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Abstract 

In this paper, we study the p-FrCchet-Urysohn property of function spaces, for p E 
/3(w)\w. We prove that C,(X) is p-FrCchet-Urysohn if and only if X has (r,), where (7,) 
is the natural p-version of property (y) (this is a generalization of a result due to Gerlits 
and Nagy). We note the following implications: X is second countable *X has (7,) for 
some p EP(o)\o -X n is LindelGf for all 1 Q n < o. We deal with the question when is 
C,(R) a p-FrCchet-Urysohn space. It is shown that there is p E P(w>\w such that C,(R) is 
p-FrCchet-Urysohn; if p is semiselective, then every subset X of R satisfying (r,,) has 
measure zero and if p is selective, then X is a strong measure zero set; and we can find 
p E /3(o>\o such that C,(R) is p-FrCchet-Urysohn and is not strongly p-FrCchet-Urysohn. 
Finally, we prove that [w” does not have (-y,) whenever p is a P-point of P(w)\w. 

Key words: Function space; o-cover; FU( p)-space; y,-property; Rudin-Keisler order; Rapid; 
Semiselective; Selective; P-point; Q-point 
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1. Introduction and preliminaries 

In this paper we consider only completely regular Hausdorff spaces. For A LX, 

Cl(A) stands for the closure of A in X and, for x EX, M(x) is the set of 

neighborhoods of x in X. For a space X we define C,(X) to be the set of all 

continuous real valued functions on X endowed with the topology of pointwise 
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convergence. If f : X -+ Y is a continuous function then f : PX + BY denotes the 

Stone-Tech extension of f. The remainder of PX is X” = pX\X. For p E w*, 

t(p) denotes the subspace w u (p) of p(w). For p, q E CO* we define p <RK q, the 

Rudin-Keisler ordering, if there is a function f : w + w such that f(q) =p. If p, 
q E CO*, then p zRK q means that p =sRK q and q <RK p (equivalently, there is a 

permutation (T of w such that C?(p) = q). The type of p E w* is T(p) = (q E w* : p 

ZRK q). If p E o*, then p is a P-point if for every partition (A,: n < o} of o with 

A, @p, for each n <w, there is A EP such that 1 A nA, 1 < w for all n <w; p is 

a Q-point if for every partition {A,: 12 < w} c [w] <w of w there is A up such that 

I A n A, I G 1 for each n < w; p is rapid if for every function f : w + w there is 

A up such that I A nf(n> I G II for each 12 < o; p is semiselective if p is a P-point 

and rapid; and p is selective if p is a P-point and a Q-point. Observe that every 

Q-point is rapid and so every selective ultrafilter is semiselective. Kunen (see [5] or 

[8,9.6]) showed that the selective ultrafilters on o* are precisely the RK-minimal 

points of w*. 

A collection g of subsets of X is an o-cover of X if for every finite subset F of 

X there is G E Z? such that F c G. 

The authors of [16] introduced the following property for a space X: 

(y) if Z? is an open o-cover of X, then there is a sequence (GJ, <w in Z such 

that X= Lim G,,, where 

LimG,={xEX: (gm<w)(Vn>m)[x~G,]}. 

It is shown in [15,16] that a space X has (y) CJ C,(X) is sequential = C,(X) is 

a FrCchet-Urysohn space: the second equivalence was also proved in [231. 

In [3], Bernstein introduced for p E o* the p-limit notion of a sequence of 

points in a space X: x =p-lim x, if for each VE_#(X) we have that {n <o: 

x, E V} E p. Bernstein’s concept suggests the following generalization of sequential 

and Frechet-Urysohn spaces: 

Definition 1.1. Let p E o* and X a space. 

(1) (Kombarov [17]) X is p-sequential if for every nonclosed subset A of X 

there is a sequence (x,), < o in A and x GA such that x =p-lim x,. 

(2) (Comfort-Savchenko) X is an FU(p)-space if for every A LX and x E Cl(A) 

there is a sequence (x,1, < o in A such that x =p-lim x,. 

It is then natural to define the p-version of property (y): 

Definition 1.2. Let p E w* and let X be a space. 

(1) If (GJ, <,,, is a sequence of nonempty subsets of X, then 

Lim p G, = {x EX: {n <o: x E G,) up}. 

(2) X has (-y,) if for every open w-cover .V of X there is a sequence (G,),, <o in 

g such that X= Lim -P G,. 
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1.3. Observe that if <G,>, <o is a sequence of subsets of a space X and p E w*, 

then Lim G, = U,,,ll -P TlEA G,. 

The following lemma will be useful. 

Lemma 1.4. Let p E w* and X a space. Then X= Lim -P G,, if and only if X = 

U n ( AG,, for every A EP. 

Proof. (-1 Let A up and x E X. By assumption, {n < w: x E GJ EP. Hence, we 

may pick m EA such that x E G,,,. Thus, X= U ntA G,,. 

(-=I If there is x EX such that B = (n <w: x E G,J %Cp, then x P U ntAGn, 

where A = w \ B, which is a contradiction. q 

The next theorem establishes the connection between the Rudin-Keisler order 

on o* and properties (y,). 

Theorem 1.5. Let p, q E w*. If p <RK q, then every space with C-y,) has ( y,). 

