not have (γ_{p^n}) for each $1 \leq n < \omega$.

Lemma 3.14. Let $p \in \omega^*$ and let $\{p_n : n < \omega\}$ be a set of rapid ultrafilters on ω . If q = p-lim p_n , then q is rapid.

Proof. Assume that q = p-lim p_n . Let $\{B_n : n < \omega\}$ be a set of pairwise disjoint finite subsets of ω . For each $n < \omega$ choose $A_n \in p_n$ such that

- (1) $A_n \cap B_j = \emptyset$ for every $j \le n$;
- (2) $|A_n \cap B_m| \leq m$ for every $m < \omega$.

We set $A = \bigcup_{n < \omega} A_n$. So $A \in q$ and, for each $m < \omega$, $|A \cap B_m| \le |\bigcup_{j < m} (A_j \cap B_m)| \le \sum_{j < m} |A_j \cap B_m| \le m^2$. It then follows from Theorem 3 of [19] that q is rapid. \Box

Lemma 3.15. If $p \in \omega^*$ is selective, then every RK-predecessor of p^{ω} is rapid.

Proof. Let $q \in \omega^*$ such that $q \leq_{RK} p^{\omega}$. By definition, there are an embedding $e: \omega \to \omega^*$ and a function $f: \omega \to \omega$ such that $\overline{f}(p^{\omega}) = q$, $e(n) \approx_{RK} p^n$ for $1 \leq n < \infty$

 ω , and $\overline{e}(p) = p^{\omega}$. Put $h = \overline{f} \circ e : \omega \to \beta(\omega)$. If $\{n < \omega : h(n) \in \omega\} \in p$, then $q = \overline{h}(p) \leq_{\mathsf{RK}} p$ and since p is RK-minimal, $p \approx_{\mathsf{RK}} q$. Then we may assume that $h(n) \in \omega^*$ for each $n < \omega$. We have that $h(n) \leq_{\mathsf{RK}} e(n) \approx_{\mathsf{RK}} p^n$ for $1 \leq n < \omega$. By Lemma 3.12, there is $k_n \leq n$ such that $h(n) = p^{k_n}$ for each $1 \leq n < \omega$. In virtue of Lemma 9.4 in [5], we may suppose that h is an embedding; that is, h is one-to-one and $\{h(n): n < \omega\}$ is discrete in ω^* . By Lemma 3.11, we have that $h(n) = \overline{h}(p)$ is rapid for all $1 \leq n < \omega$. Applying Lemma 3.14 we obtain that q = p-lim $h(n) = \overline{h}(p)$ is rapid. \Box

Corollary 3.16. If $p \in \omega^*$ is selective, then \mathbb{R} does not have $(\gamma_{p^{\omega}})$.

Booth [4] showed that p^{ω} has 2^{ω} RK-type predecessors for $p \in \omega^*$. Hence, if p is selective, then p^{ω} is not a *P*-point, it has 2^{ω} RK-type predecessors and \mathbb{R} does not have $(\gamma_{p^{\omega}})$ (by Corollary 3.16). On the other hand, by Lemma 2.3, we can find $p \in \omega^*$ for which p has exactly 2^{ω} type-RK predecessors and \mathbb{R} has (γ_p) . These observations suggest the next problem.

Problem 3.17. Classify those $p \in \omega^*$ for which \mathbb{R} does not have (γ_p) .

In the next theorem, we show that if \mathbb{R} has (γ_p) , then some other spaces do, and vice versa.

Theorem 3.18. For $p \in \omega^*$ the following are equivalent.

- (1) ℝ has (γ_p);
 (2) [0, 1] has (γ_p);
 (3) the Cantor space 2^ω has (γ_p);
 (4) [0, 1]^ω has (γ_p);
 (5) Σ = U_{n < ω}[1/n, 1 1/n]^ω has (γ_p);
- (6) $C^*_{\pi}(\omega)$ has (γ_p) ;
- (7) every compact metric space has (γ_n) ;
- (8) every zero-dimensional, second countable compact space has (γ_p) ;
- (9) every σ -compact metric space has (γ_p) ;
- (10) every locally compact, separable metric space has (γ_p) .

Proof. We proof the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5); (5) \Rightarrow (6); (5) \Rightarrow (9); (7) \Rightarrow (8); (8) \Rightarrow (3); (9) \Rightarrow (10); (10) \Rightarrow (1); (10) \Rightarrow (7) and (5) \Rightarrow (9). In fact, (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are immediate consequences of Theorem 2.1; (5) \Leftrightarrow (6) follows from the fact that $C_{\pi}^{*}(\omega)$ is homeomorphic to the space Σ ; (7) \Rightarrow (8), (9) \Rightarrow (10), (10) \Rightarrow (1) and (8) \Rightarrow (3) are trivial; and (5) \Rightarrow (9) holds since every σ -compact metric space is homeomorphic to a closed subspace of Σ (see [27, Lemma 5.1]). \Box

We have shown (in Theorem 2.1(c)) that if X has (γ_p) for $p \in \omega^*$, then X^n has (γ_p) for each $1 \leq n < \omega$. We do not know whether \mathbb{R}^{ω} has (γ_p) whenever \mathbb{R} has (γ_p) yet. The following two theorems could be useful.

