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ULTRAFILTERS AND PROPERTIES RELATED
TO COMPACTNESS

J. ANGOA, Y. F. ORTIZ-CASTILLO, AND Á. TAMARIZ-MASCARÚA

Abstract. In this article we introduce and analyze the following
concepts: Let p ∈ N∗ and let X be a topological space. We say
that

(a) X is strongly p-compact if X is p-pseudocompact and for each
sequence (xn)n∈N of points in X, there exists a sequence of open
subsets (Un)n∈N of X, with xn ∈ Un for each n ∈ N, such that
the set of p-limit points of the sequence (Un)n∈N is a non-empty
compact subspace of X;

(b) X is strongly p-pseudocompact if for each sequence (Un)n∈N of
open subsets of X, there exist a sequence (xn)n∈N of points in X

and x ∈ X such that xn ∈ Un and x = p− lim xn;

(c) X is pseudo-ω-bounded if for each countable family U of open
subsets of X, there is a compact K ⊆ X such that, for all U ∈ U ,
K ∩ U ̸= ∅;

(d) X is p-pseudo-ω-bounded if for each family {Un : n ∈ N} of
open subsets of X, there is a compact subspace K ⊆ X such that
{n ∈ N : K ∩ Un ̸= ∅} ∈ p.

We prove:

(1) Every strongly p-compact space is p-compact.

(2) In the class of locally compact spaces, strong p-compactness and
p-compactness are equivalent; and p-pseudo-ω-boundedness and p-
pseudocompactness are equivalent too.

(3) For two ultrafilters p, q ∈ N∗, p ≤RK q if and only if every
strongly q-pseudocompact space N ⊆ X ⊆ βN is strongly p-pseudo-
compact.
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Notations and basic definitions

Every space in this paper is considered to be Tychonoff and has more
than one point. ω is the first infinite cardinal number and ω1 is the
first non-countable cardinal number. The letter N stands for the space
of the natural numbers with its discrete topology. Given a set X, we
use the following notation: [X]<ω := {A ⊆ X : |A| < ω} and [X]ω :=
{A ⊆ X : |A| = ω}. If X is a topological space and A ⊆ X, we use
ClX(A) (or simply Cl(A) if there is no possibility of confusion) to denote
the closure of A in X. For spaces X, Y , C(X,Y ) denotes the set of
all continuous functions with domain X and range contained in Y . As
usual, with βX we denote the Stone-Čech compactification of X, and X∗

denote the remainder βX \ X. Given two ultrafilters p, q ∈ βN, we say
that p ≤RK q if there exists a function f : N −→ N such that βf(q) = p,
where βf is the continuous extension of f to βN. This relation is known
as the Rudin-Keisler preorder on βN.

If ≤ is a preorder on X, we say that p, q ∈ X are ≤-equivalent if p ≤ q
and q ≤ p; p, q are ≤-comparable if either p ≤ q or q ≤ p; and p, q are
≤-incomparable if they are not ≤-comparable.

If X is the cartesian product
∏

s∈S Xs of a family {Xs : s ∈ S} of
non-empty sets and s ∈ S, then πs denotes the projection from X to Xs.

Given a space X, p ∈ N∗, and a sequence (Sn)n∈N of non-empty subsets
of X, we say that z ∈ X is a p-limit of (Sn)n∈N if for each neighborhood
W of z, {n ∈ N : Sn ∩ W ̸= ∅} ∈ p. A space X is p-compact (p-
pseudocompact) if every sequence of points (of non-empty open subsets)
of X has a p-limit point. Of course, if z and y are p-limits of a sequence
(xn)n∈N of points in X, then z = y. If x is the p-limit of (xn)n∈N, we
write x = p − lim xn. The set L(p, (Sn)n∈N) of p-limits of a sequence
(Sn)n∈N of non-empty subsets of X is always closed and have more than
one point. We say that a space X is ω-bounded if every subset A ∈ [X]ω

is contained in a compact subset of X. The notions used and not defined
in this article have the meaning given to them in [5].

Introduction

In 1975, J. Ginsburg and V. Saks introduced the concept of p-pseudo-
compactness in [8]. This notion, defined in terms of p-convergence of se-
quences of non-empty open subsets, generalizes pseudocompactness and
is related to p-compactness, introduced by Bernstein [3] and analyzed
by Ginsburg and Saks [8], in a similar way as pseudocompactness is re-
lated to compactness. Furthermore, it is related to the Rudin-Keisler
preorder: every p-pseudocompact space is q-pseudocompact if and only if
p ≤RK q. Following the ideas in [3], [6] and [8], we introduce and analyze
the concepts of strong p-compactness and strong p-pseudocompactness.



ULTRAFILTERS AND PROPERTIES RELATED TO COMPACTNESS 185

The study of all these concepts is relevant because they determine differ-
ent kinds of countably compact and pseudocompact spaces with different
properties. The property of pseudo-ω-boundedness was inspired in ω-
boundedness; in [2] the authors proved that this property characterizes
the pseudocompactness of the hyperspace of compact sets.

In Section 1, we introduce the notion of strong p-compactness, and we
study its properties and relations with other properties; in particular, we
prove: (1) every strongly p-compact space is p-compact, and (2) every
locally compact p-compact space is strongly p-compact.

In Section 2, we prove that a Tychonoff product
∏

α<κ Xα is strongly
p-compact if and only if each Xα is strongly p-compact and |{α < κ : Xα

is not compact}| ≤ ω. Moreover, if f : X → Y is an onto continuous
and open function and X is strongly p-compact, then Y must be strongly
p-compact.