Proof. Let X be a space with (7,) and let f : w + 6.1 be onto such that f(q) =p. 
Let 9 be an open w-cover of X. Then there is a sequence (G,,), iw in 3? such that 

X = Lim pG,. For each n < CO, set F, = Gfcn,. If x E X, then A = {n < w: x E G,} 
up and so f-l(A) = {m < w: x E GfCm, = F,) E q. Thus, X= Lim F,. 0 

We do not know whether the converse to Theorem 1.5 holds: 

Question 1.6. Let p, q E w*. If every space with (7,) has (~~1, must we have that 
? PGRK 4. 

It should be remarked that if X = Lim -P G,, then ZY = (G,: n < w} is an w-cover 

of X. Thus, in a space satisfying (y,) every open w-cover has a countable 

w-subcover. This last property is denoted by (F) in [161, where it is shown that a 

space X has (E) OX” is Lindelof for each 1 < IZ < w e the tightness of C,(X) is 

countable (the last equivalence was proved by Arkangel’skii [2, 4.1.21 and Pytkeev 

[221). It is evident that every closed subspace of a space with (E) has (8) too; more 

general: 

Lemma 1.7. If X has (~1, then every F,-subset of X has (E) too. 

Proof. Let F = U n < ,F, such that F., is a closed subset of X for each n < w, and 

let 1 <rn <w. Then we have that 

F”= U{Fn,X ... XF,,: nj<w for l<j<m}, 

and each F,,, X . . . X F,, is a closed subset of X”. Since X” is Lindeliif, we have 

that each F,, x . . . x F,, is Lindelof and so F” is Lindelof. CI 

The following questions appear to be natural 
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(I) Is it true that a space X has (y,) if and only if C,(X) is an FU(p)-space? 

(II) If C,(X) is p-sequential, must C,(X) be an FU(p)-space? 

In Section 2, we answer question (I) in the affirmative (Theorem 2.10). We do 

not know the response to the second one. Also, in Section 2, we show that if X has 

(E) and w(X) < 2”, then there is p E w* such that C,(X) is an FU(p)-space 

(Theorem 2.3). In particular, C,(R) is an FU(p)-space for some p E w*. However, 

we prove that if p is semiselective, then C,(R) is not an FU(pI-space (Corollary 

3.9). 

The authors are grateful to the referee for valuable remarks and for improving 

an earlier version of Lemma 3.14. 

2. Property ( y,) and function spaces 

In this section, we shall show that a space X has (y,) if and only if C,(X) is an 

FU(p)-space, for p E w*. First, we give some basic results concerning properties 

(YJ. 

Theorem 2.1. Let p E w*. 

(a> Property (y,) 1s preserved under continuous functions. 
(b) IfFisaF,- su se o a space X with (yJ, then F has (y,). b t f 
(c) Zf X has (yJ, then X” has (y,> for each 1~ n < w. 

Proof. (a> Let X be a space with (y,) and let f : X + Y be a continuous function 

from X onto a space Y. Let g be an open w-cover of Y. We have that 

St = (f-‘(G): G E 5:‘) is an open o-cover of X. Since X has (y,) there is a 

sequence (I$),,., in 9 such that X = Lim F . For each II < w, we have that _P n 
F,, = fP’(G,) for some G, E Z?. It is then evident that Y = Lim -...-.-P G,,. 

(b) Assume that X has (y,) and F = U n <o Fn‘,, where F,, is a closed subset of X 

and F, cF,,,,, for n < w. Let g be an open w-cover of F. By Lemma 1.7, g has a 

countable w-subcover 9’ = {G,: n < w}. For each n < w we choose an open subset 

K, of X such that G,, = K, n F and set H, = K, U (X\F,,). We note that 

Z’= {H,: n < w} is an open w-cover of X. By hypothesis, there is a sequence 

(HQ)k <w in Z such that X = Lim PHn,. Let us check that F = Lim -..-.--P G,,,. If x E F, 
then we have that (k <CO: x E HJ up and x E F,,, for some m < w. Hence, 

{ k<w: m<n,, .EH_}C{k< w: x E Gnk} up. 

Cc> Assume that X has (y,). It suffices to show that X x X has (y,). Indeed, fix 

an open base 9 of X closed under finite unions. Let 9 be an open w-cover of 

XxX.Set~‘={BxB:BE~,BxB~GforsomeGE~}.Weclaimthat~‘is 

an w-cover of XXX. Let ((x0, yJ, . . . , (x,, y,>) CX X X. By assumption, there is 

G E g such that 

{(xi,Yj):i,j<r}U{(xi,Xj):i,j<T}U{(Y~,Yj):i,j’r) 

u{(yi, xi): i, j<r} CC. 
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We may find Ai, Bi ~58 for i <r so that (xi, yj) l Aj X B, C G, (yi, xi) E Bj XAj 

cG, (xi, xj)~AixAj~G and (yi, yj) EBB X B, cG, for each i,j<r. Define 
B = (U,,,A,) U (U,,,B,). Then, B ~9%’ and B X B = (Ui,jGrA, X Bj) U 

(Ui,j~rBi~Aj)~(Ui,j~rAi~Aj)~(Ui,j~rBi~B,)~G. Thus, 37 is an open 
w-cover of X x X and hence $3 = (B ~93’: B X B ~53”) is also an o-cover of X. 
We then have that there is a sequence (B,), < w in 53 such that X = Lim pBn. For 
each n < w, choose G, E Z? so that B, x B, z G,. If (x, y> E X x X, then (n < w: x 
E B,) n (m < w: y E B,) c {k < w: (x, y> E B, X Bk) E p. Therefore, XXX 

= Lim -P (B, XB,)=Lim G,. 0 

Lemma 2.2. Let p E w*, X a space with (F) and A? a base of X closed under finite 

unions. We have that X has (yJ if and only if for every countable open w-cover 

{B,: n < w) g%? of X there is q E w* such that q GRK p and X = Lim B,. 

