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A space X is said to have the Menger property (or simply X is Menger) if for every 
sequence 〈Un : n ∈ ω〉 of open covers of X, there exists a sequence of finite sets 
〈Fn : n ∈ ω〉 such that 

⋃
n∈ω Fn is a cover of X and Fn ⊂ Un for every n ∈ ω. 

We prove: (1) If X is a subspace of Cp(Y ), where Y n is Menger for every n ∈ ω, 
and X ′ (the set of non-isolated points of X) is compact, then Cp(X, 2) is Menger; 
(2) If Cp(X, 2) is Menger and X is normal, then X ′ is countably compact; (3) For a 
first countable GO-space without isolated points L, Cp(L, 2) is Menger if and only if 
Cp(L, 2) is Lindelöf and L is countably compact; and for a subspace L of an ordinal, 
Cp(L, 2) is Menger if and only if Cp(L, 2) is Lindelöf and L′ is countably compact; 
(4) For every F ∈ ω∗, Cp(ω∪{F}, 2) is Menger if and only if F is a strong P -point; 
(5) Assuming the Continuum Hypothesis, there is a maximal almost disjoint family 
A for which the space Cp(Ψ(A), 2) is Menger.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

M. Scheepers started the identification and classification of common prototypes for selective properties 
appearing in classical and modern works. In [12,21,23,24] we can find good surveys of this field of Selective 
Principles in Mathematics. Two of the main prototypes in the field are defined as follows [21]. Fix a topo-
logical space X, and let A and B be collections of covers of subsets of X. The following are properties which 
X may or may not have [21]:
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S1(A,B): For each sequence 〈Un : n ∈ ω〉 of members of A, there exists, for each n ∈ ω, Un ∈ Un such 
that {Un : n ∈ ω} ∈ B.

Sfin(A,B): For each sequence 〈Un : n ∈ ω〉 of members of A, there exists, for each n ∈ ω, a finite subset 
Fn ⊂ Un, such that 

⋃
{Fn : n ∈ ω} ∈ B.

When A and B coincide with the collection O of all open covers of X, then, in the case of metric spaces, 
Sfin(O, O) is the property shown by W. Hurewicz [11] to be equivalent to K. Menger’s property E [15]. And 
S1(O, O) is F. Rothberger’s property traditionally known as C ′′ [17].

So we will say that a space X has the Menger property (or simply X is Menger) if X has property 
Sfin(O, O), and a space X is Rothberger if X has property S1(O, O).

Every σ-compact space and every Rothberger space has the Menger property and every space with the 
Menger property is Lindelöf.

Naturally, M. Scheepers’s prototypes of selective principles have been analyzed in the class of spaces of 
real-valued continuous functions defined on a space X with its pointwise convergence topology, Cp(X); see 
for example [9,18,19,25]. With respect to the Menger property, in [1] the following theorem is proved:

Theorem. Cp(X) is Menger if and only if X is finite.

For spaces of the form Cp(X, 2), of course, there is not an equivalent result to the previous theorem. 
If the space X is discrete, Cp(X, 2) is compact and so it is Menger. And the space Cp(2ω, 2) is countable 
and thus it is Menger as well. Moreover, Á. Tamariz-Mascarúa and A. Contreras-Carreto in [7] show that if 
X is a EG-space and X ′ is Eberlein compact, then Cp(X, 2) is σ-compact (hence, Menger). Therefore, the 
class of spaces for which Cp(X, 2) is Menger is not trivial.

In this article we are going to analyze when Cp(X, 2) is Menger for several classes of spaces X. In 
Section 3, we list some general remarks on Menger spaces. Section 4 is devoted to obtain some general 
results about Menger property on spaces of the form Cp(X, 2). In Sections 5, 6, 7 and 8 we analyze sufficient 
and necessary conditions in order to have Cp(X, 2) Menger when X is a GO-space without isolated points, 
a subspace of ordinals, a countable space with exactly one non-isolated point and a Ψ -space, respectively.

With respect to the Rothberger property in Cp(X, 2), the first author of this paper made an analysis in [2].

2. Notation and terminology

All spaces under consideration are assumed to be Tychonoff, i.e., T3 1
2
. Given a space X, X ′ denotes the 

set of non-isolated points of X. For spaces X and Y , Cp(X, Y ) is the subspace of Y X consisting of the 
continuous functions from X to Y (i.e., C(X, Y ) with the topology of the pointwise convergence). As usual, 
Cp(X) will mean Cp(X, R). For a space X, n ∈ ω, points x0, . . . , xn ∈ X, f ∈ Cp(X) and a positive real 
number δ, we will denote by [f ; x0, . . . , xn; δ] the set {g ∈ Cp(X) : ∀i(0 ≤ i ≤ n → |f(xi) − g(xi)| < δ)}. 
Recall that for every space X and every discrete space Y , there exists a zero-dimensional space Z such that 
Cp(X, Y ) ∼= Cp(Z, Y ). So, where reference is made to Cp(X, Y ) where Y is discrete, we will assume that 
X is a zero-dimensional space. Let iw(X) be the minimal cardinal κ such that X has a weaker Tychonoff 
topology of weight κ; evidently, the statement iw(X) = ω is equivalent to saying that X has a weaker 
separable metrizable topology. A space X has countable fan tightness if for any x ∈ X and any sequence 
〈An : n ∈ ω〉 of subsets of X such that x ∈

⋂
n∈ω cl (An), we can choose a finite set Bn ⊂ An for each 

n ∈ ω in such a way that x ∈ cl (
⋃
{Bn : n ∈ ω}). A space X has a countable tightness (which is denoted by 

t(X) ≤ ω) if any x ∈ X and A ⊂ X, if x ∈ cl (A), then there is a countable set B ⊂ A such that x ∈ cl (B). 
A family P of non-empty subsets of a space X is said to be π-network at x ∈ X if every neighborhood of x
contains some member of P. For any set X, [X]<ω will denote the set of all finite subsets of X. The set of 
ordinals strictly less than an ordinal α equipped with its order topology will be denoted simply by α.
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3. Properties of Menger spaces

As we have already mentioned:

Proposition 3.1. Every σ-compact space is Menger and every Menger space is a Lindelöf space.

Some other properties of Menger spaces are as follows:

Proposition 3.2. Any closed subspace of a Menger space is a Menger space and the continuous image of a 
Menger space is a Menger space.

For the purposes of this paper, the following equivalent formulation of Menger space will be useful.

Lemma 3.3. A space X is Menger if and only if for any sequence of open covers 〈Un : n ∈ ω〉 such that, 
for every n ∈ ω, Un+1 refines Un, there exists a sequence of finite sets 〈Fn : n ∈ ω〉 such that 

⋃
n∈ω Fn is a 

cover of X and Fn ⊂ Un for each n ∈ ω.

Proof. We only have to show the sufficiency. Let 〈Un : n ∈ ω〉 be a sequence of open covers of X. By 
recursion we define a new sequence 〈U ′

n : n ∈ ω〉 such that, for each n ∈ ω, U ′
n+1 refines U ′

n and Un+1. Let 
U ′

0 = U0. Suppose that U ′
0, . . . , U ′

n have been defined. We define U ′
n+1 = {U ∩ V : U ∈ Un ∧ V ∈ U ′

n}. Then 
the sequence 〈U ′

n : n ∈ ω〉 satisfies the required properties. �
We shall need the following results.

Proposition 3.4 ([22]). The countable union of Menger spaces is Menger.

Proposition 3.5 ([22]). If X is a Menger space and Y is σ-compact, then X × Y is Menger.

A space X is a P -space if all Gδ-sets in X are open.

Proposition 3.6 ([26]). A P -space is Menger if and only if it is Lindelöf.

The typical example of a Lindelöf space which is not Menger is the space of irrationals ωω. As a conse-
quence of this we have the following:

Proposition 3.7. For any space X, Xω is Menger if and only if X is compact.

