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ULTRAFILTERS AND PROPERTIES RELATED
TO COMPACTNESS

J. ANGOA, Y. F. ORTIZ-CASTILLO, AND A. TAMARIZ-MASCARUA

ABSTRACT. In this article we introduce and analyze the following
concepts: Let p € N* and let X be a topological space. We say
that

(a) X is strongly p-compact if X is p-pseudocompact and for each
sequence (ZTy)nen Of points in X, there exists a sequence of open
subsets (Un)pen of X, with z,, € U, for each n € N, such that
the set of p-limit points of the sequence (Up)nen is a non-empty
compact subspace of X;

(b) X is strongly p-pseudocompact if for each sequence (Uy )nen of
open subsets of X, there exist a sequence (xn)pen of points in X
and = € X such that z,, € Uy, and x = p — lim zp;

(¢) X is pseudo-w-bounded if for each countable family U of open
subsets of X, there is a compact K C X such that, for all U € U,
KnNU # 0

(d) X is p-pseudo-w-bounded if for each family {U, : n € N} of
open subsets of X, there is a compact subspace K C X such that
{neN: KNU, # 0} € p.

‘We prove:
(1) Every strongly p-compact space is p-compact.

(2) In the class of locally compact spaces, strong p-compactness and
p-compactness are equivalent; and p-pseudo-w-boundedness and p-
pseudocompactness are equivalent too.

(3) For two ultrafilters p, ¢ € N*, p <gpk q if and only if every
strongly g-pseudocompact space N C X C SN is strongly p-pseudo-
compact.
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NOTATIONS AND BASIC DEFINITIONS

Every space in this paper is considered to be Tychonoff and has more
than one point. w is the first infinite cardinal number and w; is the
first non-countable cardinal number. The letter N stands for the space
of the natural numbers with its discrete topology. Given a set X, we
use the following notation: [X]|<¢¥ := {4 C X : |A| < w} and [X]¥ :=
{A C X :|A4| = w}. If X is a topological space and A C X, we use
Clx(A) (or simply CI(A) if there is no possibility of confusion) to denote
the closure of A in X. For spaces X, Y, C(X,Y) denotes the set of
all continuous functions with domain X and range contained in Y. As
usual, with X we denote the Stone-Cech compactification of X, and X*
denote the remainder X \ X. Given two ultrafilters p,q € ON, we say
that p <gk ¢ if there exists a function f : N — N such that Sf(q) = p,
where G f is the continuous extension of f to SN. This relation is known
as the Rudin-Keisler preorder on SN.

If < is a preorder on X, we say that p, ¢ € X are <-equivalent if p < ¢
and ¢ < p; p, q are <-comparable if either p < ¢ or ¢ < p; and p, ¢ are
<-incomparable if they are not <-comparable.

If X is the cartesian product [] g X of a family {X, : s € S} of
non-empty sets and s € S, then 7, denotes the projection from X to X.

Given a space X, p € N* and a sequence (S, ),en of non-empty subsets
of X, we say that z € X is a p-limit of (S, )nen if for each neighborhood
Wofz {neN:S NW # 0} € pp A space X is p-compact (p-
pseudocompact) if every sequence of points (of non-empty open subsets)
of X has a p-limit point. Of course, if z and y are p-limits of a sequence
(zn)nen of points in X, then z = y. If x is the p-limit of (z,)nen, We
write x = p — lim x,. The set L(p, (Sn)nen) of p-limits of a sequence
(Sn)nen of non-empty subsets of X is always closed and have more than
one point. We say that a space X is w-bounded if every subset A € [X]¥
is contained in a compact subset of X. The notions used and not defined
in this article have the meaning given to them in [5].

INTRODUCTION

In 1975, J. Ginsburg and V. Saks introduced the concept of p-pseudo-
compactness in [8]. This notion, defined in terms of p-convergence of se-
quences of non-empty open subsets, generalizes pseudocompactness and
is related to p-compactness, introduced by Bernstein [3] and analyzed
by Ginsburg and Saks [8], in a similar way as pseudocompactness is re-
lated to compactness. Furthermore, it is related to the Rudin-Keisler
preorder: every p-pseudocompact space is g-pseudocompact if and only if
p <grk ¢. Following the ideas in [3], [6] and [8], we introduce and analyze
the concepts of strong p-compactness and strong p-pseudocompactness.
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The study of all these concepts is relevant because they determine differ-
ent kinds of countably compact and pseudocompact spaces with different
properties. The property of pseudo-w-boundedness was inspired in w-
boundedness; in [2] the authors proved that this property characterizes
the pseudocompactness of the hyperspace of compact sets.

In Section 1, we introduce the notion of strong p-compactness, and we
study its properties and relations with other properties; in particular, we
prove: (1) every strongly p-compact space is p-compact, and (2) every
locally compact p-compact space is strongly p-compact.

In Section 2, we prove that a Tychonoff product [, X is strongly
p-compact if and only if each X, is strongly p-compact and [{a < & : X,
is not compact}| < w. Moreover, if f : X — Y is an onto continuous
and open function and X is strongly p-compact, then Y must be strongly
p-compact.