Proof. (3) Let {B,,: n < w) be an open w-cover of X. By hypothesis there is a 

sequence ( Bn,Ik < w of {B,: n < w) such that X = Lim B,, . Define f: o + w by PP 
f(k) =nk for each k < w, and q =f(p>. If x E X, then Ii < w: x E B,,) up and 

since q =f(p>, If(k) < w: x E B,,) = (f(k) <w: x E Brck,) E q. Hence, (n <w: x 

E B,) E q. Thus, X= Lim - 4 B,. 

(e= > Let g be an open w-cover of X and consider the set &3 = {B ~9: B c G 

for some G E @. Notice that g is also an open w-cover of X. Since X has (E), we 
may assume that 53 = (B,: n <a~). By assumption there is q E w* and a function 
f: w + w such that f(p) = q and X = Lim B,. For x E X, we have that A = (n < 

w: x E B,) E q and so f-‘(A) = (k <w: x E Bfckj} tp. Thus, X= LimpBfCkj. For 
each k < o choose G, E 37 so that Bfckj c G,. Therefore, (G,), <w is a sequence 
ingandX=Lim G,. •I 

Theorem 2.3. If X has (E) and w(X) < 2”, then there is p E o* such that X has (y,). 

Proof. Let A? be a base of X closed under finite unions and I 28’ I < 2”. Let 9 be 
the set of all countable open w-covers of X with elements in 9. It is clear that 
19 I G 2”. Now, each b ~$3 will be enumerated as follows: if b is infinite, then 

(B,: n < 01 will be a faithful enumeration of b and if b is finite, then {B,: n < 01 

will be an enumeration of b so that each element of b appears infinite many times 
in the enumeration. Fix b = {B,: n < w) ~9. For each x E X put S(x) = (n < w: x 

E B,) and Yh = {S(x): x EX). Since b is an w-cover of X and {B,: n <WI is a 
nice enumeration of b, & is a filter subbase in w which can be extended to a free 
filter on w. Hence, for each b ~9, we may choose qb E w* such that St, c qt,. We 
then have that X = Lim - 4h B,, for each b ~9. Since I (qb: b ~9;) I < 19 I < 2”, by 
10.9 of [S] or 6.4 of [5], there is p E w* such that qb <RK p for each b ~9. The 
conclusion follows from Lemma 2.2. q 

Corollary 2.4. if X is a countable space, then there is p E w* such that C,(X) has 

(r,). 
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Proof. If X is countable, then C,(X) & IF!?” and so C,(X) is second countable. By 

Theorem 2.3, there is p E o* such that C,(X) has (y,). 0 

We turn now to the principal result of this section (Theorem 2.10). We prove 

this theorem by using arguments that are similar to those applied in the proof of 

Theorem 2 ((7) e (iv)) in [16]. For the sake of completeness, we present the proof 

with all the details. The following lemmas constitute the essential modifications to 

prove our theorem. 

For a space X, E > 0 and f E C,(X), the set Ix E X: I f(x) I < E) is denoted by 

coz,f. If F is a finite subset of X and I/ is an open subset of R, then we put 

[F, VI = (f~ C,(X): f(F) c If). A subbase of C,(X) is the set ([F, VI: F LX is 

finite and I/c R is open). 

Lemma 2.5. Let QI # @ c C,(X), f~ Cl @ and E > 0. Then F(@, f, s> = (coz,(g - 

f>: g E @) is an open w-cover of X. 

Proof. Fix x0,..., x, EX. Since f E Cl Sp there is h E Wn@, where W= 

Ix,, (f(X”> -e, f(xJ + &)I n * . . n [xn, (f(x,) - e, f(x,> + &)I. Then, I f(xj) - 
h(xj) 1 < E for each j G n; that is, x0,. . . , xn E coz,(h -f 1. 0 

Lemma 2.6. Let f E C,(X), E > 0 and 3 an open o-cover of X with X @ Z. 

Zf @(Z, f, 6) = {g E C,(X): coz,(g -f > cH for some H E 2~1, then f E 
Cl @(A?, f, e)\@(A?, f, E) and F(@(Z, f, E>, f, S> refines 2 for each 6 > 0. 

Proof. Let F = (x0,. . . , x,J cX and 

W= [xc, (f(x,) 7, f(xo) +P)] n ... n [x,, (f(xJ -P, f(x,) +P)]. 

