

http://topology.auburn.edu/tp/

ULTRAFILTERS AND PROPERTIES RELATED TO COMPACTNESS

by

J. ANGOA, Y. F. ORTIZ-CASTILLO, AND Á. TAMARIZ-MASCARÚA

Electronically published on August 21, 2013

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
~ ~ ~ ~ ~ ~ ~	

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on August 21, 2013

ULTRAFILTERS AND PROPERTIES RELATED TO COMPACTNESS

J. ANGOA, Y. F. ORTIZ-CASTILLO, AND Á. TAMARIZ-MASCARÚA

Abstract. In this article we introduce and analyze the following concepts: Let $p\in\mathbb{N}^*$ and let X be a topological space. We say that

(a) X is strongly p-compact if X is p-pseudocompact and for each sequence $(x_n)_{n\in\mathbb{N}}$ of points in X, there exists a sequence of open subsets $(U_n)_{n\in\mathbb{N}}$ of X, with $x_n \in U_n$ for each $n \in \mathbb{N}$, such that the set of p-limit points of the sequence $(U_n)_{n\in\mathbb{N}}$ is a non-empty compact subspace of X;

(b) X is strongly p-pseudocompact if for each sequence $(U_n)_{n\in\mathbb{N}}$ of open subsets of X, there exist a sequence $(x_n)_{n\in\mathbb{N}}$ of points in X and $x \in X$ such that $x_n \in U_n$ and $x = p - \lim x_n$;

(c) X is pseudo- ω -bounded if for each countable family \mathcal{U} of open subsets of X, there is a compact $K \subseteq X$ such that, for all $U \in \mathcal{U}$, $K \cap U \neq \emptyset$;

(d) X is p-pseudo- ω -bounded if for each family $\{U_n : n \in \mathbb{N}\}$ of open subsets of X, there is a compact subspace $K \subseteq X$ such that $\{n \in \mathbb{N} : K \cap U_n \neq \emptyset\} \in p$.

We prove:

(1) Every strongly *p*-compact space is *p*-compact.

(2) In the class of locally compact spaces, strong *p*-compactness and *p*-compactness are equivalent; and *p*-pseudo- ω -boundedness and *p*-pseudocompactness are equivalent too.

(3) For two ultrafilters $p, q \in \mathbb{N}^*, p \leq_{RK} q$ if and only if every strongly q-pseudocompact space $\mathbb{N} \subseteq X \subseteq \beta \mathbb{N}$ is strongly p-pseudocompact.

 $[\]textcircled{C}2013$ Topology Proceedings.

²⁰¹⁰ Mathematics Subject Classification. Primary 54A20, 54D45, 54D99; Secondary 54D80, 54C45.

Key words and phrases. Strongly p-compact space, strongly p-pseudocompact space, pseudo- ω -bounded space, almost pseudo- ω -bounded space, p-pseudo- ω -bounded space.

This research was supported by PAPIIT No. IN-102910.

NOTATIONS AND BASIC DEFINITIONS

Every space in this paper is considered to be Tychonoff and has more than one point. ω is the first infinite cardinal number and ω_1 is the first non-countable cardinal number. The letter \mathbb{N} stands for the space of the natural numbers with its discrete topology. Given a set X, we use the following notation: $[X]^{<\omega} := \{A \subseteq X : |A| < \omega\}$ and $[X]^{\omega} :=$ $\{A \subseteq X : |A| = \omega\}$. If X is a topological space and $A \subseteq X$, we use $Cl_X(A)$ (or simply Cl(A) if there is no possibility of confusion) to denote the closure of A in X. For spaces X, Y, C(X, Y) denotes the set of all continuous functions with domain X and range contained in Y. As usual, with βX we denote the Stone-Čech compactification of X, and X^* denote the remainder $\beta X \setminus X$. Given two ultrafilters $p, q \in \beta \mathbb{N}$, we say that $p \leq_{RK} q$ if there exists a function $f : \mathbb{N} \longrightarrow \mathbb{N}$ such that $\beta f(q) = p$, where βf is the continuous extension of f to $\beta \mathbb{N}$. This relation is known as the *Rudin-Keisler* preorder on $\beta \mathbb{N}$.

If \leq is a preorder on X, we say that $p, q \in X$ are \leq -equivalent if $p \leq q$ and $q \leq p$; p, q are \leq -comparable if either $p \leq q$ or $q \leq p$; and p, q are \leq -incomparable if they are not \leq -comparable.

If X is the cartesian product $\prod_{s \in S} X_s$ of a family $\{X_s : s \in S\}$ of non-empty sets and $s \in S$, then π_s denotes the projection from X to X_s .

Given a space $X, p \in \mathbb{N}^*$, and a sequence $(S_n)_{n \in \mathbb{N}}$ of non-empty subsets of X, we say that $z \in X$ is a p-limit of $(S_n)_{n \in \mathbb{N}}$ if for each neighborhood W of z, $\{n \in \mathbb{N} : S_n \cap W \neq \emptyset\} \in p$. A space X is p-compact (ppseudocompact) if every sequence of points (of non-empty open subsets) of X has a p-limit point. Of course, if z and y are p-limits of a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X, then z = y. If x is the p-limit of $(x_n)_{n \in \mathbb{N}}$, we write $x = p - \lim x_n$. The set $L(p, (S_n)_{n \in \mathbb{N}})$ of p-limits of a sequence $(S_n)_{n \in \mathbb{N}}$ of non-empty subsets of X is always closed and have more than one point. We say that a space X is ω -bounded if every subset $A \in [X]^{\omega}$ is contained in a compact subset of X. The notions used and not defined in this article have the meaning given to them in [5].

INTRODUCTION

In 1975, J. Ginsburg and V. Saks introduced the concept of *p*-pseudocompactness in [8]. This notion, defined in terms of *p*-convergence of sequences of non-empty open subsets, generalizes pseudocompactness and is related to *p*-compactness, introduced by Bernstein [3] and analyzed by Ginsburg and Saks [8], in a similar way as pseudocompactness is related to compactness. Furthermore, it is related to the *Rudin-Keisler* preorder: every *p*-pseudocompact space is *q*-pseudocompact if and only if $p \leq_{RK} q$. Following the ideas in [3], [6] and [8], we introduce and analyze the concepts of strong *p*-compactness and strong *p*-pseudocompactness. The study of all these concepts is relevant because they determine different kinds of countably compact and pseudocompact spaces with different properties. The property of pseudo- ω -boundedness was inspired in ω boundedness; in [2] the authors proved that this property characterizes the pseudocompactness of the hyperspace of compact sets.

In Section 1, we introduce the notion of strong p-compactness, and we study its properties and relations with other properties; in particular, we prove: (1) every strongly p-compact space is p-compact, and (2) every locally compact p-compact space is strongly p-compact.

In Section 2, we prove that a Tychonoff product $\prod_{\alpha < \kappa} X_{\alpha}$ is strongly *p*-compact if and only if each X_{α} is strongly *p*-compact and $|\{\alpha < \kappa : X_{\alpha} \text{ is not compact}\}| \leq \omega$. Moreover, if $f : X \to Y$ is an onto continuous and open function and X is strongly *p*-compact, then Y must be strongly *p*-compact.