Proof. Suppose that Xω is Menger and X is not compact. Since X is Lindelöf, X is not countably compact. 
Then X contains a closed countable discrete subspace D. In this manner Dω is a closed subspace Xω

homeomorphic to ωω. But this is a contradiction to Proposition 3.2. �
As the Lindelöf property, the Menger property is not productive. In [14] A. Lelek gives an example 

(assuming the continuum hypothesis) of a Menger space X such that X2 is not Menger.

4. The Menger property on Cp(X, 2)

Recall that where reference is made to Cp(X, Y ) where Y is discrete, we will assume that X is a zero-
dimensional space.

The following is shown in [1]:

(	) If Cp(X) is a Lindelöf space, then each finite power of X has countable tightness.
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A space X has countable supertightness at x ∈ X if any π-network at x consisting of finite subsets of X
contains a countable π-network at x. If X has this property in each of its points we say that X has countable 
supertightness, and we denote this fact by st(X) ≤ ω. Clearly, countable supertightness implies countable 
tightness. With this new notion of tightness, we obtain a more general result than (	) for Cp(X, 2):

Proposition 4.1. If Cp(X, 2) is Lindelöf, then st(Xn) ≤ ω for any n ∈ ω.

Proof. Fix k ∈ ω, a point x = (x1, . . . , xk) ∈ Xk and a π-network P at x consisting of finite subsets of Xk. 
We take open neighborhoods U1, . . . , Uk such that, for each i, j ∈ {1, . . . , k}, xi ∈ Ui, Ui = Uj if xi = xj , 
and Ui ∩ Uj = ∅ if xi 
= xj . Let U = U1 × · · · × Uk. We can suppose that each member of P is contained 
in U . Since the space Cp(X, 2) is Lindelöf, the closed subspace

Φ =
{
f ∈ Cp(X, 2) : ∀i

(
1 ≤ i ≤ k → f(xi) = 1

)}
of Cp(X, 2) is Lindelöf. For each F ∈ P, we define HF =

⋃
{πi[F ] : i ∈ {1, . . . , k}}, where πi is the projection 

of Xk over the i-th coordinate, and VF = {f ∈ Cp(X, 2) : ∀x(x ∈ HF → f(x) = 1)}. Given f ∈ Φ, for each 
i ∈ {1, . . . , k}, there is an open subset Vi ⊂ Ui such that xi ∈ Vi and f [Vi] ⊂ {1}. Since P is a π-network, 
there is F ∈ P such that F ⊂ V1 × · · · × Vk. So, f [πi[F ]] ⊂ {1} for each i ∈ {1, . . . , k} and consequently 
f ∈ VF . This shows that {VF : F ∈ P} is an open cover of Φ. Therefore, there is a countable subset P ′ of 
P such that {VF : F ∈ P ′} forms an open cover of Φ. Let us prove that P ′ is a π-network at x.

Let W = W1 × · · · ×Wk be an open subset which contains x. We can assume that Wi = Wj if xi = xj

and Wi ⊂ Ui for each i, j ∈ {1, . . . , k}. We choose f ∈ Cp(X, 2) such that

f

[
X

∖ k⋃
i=1

Wi

]
⊂ {0}

and f(xi) = 1 for each i ∈ {1, . . . , k}. Thus f ∈ Φ, and consequently, there is F ∈ P ′ such that f ∈ VF . 
Now, if (y1, . . . , yk) ∈ F , since F ⊂ U , yi ∈ Ui for each i ∈ {1, . . . , k}. Moreover, due to the fact that f ∈ VF , 
y1, . . . , yk ∈

⋃k
i=1 Wi. However, Ui ∩ Uj = ∅ if xi 
= xj , then yi ∈ Wi for each i ∈ {1, . . . , k}. This shows 

that F ⊂ W . �
M. Sakai introduces the following notion.

Definition 4.2 ([20]). A space X has countable fan tightness for finite sets if for each point x ∈ X and each 
sequence 〈Pn ⊂ [X]<ω : n ∈ ω〉 of π-networks at x consisting of finite subsets of X, there is, for each n ∈ ω, 
a finite subfamily Gn ⊂ Pn such that 

⋃
{Gn : n ∈ ω} is a π-network at x.

The following equivalent formulation for countable fan tightness for finite sets will be useful.

Lemma 4.3. A space X has a countable fan tightness for finite sets if and only if for each point x ∈ X

and any decreasing sequence 〈Pn ⊂ [X]<ω : n ∈ ω〉 of π-networks at x, there are, for each n ∈ ω, finite 
subfamilies Gn ⊂ Pn such that 

⋃
{Gn : n ∈ ω} is a π-network at x.

Proof. The necessity is clear; we show the sufficiency. Let 〈Pn ⊂ [X]<ω : n ∈ ω〉 be a sequence of π-networks 
at x ∈ X. For each n ∈ ω, we define P ′

n =
⋃

n≤k Pk. Then, by hypothesis, there is a sequence of finite 
sets 〈F ′

n : n ∈ ω〉 where F ′
n ⊂ P ′

n, such that 
⋃

n∈ω F ′
n is a π-network at x. Hence, if we define Fn =

(
⋃

k≤n F ′
k) ∩ Pn, 〈Fn : n ∈ ω〉 is the required sequence. �

Making a modification of the proof of Proposition 4.1 we have the following.
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Proposition 4.4. If the space Cp(X, 2) is Menger, then Xn has countable fan tightness for finite sets for any 
n ∈ ω.

Proof. We fix a k ∈ ω, a point x = (x1, . . . , xk) ∈ Xk and a sequence 〈Pn : n ∈ ω〉 of π-networks at x
consisting of finite subsets of X. We take open subsets U1, . . . , Uk of X such that, for each i, j ∈ {1, . . . , k}, 
xi ∈ Ui, Ui = Uj if xi = xj , and Ui ∩ Uj = ∅ if xi 
= xj . Let U = U1 × · · · × Uk. We can suppose that, for 
every n ∈ ω, each member of Pn is contained in U . Since the space Cp(X, 2) is Menger, the closed subspace

Φ =
{
f ∈ Cp(X, 2) : ∀i

(
1 ≤ i ≤ k → f(xi) = 1

)}
of Cp(X, 2) is Menger. For each F ∈ [Xk]<ω, we define HF =

⋃
{πi[F ] : i ∈ {1, . . . , k}}, where πi is the 

projection of Xk over the i-th coordinate, and we set VF = {f ∈ Cp(X, 2) : ∀x(x ∈ HF → f(x) = 1)}. For 
each n ∈ ω, let

Un = {VF : F ∈ Pn}.

Given f ∈ Φ, for each i ∈ {1, . . . , k}, there is an open subset Vi ⊂ Ui such that xi ∈ Vi and f [Vi] ⊂ {1}. 
Since Pn is a π-network, there is F ∈ Pn such that F ⊂ V1×· · ·×Vk. So f [πi[F ]] ⊂ {1} for each i ∈ {1, . . . , k}. 
Thus f ∈ VF ∈ Un. This implies that Un is an open cover of Φ. Therefore, since Φ is Menger, there is a 
sequence of finite sets 〈Fn : n ∈ ω〉 such that 

⋃
n∈ω Fn forms a cover of Φ and Fn ⊂ Un for every n ∈ ω. 

Choosing a finite subset P ′
n ⊂ Pn such that Fn is equal to {VF : F ∈ P ′

n} and using similar argumentation 
to that developed in the proof of Theorem 4.1, we can prove that 

⋃
n∈ω P ′

n is a π-network at x. �
The converse of Propositions 4.1 and 4.4 are false. The following example can be found in [1, II.1.7].

Example 4.5. Let X be the well-known “double arrow” compact space; that is, X is the set [0, 1] ×2 endowed 
with the topology generated by the lexicographic order. For each a ∈ (0, 1), we define fa : X → 2 as follows:

fa(x) =
{

0, if x ≤ (a, 0);
1, if x ≥ (a, 1).