In Section 3, we introduce and study the concepts of strong p-pseudo-
compactness and pseudo-w-boundedness. We prove that both are produc-
tive properties (a property that pseudocompact spaces don’t necessarily
have). Finally, we introduce the almost pseudo-w-bounded and the p-
pseudo-w-bounded spaces, and prove that in the class of locally compact
spaces, strong p-compactness, p-compactness, p-pseudo-w-boundedness
and p-pseudocompactness are equivalent, and pseudocompactness is equiv-
alent to almost pseudo-w-boundedness.

p-pseudocompactness and strong p-pseudocompactness have similar
properties including their relation with the Rudin-Keisler preorder; in par-
ticular, in Section 4, we show that p <pg ¢ if and only if every strongly
g-pseudocompact space N C X C SN is strongly p-pseudocompact; from
this fact we derive new results which have a similar flavor to those given
in Theorem 1.5 in [6].

Finally, in Section 5, we give an example of a strong p-compact, non-
pseudo w-bounded space and a strong p-compact, non-g-compact space.

1. STRONG p-COMPACTNESS

Definition 1.1. Let p € N*. We say that a space X is strongly p-compact
if X is p-pseudocompact and for each sequence (z,)nen of points in X,
there exists a sequence (Uy,)nen of open subsets of X, with x,, € U, for
each n € N, such that L(p, (U,)nen) is a non-empty compact subspace of
X.

Lemma 1.2. Let p € N*. The following properties are equivalent for a
topological space X :

(1) X is p-compact;
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(2) for every sequence (Sp)nen of non-empty subsets of X,

L(p7 (Sn)nEN) 7& 07

(3) for each sequence (Dy)nen of non-empty closed subsets of X, it
happens that L(p, (Dy)nen) # 0; and

(4) for every sequence (Sp)nen of non-empty subsets of X, we have
that the set L(p, (Sn)nen) is not empty and for each open subset
U of X satisfying

{x=p—-Llim z,:x, €S, for each n € N} C U,
it happens that {n e N: S, CU} € p.
Proof. All the implications are obvious except for the second assertion of

(1 = 4). Assume that there is a sequence (Sy)nen of non-empty subsets
of X, and assume that U is an open subset of X such that

{r=p—-limz,:z, €85, foreachneN} CU

and {n € N: S, CU} ¢ p. In particular, the set A={neN:5, Z U}
belongs to p. Take 2, € S, \U if n € A, and z, € S,, if n ¢ A. Since
X is p-compact, there is z € X such that z = p — lim x,,. For each
neN, z, €S,,s0z€{r=p—1Ilima,:z, €S, foreachn € N} CU.
Moreover, by definition, {n € N : x,, ¢ U} = A. Since p is an ultrafilter,
{n € N:z, € U} ¢ p; this is a contradiction. O

Proposition 1.3. Let p € N* and A € p. If X is a p-compact space,
then for every sequence (S, )nen of non-empty subsets of X we have that
L(p, (Sp)nen) = Cl({x =p — lim z,, : z, € S, for each n € N})
=Cl{zx=p—limz, :x, € 5, for each n € A}). (4)

Proof. Let A € p € N*. Then,
{x=p—limz, :x, €S, for each n € N} =
{r=p—Llimz, :x, €S, for each n € A}.
So, the second equality (4) is obvious. Let
T={z=p—limz,:x, €S, for each n € N}.

It is clear that T' C L(p, (Sn)nen). Then CI(T) C L(p, (Sn)nen) because
L(p, (Sn)nen) is closed. Now we only have to prove that L(p, (Sp)nen) C
Cl(T).

Let ¢ CI(T') and let U and V be two disjoint open subsets of X such
that CI(T) CU and € V. By Lemma 1.2, {n e N: S, CU} € p. Since
U and V are disjoint open sets,

{neN:5,NV#0}C{neN:S, U} ¢p.
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This implies that ¢ L(p, (Sp)nen). So, we obtain the required equal-
ity. O

We are going to obtain some basic properties about strong p-compact-
ness. First a notation and some preliminary results.

Notation 1.4. Let p € N* and let B be a family of sequences of nonempty
subsets of X. We denote by Lz the set {L(p, B) : B € B}.

Proposition 1.5. Let p € N* and let S = (xn)nen be a sequence in X.
For each x,, € {x, : n € N}, consider a local base N,,, of xpm, in X. Let

B ={(Un)nen : Up € N,, for each n € N}.
Then, © = p — lim x,, if and only if (Lp = {x}.

Proof. Tt is clear that if = p — lim x,,, then « € L(p, (U, )nen) for each
sequence of open subsets (Up)nen € B. Thus, © € NLp.

Let « be an element of (L and assume that z is not a p-limit of
sequence S. Then, there is a neighborhood W of = such that {n e N : z,, €
W} ¢ p. Let V be an open neighborhood of z such that CI(V) C W. For
each n € N such that z,, & cl(V), let B, € N,, such that B, NCI(V) = 0,
and for each n € N such that z,, € ¢l(V), choose whatever B,, € N,,.