Since A?@ is an w-cover there is HE 2’ such that F c H and since X is Tychonoff 

there is a continuous function g: X+ [O, E] such that g(xj) = 0 for j G n, and 

g(x) = E for all x EX\H. Then, f-g E Wn @(A??, f, E). Thus, f E Cl @(A?, f, E) 
and since X @ 2 then f E @(A?‘, f, E). q 

Lemma 2.7. Let p E o*, X a space, f E C,(X) and (f,,>, < o a sequence in C,(X). 
Then f = p - lim f,, if and only if & pcoz,( f, - f > =X for each E > 0. 

Proof. ( -) Let E > 0 and x E X. By assumption we have that {n < 0: f,, E 

[x, (f(x) -c/2, f(x) + s/2)1) EP and so In <w: I fn(x) -f(x)1 <e) = {n < 6~: x 
~coz,(f,,-f))~p.Thus, X=LimPcoz,(fn-f). 

(-1 Let {x0,..., x,)cX, E>O and W= nj.,[xj,(f(xj>-&,f(Xj)+&)l. For 
each j G k we have that {n < w: xj E coz,(f, -f 1) EP and SO 

n{n<bJlfn(Xj)-f(Xj)I <E}C{n<w:fnEW}EP. 
j<k 

Therefore, f =p-lim f,,. 0 
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The following lemma generalizes Lemma 2.7 and plays a very important role in 

the proof of Theorem 2.10 below. 

Lemma 2.8. Let p E o*, X a space, f~ C,(X), <f,), <o a sequence in C,(X) and 

wrl < w 
a sequence of positive real numbers. If for every F > 0 we have that 

{n < W: E, < F} EP and X= Lim 
-P 

coz,n(f, -f ), then f =p-lim f,. 

Proof. Let W= n jGk[xj, (f(xj) -E, f(xj) + &>I, where {x0,. . . , xkl CX and F > 0. 

Since Lim 
-P 

coz.!f, -f) =X, we have that {n < w: x0,. . . , xk E coz,$f, -f )I EP. 
This implies that 

{n <W: I fn( xj) -f( xj) I < s,<s}L{n<w: fnEW}Ep 

for every j < k. That is, f =p-lim f,. 0 

The next corollary is a direct application of Lemma 2.8. 

Corollary 2.9. Let p E w*, f, (f,,), < w and (&,I,, < w as in Lemma 2.8. If e. > . . . > 

&,> . . . > 0 and F, + 0, then f =p-lim f,. 

Theorem 2.10. Let p E w*. Then C,(X) is an FU(p)-space if and only ifX has (y,). 

Proof. (-> Assume that C,(X) is an FU(p)-space and let 3’ be an open w-cover 

of X such that X P 9’. If @ = @(Z?, 0, l), then 0 E Cl @\@ (see Lemma 2.6). 
Since C,(X) is an FU(p)-space there is a sequence (f,), <W in @ such that 

0 =p-lim f,. For each n < o choose G, E Z such that cozi f, c G,,. We verify that 

X= Lim 
-P 

G,,. Indeed, fix x EX. Since 0 =p-lim f,, (n <o: 1 f,(x)1 < 11 EP. 

Hence, 

{n<w: x~coz~f,} ~{n<w: LEG,} up. 

( -) Let @ c C,(X) such that 0 E Cl @\@. Without loss of generality we may 

assume that X is infinite. Let (x,: n <w} be an infinite subset of X such that 

x, fx, for n < m < w. By Lemma 2.5, for each n < o, ZY,, = 2?7(@, 0, E,) is an open 

w-cover of X, where F, = l/2”. Define, for each n < w, 2Yn = (G\{x,l: G E 9J 

and %= IJ n < ,gn. It is not hard to prove that g is an open o-cover of X. Since X 

has (r,) there is a sequence (U,), <w in Z such that X = Lim pUk. For each k < o 

there is fk E @, nk < w and G, E g,,7n, such that U, = Gk\{x,,] and G, = cozFnk fk. 
Thus, X = Lim (cozEnk fk). Suppose that there is E > 0 such that {k < w: E < enk} 

-...--P 

Ep.Thenthereism<osuchthatA={k<w:n,=m]EpandsoX=U U k=A k 

and U, E %j,, for each k EA, which is a contradiction since x, E U for all G E Z,,,. 

Thus, (k < w: E,~ < E} up for all F > 0. The conclusion follows from Corollary 2.9. 

0 

Malykhin and Shakhmatov [lS] have shown that if we add a single Cohen real to 

a countable model of MA + 7 CH, then in the generic extension there exist two 

spaces X and Y such that C,(X) and C,(Y) are Frechet-Urysohn (hence, 
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FU(p)-spaces for all p E o*> and C,(X) X C,(Y) has uncountable tightness; in 

particular, it is not an FU(p)-space for each p E w*. Van Douwen remarked (see 

[6, p. 12221) that the results of [21] imply the existence of spaces X and Y of weight 

not bigger than 2” such that X and Y have (E) and XX Y is not Lindelof. In 

virtue of Theorems 2.3 and 2.10, we may find p E o* so that C,(X) and C,(Y) 

are FU(p)-spaces and, by [2, 4.1.21, the tightness of C,(X X Y) is uncountable; 

that is, C,(X x Y) cannot be a FU(p)-space. 