In Section 3, we introduce and study the concepts of strong *p*-pseudocompactness and pseudo- ω -boundedness. We prove that both are productive properties (a property that pseudocompact spaces don't necessarily have). Finally, we introduce the almost pseudo- ω -bounded and the *p*pseudo- ω -bounded spaces, and prove that in the class of locally compact spaces, strong *p*-compactness, *p*-compactness, *p*-pseudo- ω -boundedness and *p*-pseudocompactness are equivalent, and pseudocompactness is equivalent to almost pseudo- ω -boundedness.

p-pseudocompactness and strong *p*-pseudocompactness have similar properties including their relation with the Rudin-Keisler preorder; in particular, in Section 4, we show that $p \leq_{RK} q$ if and only if every strongly *q*-pseudocompact space $\mathbb{N} \subseteq X \subseteq \beta \mathbb{N}$ is strongly *p*-pseudocompact; from this fact we derive new results which have a similar flavor to those given in Theorem 1.5 in [6].

Finally, in Section 5, we give an example of a strong *p*-compact, non-pseudo ω -bounded space and a strong *p*-compact, non-*q*-compact space.

1. Strong p-compactness

Definition 1.1. Let $p \in \mathbb{N}^*$. We say that a space X is strongly p-compact if X is p-pseudocompact and for each sequence $(x_n)_{n\in\mathbb{N}}$ of points in X, there exists a sequence $(U_n)_{n\in\mathbb{N}}$ of open subsets of X, with $x_n \in U_n$ for each $n \in \mathbb{N}$, such that $L(p, (U_n)_{n\in\mathbb{N}})$ is a non-empty compact subspace of X.

Lemma 1.2. Let $p \in \mathbb{N}^*$. The following properties are equivalent for a topological space X:

(1) X is p-compact;

- (2) for every sequence $(S_n)_{n \in \mathbb{N}}$ of non-empty subsets of X, $L(p, (S_n)_{n \in \mathbb{N}}) \neq \emptyset$,
- (3) for each sequence $(D_n)_{n\in\mathbb{N}}$ of non-empty closed subsets of X, it happens that $L(p, (D_n)_{n\in\mathbb{N}}) \neq \emptyset$; and
- (4) for every sequence (S_n)_{n∈N} of non-empty subsets of X, we have that the set L(p, (S_n)_{n∈N}) is not empty and for each open subset U of X satisfying

$$\{x = p - lim \ x_n : x_n \in S_n \text{ for each } n \in \mathbb{N}\} \subseteq U,$$

it happens that $\{n \in \mathbb{N} : S_n \subseteq U\} \in p$.

Proof. All the implications are obvious except for the second assertion of $(1 \Rightarrow 4)$. Assume that there is a sequence $(S_n)_{n \in \mathbb{N}}$ of non-empty subsets of X, and assume that U is an open subset of X such that

$$\{x = p - \lim x_n : x_n \in S_n \text{ for each } n \in \mathbb{N}\} \subseteq U$$

and $\{n \in \mathbb{N} : S_n \subseteq U\} \notin p$. In particular, the set $A = \{n \in \mathbb{N} : S_n \nsubseteq U\}$ belongs to p. Take $x_n \in S_n \setminus U$ if $n \in A$, and $x_n \in S_n$ if $n \notin A$. Since X is p-compact, there is $z \in X$ such that $z = p - \lim x_n$. For each $n \in \mathbb{N}, x_n \in S_n$, so $z \in \{x = p - \lim x_n : x_n \in S_n \text{ for each } n \in \mathbb{N}\} \subseteq U$. Moreover, by definition, $\{n \in \mathbb{N} : x_n \notin U\} = A$. Since p is an ultrafilter, $\{n \in \mathbb{N} : x_n \in U\} \notin p$; this is a contradiction. \Box

Proposition 1.3. Let $p \in \mathbb{N}^*$ and $A \in p$. If X is a p-compact space, then for every sequence $(S_n)_{n \in \mathbb{N}}$ of non-empty subsets of X we have that

 $L(p, (S_n)_{n \in \mathbb{N}}) = Cl(\{x = p - lim \ x_n : x_n \in S_n \text{ for each } n \in \mathbb{N}\})$

 $= Cl(\{x = p - lim \ x_n : x_n \in S_n \text{ for each } n \in A\}).$ (i)

Proof. Let $A \in p \in \mathbb{N}^*$. Then,

 $\{x = p - \lim x_n : x_n \in S_n \text{ for each } n \in \mathbb{N}\} =$

$$\{x = p - \lim x_n : x_n \in S_n \text{ for each } n \in A\}$$

So, the second equality (i) is obvious. Let

$$T = \{x = p - lim \ x_n : x_n \in S_n \text{ for each } n \in \mathbb{N}\}.$$

It is clear that $T \subseteq L(p, (S_n)_{n \in \mathbb{N}})$. Then $Cl(T) \subseteq L(p, (S_n)_{n \in \mathbb{N}})$ because $L(p, (S_n)_{n \in \mathbb{N}})$ is closed. Now we only have to prove that $L(p, (S_n)_{n \in \mathbb{N}}) \subseteq Cl(T)$.

Let $x \notin Cl(T)$ and let U and V be two disjoint open subsets of X such that $Cl(T) \subseteq U$ and $x \in V$. By Lemma 1.2, $\{n \in \mathbb{N} : S_n \subseteq U\} \in p$. Since U and V are disjoint open sets,

$$\{n \in \mathbb{N} : S_n \cap V \neq \emptyset\} \subseteq \{n \in \mathbb{N} : S_n \nsubseteq U\} \notin p.$$

This implies that $x \notin L(p, (S_n)_{n \in \mathbb{N}})$. So, we obtain the required equality.

We are going to obtain some basic properties about strong p-compactness. First a notation and some preliminary results.

Notation 1.4. Let $p \in \mathbb{N}^*$ and let \mathcal{B} be a family of sequences of nonempty subsets of X. We denote by $\mathcal{L}_{\mathcal{B}}$ the set $\{L(p, B) : B \in \mathcal{B}\}$.

Proposition 1.5. Let $p \in \mathbb{N}^*$ and let $S = (x_n)_{n \in \mathbb{N}}$ be a sequence in X. For each $x_m \in \{x_n : n \in \mathbb{N}\}$, consider a local base \mathcal{N}_m of x_m in X. Let

$$\mathcal{B} = \{ (U_n)_{n \in \mathbb{N}} : U_n \in \mathcal{N}_n \text{ for each } n \in \mathbb{N} \}$$

Then, $x = p - \lim x_n$ if and only if $\bigcap \mathcal{L}_{\mathcal{B}} = \{x\}$.

Proof. It is clear that if $x = p - \lim x_n$, then $x \in L(p, (U_n)_{n \in \mathbb{N}})$ for each sequence of open subsets $(U_n)_{n\in\mathbb{N}}\in\mathcal{B}$. Thus, $x\in\cap\mathcal{L}_{\mathcal{B}}$.

Let x be an element of $\bigcap \mathcal{L}_{\mathcal{B}}$ and assume that x is not a p-limit of sequence S. Then, there is a neighborhood W of x such that $\{n \in \mathbb{N} : x_n \in$ $W \notin p$. Let V be an open neighborhood of x such that $Cl(V) \subseteq W$. For each $n \in \mathbb{N}$ such that $x_n \notin cl(V)$, let $B_n \in \mathcal{N}_n$ such that $B_n \cap Cl(V) = \emptyset$, and for each $n \in \mathbb{N}$ such that $x_n \in cl(V)$, choose whatever $B_n \in \mathcal{N}_n$.