In Section 3, we introduce and study the concepts of strong p-pseudo-
compactness and pseudo-ω-boundedness. We prove that both are produc-
tive properties (a property that pseudocompact spaces don’t necessarily
have). Finally, we introduce the almost pseudo-ω-bounded and the p-
pseudo-ω-bounded spaces, and prove that in the class of locally compact
spaces, strong p-compactness, p-compactness, p-pseudo-ω-boundedness
and p-pseudocompactness are equivalent, and pseudocompactness is equiv-
alent to almost pseudo-ω-boundedness.

p-pseudocompactness and strong p-pseudocompactness have similar
properties including their relation with the Rudin-Keisler preorder; in par-
ticular, in Section 4, we show that p ≤RK q if and only if every strongly
q-pseudocompact space N ⊆ X ⊆ βN is strongly p-pseudocompact; from
this fact we derive new results which have a similar flavor to those given
in Theorem 1.5 in [6].

Finally, in Section 5, we give an example of a strong p-compact, non-
pseudo ω-bounded space and a strong p-compact, non-q-compact space.

1. Strong p-compactness

Definition 1.1. Let p ∈ N∗. We say that a space X is strongly p-compact
if X is p-pseudocompact and for each sequence (xn)n∈N of points in X,
there exists a sequence (Un)n∈N of open subsets of X, with xn ∈ Un for
each n ∈ N, such that L(p, (Un)n∈N) is a non-empty compact subspace of
X.

Lemma 1.2. Let p ∈ N∗. The following properties are equivalent for a
topological space X:

(1) X is p-compact;



186 J. ANGOA, Y. F. ORTIZ-CASTILLO, AND Á. TAMARIZ-MASCARÚA

(2) for every sequence (Sn)n∈N of non-empty subsets of X,
L(p, (Sn)n∈N) ̸= ∅,

(3) for each sequence (Dn)n∈N of non-empty closed subsets of X, it
happens that L(p, (Dn)n∈N) ̸= ∅; and

(4) for every sequence (Sn)n∈N of non-empty subsets of X, we have
that the set L(p, (Sn)n∈N) is not empty and for each open subset
U of X satisfying

{x = p− lim xn : xn ∈ Sn for each n ∈ N} ⊆ U,

it happens that {n ∈ N : Sn ⊆ U} ∈ p.

Proof. All the implications are obvious except for the second assertion of
(1 ⇒ 4). Assume that there is a sequence (Sn)n∈N of non-empty subsets
of X, and assume that U is an open subset of X such that

{x = p− lim xn : xn ∈ Sn for each n ∈ N} ⊆ U

and {n ∈ N : Sn ⊆ U} /∈ p. In particular, the set A = {n ∈ N : Sn * U}
belongs to p. Take xn ∈ Sn \ U if n ∈ A, and xn ∈ Sn if n /∈ A. Since
X is p-compact, there is z ∈ X such that z = p − lim xn. For each
n ∈ N, xn ∈ Sn, so z ∈ {x = p − lim xn : xn ∈ Sn for each n ∈ N} ⊆ U .
Moreover, by definition, {n ∈ N : xn /∈ U} = A. Since p is an ultrafilter,
{n ∈ N : xn ∈ U} /∈ p; this is a contradiction. �

Proposition 1.3. Let p ∈ N∗ and A ∈ p. If X is a p-compact space,
then for every sequence (Sn)n∈N of non-empty subsets of X we have that

L(p, (Sn)n∈N) = Cl({x = p− lim xn : xn ∈ Sn for each n ∈ N})

= Cl({x = p− lim xn : xn ∈ Sn for each n ∈ A}). (i)

Proof. Let A ∈ p ∈ N∗. Then,

{x = p− lim xn : xn ∈ Sn for each n ∈ N} =

{x = p− lim xn : xn ∈ Sn for each n ∈ A}.
So, the second equality (i) is obvious. Let

T = {x = p− lim xn : xn ∈ Sn for each n ∈ N}.

It is clear that T ⊆ L(p, (Sn)n∈N). Then Cl(T ) ⊆ L(p, (Sn)n∈N) because
L(p, (Sn)n∈N) is closed. Now we only have to prove that L(p, (Sn)n∈N) ⊆
Cl(T ).

Let x /∈ Cl(T ) and let U and V be two disjoint open subsets of X such
that Cl(T ) ⊆ U and x ∈ V . By Lemma 1.2, {n ∈ N : Sn ⊆ U} ∈ p. Since
U and V are disjoint open sets,

{n ∈ N : Sn ∩ V ̸= ∅} ⊆ {n ∈ N : Sn * U} /∈ p.
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This implies that x /∈ L(p, (Sn)n∈N). So, we obtain the required equal-
ity. �

We are going to obtain some basic properties about strong p-compact-
ness. First a notation and some preliminary results.

Notation 1.4. Let p ∈ N∗ and let B be a family of sequences of nonempty
subsets of X. We denote by LB the set {L(p,B) : B ∈ B}.

Proposition 1.5. Let p ∈ N∗ and let S = (xn)n∈N be a sequence in X.
For each xm ∈ {xn : n ∈ N}, consider a local base Nm of xm in X. Let

B = {(Un)n∈N : Un ∈ Nn for each n ∈ N}.
Then, x = p− lim xn if and only if

∩
LB = {x}.

Proof. It is clear that if x = p− lim xn, then x ∈ L(p, (Un)n∈N) for each
sequence of open subsets (Un)n∈N ∈ B. Thus, x ∈ ∩LB.

Let x be an element of
∩
LB and assume that x is not a p-limit of

sequence S. Then, there is a neighborhood W of x such that {n ∈ N : xn ∈
W} /∈ p. Let V be an open neighborhood of x such that Cl(V ) ⊆ W . For
each n ∈ N such that xn ̸∈ cl(V ), let Bn ∈ Nn such that Bn ∩Cl(V ) = ∅,
and for each n ∈ N such that xn ∈ cl(V ), choose whatever Bn ∈ Nn.