As a consequence of Theorem 2.10 we have the following result similar to 

Theorem 1 in [24]: 

Corollary 2.11. Let p E w*. Zf C,(X) is an FU(p)-space, then C,(XY” is so. 

Proof. Assume that C,(X) is an FU(p)-space. By Theorem 2.10, we have that X 

has (7,) and, by Theorem 2.1(c), XXX has (7,). We may assume that X is 

infinite. Choose a countably infinite discrete subset D of X. Since XX D is an 

&-subset of XXX, we obtain that X x D =X X w has (7,). From Theorem 2.10 it 

follows that C,(XX w> = C,(X)“’ is an FU(p)-space. 0 

A generalization of Theorem 2.3 can be achieved by using Theorem 2.10 and 

Theorem 3.12 from [14] as follows: 

Theorem 2.12. Zf d(X) = w = L(X”) f or all 1 < n < w, then there is p E w* such 

that X has (y,). 

Proof. If d(X) = L(X”) = w for all 1 <n <o, then I C,(X)] < 2” and, by a 

theorem of Arhangel’skii and Pytkeev [2,4.1.2], t(C,(X)> = w. Applying 3.12 from 

[141, there is p E o* for which C,(X) is an FU(p)-space. By virtue of Theorem 

2.10, X has (y,,,). 0 

Now, we consider the following generalization of (y’) in [16]: 

($J if (FJ, <o is a sequence of open w-covers of X, then for each n < w there 

is G, E Z7n such that X = Lim -P G,,. 

It is shown in [16] that X has (y) OX has (-y’) u C,(X) is a strictly Frechet- 

Urysohn space (X is a strictly Frtchet-Urysohn space if x E Cl(A,) for n <w 

implies that x, +x, where x, EA, for n < w>. By slightly modifing the proof of 

Theorem 2.10, we have: 

Theorem 2.13. Let p E w* and X a space. Then X has <yh> if and only if C,(X) is a 

strictly FU(p)-space. 

Also, Gerlits and Nagy [16] proved that a subset of 178 with (y) has the 

Rothberger property c” (hence, it is a strong measure zero set): a space X has C” 

provided that for each sequence (gn’,), <w of open covers of X there is a sequence 

(GJ, <w, with G,,E~?,, and X= IJ n < ,G,,. Daniels [9,p.100] gave a more direct 

proof of this result. The argument used in Daniel? proof also shows: 
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Theorem 2.14. Let p E w*. If X c R has c-y;>, then X has C” and hence X has strong 

measure zero. 

We remark, by Theorems 2.3, 2.10, 2.13 and 2.14, that there is p E w* such that 

C,(R) is an FU(p)-space and is not a strictly FU(p)-space. On the other hand, the 

authors of [16] established the equivalence of the Frechet-Urysohn property and 

the strictly Frechet-Urysohn property on the spaces of continuous functions; more 

general, Nyikos [20] proved that every Frechet-Urysohn topological group is 

strictly Frechet-Urysohn. 

3. The reals R and property (y,) 

In [7, Q. 4841, the following question is posed. 

(III) Does t(p) embed as a closed subspace into a p-sequential group? 

It is well known that X is a closed subspace of the topological group C,(C,(X)), 

for each space X. This makes natural to ask: 

Question 3.1. For each p E w* does C,(((p)) have (y,)? 

We will answer this question in the negative fashion when p is a semiselective 

ultrafilter on w. Unfortunately, we do not know any example of a point p E w* for 

which C,(<(p)) has (7,) yet. Nevertheless, by Corollary 2.4, for each p E w* there 

is qEw* such that C,(c(p>> has (r,). 

3.2. Let p E w*. It is known that C,(E(p)) is linearly isomorphic to the product 

R x Cz(-$( PI>, where C:(~(P>> = {(x,), < w E R”: WE > OKIA Ep)[ I x, I < F for all 

y1 EA]}. We can identify p with the closed subset (XA: A EP} of C,!f(t(p)), where 

XJn) = 0 if II EA and XA(n) = 1 if II PA for y1 < w. Also, the topology of p as a 

subspace of 2” coincides with the topology on p inherited from Cz([(p>>. 

Lemma 3.3. Let p, q E w*. If p G 2” satisfies (y,) then p <RK q. 

Proof. Assume that p = {,yA: A EP) L 2” satisfies (~~1. For n < w, set G, = {XA E 

p: n EA} and notice that G,, is an open subset of p. If A,, . . . , A, up and 

m E n rzoAj, then {XAU,. . . , XAk} c G,. Hence, Y = (G,: n < w) is an open w-cover 

of p. Then, there is a sequence (G,,jj, w in 5 such that p = Lim - 4 G,,. Define f: 
w + w by f(j) = nj for each j <w. We claim that f(q) =p, In fact, if A up, then 

f-l(A)=(j<w: f(j>=njEA)={j< W: x, E G,,) E q. Thus, f(q) =p; that is, p 

GRK 4. q 

In 3.2, we pointed out that p as a subspace of 2” can be embedded as a closed 

subspace of C,(((p)> for each p E w*. This observation and Lemma 3.3 imply: 

Corollary 3.4. Let p, q E w*. If C,(t(p)) has (y,) then p <RK q. 
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Corollary 3.5. For every p E w* there is a subset X of [w such that X does not have 

(YJ. 