Theorem 3.19. If $p \in \omega^*$ is a *P*-point, then \mathbb{R}^{ω} does not have (γ_p) .

Proof. Let $p \in \omega^*$ be a *P*-point and assume that \mathbb{R}^{ω} has (γ_p) . For each $n < \omega$ let \mathscr{G}'_n be a countable cover of \mathbb{R} consisting of open intervals of length $1/2^n$. For each $n < \omega$ set

$$\mathscr{G}_n = \left\{ \bigcup_{1 \leq j \leq n} I_j \colon I_j \in \mathscr{G}'_{n'} \ I_i \cap I_j = \emptyset \text{ for } i \neq j \right\}.$$

Now, for each $n < \omega$, define $\mathscr{F}_n = \{\Pi_n^{-1}(G): G \in \mathscr{G}_n\}$, where $\Pi_n : \mathbb{R}^\omega \to \mathbb{R}$ is the projection map on the *n*th coordinate. It is not hard to prove that $\mathcal{F} = \bigcup_{n \le \omega} \mathcal{F}_n$ is an open ω -cover of \mathbb{R}^{ω} . By assumption there is a sequence $(F_n)_{n < \omega}$ in \mathscr{T} such that $\mathbb{R}^{\omega} = \lim_{p \to \infty} F_n$. For each $k < \omega$ put $A_k = \{n < \omega: F_n \in \mathcal{F}_k\}$. Then, $\{A_k: k < \omega\}$ is a partition of ω . We verify that $A_k \notin p$ for each $k < \omega$. Indeed, assume that $A_k \in p$ for some $k < \omega$. For each $m < \omega$ we have that $S(m) = \{n < \omega : m \in F_n\} \in p$ (here, we identify m with the constant function on \mathbb{R}^{ω} of value m). Hence, we may take $n \in A_k \cap (\bigcap_{i \leq k+1} S(i))$. If $F_n = \prod_k^{-1}(G)$ for some $G \in \mathcal{G}_k$, then $i \in G$ for each $i \leq k + 1$, which is a contradiction. Thus, $A_k \notin p$ for all $k < \omega$. Since p is a *P*-point, there is $A \in p$ such that $|A \cap A_k| < \omega$ for each $k < \omega$, and $\mathbb{R}^{\omega} = \bigcup_{n \in A} F_n$ (by Lemma 1.4). For each $k < \omega$ enumerate $A \cap A_k = \{n(k, 0), \dots, n(k, r_k)\}$. We then have that $\mathbb{R}^{\omega} = \bigcup_{k < \omega} \bigcup_{i \leq r_k} F_{n(k,i)}$. For each $k < \omega$ and each $i \leq r_k$, choose $G_{n(k,i)} \in \mathscr{G}_k$ so that $F_{n(k,i)} = \prod_k^{-1} (\hat{G}_{n(k,i)})$. Notice that $\mathbb{R} \neq \bigcup_{k \leq r_k} G_{n(k,i)}$. Hence, for each $k < \omega$ we pick $x_k \in \mathbb{R} \setminus \bigcup_{i \le r_k} G_{n(k,i)}$. If $x = (x_k)_{k < \omega}$, then $x \notin F_{n(k,i)}$ for each $k < \omega$ and each $i \leq r_k$. But this is impossible. Therefore, \mathbb{R}^{ω} does not have (γ_p) .

Theorem 3.20. Let $p \in \omega^*$. If all the spaces of any of the following classes have (γ_p) , then the other classes of spaces do.

- (1) \mathbb{R}^{ω} ;
- (2) $\omega^{\omega};$
- (3) the hedgehog $J(\omega)^{\omega}$;
- (4) the Hilbert space \mathbb{H} ;
- (5) \mathbb{H}^{ω} ;
- (6) $\sigma_{\omega} = \{x \in \mathbb{H}: x_i = 0 \text{ for all but finitely many } i\}^{\omega};$
- (7) every $C_{\pi}(X)$ for a metric countable space X;
- (8) every $C^*_{\pi}(X)$ for a separable metric space X;
- (9) every C_π(X) for a countable space X such that C_π(X) is an F_{σδ}-subset of ^{ℝ^ω};
- (10) every $C^*_{\pi}(X)$ for a countable space X such that $C_{\pi}(X)$ is an $F_{\sigma\delta}$ -subset of \mathbb{R}^{ω} ;
- (11) every $F_{\sigma\delta}$ -subset of $[0, 1]^{\omega}$;
- (12) every separable, completely metrizable space;
- (13) every zero-dimensional, separable completely metrizable space;
- (14) every G_{δ} -subset of a separable completely metrizable space;
- (15) every G_{δ} -subset of \mathbb{R} .