Then,

{n ∈ N : Bn ∩ V ̸= ∅} ⊆ {n ∈ N : xn ∈ Cl(V )} ⊆ {n ∈ N : xn ∈ W};
so {n ∈ N : Bn ∩ V ̸= ∅} does not belong to p, but this is not possible
because our hypothesis says that

x ∈
∩

LB ⊆ L(p, (Bn)n∈N).

Hence, x = p − lim xn. Since the p-limits of sequences are unique, we
obtain

∩
LB = {x}. �

Lemma 1.6. Let p ∈ N∗ and let X be a p-pseudocompact space. Then,
for every sequence S and every family B defined as in Proposition 1.5,
the collection LB has the finite intersection property.

Proof. Take (Un)n∈N and (Vn)n∈N in B. Since for each n ∈ N, Nn is a
local base of xn, there is Bn ∈ Nn such that xn ∈ Bn ⊆ Vn ∩ Un. Since
X is p-pseudocompact,

∅ ≠ L(p, (Bn)n∈N) ∈ LB and

L(p, (Bn)n∈N) ⊆ L(p, (Un)n∈N) ∩ L(p, (Vn)n∈N).

This concludes our proof. �

Now, we establish a basic fact about the relationship between p-com-
pactness and strong p-compactness.
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Theorem 1.7. For every ultrafilter p ∈ N∗, every strongly p-compact
space is p-compact.

Proof. Let X be a strongly p-compact space. Let (xn)n∈N be a sequence
of points in X. Let (Un)n∈N be a sequence of open subsets of X such that
L(p, (Un)n∈N) is compact and xn ∈ Un for each n ∈ N.

For each n ∈ N, let Nn be the family of all open subsets of X containing
the point xn and contained in Un. It is clear that for each n ∈ N, Nn is
a local base of xn.

Now we define the families

B = {(Vn)n∈N : Vn ∈ Nn} and LB = {L(p, (Vn)n∈N) : (Vn)n∈N ∈ B}.
Note that for each sequence (Vn)n∈N ∈ B, the set L(p, (Vn)n∈N) is con-
tained in L(p, (Un)n∈N) because for each Vn ∈ Nn, Vn ⊆ Un. Since X is
p-pseudocompact, LB is a family of compact sets with the finite intersec-
tion property (Lemma 1.6); so,

∩
LB ̸= ∅. Because of Theorem 1.5, the

sequence (xn)n∈N has a p-limit point. Therefore, X is p-compact. �

Finally we are going to give an example of a p-compact space which is
not strongly p-compact. Recall that, given an ultrafilter p ∈ βN, PRK(p)
denotes the set {q ∈ βN : q ≤RK p}.

Remark 1.8. If p ∈ N∗ and P = {z ∈ βN : there is a sequence (xn)n∈N
in N such that z = p-lim xn}, then P ∪ N = PRK(p).

It is well-known that every closed subset of a p-compact space is
p-compact, and the product of a collection of p-compact spaces is still
p-compact. So, for every Tychonoff space X and every free ultrafilter p,
there is a unique space, up to homeomorphism, βp(X) satisfying:

(1) X is dense in βp(X),
(2) βp(X) is p-compact, and
(3) for every p-compact space Y and every function f ∈ C(X,Y ),

there is a function F ∈ C(βp(X), Y ) such that F |X = f .
It is also known that βp(X) is the intersection of all the p-compact

subspaces of βX containing X (see [8] and Chapter 5 of [9]).

Example 1.9. For every free ultrafilter p on N, the space X = βp(N) is
not strongly p-compact.

Proof. Let {Un : n ∈ N} be a partition of N in infinite sets and pick
xn ∈ U∗

n ∩ βp(N) for each n ∈ N. Then L(p, (Vn)n∈N) is infinite for
every sequence of open sets (Vn)n∈N, where xn ∈ Vn ⊆ clX(Un). Since
|βp(N)| = 2ω and every infinite closed subset of βN has cardinality 22

ω

,
LX(p, (Vn)n∈N) can not be compact. So we must have that βp(N) is not
strongly p-compact. �
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It is known that every p-compact space is countably compact; so, count-
able compactness does not imply strong p-compactness. Below, in Exam-
ple 5.3, we show a strongly p-compact subspace of βN which contains
N.

Theorem 1.10. The property of being strongly p-compact is inherited by
closed subsets.

Proof. Assume that X is a strongly p-compact space. Let B ⊂ X be
a non-empty closed subset of X, (xn)n∈N be a sequence in B, and let
(Un)n∈N be a sequence of open subsets of X such that L(p, (Un)n∈N) is
compact and xn ∈ Un for each n ∈ N. It is clear that (B ∩ Un)n∈N is a
sequence of open subsets of B with xn ∈ B ∩ Un. By Theorem 1.7, X is
p-compact, so B is p-compact (Theorem 2.4 in [8]). If x = p − lim xn,
then

x ∈ LB(p, (B ∩ Un)n∈N) ⊆ B ∩ L(p, (Un)n∈N).

So, LB(p, (B ∩ Un)n∈N) is not empty. Since LB(p, (B ∩ Un)n∈N) is closed
in B, it is closed in the compact subspace B ∩ L(p, (Un)n∈N). Hence,
we conclude that LB(p, (B ∩ Un)n∈N) is compact. Moreover, B is p-
pseudocompact because it is p-compact. �
Theorem 1.11. Every locally compact p-compact space is strongly p-
compact.