Then,

{neN:B,NV#0}C{neN:z,eCl(V)} C{neN:z, e W}

so {n € N: B, NV =# (0} does not belong to p, but this is not possible
because our hypothesis says that

S ﬂﬁg C L(p7 (Bn)nGN)~

Hence, © = p — lim x,. Since the p-limits of sequences are unique, we
obtain (| £Lp = {x}. O

Lemma 1.6. Let p € N* and let X be a p-pseudocompact space. Then,
for every sequence S and every family B defined as in Proposition 1.5,
the collection Lg has the finite intersection property.

Proof. Take (Up)nen and (Vy,)nen in B. Since for each n € N, A, is a
local base of x,,, there is B,, € N,, such that z,, € B, C V,, N U,. Since
X is p-pseudocompact,

0 7é L(p, (Bn)nEN) € Lp and

L(pa (Bn)nGN) c L(p7 (Un)neN) N L(pa (Vn)nEN)
This concludes our proof. O

Now, we establish a basic fact about the relationship between p-com-
pactness and strong p-compactness.
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Theorem 1.7. For every ultrafilter p € N*, every strongly p-compact
space is p-compact.

Proof. Let X be a strongly p-compact space. Let (x,)nen be a sequence
of points in X. Let (U,)nen be a sequence of open subsets of X such that
L(p, (Un)nen) is compact and z,, € U,, for each n € N.

For each n € N, let N;, be the family of all open subsets of X containing
the point x,, and contained in U,. It is clear that for each n € N, \V,, is
a local base of x,,.

Now we define the families

B={(Vp)nen:Vn €Ny} and Lg={L(p, Vi)nen) : (Va)nen € B}

Note that for each sequence (V,,)nen € B, the set L(p, (Vy)nen) is con-
tained in L(p, (Uy,)nen) because for each V,, € N,,, V,, C U,,. Since X is
p-pseudocompact, Lz is a family of compact sets with the finite intersec-
tion property (Lemma 1.6); so, (| £Lp # (). Because of Theorem 1.5, the
sequence (Z,)nen has a p-limit point. Therefore, X is p-compact. O

Finally we are going to give an example of a p-compact space which is
not strongly p-compact. Recall that, given an ultrafilter p € SN, Prg(p)
denotes the set {q € SN : ¢ <gk p}.

Remark 1.8. If p € N* and P = {z € SN : there is a sequence (z,)nen
in N such that z = p-lim z,}, then PUN = Pgg(p).

It is well-known that every closed subset of a p-compact space is
p-compact, and the product of a collection of p-compact spaces is still
p-compact. So, for every Tychonoff space X and every free ultrafilter p,
there is a unique space, up to homeomorphism, 5,(X) satisfying:

(1) X is dense in §,(X),

(2) Bp(X) is p-compact, and

(3) for every p-compact space Y and every function f € C(X,Y),
there is a function F' € C(B,(X),Y") such that F|x = f.

It is also known that 3,(X) is the intersection of all the p-compact
subspaces of X containing X (see [8] and Chapter 5 of [9]).

Example 1.9. For every free ultrafilter p on N, the space X = 3,(N) is
not strongly p-compact.

Proof. Let {U, : n € N} be a partition of N in infinite sets and pick
z, € Ut N Bp(N) for each n € N. Then L(p, (Vi )nen) is infinite for
every sequence of open sets (V,,)nen, where z,, € V,, C clx(U,,). Since
|6p(N)| = 2% and every infinite closed subset of SN has cardinality 227,
Lx(p,(Vi)nen) can not be compact. So we must have that 3,(N) is not
strongly p-compact. (]



ULTRAFILTERS AND PROPERTIES RELATED TO COMPACTNESS 189

It is known that every p-compact space is countably compact; so, count-
able compactness does not imply strong p-compactness. Below, in Exam-
ple 5.3, we show a strongly p-compact subspace of SN which contains
N.

Theorem 1.10. The property of being strongly p-compact is inherited by
closed subsets.

Proof. Assume that X is a strongly p-compact space. Let B C X be
a non-empty closed subset of X, (z,)nen be a sequence in B, and let
(Un)nen be a sequence of open subsets of X such that L(p, (Uy,)nen) is
compact and x,, € U, for each n € N. It is clear that (B N Upy)nen is a
sequence of open subsets of B with z,, € BN U,,. By Theorem 1.7, X is
p-compact, so B is p-compact (Theorem 2.4 in [8]). If z = p — lim x,,
then
S LB(p7 (B N Un)nEN) c BN L(p7 (Un)nEN)

So, Lp(p, (BN Uy)nen) is not empty. Since Lg(p, (BN Up)nen) is closed
in B, it is closed in the compact subspace B N L(p, (Up,)nen). Hence,
we conclude that Lg(p,(B N Uy)nen) is compact. Moreover, B is p-
pseudocompact because it is p-compact. (]

Theorem 1.11. FEvery locally compact p-compact space is strongly p-
compact.