Then.

$$\{n \in \mathbb{N} : B_n \cap V \neq \emptyset\} \subseteq \{n \in \mathbb{N} : x_n \in Cl(V)\} \subseteq \{n \in \mathbb{N} : x_n \in W\};\$$

so $\{n \in \mathbb{N} : B_n \cap V \neq \emptyset\}$ does not belong to p, but this is not possible because our hypothesis says that

$$x \in \bigcap \mathcal{L}_{\mathcal{B}} \subseteq L(p, (B_n)_{n \in \mathbb{N}}).$$

Hence, $x = p - \lim x_n$. Since the *p*-limits of sequences are unique, we obtain $\bigcap \mathcal{L}_{\mathcal{B}} = \{x\}.$ \square

Lemma 1.6. Let $p \in \mathbb{N}^*$ and let X be a p-pseudocompact space. Then, for every sequence S and every family \mathcal{B} defined as in Proposition 1.5, the collection $\mathcal{L}_{\mathcal{B}}$ has the finite intersection property.

Proof. Take $(U_n)_{n\in\mathbb{N}}$ and $(V_n)_{n\in\mathbb{N}}$ in \mathcal{B} . Since for each $n\in\mathbb{N}$, \mathcal{N}_n is a local base of x_n , there is $B_n \in \mathcal{N}_n$ such that $x_n \in B_n \subseteq V_n \cap U_n$. Since X is p-pseudocompact,

$$\emptyset \neq L(p, (B_n)_{n \in \mathbb{N}}) \in \mathcal{L}_{\mathcal{B}} \quad \text{and} \\ L(p, (B_n)_{n \in \mathbb{N}}) \subseteq L(p, (U_n)_{n \in \mathbb{N}}) \cap L(p, (V_n)_{n \in \mathbb{N}}).$$

 \square

This concludes our proof.

Now, we establish a basic fact about the relationship between p-compactness and strong *p*-compactness.

Theorem 1.7. For every ultrafilter $p \in \mathbb{N}^*$, every strongly p-compact space is p-compact.

Proof. Let X be a strongly p-compact space. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of points in X. Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of open subsets of X such that $L(p, (U_n)_{n \in \mathbb{N}})$ is compact and $x_n \in U_n$ for each $n \in \mathbb{N}$.

For each $n \in \mathbb{N}$, let \mathcal{N}_n be the family of all open subsets of X containing the point x_n and contained in U_n . It is clear that for each $n \in \mathbb{N}$, \mathcal{N}_n is a local base of x_n .

Now we define the families

 $\mathcal{B} = \{ (V_n)_{n \in \mathbb{N}} : V_n \in \mathcal{N}_n \} \text{ and } \mathcal{L}_{\mathcal{B}} = \{ L(p, (V_n)_{n \in \mathbb{N}}) : (V_n)_{n \in \mathbb{N}} \in \mathcal{B} \}.$

Note that for each sequence $(V_n)_{n\in\mathbb{N}} \in \mathcal{B}$, the set $L(p, (V_n)_{n\in\mathbb{N}})$ is contained in $L(p, (U_n)_{n\in\mathbb{N}})$ because for each $V_n \in \mathcal{N}_n$, $V_n \subseteq U_n$. Since X is *p*-pseudocompact, $\mathcal{L}_{\mathcal{B}}$ is a family of compact sets with the finite intersection property (Lemma 1.6); so, $\bigcap \mathcal{L}_{\mathcal{B}} \neq \emptyset$. Because of Theorem 1.5, the sequence $(x_n)_{n\in\mathbb{N}}$ has a *p*-limit point. Therefore, X is *p*-compact. \Box

Finally we are going to give an example of a *p*-compact space which is not strongly *p*-compact. Recall that, given an ultrafilter $p \in \beta \mathbb{N}$, $P_{RK}(p)$ denotes the set $\{q \in \beta \mathbb{N} : q \leq_{RK} p\}$.

Remark 1.8. If $p \in \mathbb{N}^*$ and $P = \{z \in \beta \mathbb{N} : \text{there is a sequence } (x_n)_{n \in \mathbb{N}} \text{ in } \mathbb{N} \text{ such that } z = p\text{-lim } x_n\}$, then $P \cup \mathbb{N} = P_{RK}(p)$.

It is well-known that every closed subset of a *p*-compact space is *p*-compact, and the product of a collection of *p*-compact spaces is still *p*-compact. So, for every Tychonoff space X and every free ultrafilter *p*, there is a unique space, up to homeomorphism, $\beta_p(X)$ satisfying:

- (1) X is dense in $\beta_p(X)$,
- (2) $\beta_p(X)$ is *p*-compact, and
- (3) for every p-compact space Y and every function $f \in C(X,Y)$, there is a function $F \in C(\beta_p(X),Y)$ such that $F|_X = f$.

It is also known that $\beta_p(X)$ is the intersection of all the *p*-compact subspaces of βX containing X (see [8] and Chapter 5 of [9]).

Example 1.9. For every free ultrafilter p on \mathbb{N} , the space $X = \beta_p(\mathbb{N})$ is not strongly *p*-compact.

Proof. Let $\{U_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} in infinite sets and pick $x_n \in U_n^* \cap \beta_p(\mathbb{N})$ for each $n \in \mathbb{N}$. Then $L(p, (V_n)_{n \in \mathbb{N}})$ is infinite for every sequence of open sets $(V_n)_{n \in \mathbb{N}}$, where $x_n \in V_n \subseteq cl_X(U_n)$. Since $|\beta_p(\mathbb{N})| = 2^{\omega}$ and every infinite closed subset of $\beta \mathbb{N}$ has cardinality $2^{2^{\omega}}$, $L_X(p, (V_n)_{n \in \mathbb{N}})$ can not be compact. So we must have that $\beta_p(\mathbb{N})$ is not strongly *p*-compact.

It is known that every *p*-compact space is countably compact; so, countable compactness does not imply strong *p*-compactness. Below, in Example 5.3, we show a strongly *p*-compact subspace of $\beta \mathbb{N}$ which contains \mathbb{N} .

Theorem 1.10. The property of being strongly p-compact is inherited by closed subsets.

Proof. Assume that X is a strongly p-compact space. Let $B \subset X$ be a non-empty closed subset of X, $(x_n)_{n \in \mathbb{N}}$ be a sequence in B, and let $(U_n)_{n \in \mathbb{N}}$ be a sequence of open subsets of X such that $L(p, (U_n)_{n \in \mathbb{N}})$ is compact and $x_n \in U_n$ for each $n \in \mathbb{N}$. It is clear that $(B \cap U_n)_{n \in \mathbb{N}}$ is a sequence of open subsets of B with $x_n \in B \cap U_n$. By Theorem 1.7, X is p-compact, so B is p-compact (Theorem 2.4 in [8]). If $x = p - \lim x_n$, then

 $x \in L_B(p, (B \cap U_n)_{n \in \mathbb{N}}) \subseteq B \cap L(p, (U_n)_{n \in \mathbb{N}}).$

So, $L_B(p, (B \cap U_n)_{n \in \mathbb{N}})$ is not empty. Since $L_B(p, (B \cap U_n)_{n \in \mathbb{N}})$ is closed in B, it is closed in the compact subspace $B \cap L(p, (U_n)_{n \in \mathbb{N}})$. Hence, we conclude that $L_B(p, (B \cap U_n)_{n \in \mathbb{N}})$ is compact. Moreover, B is ppseudocompact because it is p-compact. \Box

Theorem 1.11. Every locally compact p-compact space is strongly p-compact.