Proof. Let X be a locally compact p-compact space and let (xn)n∈N be
a sequence of points in X. Since X is p-compact, there is x ∈ X such
that x = p− lim xn. Now, take an open neighborhood U of x such that
Cl(U) is compact. Let V be a neighborhood of x satisfying Cl(V ) ⊆ U .
For each n ∈ N such that xn /∈ Cl(V ), take a neighborhood Un of xn

such that Un ⊆ X \ Cl(V ), and for each n ∈ N with xn ∈ Cl(V ), take a
neighborhood Un of xn such that Un ⊆ U .

We claim that X \ Cl(U) is a subset of X \ L(p, (Un)n∈N). Indeed,
assume that z /∈ Cl(U). Then X\Cl(U) is an open subset of X containing
z. Furthermore,

{n : Un ∩ (X \ Cl(U)) ̸= ∅} ∩ {n : Un ∩ V ̸= ∅} = ∅.
Since {n ∈ N : Un∩V ̸= ∅} ∈ p, we have that {n : Un∩(X\Cl(U)) ̸= ∅} /∈
p. This means that z /∈ L(p, (Un)n∈N). Therefore, L(p, (Un)n∈N) ⊆ Cl(U).
Since Cl(U) is compact and L(p, (Un)n∈N) is closed, L(p, (Un)n∈N) is com-
pact. �
Corollary 1.12. Every compact space is strongly p-compact.

Observe that ω1, with its order topology, is ω-bounded, locally com-
pact, collectionwise normal, first countable, strongly p-compact for every
p ∈ N∗, but it is not compact.
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Corollary 1.13. Let X be a p-compact space and let Y be a locally com-
pact space. If there is a continuous and onto function f : X → Y , then
Y is strongly p-compact.

Proof. By Lemma 2.3 in [8], Y is p-compact, and by Theorem 1.11, Y is
strongly p-compact. �

Remark 1.14. It is natural to ask what happens if we replace the con-
dition L(p, (Un)n∈N) is compact by the condition L(p, (Un)n∈N) is p-
compact in Definition 1.1. Of course, every p-compact space satisfies this
new property. We consider that the most interesting question which arises
from this new concept is if every space with the new property is p-compact
(or at least countable compact). Our conjecture is that this property does
not imply p-compactness. In the proof of Theorem 1.7 the hypothesis the
closed subsets L(p, (Un)n∈N) ∈ LB are compact can not be weak-
ened by the hypothesis the closed subsets L(p, (Un)n∈N) ∈ LB are
p-compact because this last assertion only guarantees that

∩
LB ̸= ∅

when B is a countable family. Although at this moment we do not have a
counterexample, we think that it is possible to construct such an example
and this is an interesting non-trivial problem.

2. Products, images and preimages of strongly
p-compact spaces

It is known that the product of p-compact spaces and the continuous
image of a p-compact space is a p-compact space (Lemma 2.3 in [8] and
Theorem 4.2 in [3]). With respect to the images and productivity of
strongly p-compactness we have:

Theorem 2.1. For every p ∈ βN, strong p-compactness is invariant
under continuous open functions.

Proof. Let X be a strongly p-compact space, f ∈ C(X,Y ) open and onto,
and let p ∈ βN. Also, let (yn)n∈N be a sequence in Y . For each n ∈ N, pick
xn ∈ f−1(yn). Since X is strongly p-compact, there exist open subsets
Un of X such that xn ∈ Un for each n ∈ N, and L(p, (Un)n∈N) is compact.

For each n ∈ N, denote by Vn the open set f [Un]. We have that
yn ∈ Vn, so it will be enough to show the equality

L(p, (Vn)n∈N) = f [L(p, (Un)n∈N)].

By Theorem 1.3.(3) of [6], L(p, (Vn)n∈N) ⊇ f [L(p, (Un)n∈N)]. Now, take

z ∈ L(p, (Vn)n∈N) \ f [L(p, (Un)n∈N)].

Since L(p, (Un)n∈N) is compact, f [L(p, (Un)n∈N)] is compact too,
so we can find disjoint open subsets B1, B2 in Y such that z ∈ B1
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and f [L(p, (Un)n∈N)] ⊆ B2. By Proposition 1.3, there exist z′ ∈ B1 and
zn ∈ Vn such that z′ = p − lim zn; then, A = {n ∈ N : zn ∈ B1} ∈ p.
Therefore, f−1(zn) ⊆ f−1[B1] for all n ∈ A. Moreover, it is clear that
f−1[B1] and f−1[B2] are disjoint open subsets of X and

L(p, (Un)n∈N) ⊆ f−1[B2].

Let B = {n ∈ N : Un ⊆ f−1[B2]}. It is clear that A ∩ B = ∅, but
Lemma 1.2 guarantees that B ∈ p. Since p is an ultrafilter and A ∈ p,
it happens that ∅ = A ∩ B ∈ p which is a contradiction. Then, we
must have z ∈ f [L(p, (Un)n∈N)] and we conclude that L(p, (Vn)n∈N) =
f [L(p, (Un)n∈N)]. �

Theorem 2.2. Let p ∈ N∗, let X = {Xs : s ∈ S} be a family of topological
spaces and let X be the topological product of such a family. Then, X is
strongly p-compact if and only if Xs is strongly p-compact for every s ∈ S,
and |{s ∈ S : Xs is not compact }| ≤ ω.

Proof. (⇒) Assume that X is strongly p-compact. By Theorem 1.10, each
Xt is strongly p-compact because it is homeomorphic to a closed subset
of X.

Now, assume that T ⊆ S is such that Xt is not compact for each
t ∈ T . Suppose that |T | > ω. Let (xn)n∈N ⊆ X be a sequence of points
and (Un)n∈N a sequence of open subsets of X such that xn ∈ Un for each
n ∈ N. By Theorem 1.7, Xt is p-compact for each t ∈ S. So, X is p-
compact (Theorem 4.2 of [3]). Let x0 be the p-limit point of the sequence
(xn)n∈N.