Then, the subspace A = {fa : a ∈ (0, 1)} is closed and discrete in Cp(X, 2). Hence, Cp(X, 2) is not a 
Menger space. However, Xn has countable fan tightness for finite sets (because Xn satisfies the first axiom 
of countability) for each n ∈ ω.

Proposition 3.7 leaves out the possibility that Cp(X, 2)ω ∼= Cp(X, 2ω) have the Menger property when X
is not a discrete space. We will only analyze the finite power of the spaces Cp(X, 2), and for this we have 
the following:

Proposition 4.6. For any space X, Cp(X, 2)n is Menger for any n ∈ ω if and only if Cp(X, k) is Menger for 
any k ∈ ω.

Proof. This is immediate of the fact that Cp(X, 2)n is homeomorphic to Cp(X, 2n) for any n ∈ ω and the 
fact that a closed subspace of a Menger space is Menger. �
Definition 4.7. A space X is an Eberlein–Grothendieck-space, or an EG-space, if it is homeomorphic to 
a subspace of Cp(Y ) for some compact space Y . We say that X is Eberlein compact if X is a compact 
EG-space.
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M. Sakai [20] shows that Cp(X) has countable fan tightness for finite sets if and only if Xn is Menger 
for each n ∈ ω. Making use of this fact, it is clear that, indeed, all EG-spaces have countable fan tightness 
for finite sets. With everything we have already said, it is natural to conjecture that the spaces X with 
Cp(X, 2) Menger are subspaces of Cp(Y ) where Y n is Menger for each n ∈ ω. The following result shows 
that this is true as long as X ′ is compact.

Theorem 4.8. Let X be a subspace of Cp(Y ) where Y k is Menger for every k ∈ ω. If X ′ is compact, then 
Cp(X, 2)n is Menger for each n ∈ ω.

Proof. We adapt, for our purposes, the respective part of the proof of Theorem 4.15 from [7]. We only show 
that Cp(X, 2) is Menger; the (n ≥ 2)-cases are shown similarly. For each n ∈ ω, we define

Fn =
{
ϕ ∈ 2X : ∃(y1, . . . , yn) ∈ Y n∀f ∈ X ′(ϕ[[f ; y1, . . . , yn; 1/n]

]
=

{
ϕ(f)

})}
,

where [f ; y1, . . . , yn; 1/n] = {g ∈ Cp(Y ) : ∀i(1 ≤ i ≤ n → |f(yi) − g(yi)| < 1/n)}. Each Fn is Menger. 
Indeed, for each n ∈ ω, Fn coincides with π2[Sn], where π2 is the projection of Y n × 2X over 2X and

Sn =
{
(y1, . . . , yn, ϕ) ∈ Y n × 2X : ∀f ∈ X ′(g ∈ [f ; y1, . . . , yn; 1/n] → ϕ(f) = ϕ(g)

)}
.

Now, Proposition 3.5 ensures that Y n×2X is Menger. Then, to prove that Fn is Menger, by Proposition 3.2, 
it is sufficient to show that Sn is Menger. And to do this we proceed as follows: Let (y0

1 , . . . , y
0
n, ϕ0) ∈

Y n × 2X \ Sn. This means that there are f0 ∈ X ′ and g0 ∈ X such that g0 ∈ [f0; y0
1 , . . . , y

0
n; 1/n] and 

ϕ0(f0) 
= ϕ0(g0). Then, the open set(
n∏

i=1
|f0 − g0|−1[[0, 1/n)

])
×
{
ϕ ∈ 2X : ϕ(f0) = ϕ0(f0) ∧ ϕ(g0) = ϕ0(g0)

}
of Y n × 2X contains the point (y0

1 , . . . , y
0
n, ϕ0) and does not intersect Sn. Therefore, Sn is a closed subset of 

the Menger space Y n × 2X , and so it is Menger.
Now we will show that Cp(X, 2) is equal to 

⋃
n∈ω Fn and, by Proposition 3.4, our theorem will be 

proved. First observe that Cp(X, 2) is contained in 
⋃

n∈ω Fn. In fact, fix a function ϕ ∈ Cp(X, 2). Since 
ϕ is continuous, for each f ∈ X ′ we can take a neighborhood Uf of f in Cp(Y ) such that ϕ(g) = ϕ(f) if 
g ∈ Uf ∩X. Now, for each f ∈ X ′ there are nf ∈ ω and yf1 , . . . , y

f
nf

∈ Y for which

f ∈
[
f ; yf1 , . . . , yfnf

; 1/nf

]
∩X ⊂ Uf ∩X.

Since X ′ is a compact space, there are points f0, . . . , fk ∈ X ′ such that

X ′ ⊂
[
f0; yf0

1 , . . . , yf0
nf0

; 1/(2nf0)
]
∪ · · · ∪

[
fk; yfk1 , . . . , yfknfk

; 1/(2nfk)
]
.

For each f ∈ X ′ we take

Vf =
[
f ; yf0

1 , . . . , yf0
nf0

, yf1
1 , . . . , yf1

nf1
, . . . , yfk1 , . . . , yfknfk

; 1/l
]
∩X

with l = 2(nf0 + · · · + nfk). It is evident that the collection V = {Vf : f ∈ X ′} covers X ′. We have that V
refines {Uf ∩X : f ∈ X ′}. Indeed, if f ∈ X ′, f must belong to

[
fj ; y

fj
1 , . . . , yfjn ; 1/(2nfj )

]

fj
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for some j ∈ {1, . . . , k}. Then, if g ∈ Vf we have

∣∣g(yfji )
− fj

(
y
fj
i

)∣∣ ≤ ∣∣g(yfji )
− f

(
y
fj
i

)∣∣ +
∣∣f(yfji )

− fj
(
y
fj
i

)∣∣ < 1
l

+ 1
2nfj

≤ 1
nfj

.

Therefore, g ∈ [fj ; y
fj
1 , . . . , yfjnfj

; 1/(nfj )] ∩X, and the latter set is contained in Ufj ∩X.
Now we prove that ϕ belongs to Fl. First note the following: if f ∈ X ′, g ∈ X and they satisfy 

|f(x) − g(x)| < 1/l for all x ∈ {yf0
1 , . . . , yf0

nf0
, . . . , yfk1 , . . . , yfknfk

}, then g ∈ Vf and, consequently, f, g ∈ Uh∩X
for some h ∈ X ′. Because of the choice of Uh, ϕ(g) = ϕ(h) = ϕ(f). Therefore, for each f ∈ X ′, if 
g ∈ [f ; yf0

1 , . . . , yf0
nf0

, . . . , yfk1 , . . . , yfknfk
; 1/l], ϕ(f) = ϕ(g). This shows that ϕ ∈ Fl.

Finally we prove that, for each n ∈ ω, Fn ⊂ Cp(X, 2); that is, each element of Fn is a continuous function. 
Let ϕ ∈ Fn and f ∈ X. If f is an isolated point of X then ϕ is continuous at f . Suppose f ∈ X ′. By definition 
of Fn, there is (y1, . . . , yn) ∈ Y n such that ϕ[[f ; y1, . . . , yn; 1/n] ∩X] = {ϕ(f)}. Since [f ; y1, . . . , yn; 1/n] ∩X

is an open subset of X containing f , ϕ is continuous at f . �
Given a space X, C∗

p(X, ω) denotes the subspace of Cp(X) consisting of all bounded functions with values 
in ω.

Corollary 4.9. Let X be a space and suppose that X ′ is compact. Then the following statements are equivalent:

(a) Cp(X, 2)n is Menger for each n ∈ ω;
(b) X ⊂ Cp(Y ) for some space Y such that Y n is Menger for each n ∈ ω;
(c) C∗

p (X, ω) is Menger.