Proof. Let X be a locally compact p-compact space and let (x,)n,en be
a sequence of points in X. Since X is p-compact, there is x € X such
that x = p — lim x,. Now, take an open neighborhood U of x such that
CIl(U) is compact. Let V be a neighborhood of z satisfying CI1(V) C U.
For each n € N such that x,, ¢ CI(V), take a neighborhood U, of z,
such that U,, C X \ CI(V), and for each n € N with z,, € CI(V), take a
neighborhood U, of x,, such that U, C U.

We claim that X \ CI(U) is a subset of X \ L(p, (Un)nen). Indeed,
assume that z ¢ CI(U). Then X \CI(U) is an open subset of X containing
z. Furthermore,

{n:U, N (X\CUU))#0}N{n:U, NV #£0} =0.
Since {n € N: U,NV # 0} € p, we have that {n : U,N(X\CI(U)) # 0} ¢
p. This means that z ¢ L(p, (Up)nen). Therefore, L(p, (Uy)nen) C CUU).

Since CI(U) is compact and L(p, (Uy )nen) is closed, L(p, (Uy)nen) is com-
pact. U

Corollary 1.12. FEvery compact space is strongly p-compact.

Observe that wq, with its order topology, is w-bounded, locally com-
pact, collectionwise normal, first countable, strongly p-compact for every
p € N*, but it is not compact.
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Corollary 1.13. Let X be a p-compact space and let'Y be a locally com-
pact space. If there is a continuous and onto function f : X — Y, then
Y is strongly p-compact.

Proof. By Lemma 2.3 in [8], Y is p-compact, and by Theorem 1.11, Y is
strongly p-compact. |

Remark 1.14. It is natural to ask what happens if we replace the con-
dition L(p, (Upn)nen) is compact by the condition L(p, (Up)nen) is p-
compact in Definition 1.1. Of course, every p-compact space satisfies this
new property. We consider that the most interesting question which arises
from this new concept is if every space with the new property is p-compact
(or at least countable compact). Our conjecture is that this property does
not imply p-compactness. In the proof of Theorem 1.7 the hypothesis the
closed subsets L(p, (Un)nen) € Lp are compact can not be weak-
ened by the hypothesis the closed subsets L(p,(Uy)nen) € Lg are
p-compact because this last assertion only guarantees that (Lg # 0
when B is a countable family. Although at this moment we do not have a
counterexample, we think that it is possible to construct such an example
and this is an interesting non-trivial problem.

2. PRODUCTS, IMAGES AND PREIMAGES OF STRONGLY
p-COMPACT SPACES

It is known that the product of p-compact spaces and the continuous
image of a p-compact space is a p-compact space (Lemma 2.3 in [8] and
Theorem 4.2 in [3]). With respect to the images and productivity of
strongly p-compactness we have:

Theorem 2.1. For every p € BN, strong p-compactness is invariant
under continuous open functions.

Proof. Let X be a strongly p-compact space, f € C(X,Y) open and onto,
and let p € BN. Also, let (y,)nen be a sequence in Y. For each n € N, pick
2n € f~Y(yn). Since X is strongly p-compact, there exist open subsets
U, of X such that x,, € U, for each n € N, and L(p, (U, )nen) is compact.

For each n € N, denote by V,, the open set f[U,]. We have that
Yn € Vp, so it will be enough to show the equality

L(p, (Vn)neN) = f[L(p, (Un)nEN)]'
By Theorem 1.3.(3) of [6], L(p, (Vi)nen) 2 fIL(p, (Un)nen)]- Now, take

A L(p, (Vn)neN) \ f[L(pv (Un)HGN)]'

Since L(p, (Up)nen) is compact, f[L(p,(Un)nen)] is compact too,
so we can find disjoint open subsets By, B in Y such that z € B;
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and f[L(p, (Un)nen)] € Bs. By Proposition 1.3, there exist 2z’ € By and
zn € Vi, such that 2/ = p — lim z,; then, A= {n € N: 2z, € By} € p.
Therefore, f~1(z,) C f~![Bi] for all n € A. Moreover, it is clear that
f71[B] and f~1[By] are disjoint open subsets of X and

L(p,(Un)nen) € fﬁl[B2]~

Let B ={n € N:U, C f'[By]}. It is clear that AN B = (), but
Lemma 1.2 guarantees that B € p. Since p is an ultrafilter and A € p,
it happens that ) = AN B € p which is a contradiction. Then, we
must have z € f[L(p, (Un)nen)] and we conclude that L(p, (Vi )nen) =
FIL(p, (Un)nen)]- O

Theorem 2.2. Letp € N*, let X = {X, : s € S} be a family of topological
spaces and let X be the topological product of such a family. Then, X is
strongly p-compact if and only if X is strongly p-compact for every s € S,
and |{s € S : X is not compact }| < w.

Proof. (=) Assume that X is strongly p-compact. By Theorem 1.10, each
X is strongly p-compact because it is homeomorphic to a closed subset
of X.