For each n ∈ N, there is An ∈ [S]<ω, and there is, for each s ∈ An,
an open set W s

n of Xs such that xn ∈
∩

s∈An
π−1
s [W s

n] ⊆ Un. The set
A =

∪
n∈N An is countable. Now define the set

B = {x ∈ X : πs(x) = πs(x0) for all s ∈ A}.

Claim: B ⊆ L(p, (Un)n∈N).

Indeed, take x ∈ B, F ∈ [S]<ω and V = ∩s∈Fπ
−1
s [Vs] where Vs is

an open subset of Xs such that x ∈ V . By definition of A, we have
πs[Un] = Xs for each s /∈ A; so, if F ∩ A = ∅, then V ∩ Un ̸= ∅ for every
n ∈ N.

Assume now that F ∩A ̸= ∅. Then,

{n ∈ N : V ∩ Un ̸= ∅} ⊇ {n ∈ N : (
∩

s∈F∩A

π−1
s [Vs]) ∩ Un ̸= ∅} ⊇

∩
s∈F∩A

{n ∈ N : Vs ∩W s
n ̸= ∅} ⊇

∩
s∈F∩A

{n ∈ N : πs(xn) ∈ Vs}.
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By Lemma 2.3 in [8], πs(x0) = p − lim πs(xn) for each s ∈ S; so, for
each s ∈ A, πs(x) = p− lim πs(xn). Then, for each s ∈ A,

{n ∈ N : πs(xn) ∈ Vs} ∈ p.

Since F ∩A is finite, we have that∩
s∈F∩A

{n ∈ N : πs(xn) ∈ Vs} ∈ p;

this implies that x ∈ L(p, (Un)n∈N), and the proof of the Claim has con-
cluded.

Since |A| < |T |, we can take t ∈ T \A. The space Xt is homeomorphic
to a closed subset of X contained in B ⊆ L(p, (Un)n∈N). But Xt is not
compact, so L(p, (Un)n∈N) cannot be compact; this is a contradiction
because we have supposed that X is strongly p-compact. So, we must
have |T | ≤ ω.

(⇐) Now suppose that Xs is strongly p-compact for every s ∈ S. Let
T = {s ∈ S : Xs is not compact} and assume that T ̸= ∅. We have to
consider two cases:

I. |T | = ω. Define XT =
∏

t∈T Xt, let (xn)n∈N be a sequence of XT ,
and for each n < ω, t ∈ T let U t

n be an open subset of Xt such that
πt(xn) ∈ U t

n and L(p, (U t
n)n∈N) is compact. Enumerate the set T as

{tn : n ∈ N} and, for each n < ω, consider the set Vn =
∩

m≤n π
−1
tm [U tm

n ].
Each Vn is a canonical open subset of XT containing xn.

We are going to show that L(p, (Vn)n∈N) ⊆
∏

t∈T LXt
(p, (U t

n)n∈N) = L.
In fact, take x /∈ L, so there is r ∈ T such that πr(x) /∈ LXr (p, (U

r
n)n∈N).

Let W be an open neighborhood of πr(x) such that {n : W ∩Ur
n = ∅} ∈ p.

Observe that Vn ⊆ π−1
r [Ur

n] for every n > m, where r = tm. Hence

{n ∈ N : π−1
r [W ] ∩ Vn = ∅} ⊇ {n ≥ tm : W ∩ Ur

n = ∅} ∈ p.

Since x ∈ π−1
r [W ], we obtain x /∈ L(p, (Vn)n∈N), and so L(p, (Vn)n∈N) is

compact.
II. |T | < ω. This case is a consequence of Case I and Theorem 2.1.
If T = S the proof is finished. Suppose T ̸= S. Since X is the product

of a strongly p-compact and a compact space, by Case II, X is strongly
p-compact. �

Remark 2.3. From Theorems 1.11 and 2.2, we can deduce that if X is
a strongly p-compact non-compact space, then Xω is strongly p-compact
and it is not locally compact. On the other hand, every infinite discrete
space is locally compact and it is not strongly p-compact.

The following lemma is Theorem 3.7.26 in [5].
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Lemma 2.4. Let P be a property which is inherited by closed subsets and
every product of a compact space with a space satisfying P has P . If Y
has P and f : X → Y is a continuous and perfect function, then X has
property P .

Corollary 2.5. Let p ∈ N∗. Then every continuous and perfect preimage
of a strongly p-compact space is strongly p-compact.

Proof. Let f : X −→ Y be a continuous perfect and onto function. As-
sume that Y is a strongly p-compact space. By Theorem 1.10, the case
II in Theorem 2.2 and Lemma 2.4, we conclude that X is a strongly
p-compact space. �
Question 2.6. Is it possible to find a strongly p-compact space X, a space
Y which is not strongly p-compact and a (closed or perfect) continuous
function f : X → Y ?

3. strong p-pseudocompactness and
pseudo-ω-boundedness

Definition 3.1. Let X be a topological space and p ∈ N∗. We say that
X is:

(1) strongly p-pseudocompact if for each sequence (Un)n∈N of open
subsets of X there exists a sequence (xn)n∈N of points in X and
there is x ∈ X such that x = p − lim xn and xn ∈ Un for all
n ∈ N,

(2) pseudo-ω-bounded if for each countable family U of open subsets
of X, there is a compact K ⊆ X such that K ∩ U ̸= ∅ for all
U ∈ U .

Observe that every p-compact space is strongly p-pseudocompact.