Proof. The equivalence of (a) and (c) is immediate from the fact that C∗
p (X, ω) =

⋃
n∈ω Cp(X, n) (see 

Propositions 3.2 and 3.4). (a) implies (b) follows from Theorem 4.8 and the fact that Cp(X, 2)n is home-
omorphic to Cp(X, 2n) for each n ∈ ω. And the proof of (b) implies (a) is as follows: For each x ∈ X, we 
define x̃ : Cp(X, 2) → 2 as x̃(f) = f(x). It is not difficult to show that the function x �→ x̃ is an embedding 
of X into Cp(Cp(X, 2)). Then Y = Cp(X, 2) is the required space. �

A subspace Y of a space X is bounded in X if for every continuous function f : X → R, f � Y is a 
bounded function, or equivalently, if every sequence of open sets in X, which meets Y , has an accumulation 
point in X.

Since Q and ωω are second countable, Cp(Q, 2) and Cp(ωω, 2) are Lindelöf. The following result rules out 
the possibility that Cp(Q, 2) and Cp(ωω, 2) satisfy the Menger property.

Theorem 4.10. If Cp(X, 2) is Menger, then X ′ is bounded in X.

Proof. We proceed by contradiction. Suppose that there exists a sequence 〈On : n ∈ ω〉 of open subsets of 
X without accumulation points in X such that On∩X ′ 
= ∅. We can suppose without loss of generality that 
each element of the sequence is open and closed, and that any two different elements of this sequence are 
disjoint. Let Y = X \

⋃
n∈ω On. Since the sequence 〈On : n ∈ ω〉 does not have accumulation points, Y is 

open and closed. Moreover, the family {On : n ∈ ω} ∪ {Y } forms a partition of X in clopen subsets of X. 
Then Cp(X, 2) is homeomorphic to ( ∏

n∈ω

Cp(On, 2)
)
× Cp(Y, 2).

For each n ∈ ω, since Cp(X, 2) is Menger, Cp(On, 2) is Menger, and hence, Lindelöf. On the other hand, 
since each On contains a non-isolated point of X, Cp(On, 2) is a proper dense subspace of 2On . So, since 
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Cp(On, 2) is Lindelöf, then Cp(On, 2) is not countably compact; in particular, it contains a countable discrete 
closed subspace Dn. In this manner, 

∏
n∈ω Dn is a closed subspace of Cp(X, 2), and given that Cp(X, 2) is 

Menger, 
∏

n∈ω Dn is Menger, which is impossible since it is homeomorphic to ωω. �
Corollary 4.11. If X is a normal space and Cp(X, 2) is Menger, then X ′ is countably compact.

Proof. By Theorem 4.10, X ′ is bounded in X. Since X is a normal space and X ′ is a closed subset of X, 
X ′ is pseudocompact. Again, by the normality of X, X ′ is countably compact. �
Corollary 4.12. Let X be a Lindelöf space. Then Cp(X, 2)n is Menger for any n ∈ ω if and only if X ′ is 
compact and X ⊂ Cp(Y ) for some space Y such that Y n is Menger for each n ∈ ω.

Proof. If Cp(X, 2)n is Menger for any n ∈ ω, then Cp(X, n) is Menger for each n ∈ ω and, by Corollary 4.9, 
X ⊂ Cp(Y ) for some space Y such that Y n is Menger for each n ∈ ω. Furthermore, applying Corollary 4.11, 
X ′ is countably compact and hence compact since X is a Lindelöf space. The proof of the converse is a 
consequence of Theorem 4.8. �

A space is σ-pseudocompact if it is the countable union of pseudocompact subspaces. The following 
theorem appears in [1, III.4.23].

Theorem 4.13 ([1]). If X contains a dense σ-pseudocompact subspace, then every countably compact subspace 
of Cp(X) is compact.

Corollary 4.14. Let X be a space with iw(X) = ω. Then the following statements are equivalent.

(a) X ′ is compact and X ⊂ Cp(Y ) for some space Y such that Y n is Menger for any n ∈ ω;
(b) Cp(X, 2)n is Menger for any n ∈ ω and X is a normal space.

Proof. By Theorem 4.8, (a) implies that Cp(X, 2)n is Menger for any n ∈ ω. Moreover, since X is regular 
and X ′ is compact, then X is normal. Now suppose (b), since X ⊂ Cp(Cp(X, 2)), to prove (a) it is sufficient 
to show that X ′ is compact. The normality of X and Corollary 4.11 imply that X ′ is a countably compact 
space. Given that iw(X) = ω, Cp(X, 2) is separable. By Theorem 4.13, X ′ is compact. �

On metric spaces we have the following.

Theorem 4.15. Let X be a metrizable space. Then the following statements are equivalent.

(a) Cp(X, 2) is Menger;
(b) Cp(X, 2)n is Menger for each n ∈ ω;
(c) Cp(X, 2) is σ-compact;
(d) X ′ is compact.

Proof. Since every metrizable space is an EG-space (see [1, IV.1.25]), X is an EG-space. Then, if X ′ is 
countably compact, it is compact being X metrizable; so, X ′ is Eberlein compact, and by Corollary 4.12 
in [7], Cp(X, 2) is σ-compact. This proves that (d) implies (c). Clearly (c) implies (b) and (b) implies (a). 
Finally, by Corollary 4.11, (a) implies (d). �
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5. The Menger property on Cp(L, 2) when L is a GO-space

A space L is a GO-space (Generalized Ordered space) if it is a subspace of a linearly ordered topological 
space. Observe that if L is a countable GO-space, then L is zero-dimensional, separable and metrizable (and 
Cp(L, 2) is Lindelöf). Then, by Theorem 4.15 we obtain:

Proposition 5.1. Let L be a countable GO-space. Then the following statements are equivalents.

(a) Cp(L, 2) is Menger;
(b) Cp(L, 2) is σ-compact;
(c) L′ is compact.

Now we are going to characterize the Menger property on Cp(L, 2) when L is an uncountable GO-space. 
We will follow some notations, terminology and constructions due to R.Z. Buzyakova in [6]. First we will 
review a construction of the Dedekind completion of a given GO-space L.

Definition 5.2. An ordered pair 〈A, B〉 of disjoint closed subsets of a GO-space L is called a Dedekind section
if A ∪ B = L, maxA or minB do not exist, and A is to the left of B; that is, for every a ∈ A and b ∈ B, 
a < b holds. A pair 〈L, ∅〉 (〈∅, L〉) is also a Dedekind section if maxL (minL) does not exist.

Definition 5.3. The Dedekind completion of L, denoted by cL, is constructed as follows. The set cL is the 
union of L and the set of all Dedekind sections of L. The order on cL is natural: the order on cL among 
elements of L coincides with the order on L of these elements. If x ∈ L and y = 〈A, B〉 ∈ cL \ L then x is 
less (greater) than y if x ∈ A (x ∈ B). If x = 〈A1, B1〉 and y = 〈A2, B2〉 are elements of cL \ L, then x is 
less than y if A1 is a proper subset of A2. Consider now cL with the order topology generated by the order 
just defined. We will denote by ∞ and −∞ the supremum and infimum, respectively, of cL.

Observe that for every GO-space L, cL is a compact linearly ordered space.
For a given GO-space L we consider the space T (L):

Definition 5.4. An element x ∈ cL is in T (L) if and only if x ∈ cL \L, or x ∈ L and either x is the smallest 
or the greatest element in L or x has an immediate successor in L. Points of T (L) that are in L are declared 
isolated. The other points inherit base neighborhoods from the Dedekind completion cL.