Proof. Let X be a locally compact p-compact space and let $(x_n)_{n\in\mathbb{N}}$ be a sequence of points in X. Since X is p-compact, there is $x \in X$ such that $x = p - \lim x_n$. Now, take an open neighborhood U of x such that Cl(U) is compact. Let V be a neighborhood of x satisfying $Cl(V) \subseteq U$. For each $n \in \mathbb{N}$ such that $x_n \notin Cl(V)$, take a neighborhood U_n of x_n such that $U_n \subseteq X \setminus Cl(V)$, and for each $n \in \mathbb{N}$ with $x_n \in Cl(V)$, take a neighborhood U_n of x_n such that $U_n \subseteq U$.

We claim that $X \setminus Cl(U)$ is a subset of $X \setminus L(p, (U_n)_{n \in \mathbb{N}})$. Indeed, assume that $z \notin Cl(U)$. Then $X \setminus Cl(U)$ is an open subset of X containing z. Furthermore,

$$\{n: U_n \cap (X \setminus Cl(U)) \neq \emptyset\} \cap \{n: U_n \cap V \neq \emptyset\} = \emptyset.$$

Since $\{n \in \mathbb{N} : U_n \cap V \neq \emptyset\} \in p$, we have that $\{n : U_n \cap (X \setminus Cl(U)) \neq \emptyset\} \notin p$. This means that $z \notin L(p, (U_n)_{n \in \mathbb{N}})$. Therefore, $L(p, (U_n)_{n \in \mathbb{N}}) \subseteq Cl(U)$. Since Cl(U) is compact and $L(p, (U_n)_{n \in \mathbb{N}})$ is closed, $L(p, (U_n)_{n \in \mathbb{N}})$ is compact.

Corollary 1.12. Every compact space is strongly p-compact.

Observe that ω_1 , with its order topology, is ω -bounded, locally compact, collectionwise normal, first countable, strongly *p*-compact for every $p \in \mathbb{N}^*$, but it is not compact.

Corollary 1.13. Let X be a p-compact space and let Y be a locally compact space. If there is a continuous and onto function $f : X \to Y$, then Y is strongly p-compact.

Proof. By Lemma 2.3 in [8], Y is p-compact, and by Theorem 1.11, Y is strongly p-compact. \Box

Remark 1.14. It is natural to ask what happens if we replace the condition $\mathbf{L}(\mathbf{p}, (\mathbf{U_n})_{\mathbf{n} \in \mathbb{N}})$ is compact by the condition $\mathbf{L}(\mathbf{p}, (\mathbf{U_n})_{\mathbf{n} \in \mathbb{N}})$ is *p*-compact in Definition 1.1. Of course, every *p*-compact space satisfies this new property. We consider that the most interesting question which arises from this new concept is if every space with the new property is *p*-compact (or at least countable compact). Our conjecture is that this property does not imply *p*-compactness. In the proof of Theorem 1.7 the hypothesis **the closed subsets** $\mathbf{L}(\mathbf{p}, (\mathbf{U_n})_{\mathbf{n} \in \mathbb{N}}) \in \mathcal{L}_{\mathcal{B}}$ are compact can not be weakened by the hypothesis **the closed subsets** $\mathbf{L}(\mathbf{p}, (\mathbf{U_n})_{\mathbf{n} \in \mathbb{N}}) \in \mathcal{L}_{\mathcal{B}}$ are *p*-compact because this last assertion only guarantees that $\bigcap \mathcal{L}_{\mathcal{B}} \neq \emptyset$ when \mathcal{B} is a countable family. Although at this moment we do not have a counterexample, we think that it is possible to construct such an example and this is an interesting non-trivial problem.

2. Products, images and preimages of strongly p-compact spaces

It is known that the product of p-compact spaces and the continuous image of a p-compact space is a p-compact space (Lemma 2.3 in [8] and Theorem 4.2 in [3]). With respect to the images and productivity of strongly p-compactness we have:

Theorem 2.1. For every $p \in \beta \mathbb{N}$, strong p-compactness is invariant under continuous open functions.

Proof. Let X be a strongly p-compact space, $f \in C(X, Y)$ open and onto, and let $p \in \beta \mathbb{N}$. Also, let $(y_n)_{n \in \mathbb{N}}$ be a sequence in Y. For each $n \in \mathbb{N}$, pick $x_n \in f^{-1}(y_n)$. Since X is strongly p-compact, there exist open subsets U_n of X such that $x_n \in U_n$ for each $n \in \mathbb{N}$, and $L(p, (U_n)_{n \in \mathbb{N}})$ is compact.

For each $n \in \mathbb{N}$, denote by V_n the open set $f[U_n]$. We have that $y_n \in V_n$, so it will be enough to show the equality

$$L(p, (V_n)_{n \in \mathbb{N}}) = f[L(p, (U_n)_{n \in \mathbb{N}})].$$

By Theorem 1.3.(3) of [6], $L(p, (V_n)_{n \in \mathbb{N}}) \supseteq f[L(p, (U_n)_{n \in \mathbb{N}})]$. Now, take

$$z \in L(p, (V_n)_{n \in \mathbb{N}}) \setminus f[L(p, (U_n)_{n \in \mathbb{N}})]$$

Since $L(p, (U_n)_{n \in \mathbb{N}})$ is compact, $f[L(p, (U_n)_{n \in \mathbb{N}})]$ is compact too, so we can find disjoint open subsets B_1 , B_2 in Y such that $z \in B_1$ and $f[L(p, (U_n)_{n \in \mathbb{N}})] \subseteq B_2$. By Proposition 1.3, there exist $z' \in B_1$ and $z_n \in V_n$ such that $z' = p - \lim z_n$; then, $A = \{n \in \mathbb{N} : z_n \in B_1\} \in p$. Therefore, $f^{-1}(z_n) \subseteq f^{-1}[B_1]$ for all $n \in A$. Moreover, it is clear that $f^{-1}[B_1]$ and $f^{-1}[B_2]$ are disjoint open subsets of X and

$$L(p, (U_n)_{n \in \mathbb{N}}) \subseteq f^{-1}[B_2].$$

Let $B = \{n \in \mathbb{N} : U_n \subseteq f^{-1}[B_2]\}$. It is clear that $A \cap B = \emptyset$, but Lemma 1.2 guarantees that $B \in p$. Since p is an ultrafilter and $A \in p$, it happens that $\emptyset = A \cap B \in p$ which is a contradiction. Then, we must have $z \in f[L(p, (U_n)_{n \in \mathbb{N}})]$ and we conclude that $L(p, (V_n)_{n \in \mathbb{N}}) = f[L(p, (U_n)_{n \in \mathbb{N}})]$.

Theorem 2.2. Let $p \in \mathbb{N}^*$, let $\mathcal{X} = \{X_s : s \in S\}$ be a family of topological spaces and let X be the topological product of such a family. Then, X is strongly p-compact if and only if X_s is strongly p-compact for every $s \in S$, and $|\{s \in S : X_s \text{ is not compact }\}| \leq \omega$.

Proof. (\Rightarrow) Assume that X is strongly *p*-compact. By Theorem 1.10, each X_t is strongly *p*-compact because it is homeomorphic to a closed subset of X.

Now, assume that $T \subseteq S$ is such that X_t is not compact for each $t \in T$. Suppose that $|T| > \omega$. Let $(x_n)_{n \in \mathbb{N}} \subseteq X$ be a sequence of points and $(U_n)_{n \in \mathbb{N}}$ a sequence of open subsets of X such that $x_n \in U_n$ for each $n \in \mathbb{N}$. By Theorem 1.7, X_t is *p*-compact for each $t \in S$. So, X is *p*-compact (Theorem 4.2 of [3]). Let x_0 be the *p*-limit point of the sequence $(x_n)_{n \in \mathbb{N}}$.