Theorem 3.2. Let p ∈ N∗.
(1) Every pseudo-ω-bounded space is strongly p-pseudocompact and

every strongly p-pseudocompact space is p-pseudocompact.
(2) If X contains a dense strongly p-pseudocompact subspace, then X

is strongly p-pseudocompact.
(3) Regular closed subsets inherit the property of being strongly p-

pseudocompact.
(4) X is pseudo-ω-bounded if and only if for each sequence (Un)n∈N

of open subsets of X, there exist points xn ∈ Un such that, for
every p ∈ N∗, the sequence (xn)n∈N has a p-limit.

Proof. (1) We are going to prove the first assertion because the second
one can be proved easily. Let (Un)n∈N be a sequence of non-empty open
subsets of X. Let K be a compact subset of X which has a non-empty
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intersection with Un for each n ∈ N. Then, for each n ∈ N, there is a
point xn ∈ K ∩ Un. Since the sequence (xn)n∈N is contained in K, there
is x ∈ K such that x = p− lim xn.

(2) Let (Un)n∈N be a sequence of open subsets of X. For each n ∈ N,
let Vn be the set Un ∩ Y . Then, (Vn)n∈N is a sequence of open sets of
Y , so there are points xn ∈ Vn ⊆ Un and x ∈ Y ⊆ X such that x is the
p-limit of the sequence (xn)n∈N in Y . Now it is easy to show that x is
the p-limit of the sequence (xn)n∈N in X. Thus, we conclude that X is
strongly p-compact.

(3) Let D be a regular closed subset of X and let (Un)n∈N be a sequence
of open subsets of D. Since D = Cl(Int(D)), for each n ∈ N, the set
Vn = Un ∩ Int(D) is open in X. Since X is strongly p-pseudocompact,
there are points xn ∈ Vn ⊆ Un and x ∈ X such that x = p − lim xn.
Since (xn)n∈N is a sequence in D, D is closed and x ∈ Cl{xn : n ∈ N},
then x ∈ D.

(4) (⇒) Suppose that X is pseudo-ω-bounded. Let (Un)n∈N be a sequence
of open subsets of X and let K be a compact subspace of X such that
K∩Un ̸= ∅ for every n ∈ N. For each n ∈ N, take an element xn ∈ K∩Un.
Since {xn : n ∈ N} ⊆ K and K is compact, ClX({xn : n ∈ N}) is compact;
so, the sequence (xn)n∈N has a p-limit point in X for each p ∈ N∗.

(⇐) Let (Un)n∈N be a sequence of non-empty open subsets of X and
let (xn)n∈N be a sequence of points such that xn ∈ Un for all n ∈ N and
(xn)n∈N has a p-limit point in X for each p ∈ N∗. Now, Theorem 3.4 in
[3] guarantees that K = ClX({xn : n ∈ N}) is compact. Moreover, for
each n ∈ N, xn ∈ K ∩ Un. �
Remark 3.3. Every ω-bounded space is pseudo-ω-bounded and every
p-compact space is strongly p-pseudocompact. On the other hand, it
is possible to find pseudo-ω-bounded spaces which are not strongly p-
compact (for example, Σ-products of compact spaces). In Example 5.3,
below, we show an strongly p-compact space which is not pseudo-ω-
bounded.
Theorem 3.4. The property of being strongly p-pseudocompact is invari-
ant under continuous images.

Proof. Let X be a strongly p-pseudocompact space. Let f : X → Y be a
continuous and onto function. Finally, let (Un)n∈N be a sequence of non-
empty open subsets of Y . It is clear that (Vn)n∈N, where Vn = f−1[Un]
for each n ∈ N, is a sequence of open subsets of X; so, there exist points
xn ∈ Vn and x ∈ X such that x = p − lim xn. Then, f(xn) ∈ Un,
f(x) ∈ Y and f(x) = p− lim f(xn) (Lemma 2.3 in [8]). �
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Theorem 3.5. Let {Xs : s ∈ S} be a family of topological spaces and X
the Tychonoff product of such a family. Then, X is strongly p-pseudo-
compact if and only if for each s ∈ S, Xs is strongly p-pseudocompact.

Proof. (⇒) This implication is a consequence of Theorem 3.4.

(⇐) Let (Un)n∈N be a sequence of open subsets of X. For each n ∈ N
and each s ∈ S, let V s

n be a non-empty open subset of Xs such that
Vn = ∩s∈Sπ

−1
s [V s

n ] ⊆ Un. Since Xs is strongly p-pseudocompact for each
s ∈ S, there is a sequence (xs

n)n∈N of points in Xs and there is a point
xs ∈ Xs such that xs

n ∈ V s
n for each n ∈ N and xs = p − lim xs

n. Take
the point x ∈ X such that πs(x) = xs for each s ∈ S. Finally, for each
n ∈ N, take xn ∈ X such that πs(xn) = xs

n for each s ∈ S. It is clear
that xn ∈ Un for each n ∈ N and x = p− lim xn. We conclude that X is
strongly p-pseudocompact. �

Corollary 3.6. Pseudo-ω-boundedness is a productive property and in-
variant under continuous functions. Also, regular closed subsets inherit
this property. Furthermore, if a space X contains a dense pseudo-ω-
bounded subspace, then X is pseudo-ω-bounded.

Theorem 3.7. Let A ∈ p ∈ N∗ and let X be a strongly p-pseudocompact
space. Then, for each sequence (Un)n∈N of non-empty open subsets of X,
it happens that

L(p, (Un)n∈N) = Cl(Q)

where Q = {x ∈ X : there is a sequence (xn)n∈N with xn ∈ Un for each
n ∈ A and x = p− lim xn}.