Proof. Let p E w*. Choose q E w* such that p < RK q. We have that q G 2” G R, 

where 2” = {C~=,i,,/3”: i, = 0 or i, = 2, for 1 <n <w) and q = (C~=,i,/3”: {n < 
0: i, = 01 E q}. If q has (y,), by Lemma 3.3 we obtain that q <RK p, which is a 

contradiction. Thus, X = q does not have (7,). q 

Galvin and Miller [13] pointed out that the combinatorial principle P(c) is 

equivalent to the statement: every subspace X of Iw of cardinality less that the 

continuum has (7). In this equivalence, we may replace (y) by (r,) for any p E w*. 
For each space X we can embed R as a closed subspace of C,(X): we identify 

each r E R! with the constant function of C,(X) of value r. From Theorem 2.1(b) it 

follows that [w has (7,) whenever C,([(p)) has (7,) for p E o*. Thus, Question 3.1 

can be reduced to the following: 

(IV) Does R have (7,) for each p E w*? 
Next, we shall show that R does not have (r,) whenever every RK-predecessor 

of p is rapid (this is the case when p is semiselective and when p = q” for some 

selective ultrafilter q). It is interesting to note that (by Theorem 2.3) there is 

p E w* such that I&! has (YJ, and that iw cannot have (y) since every space with (y) 

is zero-dimensional [16, p.1571. 

Theorem 3.6. If all RK-predecessors of p E o* are rapid, then every subset of [w with 
(y,) has measure zero. In particular, [w does not have (y,). 

Proof. Let X be a subset of R with (r,). Without loss of generality we may assume 

that X G [O, m). Fix F > 0 and, for each n < w, we let 

?Y; = {[o, E/n22n+i)} 

u { (ks/n22n+$ (k + 2)~/n~2”+~): 1 <k < n32”+2 - 3) 

“I( en - e/n22n+1, en]}, 

and 

i 

k 

LY= uZj: ZjegA for l<j<k<n and Z,nZ,=@for i#j . 

j=l 1 

Observe that if G E A?,, and if Al. is the Lebesgue measure on Iw, then p(G) < 

e/n2”+ ‘, for n < w. It is not hard to show that .Y = U n < ,.Ym is an open w-cover 

of X. Now, enumerate faithfully ,9 by {G,: n < w). In virtue of Lemma 2.2 there is 

qEti*suchthatq<,, pandXcLim - 4 G,.Definef:w+wbyf(k)=maxln< 

w: G, E gk} for each k < w. Since q is rapid, there is A E q such that I A n f(k) I 

G k for all k < w. For k < w we set A, = In < w: G,, E YJ which is a finite subset 

of w. If n l Ak, then G,, •9~ and n <f(k), for n,k <w. Thus, I A nA, I < I A n 
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f(k)1 <k for all k<w. For each k<w, put AnA,={n(k, l),...,n(k, Ye)), 

where rk 6 k. We have that A = U k < oA, and so XC lJ k <w lJ y= lGnCk,j). Since 

rlr 

for each k <w, we have that p(X) < C~=r~/2~+’ = .5/2 < E. Therefore, p(X) = 0, 

as required. 0 

For a selective p E o* we have a stronger result: 

Theorem 3.7. If p E w* is selective and X has (y,), then X has property C”. Hence, 
every subset of R with (y,) has strong measure zero.. 

Proof. Let (FJ, Cm be a sequence of open covers of X. Let {A,: k < w} be a 

partition of w in infinite subsets. For each k < w we define gk = { U jG ,,+Gj: 

3m, < k and for each j < mk, 3tj EAk with G, ~57~). Observe that lJ k<,,_?3k is 

an open o-cover of X for k < w. We may assume that X is infinite. Then, choose 

an infinite subset (x,: k < w) of X. Now, for k < w, let us set Fk = {G\{x,J: 

G ~9~). It is clear that Fk does not cover X for each k < w, and 9= U k<w Yk 

is an open w-cover of X. By assumption there is a sequence (H,), <w in 9 such 

that X = Lim H,,. For k < w let B, = {n < w: H,, E Fk). Since p is selective and -P 
B, 6&p for each k < w, there is B up such that I B n B, I G 1 for all k < w. For 

k < w we set B n B, = {nk}. We have that for each k < w, Hn, = U jG ,_G,?, where 

GP~E~. 
f(JAk) 

;k<w u 

and t(j, nk)eA,, for j<m,<n,. Thus, X= Uk<,,Hnk= 
J _,kGJ!‘k and t(i, nk,) # t(j, nk,) whenever k, # k,, i < mk, and j < mk,, 

as required. 0 

The following lemma is known and it is a consequence of the facts that every 

RK-predecessor of a P-point if a P-point and every RK-predecessor of a rapid 

ultrafilter via a finite-to-one function is rapid. Here, we include a proof. 

Lemma 3.8. If p E w* is semiselective, then every RK-predecessor of p is semiselec- 
tive. 