For each $n \in \mathbb{N}$, there is $A_n \in [S]^{<\omega}$, and there is, for each $s \in A_n$, an open set W_n^s of X_s such that $x_n \in \bigcap_{s \in A_n} \pi_s^{-1}[W_n^s] \subseteq U_n$. The set $A = \bigcup_{n \in \mathbb{N}} A_n$ is countable. Now define the set

$$B = \{ x \in X : \pi_s(x) = \pi_s(x_0) \text{ for all } s \in A \}.$$

Claim: $B \subseteq L(p, (U_n)_{n \in \mathbb{N}}).$

Indeed, take $x \in B$, $F \in [S]^{<\omega}$ and $V = \bigcap_{s \in F} \pi_s^{-1}[V_s]$ where V_s is an open subset of X_s such that $x \in V$. By definition of A, we have $\pi_s[U_n] = X_s$ for each $s \notin A$; so, if $F \cap A = \emptyset$, then $V \cap U_n \neq \emptyset$ for every $n \in \mathbb{N}$.

Assume now that $F \cap A \neq \emptyset$. Then,

$$\{ n \in \mathbb{N} : V \cap U_n \neq \emptyset \} \supseteq \{ n \in \mathbb{N} : (\bigcap_{s \in F \cap A} \pi_s^{-1}[V_s]) \cap U_n \neq \emptyset \} \supseteq$$
$$\bigcap_{s \in F \cap A} \{ n \in \mathbb{N} : V_s \cap W_n^s \neq \emptyset \} \supseteq \bigcap_{s \in F \cap A} \{ n \in \mathbb{N} : \pi_s(x_n) \in V_s \}.$$

192 J. ANGOA, Y. F. ORTIZ-CASTILLO, AND Á. TAMARIZ-MASCARÚA

By Lemma 2.3 in [8], $\pi_s(x_0) = p - \lim \pi_s(x_n)$ for each $s \in S$; so, for each $s \in A$, $\pi_s(x) = p - \lim \pi_s(x_n)$. Then, for each $s \in A$,

$$\{n \in \mathbb{N} : \pi_s(x_n) \in V_s\} \in p.$$

Since $F \cap A$ is finite, we have that

$$\bigcap_{s \in F \cap A} \{ n \in \mathbb{N} : \pi_s(x_n) \in V_s \} \in p;$$

this implies that $x \in L(p, (U_n)_{n \in \mathbb{N}})$, and the proof of the Claim has concluded.

Since |A| < |T|, we can take $t \in T \setminus A$. The space X_t is homeomorphic to a closed subset of X contained in $B \subseteq L(p, (U_n)_{n \in \mathbb{N}})$. But X_t is not compact, so $L(p, (U_n)_{n \in \mathbb{N}})$ cannot be compact; this is a contradiction because we have supposed that X is strongly *p*-compact. So, we must have $|T| \leq \omega$.

(\Leftarrow) Now suppose that X_s is strongly *p*-compact for every $s \in S$. Let $T = \{s \in S : X_s \text{ is not compact}\}$ and assume that $T \neq \emptyset$. We have to consider two cases:

I. $|T| = \omega$. Define $X_T = \prod_{t \in T} X_t$, let $(x_n)_{n \in \mathbb{N}}$ be a sequence of X_T , and for each $n < \omega$, $t \in T$ let U_n^t be an open subset of X_t such that $\pi_t(x_n) \in U_n^t$ and $L(p, (U_n^t)_{n \in \mathbb{N}})$ is compact. Enumerate the set T as $\{t_n : n \in \mathbb{N}\}$ and, for each $n < \omega$, consider the set $V_n = \bigcap_{m \leq n} \pi_{t_m}^{-1}[U_n^{t_m}]$. Each V_n is a canonical open subset of X_T containing x_n .

We are going to show that $L(p, (V_n)_{n \in \mathbb{N}}) \subseteq \prod_{t \in T} L_{X_t}(p, (U_n^t)_{n \in \mathbb{N}}) = L$. In fact, take $x \notin L$, so there is $r \in T$ such that $\pi_r(x) \notin L_{X_r}(p, (U_n^r)_{n \in \mathbb{N}})$. Let W be an open neighborhood of $\pi_r(x)$ such that $\{n : W \cap U_n^r = \emptyset\} \in p$. Observe that $V_n \subseteq \pi_r^{-1}[U_n^r]$ for every n > m, where $r = t_m$. Hence

$$\{n \in \mathbb{N} : \pi_r^{-1}[W] \cap V_n = \emptyset\} \supseteq \{n \ge t_m : W \cap U_n^r = \emptyset\} \in p.$$

Since $x \in \pi_r^{-1}[W]$, we obtain $x \notin L(p, (V_n)_{n \in \mathbb{N}})$, and so $L(p, (V_n)_{n \in \mathbb{N}})$ is compact.

II. $|T| < \omega$. This case is a consequence of Case I and Theorem 2.1.

If T = S the proof is finished. Suppose $T \neq S$. Since X is the product of a strongly *p*-compact and a compact space, by Case II, X is strongly *p*-compact.

Remark 2.3. From Theorems 1.11 and 2.2, we can deduce that if X is a strongly *p*-compact non-compact space, then X^{ω} is strongly *p*-compact and it is not locally compact. On the other hand, every infinite discrete space is locally compact and it is not strongly *p*-compact.

The following lemma is Theorem 3.7.26 in [5].

Lemma 2.4. Let P be a property which is inherited by closed subsets and every product of a compact space with a space satisfying P has P. If Y has P and $f : X \to Y$ is a continuous and perfect function, then X has property P.

Corollary 2.5. Let $p \in \mathbb{N}^*$. Then every continuous and perfect preimage of a strongly p-compact space is strongly p-compact.

Proof. Let $f : X \longrightarrow Y$ be a continuous perfect and onto function. Assume that Y is a strongly p-compact space. By Theorem 1.10, the case II in Theorem 2.2 and Lemma 2.4, we conclude that X is a strongly p-compact space.

Question 2.6. Is it possible to find a strongly p-compact space X, a space Y which is not strongly p-compact and a (closed or perfect) continuous function $f : X \to Y$?

3. STRONG *p*-pseudocompactness and pseudo- ω -boundedness

Definition 3.1. Let X be a topological space and $p \in \mathbb{N}^*$. We say that X is:

- (1) strongly p-pseudocompact if for each sequence $(U_n)_{n \in \mathbb{N}}$ of open subsets of X there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of points in X and there is $x \in X$ such that $x = p - \lim x_n$ and $x_n \in U_n$ for all $n \in \mathbb{N}$,
- (2) pseudo- ω -bounded if for each countable family \mathcal{U} of open subsets of X, there is a compact $K \subseteq X$ such that $K \cap U \neq \emptyset$ for all $U \in \mathcal{U}$.

Observe that every *p*-compact space is strongly *p*-pseudocompact.

Theorem 3.2. Let $p \in \mathbb{N}^*$.

- (1) Every pseudo- ω -bounded space is strongly p-pseudocompact and every strongly p-pseudocompact space is p-pseudocompact.
- (2) If X contains a dense strongly p-pseudocompact subspace, then X is strongly p-pseudocompact.
- (3) Regular closed subsets inherit the property of being strongly ppseudocompact.
- (4) X is pseudo- ω -bounded if and only if for each sequence $(U_n)_{n \in \mathbb{N}}$ of open subsets of X, there exist points $x_n \in U_n$ such that, for every $p \in \mathbb{N}^*$, the sequence $(x_n)_{n \in \mathbb{N}}$ has a p-limit.