Proof. Using arguments similar to those given in the proof of Theorem
1.3, we have Cl(Q) ⊆ L(p, (Un)n∈N). We are only going to prove the
relation L(p, (Un)n∈N) ⊆ Cl(Q).

Let z /∈ Cl(Q) and let V , W be disjoint open subsets of X such that
z ∈ V and Cl(Q) ⊆ W. We will show that {n ∈ N : V ∩ Un ̸= ∅} /∈ p.
Assume the contrary: {n : V ∩ Un ̸= ∅} ∈ p and take, for each n ∈ N,
Vn = Un ∩ V if Un ∩ V ̸= ∅ and Vn = Un otherwise.

Since X is strongly p-pseudocompact, there are points xn ∈ Vn and
x ∈ X such that x = p− lim xn. For each n ∈ N, Vn ⊆ Un, so x ∈ Q and
W is an open neighborhood of x. This means that {n ∈ N : xn ∈ W} ∈ p,
but this is not possible because V and W have an empty intersection; so,
we must have

{n ∈ N : xn ∈ W} ⊆ {n : V ∩ Un = ∅} /∈ p.

This concludes our proof. �
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Definition 3.8. Let X be a space and p ∈ N∗.
(1) We say that X is almost pseudo-ω-bounded if for each infinite

countable family U of open subsets of X, there is a compact sub-
space K ⊆ X such that |{U ∈ U : K ∩ U ̸= ∅}| = ω.

(2) We say that X is p-pseudo-ω-bounded if for each family {Un :
n ∈ N} of open subsets of X, there is a compact subspace K ⊆ X
such that {n ∈ N : K ∩ Un ̸= ∅} ∈ p.

Theorem 3.9. If X is locally compact, then the following statements are
equivalent for every ultrafilter p ∈ N∗:

(1) X is p-pseudo-ω-bounded,
(2) X is strongly p-pseudocompact, and
(3) X is p-pseudocompact.

Proof. (1) ⇒ (2). Let (Un)n∈N be a sequence of non-empty open subsets
of X and let K be a compact set such that A = {n ∈ N : K∩Un ̸= ∅} ∈ p.
Pick xn ∈ K ∩Un if n ∈ A and choose an arbitrary xn ∈ Un when n /∈ A.
Since (xn)n∈N is a sequence in K which is compact it has p-limit.

(2) ⇒ (3) is obvious.

(3) ⇒ (1). Let (Un)n∈N be a sequence of non-empty open subsets of
X and let x ∈ L(p, (Un)n∈N). Let W be a compact neighborhood of x.
Consider the set

A = {n ∈ N : Un ∩ int(W ) ̸= ∅}.

For each n ∈ N, we take xn ∈ Un ∩ int(W ) if n ∈ A and let xn be equal
to x if n /∈ A. Since (xn)n∈N is a sequence in Cl(W ) which is compact,
then Cl({xn : n ∈ N}) is compact. �

Note that, in the last result, the locally compactness is necessary just
for the implication (3) ⇒ (1).

Corollary 3.10. If X is locally compact, then X is pseudocompact if and
only if it is almost pseudo-ω-bounded.

The following questions are inspired in a question posed by M. Sanchiz
and Á. Tamariz-Mascarúa [10], which remain without an answer.

Question 3.11. Is it true that for every free ultrafilter p on N every
(normal, first countable) topological space (topological group) X is strongly
p-pseudocompact if and only if it is p-pseudocompact?

Question 3.12. Is it true that for every free ultrafilter p on N every
normal or first countable) topological space (topological group) X is p-
compact if and only if it is strongly p-pseudocompact?
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Question 3.13. Is there some countable compact (strongly pseudocom-
pact) space non-strongly p-pseudocompact for all p on N?

Where a space X is strongly pseudocompact if, for each sequence
(Un)n∈N of open subsets of X there is p ∈ N∗ and there exists a sequence
(xn)n∈N such that xn ∈ Un for all n ∈ N and the sequence (xn)n∈N has
p-limit.

4. Strong p-pseudocompactness and the Rudin-Keisler
pre-orden on βω

Theorem 4.1. Let p ∈ N∗ and let X be a space having a dense subset of
isolated points S. Then, X is strongly p-pseudocompact if and only if X
is p-pseudocompact.

Proof. Assume that X is p-pseudocompact. Let (Un)n∈N be a sequence
of non-empty open subsets of X. Since S is dense in X, for each n ∈ N,
we can take a point xn ∈ Un ∩ S. Since the points in S are isolated
and X is p-pseudocompact, ({xn})n∈N is a sequence of non-empty open
subsets of X and L(p, ({xn})n∈N) ̸= ∅. If x ∈ L(p, ({xn})n∈N), then
x = p− lim xn. �

Corollary 4.2. Let p, q ∈ N∗. Then, the following assertions are equiv-
alent:

(1) p ≤RK q,
(2) every q-pseudocompact space is p-pseudocompact,
(3) PRK(q) is strongly p-pseudocompact,
(4) every strongly q-pseudocompact space N ⊆ X ⊆ βN is strongly

p-pseudocompact.

Proof. The equivalence (1) ⇔ (2) and the implication (3) ⇒ (1) are
consequences of Theorem 1.5 in [6]. Finally, the implication (2) ⇒ (3)
and the equivalence (3) ⇔ (4) follow from Theorem 4.1 and Lemma 1.9
in [6] which says that a space X with N ⊆ X ⊆ βN is p-pseudocompact if
and only if PRK(p) ⊆ X. �

Question 4.3. Is it true that for every free ultrafilter p on ω every (nor-
mal, first countable) space X is p-compact if and only if it is strongly
p-pseudocompact?