Now, assume that 7" C S is such that X; is not compact for each
t € T. Suppose that |T'| > w. Let (z,)neny € X be a sequence of points
and (Up)nen a sequence of open subsets of X such that z,, € U,, for each
n € N. By Theorem 1.7, X; is p-compact for each t € S. So, X is p-
compact (Theorem 4.2 of [3]). Let x¢ be the p-limit point of the sequence
(xn)nEN-

For each n € N, there is A, € [S]<¥, and there is, for each s € A,,
an open set W2 of X, such that z, € (,c, w;'[W;3] C U,. The set
A = ,en An is countable. Now define the set '

B={zx e X :ms(x) =ms(xg) for all s € A}.
Claim: B C L(p, (Up)nen)-

Indeed, take * € B, F € [S]<* and V = Ngepm, 1[Vs] where V; is
an open subset of X such that x € V. By definition of A, we have
7ws[Un] = X for each s ¢ A; so, if FNA={, then VNU, # 0 for every
n € N.

Assume now that F N A # (). Then,

{(neN: VAU, #0}2{neN:( (] = ' V.)NnU, #0} 2

SEFNA

() (neN:VanWi#0}2 [ {neN:m(wn) € Vi}.

seFNA seFNA
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By Lemma 2.3 in [8], ms5(xo) = p — lim ws(zy,) for each s € S; so, for
each s € A, w5(z) = p — lim ws(x,,). Then, for each s € A,

{n eN:my(z,) € Vs} €p.
Since F'N A is finite, we have that

n {n e N:my(x,) € Vs} € p;

seEFNA

this implies that « € L(p, (Up)nen), and the proof of the Claim has con-
cluded.

Since |A| < |T'|, we can take ¢t € T'\ A. The space X; is homeomorphic
to a closed subset of X contained in B C L(p, (Un)nen). But X; is not
compact, so L(p, (Up)nen) cannot be compact; this is a contradiction
because we have supposed that X is strongly p-compact. So, we must
have |T| < w.

(<) Now suppose that X is strongly p-compact for every s € S. Let
T ={s € S: X, is not compact} and assume that T" # (). We have to
consider two cases:

I. |T| = w. Define X7 = [[,cr Xt, let (z,)nen be a sequence of X7,
and for each n < w, t € T let U. be an open subset of X; such that
m(z,) € UL and L(p, (U!)nen) is compact. Enumerate the set T as
{tn : n € N} and, for each n < w, consider the set V,, =) m Ut
Each V,, is a canonical open subset of X7 containing x,,.

We are going to show that L(p, (Va)nen) C [Ler Lx, (0, (U} )nen) = L.
In fact, take x ¢ L, so there is r € T such that 7, (z) ¢ Lx,.(p, (U})nen)-
Let W be an open neighborhood of 7,.(x) such that {n : WNU =0} € p.
Observe that V,, C 7, 1[U!] for every n > m, where r = t,,. Hence

meN:m  WNV, =0} D2 {n>t,: WNU" =0} €p.

Since z € 7 1[W], we obtain z ¢ L(p, (Vs)nen), and so L(p, (Vy)nen) is
compact.

II. |T'| < w. This case is a consequence of Case I and Theorem 2.1.

If T'= S the proof is finished. Suppose T' # S. Since X is the product
of a strongly p-compact and a compact space, by Case II, X is strongly
p-compact. U

m<n

Remark 2.3. From Theorems 1.11 and 2.2, we can deduce that if X is
a strongly p-compact non-compact space, then X“ is strongly p-compact
and it is not locally compact. On the other hand, every infinite discrete
space is locally compact and it is not strongly p-compact.

The following lemma is Theorem 3.7.26 in [5].
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Lemma 2.4. Let P be a property which is inherited by closed subsets and
every product of a compact space with a space satisfying P has P. If Y
has P and f : X — Y is a continuous and perfect function, then X has
property P.

Corollary 2.5. Let p € N*. Then every continuous and perfect preimage
of a strongly p-compact space is strongly p-compact.

Proof. Let f: X — Y be a continuous perfect and onto function. As-
sume that Y is a strongly p-compact space. By Theorem 1.10, the case
IT in Theorem 2.2 and Lemma 2.4, we conclude that X is a strongly
p-compact space. ([l

Question 2.6. Is it possible to find a strongly p-compact space X, a space
Y which is not strongly p-compact and a (closed or perfect) continuous
function f : X =Y ?

3. STRONG p-PSEUDOCOMPACTNESS AND
PSEUDO-w-BOUNDEDNESS

Definition 3.1. Let X be a topological space and p € N*. We say that
X is:

(1) strongly p-pseudocompact if for each sequence (U, )nen of open
subsets of X there exists a sequence (x,)nen of points in X and
there is x € X such that x = p — lim x,, and z,, € U, for all
neN,

(2) pseudo-w-bounded if for each countable family U of open subsets
of X, there is a compact K C X such that K N U #  for all
Uecl.

Observe that every p-compact space is strongly p-pseudocompact.

Theorem 3.2. Let p € N*.