Proof. The trivial implications are $(12) \Rightarrow (13)$, $(12) \Rightarrow (14)$, $(14) \Rightarrow (15)$ and $(15) \Rightarrow (2)$; $(1) \Rightarrow (2)$ follows from Theorem 2.1(b); and $(1) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$ are consequences of the facts that \mathbb{H} and $J(\omega)^{\omega}$ are homeomorphic [25,26] and that \mathbb{R}^{ω} and \mathbb{H} are homeomorphic [1].

Since σ_{ω} , $C_{\pi}(X)$ and $C_{\pi}^{*}(X)$ are homeomorphic whenever X is countable and $C_{\pi}(X)$ is an $F_{\sigma\delta}$ -subset of \mathbb{R}^{ω} (see [10,11]), we obtain that (6) \Leftrightarrow (7) \Leftrightarrow (8) \Leftrightarrow (9) \Leftrightarrow (10).

 $(11) \Rightarrow (1)$ is a direct application of 5.2 in [27].

We have that \mathbb{R}^{ω} is homeomorphic to $(0, 1)^{\omega}$, which is an $F_{\sigma\delta}$ -subset of $[0, 1]^{\omega}$; hence, $(11) \Rightarrow (1)$.

Since Σ is a continuous image of the disjoint union of countably many copies of $[0, 1]^{\omega}$, say $\bigoplus_{n < \omega} ([0, 1]^{\omega})_n \cong \omega \times [0, 1]^{\omega}$, $\Sigma^{\omega} \cong \sigma_{\omega}$ is a continuous image of the closed subspace $(\omega \times [0, 1]^{\omega})^{\omega} \cong \omega^{\omega} \times [0, 1]^{\omega}$ of \mathbb{R}^{ω} and so $(1) \Rightarrow (6)$.

We know that every zero-dimensional, separable completely metrizable space is homeomorphic to a closed subspace of ω^{ω} (see [12, 7.3.H]) and then (2) \Rightarrow (13).

From the facts that $\omega^{\omega} \times 2^{\omega}$ satisfies the conditions of (13), σ_{ω} is a continuous image of $\omega^{\omega} \times [0, 1]^{\omega}$ and $\omega^{\omega} \times [0, 1]^{\omega}$ is a continuous image of $\omega^{\omega} \times 2^{\omega}$, it follows that (13) \Rightarrow (6). \Box

References

- R.D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966) 515-519.
- [2] A.V. Arhangel'skii, Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (6) (1978) 33-96.
- [3] A.R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970) 185-193.
- [4] D.D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970) 1–24.
- [5] W.W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977) 417-455.
- [6] W.W. Comfort, Toplogical groups, in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 1143–1263.
- [7] W.W. Comfort, Problems on topological groups and other homogeneous spaces, in: J. van Mill and G.M. Reed, eds., Open Problems in Topology (North-Holland, Amsterdam, 1990) 313-347.
- [8] W.W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren der Mathematischen Wissenschaften 211 (Springer, Berlin, 1974).
- [9] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29 (1988) 93-106.
- [10] T. Dobrowolski, S.P. Gulko and J. Mogilski, Function spaces homeomorphic to the countable product of l_{f}^{f} , Topology Appl. 34 (1990) 153–160.
- [11] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces $C_p(X)$ of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991) 307–324.
- [12] R. Engelking, General Topology, Sigma Series in Pure Mathematics 6 (Heldermann, Berlin, 1989).
- [13] F. Galvin and A.W. Miller, γ -sets and other singular sets of real numbers, Topology Appl. 17 (1984) 145-155.
- [14] S. García-Ferreira, On FU(p)-spaces and p-sequential spaces, Comment. Math. Univ. Carolin. 32 (1991) 161-171.
- [15] J. Gerlits, Some properties of C(X), II, Topology Appl. 15 (1983) 255-262.
- [16] J. Gerlits and Z. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982) 151–161.
- [17] A.P. Kombarov, On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983) 544-547.

- 172 S. Garcia-Ferreira, A. Tamariz-Mascarua / Topology and its Applications 58 (1994) 157-172
- [18] V.I. Malykhin and D.D. Shakhmatov, Cartesian products of Fréchet topological groups and function spaces, Acta Math. Hungar. 60 (1992) 207-215.
- [19] A.W. Miller, There are no Q-points in Laver's model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980) 103–106.
- [20] P.J. Nyikos, Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981) 793-801.
- [21] T.G. Przymuskinski, Normality and paracompactness in finite and countable cartesian products, Fund. Math. 105 (1980) 87–104.
- [22] E.G. Pytkeev, On the tightness of spaces of continuous functions, Russian Math. Surveys 37 (1) (1982) 176–177.
- [23] E.G. Pytkeev, On sequentiality of spaces of continuous functions, Russian Math. Surveys 37 (5) (1982) 190-191.
- [24] V.V. Tkachuk, On the multiplicativity of certain properties of spaces of mappings in the topology of pointwise convergence, Moscow Univ. Math. Bull. 39 (6) (1984) 36–39.
- [25] T. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247-262.
- [26] T. Torunczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985) 89–93.
- [27] J. van Mill, Topological equivalence of certain function spaces, Compositio Math. 63 (1987) 159-188.