Observe that T (L) is a GO-space. Indeed, T (L) can be obtained from cL as follows. For each x ∈ L

that has an immediate successor x+ in L, insert a new point px between x and x+. If x ∈ L is the smallest 
element of L, we add a point p−∞ to the left of x; and if x ∈ L is the greatest element of L, we add a 
point p∞ to the right of x. The resulting space is a compact linearly ordered topological space containing 
cL as a closed subspace. The subspace of this structure that consists of all px’s and cL \L is a copy of T (L). 
Thus we can think of T (L) as a GO-space with the order inherited from cL. R.Z. Buzyakova presents in [6]
some examples of T (L) for some particular GO-spaces.

If x1, . . . , xn ∈ cL and −∞ ≤ x1 ≤ · · · ≤ xn ≤ ∞ then by f = f0
x1,...,xn

we denote the function from L
to 2 defined by

f
[
(xi, xi+1] ∩ L

]
= {i mod 2},

for each i ∈ {1, . . . , n}. The rightmost formula is simply {1} if n is odd and {0} otherwise. The functions 
f1
x ,...,x are defined similarly by changing {0} with {1} in the above formulas.

1 n
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Definition 5.5. A function f from X to 2 belongs to Sp(L, 2) if and only if there exists −∞ ≤ x1 ≤ · · · ≤
xn ≤ ∞ in T (L) such that f = f0

x1,...,xn
or f = f1

x1,...,xn

Observe that [−∞, x1] ∩ L, (x1, x2] ∩ L, . . . , (xn, ∞] ∩ L are clopen because x1, . . . , xn ∈ T (L). There-
fore f0

x1,...,xn
is continuous and Sp(L, 2) ⊂ Cp(L, 2). The topology of Sp(L, 2) is the topology of subspace 

of Cp(L, 2). For each n ≥ 1, we define

Sn =
{
f ∈ Sp(L, 2) : ∃x1, . . . , xn ∈ T (L)

(
f = f0

x1,...,xn
∨ f = f1

x1,...,xn

)}
.

Observe that Sp(L, 2) =
⋃

1≤n Sn, and Sp(L, 2) = Cp(L, 2) if L is countably compact.
We are going to denote by S∗ the subspace {f1

x : x ∈ T (L)} of S1.

Lemma 5.6 ([6]). Let L be a GO-space. Then for any f ∈ Sp(L, 2), there exist f1, . . . , fk ∈ S∗ such that 
f = f1 + · · · + fk.

More properties on S∗ are given in [6]. One of these is the following:

Theorem 5.7 ([6]). The subspace S∗ of Sp(L, 2) is homeomorphic to T (L).

For a countably compact GO-space L, R.Z. Buzyakova proves in [6] that Cp(L, 2) is Lindelöf if and only 
if T (L) is Lindelöf. We show that in fact this is a sufficient condition in order to have Cp(L, 2) Menger.

Theorem 5.8. Let L be a first countable GO-space without isolated points. The following statements are 
equivalent.

(a) Cp(L, 2) is Lindelöf and L is countably compact,
(b) T (L) is Lindelöf and L is countably compact,
(c) T (L)n is Menger for each n ∈ ω and L is countably compact,
(d) Cp(L, 2)n is Menger for each n ∈ ω,
(e) C∗

p (L, ω) is Menger,
(f) Cp(L, 2) is Menger.

Proof. The equivalence (a) ⇔ (b) is Theorem 4.1 in [6]. We suppose (b) and we are going to prove (c). Let us 
show that T (L) is a P -space. For each n ∈ ω, let Un be an open subset of T (L). We are going to prove that 
F =

⋂
n∈ω Un is open. Take any x in this intersection. If x ∈ L then x is isolated in T (L). If x /∈ L then, due 

to the countably compactness of L, x is unreachable by nontrivial countable sequence in cL, and therefore, 
in T (L). In both cases, we conclude that x is in the interior of F . This shows that T (L) is a P -space. Then 
T (L)n is a P -space for n ∈ ω. Applying Noble’s theorem [16], a countable power of a Lindelöf P -space is 
Lindelöf, T (L)ω is Lindelöf, and hence, T (L)n is Lindelöf for any n ∈ ω. But Lindelöf property agrees with 
Menger property in P -spaces (see Proposition 3.6). Then T (L)n is Menger for any n ∈ ω.

Now suppose (c). Given that T (L) is homeomorphic to S∗ (see Theorem 5.7) and the countable union 
of Menger spaces is Menger, the topological sum 

⊕
k∈ω(S∗)k is Menger. Moreover, every finite power 

of this space is Menger. Besides, if we define the continuous function F :
⊕

k∈ω(S∗)k → Sp(L, 2) as 
F(F ) = f1 + · · · + fk where F = (f1, . . . , fk) ∈ (S∗)k. Then by Lemma 5.6, F is surjective. Then, for each 
n ∈ ω, the function Fn : (

⊕
k∈ω(S∗)k)n → Sp(L, 2)n defined by Fn(F1, . . . , Fn) = (F(F1), . . . , F(Fn)) is a 

surjective continuous function. Thus, Sp(L, 2)n = Cp(L, 2)n is Menger. This shows that (c) implies (d).
(d) implies (e) is trivial. Since Cp(L, 2) is a close subspace of C∗

p (L, ω), by Proposition 3.2, (e) implies (f). 
Finally, if we suppose (f), then, by Corollary 4.11, L = L′ is countably compact and clearly Cp(L, 2) is 
Lindelöf. This proves that (f) implies (a). �
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Corollary 5.9. Let L be a first countable countably compact GO-space without isolated points. Then, Cp(L, 2)
is Lindelöf if and only if Cp(L, 2) is Menger.

Problem 5.10. Determine when Cp(L, 2) is Menger, when L is a first countable GO-space (without any 
restriction about the isolated points in L).

6. The Menger property on Cp(X, 2) when X is a subspace of ordinals

By a subspace of ordinals we are referring to a subspace of an ordinal α. As we have already said, the 
set of ordinals lower than an ordinal α endowed with its order topology is denoted by α. As a corollary of 
Proposition 5.1 we have the following.

Corollary 6.1. Let α ∈ ω1. Then the following statements are equivalent.

(a) Cp(α, 2) is Menger,
(b) Cp(α, 2) is σ-compact,
(c) α is a successor ordinal.

If X is normal and Cp(X, 2) is Menger, then X ′ is countably compact and X has countable fan tightness 
(see Corollary 4.11 and Proposition 4.1). Then, when X is a subspace of ordinals and Cp(X, 2) is Menger, 
X ′ must be countably compact and X is first countable. In the following statements we see that these 
properties are enough.

The proof of the following theorem was suggested to the referee by Professor Piotr Szewczak. His proof 
is simpler than one we gave in a previous version of this paper.

Theorem 6.2. Let X be a subspace of ordinals and n ∈ ω \ {0}. Then Cp(X, 2)n is Menger if and only if 
Cp(X, 2)n is Lindelöf and X ′ is countably compact.

Proof. Remember that Cp(X, 2)n is homeomorphic to Cp(X, 2n). We are going to show our theorem when 
n = 1 (the proof for 2n instead of 2 is similar). It is obvious that if Cp(X, 2) is Menger, then Cp(X, 2) is 
Lindelöf. Moreover, by Corollary 4.11, X ′ is countably compact. Reciprocally, we suppose that Cp(X, 2) is 
Lindelöf and X ′ is countably compact. We will show that Cp(X, 2) is Menger. We will prove this fact by 
induction over α = supX. Let us assume that the statement is true for every β < α. Let δ = supX ′.

Case I. If δ < α, then X ′ ⊂ Z = X ∩ (δ + 1), Z is clopen in X and X \ Z is clopen and discrete in X. 
Therefore X = Z ⊕ (X \ Z) and Cp(X, 2) ∼= Cp(Z, 2) × 2X\Z . It is easy to see that Cp(Z, 2) is Lindelöf as 
a closed subspace of Cp(X, 2) and Z ′ = X ′ so it is countably compact. From the assumption we have that 
Cp(Z, 2) is Menger and by compactness of 2X\Z the space Cp(X, 2) is also Menger.