Definition 4.4. Let X be a topological space and let D be a non-empty
subset of N∗. We say that X is pseudo-D-bounded if for each sequence
(Un)n∈N of non-empty open subsets of X, there are both a sequence of
points (xn)n∈N in X and a set {xp : p ∈ D} ⊆ X such that xn ∈ Un and
xp = p-lim xn.
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Theorem 4.5. Let D ⊆ N∗ and N ⊆ X ⊆ βN. Then, the following
assertions are equivalent:

(1) X is pseudo-D-bounded,
(2) X is strongly p-pseudocompact for all p ∈ D, and
(3) X is p-pseudocompact for every p ∈ D.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (1). Let (Un)n∈N be a sequence of non-empty open subsets of X.
For each n ∈ N, take xn ∈ Un ∩ N. By Lemma 1.9 in [6] and Remark 1.8
above, for each p ∈ D, p− lim xn ∈ PRK(p) ⊆ X. �

Notation 4.6. Let q ∈ βN. We will denote by SRK(q) the set of Rudin-
Keisler successors of q: SRK(q) = {p ∈ β(N) : p ≥RK q}.

Theorem 4.7. Let D ⊆ N∗ and N ⊆ X ⊆ β(N). Then, the following
assertions are equivalent:

(1) X = βN,
(2) X is pseudo-ω-bounded,
(3) X is pseudo-N∗-bounded,
(4) X is strongly p-pseudocompact for every p ∈ N∗,
(5) X is p-pseudocompact for every p ∈ N∗,
(6) X is pseudo-D-bounded and for each q ∈ N∗, D ∩ SRK(q) ̸= ∅,
(7) for every q ∈ N∗ there is p ∈ SRK(q) such that X is strongly

p-pseudocompact, and
(8) for all q ∈ N∗, there is p ∈ SRK(q) such that X is p-pseudocompact.

Proof. The implications (1) ⇒ (2), (3) ⇒ (4) ⇒ (5) and (2) ⇒ (6) ⇒
(7) ⇒ (8) are evident. The equivalence (2) ⇔ (3) is (4) from Theorem
3.2. The implication (5) ⇒ (1) follows from Lemma 1.9 in [6]. Finally,
(8) ⇒ (5) is a consequence of Theorem 1.5 in [6]. �

Corollary 4.8. Let D ⊆ N∗ and N ⊆ X ⊆ βN. If X is pseudo-D-
bounded and it is not pseudo-ω-bounded, then there is q ∈ N∗ such that
D ⊆ N∗ \ SRK(q).

5. Strong p-compactness and strong
p-pseudocompactness

Recall that a point x ∈ X is a weak P -point in X if x is not an
accumulation point of any countable subset of X. The following result is
known.

Lemma 5.1. ([11]) There are 22
ω

weak P -points in N∗ which are pairwise
≤RK-incomparable.
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Definition 5.2. Let X be a topological space and D ⊆ N∗. We say that
X is strongly D-compact if for every sequence (xn)n∈N in X, there is a
sequence (Un)n∈N of open sets such that, for each n ∈ N, xn ∈ Un and for
each p ∈ D, X is p-pseudocompact and L(p, (Un)n∈N) is compact.

We finish this paper with one example of a space X with proper-
ties closer to pseudo-ω-boundedness which do not imply that X must
be pseudo-ω-bounded. The spirit of this last example is to reinforce the
relevance of the pseudo-ω-boundedness.

Example 5.3. Let q ∈ N∗ be a weak P -point. Let D be the set of all
ultrafilters on N which are RK-incomparable with q. Denote by Q the set
N∗ \SRK(q). Then, X = βN \ {q} and Q satisfy the following properties:

(1) X is locally compact,
(2) X is strongly D-compact,
(3) X is pseudo-Q-bounded and Q is dense in N∗,
(4) X is not q-compact, and
(5) X is not pseudo-ω-bounded.

Besides, we can choose q in such a way that |Q| = |D| = 22
ω

.

Proof. It is evident that X is not q-compact because q /∈ X. Since X
is open in βN, it is locally compact. It is also clear that D ⊆ Q. By
Lemma 5.1, there are 22

ω

weak P -points in N∗ which are pairwise RK-
incomparable; so, we can assume that |D| = |Q| = 22

ω

. Moreover, for
each p ∈ Q, PRK(p) ⊆ X; thus, Q is dense in N∗. By Corollary 4.8, X is
pseudo-Q-bounded and it is not pseudo-ω-bounded.

Finally, we are going to show that X is strongly D-compact. Let
(xn)n∈N be a sequence in X. Consider the set A = {xn : n ∈ N} ∩ N∗.
Let U , V be two disjoint clopen subsets of βN such that ClX(A) ⊆ U
and q ∈ V . For each n ∈ N, take Un = {xn} if xn ∈ N and let Un ⊆ U
be a canonical clopen neighborhood of xn if xn ∈ N∗. Let p ∈ D. If
B = {n ∈ N : xn ∈ N∗} ∈ p, then, by Proposition 1.3,

LX(p, (Un)n∈N) = LX(p, (Un)n∈B) = LU (p, (Un)n∈B).

Since U is a non-empty compact space, LU (p, (Un)n∈B) is compact too.
On the other hand, if C = {n ∈ N : xn ∈ N} ∈ p, then, by Proposition
1.3 and Remark 1.8,

Lβ(N)(p, (Un)n∈N) = {p− limC xn} ⊆ PRK(p) ⊆ X.

Therefore, LX(p, (Un)n∈N) is a non-empty compact subspace of X. �

In particular, if q ∈ N∗ is a weak P -point and p ∈ N∗ is ≤RK-
incomparable with q, then the space X = βN \ {q} is strongly p-compact,
locally compact, not q-compact and not pseudo-ω-bounded.
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