(1) Every pseudo-w-bounded space is strongly p-pseudocompact and
every strongly p-pseudocompact space is p-pseudocompact.

(2) If X contains a dense strongly p-pseudocompact subspace, then X
1s strongly p-pseudocompact.

(3) Regular closed subsets inherit the property of being strongly p-
pseudocompact.

(4) X is pseudo-w-bounded if and only if for each sequence (Up)nen
of open subsets of X, there exist points x,, € U, such that, for
every p € N*, the sequence (z)nen has a p-limit.

Proof. (1) We are going to prove the first assertion because the second
one can be proved easily. Let (U,)nen be a sequence of non-empty open
subsets of X. Let K be a compact subset of X which has a non-empty
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intersection with U,, for each n € N. Then, for each n € N, there is a
point x,, € K NU,. Since the sequence (z,)nen is contained in K, there
is ¢ € K such that x = p — lim x,.

(2) Let (Un)nen be a sequence of open subsets of X. For each n € N,
let V,, be the set U, NY. Then, (V,,)nen is a sequence of open sets of
Y, so there are points x,, € V,, C U, and x € Y C X such that «x is the
p-limit of the sequence (,)nen in Y. Now it is easy to show that z is
the p-limit of the sequence (x,)neny in X. Thus, we conclude that X is
strongly p-compact.

(3) Let D be a regular closed subset of X and let (Up,)nen be a sequence
of open subsets of D. Since D = Cl(Int(D)), for each n € N, the set
V. = U, N Int(D) is open in X. Since X is strongly p-pseudocompact,
there are points z,, € V,, C U, and = € X such that x = p — lim z,.
Since (zn)nen is a sequence in D, D is closed and z € Cl{z,, : n € N},
then z € D.

(4) (=) Suppose that X is pseudo-w-bounded. Let (Uy,)nen be a sequence
of open subsets of X and let K be a compact subspace of X such that
KNU, # 0 for every n € N. For each n € N, take an element x,, € KNU,.
Since {z,, : n € N} C K and K is compact, Clx ({z, : n € N}) is compact;
so, the sequence (x,,)nen has a p-limit point in X for each p € N*.

(<) Let (Un)nen be a sequence of non-empty open subsets of X and
let (x,)nen be a sequence of points such that z,, € U, for all n € N and
(zn)nen has a p-limit point in X for each p € N*. Now, Theorem 3.4 in
[3] guarantees that K = Clx({z, : n € N}) is compact. Moreover, for
eachneN, z, €e KNU,. O

Remark 3.3. Every w-bounded space is pseudo-w-bounded and every
p-compact space is strongly p-pseudocompact. On the other hand, it
is possible to find pseudo-w-bounded spaces which are not strongly p-
compact (for example, X-products of compact spaces). In Example 5.3,
below, we show an strongly p-compact space which is not pseudo-w-
bounded.

Theorem 3.4. The property of being strongly p-pseudocompact is invari-
ant under continuous images.

Proof. Let X be a strongly p-pseudocompact space. Let f: X — Y bea
continuous and onto function. Finally, let (U, )nen be a sequence of non-
empty open subsets of Y. It is clear that (V},)nen, where V,, = f71[U,)]
for each n € N, is a sequence of open subsets of X; so, there exist points
T, € V, and z € X such that z = p — lim x,. Then, f(x,) € U,,
f(z) €Y and f(x) =p—lim f(z,) (Lemma 2.3 in [8]). O
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Theorem 3.5. Let {X, : s € S} be a family of topological spaces and X
the Tychonoff product of such a family. Then, X is strongly p-pseudo-
compact if and only if for each s € S, X, is strongly p-pseudocompact.

Proof. (=) This implication is a consequence of Theorem 3.4.

(<) Let (Un)nen be a sequence of open subsets of X. For each n € N
and each s € §, let V7 be a non-empty open subset of X, such that
Vi = Ngesms HV¥] C U,. Since X, is strongly p-pseudocompact for each
s € S, there is a sequence (z%)nen of points in X, and there is a point
x® € X; such that z7 € V,? for each n € N and 2 = p — lim x. Take
the point € X such that 7s(x) = x® for each s € S. Finally, for each
n € N, take z,, € X such that ws(z,) = x5 for each s € S. It is clear
that x,, € U, for each n € N and x = p — lim x,,. We conclude that X is
strongly p-pseudocompact. O

Corollary 3.6. Pseudo-w-boundedness is a productive property and in-
variant under continuous functions. Also, reqular closed subsets inherit
this property. Furthermore, if a space X contains a dense pseudo-w-
bounded subspace, then X is pseudo-w-bounded.

Theorem 3.7. Let A € p € N* and let X be a strongly p-pseudocompact
space. Then, for each sequence (Up)nen of non-empty open subsets of X,
it happens that

L(p, (Un)nen) = CUQ)

where Q = {x € X : there is a sequence (Tp)nen with ©, € U, for each
neAandz=p-—Ilimz,}.