Case II. If δ = α and there is in X an increasing countable sequence 〈αn : n ∈ ω〉 which converges 
to α. Then by δ = α and countably compactness of X ′ we infer that α ∈ X ′. Let us observe that family 
{X ∩ (αn, α] : n ∈ ω} forms a base at α. Since every f ∈ Cp(X, 2) is continuous at α and α ∈ X ′ so there 
is k ∈ ω such that f [(αn, α]] = {f(α)}. Let Aj

n = {f ∈ Cp(X, 2) : ∀x(x ∈ (αn, α] → f(x) = j)} for every 
n ∈ ω and j ∈ 2. We have that

Cp(X, 2) =
⋃{

Aj
n : n ∈ ω ∧ j ∈ 2

}
Every Aj

n is homeomorphic to Cp(Zn, 2) where Zn = X ∩ (α + 1). Since Zn is clopen in X we can easily 
verify that Cp(Zn, 2) is Lindelöf and Z ′

n is countably compact. Now it follows from inductive assumption 
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that Aj
n
∼= Cp(Zn, 2) is Menger. Because Cp(X, 2) =

⋃
{Aj

n : n ∈ ω ∧ j ∈ 2} we conclude that Cp(X, 2) is 
Menger.

Case III. If δ = α and the cofinality of α in X is not countable. Let 〈Un : n ∈ ω〉 be a sequence of 
countable open covers of Cp(X, 2) consisting of open basis sets. Let us observe that each element U ∈ Un

is in the form U =
∏

x∈X U(x) ∩ Cp(X, 2) where U(x) 
= 2 only if x ∈ XU ⊂ X, where XU is finite. Let 
us observe that there is some β ∈ X such that 

⋃
{XU : ∃n(n ∈ ω ∧ U ∈ Un)} ⊂ X ∩ (β + 1) = Z. Clearly 

β = supZ. Then

∀U∀x
(
∃n(n ∈ ω ∧ U ∈ Un) ∧ x ∈ X \ Z → U(x) = 2

)
. (∗)

It is easy to see that Z is a clopen subset of X and Z ′ = X ∩ (β + 1). Hence Z ′ is countably compact as a 
closed subset of countably compact space X ′. Since Cp(X, 2) is homeomorphic to Cp(Z, 2) ×Cp(X \Z, 2) we 
have that Cp(Z, 2) as a closed subset of Cp(X, 2) is Lindelöf. By inductive assumption Cp(Z, 2) is Menger. 
Now let U ′

n = {U ∩ Cp(Z, 2) : U ∈ Un} for every n ∈ ω. Then 〈U ′
n : n ∈ ω〉 is a sequence of open cover 

of Cp(Z, 2). Therefore, there are V ′
n ∈ [U ′

n]<ω such that 
⋃
{V ′

n : n ∈ ω} covers Cp(Z, 2). For every n ∈ ω

pick Vn ∈ [Un]<ω such that Vn = {U ∩ Cp(Z, 2) : U ∈ V ′
n}. By (∗) we have that 

⋃
{Vn : n ∈ ω} covers 

Cp(X, 2). �
It is shown in [4] that for every countably compact first countable subspace X of ordinals, Cp(X, 2)n is 

Lindelöf for each n ∈ ω. Therefore:

Corollary 6.3. For any countably compact first countable subspace X of ordinals, Cp(X, 2)n is Menger for 
each n ∈ ω.

It is shown in [5] that every first countable subspace X of ordinals with countable extent has Cp(X, 2)n
is Lindelöf for each n ∈ ω. So, we obtain:

Corollary 6.4. Let X be a first countable subspace of ordinals with countable extent. Then Cp(X, 2)n is 
Menger for each n ∈ ω if and only if X ′ is countably compact.

Corollary 4.11 shows that in the class of normal spaces X, if Cp(X, 2) is Menger, then X ′ is countably 
compact. With the same hypotheses we cannot imply the compactness of X ′. Indeed, by Corollary 6.3, 
Cp(ω1, 2) is Menger.

Observe, on the one hand, that the ordinal number X = ω · ω is countable, metrizable ordinal subspace 
such that Cp(X, 2) is Lindelöf but Cp(X, 2) is not Menger (see Theorem 6.2). So, it is not possible to 
add the statement “Cp(X, 2) is Lindelöf” in the list of equivalent claims neither in Theorem 4.15 nor 
in Proposition 5.1, nor in Corollary 6.1 (compare with Corollary 5.9). On the other hand, the converse of 
Corollary 6.3 is not true. Indeed, Cp(ω, 2) is Menger and ω is not countably compact. A nondiscrete example 
of the same fact is the countable metrizable ordinal subspace Y = (ω · ω + 1) \ {ω}.

Moreover, it is natural to conjecture that the class of subspaces of ordinals X for which Cp(X, 2) is 
Menger is equal to the class of ordinal subspaces which are the topological sum of two subspaces, one of 
them a discrete subspace and the other a first countable countably compact ordinal subspace. This is not 
true. In fact, consider X = {ω1 ·n : n ≤ ω} ∪

⋃
n∈ω{(ω1 ·n) +m : m ∈ ω}. We have that Cp(X, 2) is Menger 

but X cannot be expressed as the sum of a discrete subspace plus a countably compact first countable 
ordinal subspace. Also, it is natural to conjecture that Corollary 6.3 is valid for any GO-space (or LOTS) 
not only for subspaces of ordinals, but Example 4.5 shows that this is false.

In [5] R.Z. Buzyakova asks if Cp(X, 2) is Lindelöf when X is a first countable subspace of ordinals and 
X ′ is countably compact. We ask the same question in the following form (see Theorem 6.2):
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Problem 6.5. Is there a first countable ordinal subspace X with X ′ countably compact such that Cp(X, 2)
is not Menger?

7. The Menger property on Cp(X, 2) when X is a countable simple space

A space X is called simple if X has exactly one non-isolated point. For any filter F on ω, we define the 
space ω ∪ {F} as follows: any n ∈ ω is declared isolated and the sets A ∪ {F}, where A ∈ F , form a base 
of neighborhoods of F . Any countable simple space is homeomorphic to ω ∪ {F} for a filter F on ω.

It is proved in [1, III.3.3] that if Aτ denotes the one-point compactification of the discrete space of 
cardinality τ , then Aτ is Eberlein compact. And therefore Cp(Aτ , 2) is Menger. It is also shown in [1, III.1.7]
that if F ∈ ω∗, ω ∪ {F} is not an EG-space; that is, ω ∪ {F} cannot be embedded in a space Cp(Y ) where 
Y is compact. The following results shows that, under certain conditions, ω ∪ {F} can be embedded in a 
space Cp(Y ) for some space Y for which Y n is Menger for every n ∈ ω. These conditions are set in the 
following definitions.

Definition 7.1 ([13]). An ultrafilter F ∈ ω∗ is a strong P -point if for any sequence 〈Cn : n ∈ ω〉 of compact 
subspaces of F (considering F as a subset of 2ω with the product topology) there is an interval partition 
〈In : n ∈ ω〉 of 2ω such that for each choice of Xn ∈ Cn we have⋃

n∈ω

(In ∩Xn) ∈ F .

Given a filter F on ω we define F<ω to be the filter on [ω]<ω \ {∅} generated by {[F ]<ω \ {∅} : F ∈ F}. 
Note that the filter F<ω on [ω]<ω \ {∅} is not an ultrafilter even if F is.

Definition 7.2 ([3]). A filter F on a countable set S is a P+-filter if for any ⊂-descending sequence
〈Xn : n ∈ ω〉 ⊂ F+, there is an X ∈ F+ such that X ⊂∗ Xn for all n ∈ ω, where F+ = {X ⊂ S : S\X /∈ F}.