Proof. (1) We are going to prove the first assertion because the second one can be proved easily. Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of non-empty open subsets of X. Let K be a compact subset of X which has a non-empty

intersection with U_n for each $n \in \mathbb{N}$. Then, for each $n \in \mathbb{N}$, there is a point $x_n \in K \cap U_n$. Since the sequence $(x_n)_{n \in \mathbb{N}}$ is contained in K, there is $x \in K$ such that $x = p - \lim x_n$.

(2) Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of open subsets of X. For each $n \in \mathbb{N}$, let V_n be the set $U_n \cap Y$. Then, $(V_n)_{n\in\mathbb{N}}$ is a sequence of open sets of Y, so there are points $x_n \in V_n \subseteq U_n$ and $x \in Y \subseteq X$ such that x is the p-limit of the sequence $(x_n)_{n\in\mathbb{N}}$ in Y. Now it is easy to show that x is the p-limit of the sequence $(x_n)_{n\in\mathbb{N}}$ in X. Thus, we conclude that X is strongly p-compact.

(3) Let D be a regular closed subset of X and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of open subsets of D. Since D = Cl(Int(D)), for each $n \in \mathbb{N}$, the set $V_n = U_n \cap Int(D)$ is open in X. Since X is strongly p-pseudocompact, there are points $x_n \in V_n \subseteq U_n$ and $x \in X$ such that $x = p - \lim x_n$. Since $(x_n)_{n\in\mathbb{N}}$ is a sequence in D, D is closed and $x \in Cl\{x_n : n \in \mathbb{N}\}$, then $x \in D$.

(4) (\Rightarrow) Suppose that X is pseudo- ω -bounded. Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of open subsets of X and let K be a compact subspace of X such that $K\cap U_n \neq \emptyset$ for every $n\in\mathbb{N}$. For each $n\in\mathbb{N}$, take an element $x_n\in K\cap U_n$. Since $\{x_n:n\in\mathbb{N}\}\subseteq K$ and K is compact, $Cl_X(\{x_n:n\in\mathbb{N}\})$ is compact; so, the sequence $(x_n)_{n\in\mathbb{N}}$ has a p-limit point in X for each $p\in\mathbb{N}^*$.

 (\Leftarrow) Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of non-empty open subsets of X and let $(x_n)_{n\in\mathbb{N}}$ be a sequence of points such that $x_n \in U_n$ for all $n \in \mathbb{N}$ and $(x_n)_{n\in\mathbb{N}}$ has a *p*-limit point in X for each $p \in \mathbb{N}^*$. Now, Theorem 3.4 in [3] guarantees that $K = Cl_X(\{x_n : n \in \mathbb{N}\})$ is compact. Moreover, for each $n \in \mathbb{N}, x_n \in K \cap U_n$.

Remark 3.3. Every ω -bounded space is pseudo- ω -bounded and every *p*-compact space is strongly *p*-pseudocompact. On the other hand, it is possible to find pseudo- ω -bounded spaces which are not strongly *p*-compact (for example, Σ -products of compact spaces). In Example 5.3, below, we show an strongly *p*-compact space which is not pseudo- ω -bounded.

Theorem 3.4. The property of being strongly p-pseudocompact is invariant under continuous images.

Proof. Let X be a strongly p-pseudocompact space. Let $f: X \to Y$ be a continuous and onto function. Finally, let $(U_n)_{n \in \mathbb{N}}$ be a sequence of nonempty open subsets of Y. It is clear that $(V_n)_{n \in \mathbb{N}}$, where $V_n = f^{-1}[U_n]$ for each $n \in \mathbb{N}$, is a sequence of open subsets of X; so, there exist points $x_n \in V_n$ and $x \in X$ such that $x = p - \lim x_n$. Then, $f(x_n) \in U_n$, $f(x) \in Y$ and $f(x) = p - \lim f(x_n)$ (Lemma 2.3 in [8]). **Theorem 3.5.** Let $\{X_s : s \in S\}$ be a family of topological spaces and X the Tychonoff product of such a family. Then, X is strongly p-pseudo-compact if and only if for each $s \in S$, X_s is strongly p-pseudocompact.

Proof. (\Rightarrow) This implication is a consequence of Theorem 3.4.

 (\Leftarrow) Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of open subsets of X. For each $n\in\mathbb{N}$ and each $s\in S$, let V_n^s be a non-empty open subset of X_s such that $V_n=\cap_{s\in S}\pi_s^{-1}[V_n^s]\subseteq U_n$. Since X_s is strongly p-pseudocompact for each $s\in S$, there is a sequence $(x_n^s)_{n\in\mathbb{N}}$ of points in X_s and there is a point $x^s\in X_s$ such that $x_n^s\in V_n^s$ for each $n\in\mathbb{N}$ and $x^s=p-\lim x_n^s$. Take the point $x\in X$ such that $\pi_s(x)=x^s$ for each $s\in S$. Finally, for each $n\in\mathbb{N}$, take $x_n\in X$ such that $\pi_s(x_n)=x_n^s$ for each $s\in S$. It is clear that $x_n\in U_n$ for each $n\in\mathbb{N}$ and $x=p-\lim x_n$. We conclude that X is strongly p-pseudocompact.

Corollary 3.6. Pseudo- ω -boundedness is a productive property and invariant under continuous functions. Also, regular closed subsets inherit this property. Furthermore, if a space X contains a dense pseudo- ω -bounded subspace, then X is pseudo- ω -bounded.

Theorem 3.7. Let $A \in p \in \mathbb{N}^*$ and let X be a strongly p-pseudocompact space. Then, for each sequence $(U_n)_{n \in \mathbb{N}}$ of non-empty open subsets of X, it happens that

$$L(p, (U_n)_{n \in \mathbb{N}}) = Cl(Q)$$

where $Q = \{x \in X : \text{there is a sequence } (x_n)_{n \in \mathbb{N}} \text{ with } x_n \in U_n \text{ for each } n \in A \text{ and } x = p - \lim x_n \}.$

Proof. Using arguments similar to those given in the proof of Theorem 1.3, we have $Cl(Q) \subseteq L(p, (U_n)_{n \in \mathbb{N}})$. We are only going to prove the relation $L(p, (U_n)_{n \in \mathbb{N}}) \subseteq Cl(Q)$.

Let $z \notin Cl(Q)$ and let V, W be disjoint open subsets of X such that $z \in V$ and $Cl(Q) \subseteq W$. We will show that $\{n \in \mathbb{N} : V \cap U_n \neq \emptyset\} \notin p$. Assume the contrary: $\{n : V \cap U_n \neq \emptyset\} \in p$ and take, for each $n \in \mathbb{N}$, $V_n = U_n \cap V$ if $U_n \cap V \neq \emptyset$ and $V_n = U_n$ otherwise.

Since X is strongly p-pseudocompact, there are points $x_n \in V_n$ and $x \in X$ such that $x = p - lim x_n$. For each $n \in \mathbb{N}$, $V_n \subseteq U_n$, so $x \in Q$ and W is an open neighborhood of x. This means that $\{n \in \mathbb{N} : x_n \in W\} \in p$, but this is not possible because V and W have an empty intersection; so, we must have

$$\{n \in \mathbb{N} : x_n \in W\} \subseteq \{n : V \cap U_n = \emptyset\} \notin p.$$

This concludes our proof.