Proof. Using arguments similar to those given in the proof of Theorem
1.3, we have Cl(Q) C L(p,(Up)nen). We are only going to prove the
relation L(p, (Up)nen) C CUQ).

Let z ¢ Cl(Q) and let V, W be disjoint open subsets of X such that
z € V and CI(Q) C W. We will show that {n € N: VNU, # 0} ¢ p.
Assume the contrary: {n : VN U, # 0} € p and take, for each n € N,
Vo=U,NVifU,NV #0 and V,, = U, otherwise.

Since X is strongly p-pseudocompact, there are points z,, € V,, and
x € X such that x = p—lim x,,. For each n € N, V,, C U,, so z € @ and
W is an open neighborhood of x. This means that {n € N: z, € W} € p,
but this is not possible because V' and W have an empty intersection; so,
we must have

{neN:z, e W}C{n:VnU, =0}¢p.

This concludes our proof. O
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Definition 3.8. Let X be a space and p € N*.

(1) We say that X is almost pseudo-w-bounded if for each infinite
countable family U of open subsets of X, there is a compact sub-
space K C X such that {U el : KNU # 0}| = w.

(2) We say that X is p-pseudo-w-bounded if for each family {U, :
n € N} of open subsets of X, there is a compact subspace K C X
such that {n e N: KN U, # 0} € p.

Theorem 3.9. If X is locally compact, then the following statements are
equivalent for every ultrafilter p € N*:

(1) X is p-pseudo-w-bounded,

(2) X is strongly p-pseudocompact, and

(3) X is p-pseudocompact.

Proof. (1) = (2). Let (Up)nen be a sequence of non-empty open subsets
of X and let K be a compact set such that A = {n € N: KNU, # 0} € p.
Pick x,, € KNU, if n € A and choose an arbitrary x,, € U, when n ¢ A.
Since (z,,)nen is a sequence in K which is compact it has p-limit.

(2) = (3) is obvious.

(3) = (1). Let (Un)nen be a sequence of non-empty open subsets of
X and let € L(p, (Uy)nen). Let W be a compact neighborhood of x.
Consider the set

A={neN:U,Nint(W) # 0}.

For each n € N, we take x,, € U, Nint(W) if n € A and let x,, be equal
to xz if n ¢ A. Since (z,)nen is a sequence in CI(W') which is compact,
then Cl({z, : n € N}) is compact. O

Note that, in the last result, the locally compactness is necessary just
for the implication (3) = (1).

Corollary 3.10. If X is locally compact, then X is pseudocompact if and
only if it is almost pseudo-w-bounded.

The following questions are inspired in a question posed by M. Sanchiz
and A. Tamariz-Mascarta [10], which remain without an answer.

Question 3.11. Is it true that for every free ultrafilter p on N every
(normal, first countable) topological space (topological group) X is strongly
p-pseudocompact if and only if it is p-pseudocompact?

Question 3.12. Is it true that for every free ultrafilter p on N every
normal or first countable) topological space (topological group) X is p-
compact if and only if it is strongly p-pseudocompact?
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Question 3.13. Is there some countable compact (strongly pseudocom-
pact) space non-strongly p-pseudocompact for all p on N?

Where a space X is strongly pseudocompact if, for each sequence
(Un)nen of open subsets of X there is p € N* and there exists a sequence
(Zn)nen such that z,, € U, for all n € N and the sequence (2, )nen has
p-limit.

4. STRONG p-PSEUDOCOMPACTNESS AND THE RUDIN-KEISLER
PRE-ORDEN ON fw

Theorem 4.1. Let p € N* and let X be a space having a dense subset of
isolated points S. Then, X 1is strongly p-pseudocompact if and only if X
is p-pseudocompact.

Proof. Assume that X is p-pseudocompact. Let (U, )nen be a sequence
of non-empty open subsets of X. Since S is dense in X, for each n € N,
we can take a point z, € U, NS. Since the points in S are isolated
and X is p-pseudocompact, ({2, })nen is a sequence of non-empty open
subsets of X and L(p, ({zn})nen) # 0. If z € L(p,({xn})nen), then

(Il

r=p-—1lim z,.

Corollary 4.2. Let p, ¢ € N*. Then, the following assertions are equiv-

alent:
(1) p <rk 4,

(2) every g-pseudocompact space is p-pseudocompact,

(3) Pri(q) is strongly p-pseudocompact,

(4) every strongly g-pseudocompact space N C X C BN is strongly
p-pseudocompact.

Proof. The equivalence (1) < (2) and the implication (3) = (1) are
consequences of Theorem 1.5 in [6]. Finally, the implication (2) = (3)
and the equivalence (3) < (4) follow from Theorem 4.1 and Lemma 1.9
in [6] which says that a space X with N C X C SN is p-pseudocompact if
and only if Prx(p) C X. O

Question 4.3. Is it true that for every free ultrafilter p on w every (nor-
mal, first countable) space X is p-compact if and only if it is strongly
p-pseudocompact?