The elements of F+ are called positive sets (with respect to F). Then, a filter F is a P+-filter if every 
decreasing sequence of positive sets has a positive pseudointersection. The definition of a strong P -point 
that we will use is the following.

Theorem 7.3 ([3]). An ultrafilter F ∈ ω∗ is a strong P -point if and only if F<ω is a P+-filter.

The following result was conjectured by M. Hrušák and is the key to characterize the Menger property 
on Cp(ω ∪ {F}, 2).

Proposition 7.4. Let F be a filter on ω. The space X = ω ∪ {F} has countable fan tightness for finite sets 
if and only if F<ω is a P+-filter.

Proof. First note that P ∈ (F<ω)+ if and only if P is a π-network at F in X. Suppose that F<ω is 
a P+-filter. Let 〈Pn ⊂ [X]<ω : n ∈ ω〉 be a decreasing sequence of π-networks at F (see Lemma 4.3). 
Given that F<ω is a P+-filter, and 〈Pn ⊂ [X]<ω : n ∈ ω〉 is a decreasing sequence of positive sets with 
respect to F<ω, 〈Pn : n ∈ ω〉 has a positive pseudointersection P ∈ (F<ω)+. Since P \ P0 is finite, 
P ∩ P0 is a π-network at F . Then, if we suppose that 

⋂
n∈ω Pn = {pn : n ∈ ω}, and define Kn =

(P ∩ Pn \ Pn+1) ∪ {pn} for each n ∈ ω, 
⋃

n∈ω Kn = P ∩ P0 is a π-network at F . Observe that Kn is finite 
because (P∩Pn\Pn+1) ∪{pn} ⊆ (P\Pn+1) ∪{pn} and P is a pseudointersection of the family {Pn : n < ω}.

Reciprocally, suppose that ω ∪ {F} has countable fan tightness for finite sets. Let 〈Pn : n ∈ ω〉 be a 
decreasing sequence of positive sets. Since 〈Pn : n ∈ ω〉 is a sequence of π-networks at F , there is a sequence 
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of finite sets 〈Fn : n ∈ ω〉 such that P =
⋃

n∈ω Fn is a π-network at F and Fn ⊂ Pn for each n ∈ ω. Then 
P is a positive set and, since P \ Pn+1 ⊂ F0 ∪ · · · ∪ Fn, P is a pseudointersection of 〈Pn : n ∈ ω〉. �
Corollary 7.5. Let F ∈ ω∗. The subspace ω ∪ {F} of βω has countable fan tightness for finite sets if and 
only if F is a strong P -point.

Theorem 7.6. Let F be a filter on ω and X = ω ∪ {F}. Then, the following statements are equivalent:

(a) Cp(X, 2) is Menger;
(b) Cp(X, 2)n is Menger for any n ∈ ω;
(c) C∗

p (X, ω) is Menger;
(d) F<ω is a P+-filter.

Proof. If Cp(X, 2) is Menger, then, by Propositions 4.4 and 7.4, F<ω is a P+-filter. Now assume that 
F<ω is a P+-filter in ω. We are going to show that Cp(X, 2) is Menger (the proof for n instead of 2 is 
similar). For each k ∈ 2 and F ⊂ ω, we define Ak

F = {f ∈ 2ω : ∀x(x ∈ F → f(x) = k)}. Note that 
Cp(X, 2) is homeomorphic to the subspace 

⋃
{Ak

F : F ∈ F ∧ k ∈ 2} of 2ω. Then, to see that Cp(X, 2)
is Menger, by Proposition 3.4, it is enough to show that 

⋃
{Ak

F : F ∈ F} is Menger for each k ∈ 2. 
However, 

⋃
{Ak

F : F ∈ F} is homeomorphic to 
⋃
{Am

F : F ∈ F} for k, m ∈ 2. So, it is enough to prove that 
A =

⋃
{A0

F : F ∈ F} is Menger. To simplify the notations, we write AF to mean A0
F and, if F is a single 

point x, we write Ax instead of AF .
Let 〈Un : n ∈ ω〉 be a sequence of countable covers of A such that Un+1 refines Un for each n ∈ ω (see 

Lemma 3.3). We can suppose that each Un is closed under finite unions. For each open subset of A, let 
YU = {H ∈ [ω]<ω : AH ⊂ U}. And we define Zn =

⋃
U∈Un

YU for each n ∈ ω. In view of the fact that Un+1
refines Un, Zn+1 ⊂ Zn. Moreover, Zn is a positive set. Indeed, if F ∈ F , since AF is compact, there is an 
element U ∈ Un containing AF . Given that AF =

⋂
x∈F Ax and Ax is compact, there is H ∈ [F ]<ω such 

that AH =
⋂

x∈H Ax ⊂ U . Then [F ]<ω ∩ Zn 
= ∅. Now, since F<ω is a P+-filter, the sequence of positive 
sets 〈Zn : n ∈ ω〉 has a positive pseudointersection Z̃ ∈ (F<ω)+. Suppose that 

⋂
n∈ω Zn = {bn : n ∈ ω}, 

then we define, for each n ∈ ω, Pn = (Z̃ ∩ Zn \ Zn+1) ∪ {bn}. In the same way as in Proposition 7.4 we 
infer that Pn is finite for every n ∈ ω. In this manner Z =

⋃
n∈ω Pn = Z̃ ∩ Z0 ∈ (F<ω)+. For each n ∈ ω

and H ∈ Pn, we choose UH ∈ Un such that AH ⊂ UH . We define Fn = {UH : h ∈ Pn} for each n ∈ ω. 
Given f ∈ A, there is F ∈ F such that f ∈ AF . Since Z is a positive set, [F ]<ω \ {∅} intersects Z and, 
hence, intersects some Pn. Consequently, if H ∈ ([F ]<ω \ {∅}) ∩Pn, then AF ⊂ AH ⊂ UH . This proves that 
f ∈ UH . That is, 

⋃
n∈ω Fn is a cover of A.

The implication (b) ⇒ (c) is a consequence of Proposition 3.4 and the equality C∗
p (X, ω) =

⋃
n∈ω Cp(X, n). 

The implication (c) ⇒ (b) is a consequence of Proposition 3.2 and the fact that each Cp(X, n) is a closed 
subset of C∗

p (X, ω). �
As a consequence of Theorems 7.3 and 7.6 we conclude:

Corollary 7.7. Let F ∈ ω∗ and X the subspace ω∪{F} of βω. Then the following statements are equivalent:

(a) Cp(X, 2) is Menger;
(b) Cp(X, 2)n is Menger for any n ∈ ω;
(c) C∗

p (X, ω) is Menger;
(d) F is a strong P -point.

As previously mentioned, Example III.1.7 in [1] shows that ω∪{F} is not an EG-space and, by Theorem 
4.16 in [7], Cp(ω∪{F}, 2) is not σ-compact. Then, by Corollary 7.7, if F is a strong P -point, Cp(ω∪{F}, 2)
is a Menger space which is not σ-compact.
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8. The Menger property on Cp(Ψ(A), 2)

An almost disjoint family of subsets of ω is a collection A of subsets of ω such that each element in A is 
infinite, and if A, B ∈ A, |A ∩B| < ℵ0. An almost disjoint family A is maximal if it is not proper subfamily 
of an another almost disjoint family. For an infinite maximal almost disjoint family (mad) A on ω, a Ψ -space 
is a space Ψ(A) whose underlying set is ω ∪ A and the topology is given by: All points of ω are isolated, 
and the neighborhood base at A ∈ A consists of all sets {A} ∪A \F where F is a finite subset of ω. A. Dow 
shows in [8] that if b > ω1, for each mad family A, Cp(Ψ(A), 2) is not Lindelöf and, hence, in this case, 
Cp(Ψ(A), 2) is not Menger. M. Hrušák, P.J. Szeptycki and Á. Tamariz-Mascarúa show in [10], assuming CH, 
the existence of a Mrówka mad family A (that is, the one-point compactification of Ψ(A) coincides with its 
Stone–Čech compactification) such that Cp(Ψ(A), 2) is Lindelöf.