Proof. Assume that p E w* is semiselective and let q <RK p. It is not hard to 

prove that q is a P-point as well. So, we only need to show that q is rapid. Indeed, 

let f : w + w be a function and let g : o -+ o be onto such that g(p) = q. Since p is 

a P-point and g-‘(n) ep for n < w, there is A up such that I A n g-‘(n) I <w. 

Hence, without loss of generality we may suppose that g-‘(n) is finite for all 

n <o. Now, define h: w + w by h(n) = maxlk <w: q(k) < f(n)) for each n <w. 
Since p is rapid there is B up such that 1 B n h(n) I G n for all n < w. For n < w, 
if k E B and g(k) <f(n), then k <h(n) and k E B n h(n); hence, I g(B) n f(n) I 

G I B n h(n) I n for each n <w, and g(B) E q. q 
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As an immediate consequence of Theorem 3.6 and Lemma 3.8 we have: 

Corollary 3.9. If p E w* is semiselective, then [w does not have (y,). 

Next, we will show in Lemmas 3.12 and 3.15 that R does not have (yP~) for all 

0 G w, whenever p is a selective ultrafilter on o. We need the following definition 

and lemmas. 

Definition 3.10. For p, q E CO*, the tensor product of p and q is 

p @q = {A Cw Xw: (12 <w: {m <w: (n, m) EA] Eq} Ep}. 

Observe that p 8 q is an ultrafilter on w x w, and it can be viewed as an 

ultrafilter on w via a fixed bijection between w and w X w. This product @ is not 

an associative operation on o*. Nevertheless, @ induces a semigroup structure on 

the set of types of w* by setting T(p) 8 T(q) = T(p 63 q> for p, q E w*. Thus, if 

p E w* then p” stands for any point in T(p)” for 1 G n < w. For each p E w* 
Booth [4] defined T(p)” as follows: choose an embedding e : w + o* such that 

e(n) zRK p” for 1 G n < w, then T(p)” = T(Z(p)). As above, p” stands for a point 

in T(p)” for p E w*. 
We omit the proof of the following two lemmas. 

Lemma 3.11 (Miller [191). Let p, q E w *. Then p @ q is rapid if and only if q is rapid. 

Lemma 3.12 [14]. If p E w* is selective and 1 G n < w, then the set of all RK-prede- 

cessors ofp” is P&p?= U1skGnT(~)k. 

The next result is a direct application of Theorem 3.6 and Lemmas 3.11 and 

3.12. 

Corollary 3.13. If p E w* is selective, then [w does not have (y,“) for each 1 < n < w. 

Lemma 3.14. Let p E w* and let (p,: n < w) be a set of rapid ultrafilters on w. If 
q =p-lim p,, then q is rapid. 

Proof. Assume that q =p-lim p,. Let (B,: n < w} be a set of pairwise disjoint finite 

subsets of w. For each n <w choose A, EP,, such that 

(1) A, n Bj = fl for every j G n; 

(2) I Ann&I < m for every m < w. 
We set A = U ,<,A,.SoA~qand,foreachm<o, IAnB,I~lUj,,(Ajn 
B,)I <Cj<,IAjnB,I G m*. It then follows from Theorem 3 of [19l that q is 

rapid. q 

Lemma 3.15. If p E w* is selective, then every RK-predecessor of p” is rapid. 

Proof. Let q E w* such that q <RK p”. By definition, there are an embedding 

e : o + w* and a function f : w -+ w such that fCpw> = q, e(n) zRK p” for 1 G n < 
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w, and Z(p) =p”. Put h =fo e : w + p(w). If In < o: h(n) E w) up, then 4 = h(p) 
<RK p and since p is RK-minimal, p zRK q. Then we may assume that h(n) E o* 
for each n < w. We have that h(n) <RK e(n) zRK p” for 1 < y1 <w. By Lemma 

3.12, there is k, G n such that h(n) =pkfl for each 1 G IZ < w. In virtue of Lemma 

9.4 in [5], we may suppose that h is an embedding; that is, h is one-to-one and 

{h(n): n < o) is discrete in w*. By Lemma 3.11, we have that h(n) is rapid for all 

1 G n < W. Applying Lemma 3.14 we obtain that q =p-lim h(n) = h(p) is rapid. 
- 
u 

Corollary 3.16. If p E w* is selective, then R! does not have (y,-). 

Booth [4] showed that pW has 2” RK-type predecessors for p E w*. Hence, if p 
is selective, then p” is not a P-point, it has 2” RK-type predecessors and If8 does 

not have (y,-) (by Corollary 3.16). On the other hand, by Lemma 2.3, we can find 

p E w* for which p has exactly 2” type-RK predecessors and Iw has (y,). These 

observations suggest the next problem. 

Problem 3.17. Classify those p E w* for which R does not have (y,,). 

In the next theorem, we show that if [w has (yJ then some other spaces do, and 

vice versa. 

Theorem 3.18. For p E w* the following are equivalent. 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

R has (y,,); 
[O, 11 has (yJ; 
the Cantor space 2” has c-y,,); 

LO, 11” has (y,); 
Z=U .,,,,[l/n, 1 - l/n]“’ has (yJ; 

C:(w) has (‘y,); 
every compact metric space has (yJ; 
every zero-dimensional, second countable compact space has (yPy,); 
every u-compact metric space has (y,,); 
every locally compact, separable metric space has (y,). 