Definition 4.4. Let X be a topological space and let D be a non-empty
subset of N*. We say that X is pseudo-D-bounded if for each sequence
(Un)nen of non-empty open subsets of X, there are both a sequence of
points (z,)nen in X and a set {z, : p € D} C X such that z,, € U, and
zp = p-lim z,,.
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Theorem 4.5. Let D C N* and N C X C SN. Then, the following
assertions are equivalent:

(1) X is pseudo-D-bounded,

(2) X is strongly p-pseudocompact for all p € D, and

(3) X is p-pseudocompact for every p € D.

Proof. The implications (1) = (2) = (3) are obvious.

(3) = (1). Let (Un)nen be a sequence of non-empty open subsets of X.
For each n € N, take z,, € U, NN. By Lemma 1.9 in [6] and Remark 1.8
above, for each p € D, p — lim z,, € Pri(p) C X. O

Notation 4.6. Let g € SN. We will denote by Sri(q) the set of Rudin-
Keisler successors of q: Sprx(q) ={p € B(N) : p >rk ¢}

Theorem 4.7. Let D C N* and N C X C B(N). Then, the following
assertions are equivalent:
(1) X =N,
(2) X is pseudo-w-bounded,
(3) X is pseudo-N*-bounded,
(4) X is strongly p-pseudocompact for every p € N*,
(5) X is p-pseudocompact for every p € N*,
(6) X is pseudo-D-bounded and for each q € N*, DN Srk(q) # 0,
(7) for every q € N* there is p € Sri(q) such that X is strongly
p-pseudocompact, and
(8) forallq € N*, there isp € Sri(q) such that X is p-pseudocompact.

Proof. The implications (1) = (2), (3) = (4) = (5) and (2) = (6) =
(7) = (8) are evident. The equivalence (2) < (3) is (4) from Theorem
3.2. The implication (5) = (1) follows from Lemma 1.9 in [6]. Finally,
(8) = (5) is a consequence of Theorem 1.5 in [6]. O

Corollary 4.8. Let D C N* and N C X C ON. If X is pseudo-D-
bounded and it is not pseudo-w-bounded, then there is ¢ € N* such that

5. STRONG p-COMPACTNESS AND STRONG
p-PSEUDOCOMPACTNESS

Recall that a point + € X is a weak P-point in X if = is not an
accumulation point of any countable subset of X. The following result is
known.

Lemma 5.1. ([11]) There are 22 weak P-points in N* which are pairwise
<Rk -incomparable.
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Definition 5.2. Let X be a topological space and D C N*. We say that
X is strongly D-compact if for every sequence (z,)nen in X, there is a
sequence (U, )nen of open sets such that, for each n € N, z,, € U,, and for
each p € D, X is p-pseudocompact and L(p, (U, )nen) is compact.

We finish this paper with one example of a space X with proper-
ties closer to pseudo-w-boundedness which do not imply that X must
be pseudo-w-bounded. The spirit of this last example is to reinforce the
relevance of the pseudo-w-boundedness.

Example 5.3. Let ¢ € N* be a weak P-point. Let D be the set of all
ultrafilters on N which are RK-incomparable with g. Denote by Q the set
N*\ Srk(q). Then, X = BN\ {¢} and Q satisfy the following properties:

(1) X is locally compact,

(2) X is strongly D-compact,

(3) X is pseudo-Q-bounded and Q is dense in N*,
(4) X is not g-compact, and

(5) X is not pseudo-w-bounded.

Besides, we can choose ¢ in such a way that |Q| = |D| = 22".

Proof. Tt is evident that X is not g-compact because ¢ ¢ X. Since X
is open in AN, it is locally compact. It is also clear that D C Q. By
Lemma 5.1, there are 22° weak P-points in N* which are pairwise RK-
incomparable; so, we can assume that |D| = |Q| = 22°. Moreover, for
each p € Q, Pri(p) C X; thus, Q is dense in N*. By Corollary 4.8, X is
pseudo-Q-bounded and it is not pseudo-w-bounded.

Finally, we are going to show that X is strongly D-compact. Let
(zn)nen be a sequence in X. Consider the set A = {z,, : n € N} N N*.
Let U, V be two disjoint clopen subsets of SN such that Clix(A) C U
and ¢ € V. For each n € N, take U, = {z,} if z, € Nand let U, C U
be a canonical clopen neighborhood of x, if x, € N*. Let p € D. If
B={neN:ux, € N} € p, then, by Proposition 1.3,

LX(pv (Un)nGN) = LX(pv (Un)neB) = LU(pa (Un)neB)

Since U is a non-empty compact space, Ly (p, (Un)nep) is compact too.
On the other hand, if C = {n € N: z,, € N} € p, then, by Proposition
1.3 and Remark 1.8,

Lgwy (P, (Un)nen) = {p — limc x,} C Pri(p) € X.
Therefore, Lx (p, (Up)nen) is a non-empty compact subspace of X. O

In particular, if ¢ € N* is a weak P-point and p € N* is <pg-
incomparable with ¢, then the space X = SN\ {¢} is strongly p-compact,
locally compact, not g-compact and not pseudo-w-bounded.
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