Definition 3.8. Let X be a space and $p \in \mathbb{N}^*$.

- (1) We say that X is almost pseudo- ω -bounded if for each infinite countable family \mathcal{U} of open subsets of X, there is a compact subspace $K \subseteq X$ such that $|\{U \in \mathcal{U} : K \cap U \neq \emptyset\}| = \omega$.
- (2) We say that X is p-pseudo- ω -bounded if for each family $\{U_n : n \in \mathbb{N}\}$ of open subsets of X, there is a compact subspace $K \subseteq X$ such that $\{n \in \mathbb{N} : K \cap U_n \neq \emptyset\} \in p$.

Theorem 3.9. If X is locally compact, then the following statements are equivalent for every ultrafilter $p \in \mathbb{N}^*$:

- (1) X is p-pseudo- ω -bounded,
- (2) X is strongly p-pseudocompact, and
- (3) X is p-pseudocompact.

Proof. (1) \Rightarrow (2). Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of non-empty open subsets of X and let K be a compact set such that $A = \{n \in \mathbb{N} : K \cap U_n \neq \emptyset\} \in p$. Pick $x_n \in K \cap U_n$ if $n \in A$ and choose an arbitrary $x_n \in U_n$ when $n \notin A$. Since $(x_n)_{n\in\mathbb{N}}$ is a sequence in K which is compact it has p-limit.

 $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$. Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of non-empty open subsets of X and let $x \in L(p, (U_n)_{n \in \mathbb{N}})$. Let W be a compact neighborhood of x. Consider the set

$$A = \{ n \in \mathbb{N} : U_n \cap int(W) \neq \emptyset \}.$$

For each $n \in \mathbb{N}$, we take $x_n \in U_n \cap int(W)$ if $n \in A$ and let x_n be equal to x if $n \notin A$. Since $(x_n)_{n \in \mathbb{N}}$ is a sequence in Cl(W) which is compact, then $Cl(\{x_n : n \in \mathbb{N}\})$ is compact. \Box

Note that, in the last result, the locally compactness is necessary just for the implication $(3) \Rightarrow (1)$.

Corollary 3.10. If X is locally compact, then X is pseudocompact if and only if it is almost pseudo- ω -bounded.

The following questions are inspired in a question posed by M. Sanchiz and Á. Tamariz-Mascarúa [10], which remain without an answer.

Question 3.11. Is it true that for every free ultrafilter p on \mathbb{N} every (normal, first countable) topological space (topological group) X is strongly p-pseudocompact if and only if it is p-pseudocompact?

Question 3.12. Is it true that for every free ultrafilter p on \mathbb{N} every normal or first countable) topological space (topological group) X is p-compact if and only if it is strongly p-pseudocompact?

Question 3.13. Is there some countable compact (strongly pseudocompact) space non-strongly p-pseudocompact for all p on \mathbb{N} ?

Where a space X is strongly pseudocompact if, for each sequence $(U_n)_{n\in\mathbb{N}}$ of open subsets of X there is $p\in\mathbb{N}^*$ and there exists a sequence $(x_n)_{n\in\mathbb{N}}$ such that $x_n\in U_n$ for all $n\in\mathbb{N}$ and the sequence $(x_n)_{n\in\mathbb{N}}$ has p-limit.

4. Strong p-pseudocompactness and the Rudin-Keisler pre-orden on $\beta\omega$

Theorem 4.1. Let $p \in \mathbb{N}^*$ and let X be a space having a dense subset of isolated points S. Then, X is strongly p-pseudocompact if and only if X is p-pseudocompact.

Proof. Assume that X is p-pseudocompact. Let $(U_n)_{n\in\mathbb{N}}$ be a sequence of non-empty open subsets of X. Since S is dense in X, for each $n \in \mathbb{N}$, we can take a point $x_n \in U_n \cap S$. Since the points in S are isolated and X is p-pseudocompact, $(\{x_n\})_{n\in\mathbb{N}}$ is a sequence of non-empty open subsets of X and $L(p, (\{x_n\})_{n\in\mathbb{N}}) \neq \emptyset$. If $x \in L(p, (\{x_n\})_{n\in\mathbb{N}})$, then $x = p - \lim x_n$.

Corollary 4.2. Let $p, q \in \mathbb{N}^*$. Then, the following assertions are equivalent:

- (1) $p \leq_{RK} q$,
- (2) every q-pseudocompact space is p-pseudocompact,
- (3) $P_{RK}(q)$ is strongly p-pseudocompact,
- (4) every strongly q-pseudocompact space $\mathbb{N} \subseteq X \subseteq \beta \mathbb{N}$ is strongly p-pseudocompact.

Proof. The equivalence $(1) \Leftrightarrow (2)$ and the implication $(3) \Rightarrow (1)$ are consequences of Theorem 1.5 in [6]. Finally, the implication $(2) \Rightarrow (3)$ and the equivalence $(3) \Leftrightarrow (4)$ follow from Theorem 4.1 and Lemma 1.9 in [6] which says that a space X with $\mathbb{N} \subseteq X \subseteq \beta \mathbb{N}$ is p-pseudocompact if and only if $P_{RK}(p) \subseteq X$.

Question 4.3. Is it true that for every free ultrafilter p on ω every (normal, first countable) space X is p-compact if and only if it is strongly p-pseudocompact?

Definition 4.4. Let X be a topological space and let \mathcal{D} be a non-empty subset of \mathbb{N}^* . We say that X is pseudo- \mathcal{D} -bounded if for each sequence $(U_n)_{n \in \mathbb{N}}$ of non-empty open subsets of X, there are both a sequence of points $(x_n)_{n \in \mathbb{N}}$ in X and a set $\{x_p : p \in \mathcal{D}\} \subseteq X$ such that $x_n \in U_n$ and $x_p = p$ -lim x_n .

Theorem 4.5. Let $\mathcal{D} \subseteq \mathbb{N}^*$ and $\mathbb{N} \subseteq X \subseteq \beta\mathbb{N}$. Then, the following assertions are equivalent:

- (1) X is pseudo- \mathcal{D} -bounded,
- (2) X is strongly p-pseudocompact for all $p \in \mathcal{D}$, and
- (3) X is p-pseudocompact for every $p \in \mathcal{D}$.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (1). Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of non-empty open subsets of X. For each $n \in \mathbb{N}$, take $x_n \in U_n \cap \mathbb{N}$. By Lemma 1.9 in [6] and Remark 1.8 above, for each $p \in \mathcal{D}$, $p - \lim x_n \in P_{RK}(p) \subseteq X$.

Notation 4.6. Let $q \in \beta \mathbb{N}$. We will denote by $S_{RK}(q)$ the set of Rudin-Keisler successors of q: $S_{RK}(q) = \{p \in \beta(\mathbb{N}) : p \geq_{RK} q\}.$

Theorem 4.7. Let $\mathcal{D} \subseteq \mathbb{N}^*$ and $\mathbb{N} \subseteq X \subseteq \beta(\mathbb{N})$. Then, the following assertions are equivalent:

- (1) $X = \beta \mathbb{N},$
- (2) X is pseudo- ω -bounded,
- (3) X is pseudo- \mathbb{N}^* -bounded,
- (4) X is strongly p-pseudocompact for every $p \in \mathbb{N}^*$,
- (5) X is p-pseudocompact for every $p \in \mathbb{N}^*$,
- (6) X is pseudo- \mathcal{D} -bounded and for each $q \in \mathbb{N}^*$, $\mathcal{D} \cap S_{RK}(q) \neq \emptyset$,
- (7) for every $q \in \mathbb{N}^*$ there is $p \in S_{RK}(q)$ such that X is strongly p-pseudocompact, and
- (8) for all $q \in \mathbb{N}^*$, there is $p \in S_{RK}(q)$ such that X is p-pseudocompact.