For a mad family A and j ∈ 2, we define the closed subspace σj
n(A) = {f ∈ Cp(Ψ(A), 2) : |f−1(j)

∩ A| ≤ n} of Cp(Ψ(A), 2). If A is a Mrówka family, then Cp(Ψ(A), 2) =
⋃

n∈ω,j∈2 σ
j
n(A). For every n ∈ ω, 

σ0
n(A) is homeomorphic to σ1

n(A). We are going to write σn(A) instead of σ1
n(A). Thus, by Proposition 3.4:

Lemma 8.1. If A is a Mrówka mad family then Cp(Ψ(A), 2) is Menger if and only if σn(A) is Menger for 
each n ∈ ω.

To characterize when σn(A) is Menger, we need certain terminology and notation. For a, b ∈ P(ω), 
a�b will denote their symmetric difference; that is a�b = (a ∪ b) \ (a ∩ b). Given a mad family A and 
Y ⊂ P(ω), we will say that An is concentrated on Y [10], if for each open U of the Cantor set 2ω containing 
χY = {χy : y ∈ Y}, there is a countable B ⊂ A such that χ∪x ∈ U for all x ∈ [A \B]n. And we will say that 
An + [ω]<ω is concentrated on Y if for each open subset U of 2ω containing χY , there is a countable subset 
B ⊂ A such that χ(∪x)�b ∈ U for all x ∈ [A \ B]n and for all b ∈ [ω]<ω.

Lemma 8.2. Let A be a mad family. If An+1 + [ω]<ω is concentrated on [ω]<ω and σn(A) is Menger, then 
σn+1(A) is Menger.

Proof. The proof depends on two claims.

Claim 1. If V is an open subset of σn+1(A) containing σn(A), then there is a countable subset B ⊂ A such 
that f−1(1) ∩ B 
= ∅ for any f ∈ σn+1(A) \ V .

Indeed, since σ0(A) is a countable subset of σn(A), we can choose a sequence of finite functions sk ⊂
Ψ(A) × 2 such that σ0(A) ∩ [sk] 
= ∅ and σ0(A) ⊂

⋃
k∈ω[sk] ⊂ V , where [sk] = {f ∈ σn+1(A) : sk ⊂ f}

for each k ∈ ω. Note that s−1
k (1) ⊂ ω and sk � A is the constant zero for each k ∈ ω. We define the open 

subset U of 2ω to be 
⋃

k∈ω{f ∈ 2ω : sk � ω ⊂ f} and note that χ[ω]<ω ⊂ U . Then, by hypothesis, there 
is a countable subset B′ ⊂ A such that χ⋃

x�b ∈ U for all x ∈ [A \ B′]n+1 and for all b ∈ [ω]<ω. Let 
B = B′ ∪

⋃
k∈ω(s−1

k (0) ∩ A) and show that B is the required set by Claim 1. Let f ∈ σn+1(A) \ V and 
x = f−1(1) ∩A. Since V contains σn(A), |x| = n +1. Proceed by contradiction, suppose that x ∩B = ∅. We 
choose b ∈ [ω]<ω such that f−1(1) ∩ ω =

⋃
x�b. By the choice of B, χ⋃

x�b ∈ U and consequently, there is 
k ∈ ω such that s−1

k (1) ⊂
⋃
x�b = ω ∩ f−1(1) and s−1

k (0) ∩ ω ⊂ ω \ (ω ∩ f−1(1)) = f−1(0) ∩ ω. Given that 
x ∩ s−1

k (0) = ∅, s−1
k (0) ⊂ f−1(0). Then f ∈ [sk] which is a contradiction, and Claim 1 is proved.

Claim 2. If V is an open subset of σn+1(A) containing σn(A), then there is a countable subset Y of σ1(A)
such that σn+1(A) \ V ⊂

⋃
(h + σn(A)), where h + σn(A) = {h + g : g ∈ σn(A)}.
h∈Y
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Let B be the countable subset of A given by Claim 1, and define Y = {f ∈ σ1(A) : f−1(1) ∩ A ⊂ B}. 
Then Y is countable. Let f ∈ σn+1(A) \ V . Again, by the choice of B, there is an element a ∈ f−1(1) ∩ B. 
We define a continuous function g : Ψ(A) → 2 as follows

g(x) =
{

1, if x ∈ a ∪ {a};
0, otherwise.

Then g ∈ Y and f + g ∈ σn(A) and consequently f = g + (f + g) ∈
⋃

h∈Y (h + σn(A)). This concludes 
the proof of Claim 2.

Now, we are going to finish the proof of our lemma. Let 〈Uk : k ∈ ω〉 be a sequence of covers of σn+1(A). 
Since σn(A) is Menger, there is a finite subset F ′

k ⊂ Uk for each k ∈ ω such that σk(A) ⊂
⋃⋃

k∈ω F ′
k. Then, 

by Claim 2, there is a countable subset Y ⊂ σ1(A) such that σk+1(A) \
⋃⋃

k∈ω F ′
k ⊂

⋃
h∈Y (h + σn(A)). 

Since σn(A) is homeomorphic to h +σn(A) for each h ∈ Y and Y is countable, 
⋃

h∈Y (h +σn(A)) is Menger. 
Then, there is a finite subset F ′′

k ⊂ Uk for each k ∈ ω such that 
⋃

k∈ω F ′′
k is a cover of σn+1(A) \

⋃⋃
k∈ω F ′

k. 
Therefore, the sequence 〈F ′

k ∪ F ′′
k : k ∈ ω〉 is the required choice. �

As we have already mentioned in the previous paragraphs, σ0(A) is countable. Then, by Lemma 8.2, if 
Ak + [ω]<ω is concentrated on [ω]<ω for each k ≤ n, then σn(A) is Menger. However, in [10, Corollary 4.3]
M. Hrušák, P.J. Szeptycki and Á. Tamariz-Mascarúa prove the following two results.

Proposition 8.3 ([10]). Let A be a mad family and n ∈ ω. Then, An + [ω]<ω is concentrated on [ω]<ω if and 
only if An is concentrated on [ω]<ω.

Corollary 8.4 ([10]). Suppose that A is a mad family and n ∈ ω. Then, σn(A) is Lindelöf if and only if Ak

is concentrated on [ω]<ω for all k ≤ n.

These last two results with Lemma 8.2 imply the following result.

Proposition 8.5. Let A be a mad family and n ∈ ω. Then the following statements are equivalent.

(a) σn(A) is Lindelöf;
(b) σn(A) is Menger;
(c) Ak is concentrated on [ω]<ω for every k ≤ n.

Proof. It is clear that (b) implies (a) and by Corollary 8.4, (a) implies (c). Finally, Lemma 8.2 and Propo-
sition 8.3 prove that (c) implies (b). �

A corollary of the previous result is:

Theorem 8.6. Let A be a Mrówka mad family. Then the following are equivalent.

(a) Cp(Ψ(A), 2) is Lindelöf;
(b) Cp(Ψ(A), 2) is Menger;
(c) An is concentrated on [ω]<ω for every n ∈ ω.

Theorem 4.5 in [10] shows, assuming CH, the existence of a Mrówka mad family A for which An is 
concentrated on [ω]<ω for all n ∈ ω. Then we have the following:

Theorem 8.7 (CH). There is a mad family A such that Cp(Ψ(A), 2) is Menger.
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Problem 8.8. Let A be the Mrówka mad family whose existence is guaranteed by Theorem 4.5 in [10]. Is 
Cp(Ψ(A), 2)n Menger for every n ≥ 2?

Problem 8.9. Are there a topological space X and a natural number n > 2 such that Cp(X, 2) is Menger 
and Cp(X, 2)n is not Menger?
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