Proof. We proof the implications (1) * (2) 3 (3) j (4) * (5); (5) a (6); (5) * (9); 

(7) - (8); (8) * (3); (9) - (10); (10) =+ (1); (10) = (7) and (5) 3 (9). In fact, (1) d 

(2) * (3) * (4) = (5) are immediate consequences of Theorem 2.1; (5) w (6) fol- 

lows from the fact that C,*(w) is homeomorphic to the space _Z; (7) * (8), 

(9) 3 (lo), (10) =j (1) and (81* (3) are trivial; and (5) 3 (9) holds since every 

a-compact metric space is homeomorphic to a closed subspace of Z (see [27, 

Lemma 5.11). 0 

We have shown (in Theorem 2.1(c)) that if X has (y,> for p E w*, then X” has 

(y,) for each 1 < n < w. We do not know whether R” has (y,) whenever R has (y,) 
yet. The following two theorems could be useful. 



170 S. Garcia-Ferreira, A. Tamariz-Mascarua /Topology and its Applications 58 (1994) 157-I 72 

Theorem 3.19. If p E w* is a P-point, then R” does not have (y,). 

Proof. Let p E w* be a P-point and assume that IV” has (y,). For each n < w let 

g; be a countable cover of R consisting of open intervals of length 1/2n. For each 

n <w set 

.Yn= 
i 

U Z,: ZjEgL, I,nZ,=Bfor i#j . 

l<jgn 1 

Now, for each n < w, define Fn = {17,-l(G): G E YYJ, where IIn : KY’ + R is the 

projection map on the nth coordinate. It is not hard to prove that 9= lJ n <,57-, 

is an open w-cover of R”. By assumption there is a sequence (P,), <o in F such 

that R” = Lim F . For each k <w put A, = {n <w: F,, E Fk). Then, {A,: k <w} 
-P n 

is a partition of w. We verify that A, Ep for each k < o. Indeed, assume that 

A, up for some k <w. For each m < w we have that S(m) = {n <w: m E F,} EP 
(here, we identify m with the constant function on R” of value m>. Hence, we may 

take n=Akn(fli.,+, S(i)). If F,, = 17,-‘(G) for some G E gk, then i E G for 

each i < k + 1, which is a contradiction. Thus, A, @p for all k < w. Since p is a 

P-point, there is A E p such that I A n A, I < w for each k < w, and R” = U n E A F, 
(by Lemma 1.4). For each k < w enumerate A n A, = {n(k, 01, . . . , n(k, rk)). We 

then have that R” = U k <w U ic rkFn(k,ir For each k < w and each i < rk, choose 

GnCk,i) E .Yk so that Fn(k,i) = 17i ‘(Gnck i,>. Notice that R # U i ~ rkG,,Ck i). Hence, for 

each k < w we pick xk E lR\ U ig ,,(;,;k,i,. If x = (x,), < w, then x @ P,,,+, for each 

k<w and each i<r,. But this is impossible. Therefore, KY” does not have (y,). 

0 

Theorem 3.20. Let p E w*. If all the spaces of any of the following classes have (yJ, 
then the other classes of spaces do. 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

w. LQ > 
w. 

ie’hedgehog J(w)“; 
the Hilbert space W; 

W. 
w > 
a, = {x E W: xi = 0 for all but finitely many i}“; 
every C,(X) for a metric countable space X; 
every C:(X) for a separable metric space X; 

every C,(X) f or a countable space X such that C,(X) is an F,,-subset of 
W. 

every C,*(X) for a countable space X such that C,(X) is an Fm‘,,-subset of 
0. R > 

every F,,-subset of [O, 11”; 

every separable, completely metrizable space; 
every zero-dimensional, separable completely metrizable space; 
every G,-subset of a separable completely metrizable space; 
every G,-subset of R. 
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Proof. The trivial implications are (12) =. (131, (12) * (141, (14) * (15) and (15) * 

(2); (1) * (2) follows from Theorem 2.1(b); and (1) e (3) e (4) * (5) are conse- 

quences of the facts that W and J(w)” are homeomorphic [25,261 and that R” and 

W are homeomorphic 111. 

Since a,, C,(X) and C,*(X) are homeomorphic whenever X is countable and 

C,(X) is an F,,-subset of EP’ (see [lO,ll]>, we obtain that (6) e (7) e (8) G (9) e 

(10). 
(11) * (1) is a direct application of 5.2 in [27]. 

We have that KY” is homeomorphic to (0, l>“, which is an F,,-subset of [O, 11”; 

hence, (11) * (1). 

Since ,Z is a continuous image of the disjoint union of countably many copies of 

IO, 11”, say @ n <JO, l]“), z w X [O, ll”, Z:” z a, is a continuous image of the 

closed subspace (w X [O, 11”)” = ww X [O, 11” of R” and so (1) * (6). 

We know that every zero-dimensional, separable completely metrizable space is 

homeomorphic to a closed subspace of w” (see [12, 7.3.H]) and then (2) * (13). 

From the facts that w“’ X 2” satisfies the conditions of (131, a, is a continuous 

image of ww x [0, 11”’ and ww x [O, 11” is a continuous image of ww x 2”, it follows 

that (13) j (6). 0 
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