Proof. The implications $(1) \Rightarrow (2)$, $(3) \Rightarrow (4) \Rightarrow (5)$ and $(2) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8)$ are evident. The equivalence $(2) \Leftrightarrow (3)$ is (4) from Theorem 3.2. The implication $(5) \Rightarrow (1)$ follows from Lemma 1.9 in [6]. Finally, $(8) \Rightarrow (5)$ is a consequence of Theorem 1.5 in [6].

Corollary 4.8. Let $\mathcal{D} \subseteq \mathbb{N}^*$ and $\mathbb{N} \subseteq X \subseteq \beta \mathbb{N}$. If X is pseudo- \mathcal{D} -bounded and it is not pseudo- ω -bounded, then there is $q \in \mathbb{N}^*$ such that $\mathcal{D} \subseteq \mathbb{N}^* \setminus S_{RK}(q)$.

5. Strong *p*-compactness and strong *p*-pseudocompactness

Recall that a point $x \in X$ is a weak *P*-point in X if x is not an accumulation point of any countable subset of X. The following result is known.

Lemma 5.1. ([11]) There are $2^{2^{\omega}}$ weak *P*-points in \mathbb{N}^* which are pairwise \leq_{RK} -incomparable.

Definition 5.2. Let X be a topological space and $\mathcal{D} \subseteq \mathbb{N}^*$. We say that X is strongly \mathcal{D} -compact if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X, there is a sequence $(U_n)_{n \in \mathbb{N}}$ of open sets such that, for each $n \in \mathbb{N}$, $x_n \in U_n$ and for each $p \in \mathcal{D}$, X is p-pseudocompact and $L(p, (U_n)_{n \in \mathbb{N}})$ is compact.

We finish this paper with one example of a space X with properties closer to pseudo- ω -boundedness which do not imply that X must be pseudo- ω -bounded. The spirit of this last example is to reinforce the relevance of the pseudo- ω -boundedness.

Example 5.3. Let $q \in \mathbb{N}^*$ be a weak *P*-point. Let \mathcal{D} be the set of all ultrafilters on \mathbb{N} which are *RK*-incomparable with *q*. Denote by \mathcal{Q} the set $\mathbb{N}^* \setminus S_{RK}(q)$. Then, $X = \beta \mathbb{N} \setminus \{q\}$ and \mathcal{Q} satisfy the following properties:

- (1) X is locally compact,
- (2) X is strongly \mathcal{D} -compact,
- (3) X is pseudo- \mathcal{Q} -bounded and \mathcal{Q} is dense in \mathbb{N}^* ,
- (4) X is not q-compact, and
- (5) X is not pseudo- ω -bounded.

Besides, we can choose q in such a way that $|\mathcal{Q}| = |\mathcal{D}| = 2^{2^{\omega}}$.

Proof. It is evident that X is not q-compact because $q \notin X$. Since X is open in $\beta \mathbb{N}$, it is locally compact. It is also clear that $\mathcal{D} \subseteq \mathcal{Q}$. By Lemma 5.1, there are $2^{2^{\omega}}$ weak P-points in \mathbb{N}^* which are pairwise RK-incomparable; so, we can assume that $|\mathcal{D}| = |\mathcal{Q}| = 2^{2^{\omega}}$. Moreover, for each $p \in \mathcal{Q}$, $P_{RK}(p) \subseteq X$; thus, \mathcal{Q} is dense in \mathbb{N}^* . By Corollary 4.8, X is pseudo- \mathcal{Q} -bounded and it is not pseudo- ω -bounded.

Finally, we are going to show that X is strongly \mathcal{D} -compact. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. Consider the set $A = \{x_n : n \in \mathbb{N}\} \cap \mathbb{N}^*$. Let U, V be two disjoint clopen subsets of $\beta\mathbb{N}$ such that $Cl_X(A) \subseteq U$ and $q \in V$. For each $n \in \mathbb{N}$, take $U_n = \{x_n\}$ if $x_n \in \mathbb{N}$ and let $U_n \subseteq U$ be a canonical clopen neighborhood of x_n if $x_n \in \mathbb{N}^*$. Let $p \in \mathcal{D}$. If $B = \{n \in \mathbb{N} : x_n \in \mathbb{N}^*\} \in p$, then, by Proposition 1.3,

$$L_X(p, (U_n)_{n \in \mathbb{N}}) = L_X(p, (U_n)_{n \in B}) = L_U(p, (U_n)_{n \in B}).$$

Since U is a non-empty compact space, $L_U(p, (U_n)_{n \in B})$ is compact too. On the other hand, if $C = \{n \in \mathbb{N} : x_n \in \mathbb{N}\} \in p$, then, by Proposition 1.3 and Remark 1.8,

$$L_{\beta(\mathbb{N})}(p, (U_n)_{n \in \mathbb{N}}) = \{p - lim_C \ x_n\} \subseteq P_{RK}(p) \subseteq X.$$

Therefore, $L_X(p, (U_n)_{n \in \mathbb{N}})$ is a non-empty compact subspace of X. \Box

In particular, if $q \in \mathbb{N}^*$ is a weak *P*-point and $p \in \mathbb{N}^*$ is \leq_{RK} -incomparable with q, then the space $X = \beta \mathbb{N} \setminus \{q\}$ is strongly *p*-compact, locally compact, not *q*-compact and not pseudo- ω -bounded.

The authors would like to thank the anonymous referee for careful reading and very useful suggestions and comments that help to improve the presentation of the paper.

References

- J. Angoa, Y. Ortiz-Castillo, Á. Tamariz-Mascarúa, Normality and λ-extendable properties in Σ_κ(F)-products, Top. Proc. **39** (2012), 251–279.
- [2] _____, Compact-like properties in hyperspaces, Matematicki Vesnik, Vol. 65 No. 3 (2013), pp. 306–318.
- [3] A. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193.
- [4] W. Comfort, Ultrafilters: Some Old and some New Results, Bull. Amer. Math. Soc. 83 (1977), 417–455.
- [5] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [6] S. García-Ferreira, Some Generalizations of Pseudocompactness, Ann. New York Acad. Sci. 728 (1994), 22–31.
- [7] S. García-Ferreira, Three Orderings On β(ω) \ ω, Topology Appl. 50 (1993), 199– 216.
- [8] J. Ginsburg and V. Saks, Some Applications of Ultrafilters in Topology, Pacific J. of Math. 57 (1975), 403–418.
- [9] J. Porter and R. Woods, Extensions and Absolutes of Huasdorff Spaces, Springer-Verlag, New York, 1988.
- [10] M. Sanchis, Á. Tamariz-Mascarúa p-pseudocompactness and related topics in topological spaces, Topology Appl. 98 (1999), 323–343.
- [11] P. Simon, Applications of independent linked families, Topology, theory and applications (Eger, 1983) Colloq. Math. Soc. János Bolyai 41 (North-Holland, Amsterdam-New York, 1985) 561-580.

Facultad de Ciencias Físico-Matemáticas, Benemerita Universidad Autónoma de Puebla.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNAM. E-mail address: jangoa@fcfm.buap.mx E-mail address: yasserfoc@yahoo.com.mx E-mail address: atamariz@servidor.unam.mx