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Pseudouniform topologies on C(X) given by ideals
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Abstract. Given a Tychonoff space X, a base α for an ideal on X is called pseu-

douniform if any sequence of real-valued continuous functions which converges
in the topology of uniform convergence on α converges uniformly to the same
limit.

This paper focuses on pseudouniform bases for ideals with particular emphasis
on the ideal of compact subsets and the ideal of all countable subsets of the
ground space.
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1. Introduction

Given α, a base for an ideal on a topological space X , we define, in Section 3,
a uniformity on C(X), the set of all real-valued continuous functions on X . The
topology associated to this uniformity will be called the topology of uniform con-

vergence on α and Cα,u(X) will denote the corresponding topological space. It
turns out that this topology is coarser than the topology of uniform convergence
on C(X) and therefore the following seems like a natural property: α is pseudouni-
form if whenever a sequence 〈fn : n ∈ ω〉 in C(X) converges to f in Cα,u(X), the
sequence converges uniformly to f . Pseudouniform ideals are the main topic in
this paper.

In Section 3 we give basic results on topologies of uniform convergence on an
ideal and their corresponding natural induced functions. Some properties of pseu-
douniform ideals are also included and a characterization of the pseudouniformity
of the ideal in terms of families of open subsets of the ground space is given.

Spaces for which the ideal generated by all compact subsets is pseudouniform
are called almost pseudo-ω-bounded . Section 4 is dedicated to this class of spaces.
We analyze the behaviour of the class under the usual topological operations and
from this analysis it is deduced that arbitrary products of pseudocompact k-spaces
are pseudocompact.
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When α is the collection of all countable subsets of X , Cα,u(X) is denoted
by Cs(X). Section 5 is mainly about cardinal functions on Cs(X) and Section 6
deals with Lindelöf’s property on Cs(X). Finally, in the last section we list some
open questions.

2. Notation and definitions

This section contains the basic definitions and notations that will be followed
in this paper. All topological concepts that are not defined here should be un-
derstood as in [2] except for the following: a uniformity U on a set X does not
have to satisfy

⋂
U = {(x, x) : x ∈ X}. Therefore, uniform spaces are completely

regular but not necessarily Hausdorff.
A property P will be called weakly hereditary if any closed subspace of a topo-

logical space having P also has P .
We follow the convention that all cardinal topological functions are, by defini-

tion, infinite. A cardinal function which does not appear in [2] is the i-weight of
a topological space X : iw(X) is the minimum weight of a topological space Y for
which there is a continuous bijection from X onto Y .

Let X and Y be two topological spaces with the same underlying set. The
symbol X ≤ Y means that the topology of X is finer than the topology of Y .
When X ≤ Y but X 6= Y we will write X < Y .

As usual, given a topological space X , C(X) denotes the collection of all con-
tinuous real-valued functions whose domain is X . We will use the symbol 0 to
represent the zero function on X .

Unless otherwise stated, all spaces considered in this paper are Tychonoff.
Given a set X and a cardinal κ, the symbol [X ]<κ will denote the collection of

all subsets of X which have cardinality < κ. A similar convention will apply to
[X ]≤κ. Finally, [X ]κ is the set of all subsets of X whose size is precisely κ.
ω is the first infinite ordinal and for this reason each integer n ∈ ω will be

considered as an ordinal, i.e., n = {k ∈ ω : k < n}. The set ω \ {0} will be
denoted by N.

The cardinality of R, the set of real numbers, will be denoted by c.
A cellular family in a topological space is a pairwise disjoint family of open

subsets of the given topological space. To simplify things, every time we refer to a
collection {Un : n ∈ ω} as a cellular family, we will be assuming that Um∩Un = ∅,
whenever m 6= n.

3. Basic results on topologies of uniform convergence

Let α be a non-empty family of subsets of X . We say that α is a base for an

ideal on X if for any A,B ∈ α there exists C ∈ α with A ∪B ⊆ C.
Assume α is a base for an ideal on X . Following [6], we define, for each real

number ε > 0 and each A ∈ α, the set

Aε := {(f, g) ∈ C(X)× C(X) : ∀x ∈ A (|f(x) − g(x)| < ε)}.
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One easily verifies that {Aε : A ∈ α ∧ ε > 0} is a base for some uniformity on
C(X). The topology induced by this uniformity will be called the topology of

uniform convergence on α and the resulting space will be denoted by Cα,u(X).
Given f ∈ C(X), A ⊆ X , and ε > 0, let

V (f,A, ε) := {g ∈ C(X) : ∀x ∈ A (|f(x)− g(x)| < ε)}.

Then, for each f ∈ C(X), the collection {V (f,A, ε) : A ∈ α ∧ ε > 0} forms a
neighborhood base for Cα,u(X) at f .

Proposition 3.1. If α is a base for an ideal on X , then Cα,u(X) is Tychonoff iff

α has dense union in X .

Proof: Cα,u(X) is completely regular because its topology is given by a unifor-
mity so our only concern is Hausdorff’s property.

Assume that
⋃
α is dense in X and let f, g ∈ Cα,u(X) be so that f 6= g. Fix z ∈

X satisfying f(z) 6= g(z) and set ε := |f(z)−g(z)|/4. Let U be a neighborhood of
z for which |f(x)−g(x)| > 2ε, whenever x ∈ U . Our assumption on α implies that,
for some A ∈ α, there exists y ∈ A ∩ U . Note that if h ∈ V (f,A, ε) ∩ V (g,A, ε),
then |f(y)−h(y)| < ε and |g(y)−h(y)| < ε, so |f(y)− g(y)| < 2ε; a contradiction
to y ∈ U .

For the remaining implication suppose that α does not have dense union and

fix z ∈ X\
⋃
α and f ∈ C(X) in such a way that f(z) = 1 and f [

⋃
α] ⊆ {0}. Thus

Cα,u(X) is not Hausdorff because f ∈ V (0, A, ε), for all A ∈ α and ε > 0. �

Definition 3.2. Let κ be an infinite cardinal. If X is a topological space and
α = [X ]<κ, then we define Cκ,u(X) := Cα,u(X). In particular,

(1) Cs(X) is the space Cω1,u(X) and its topology will be called the topology

of pseudouniform convergence.
(2) When κ = ω, we obtain Cp(X), the space of continuous functions on X

equipped with the topology of pointwise convergence.

Let X be a topological space. If α is the collection of all compact subsets of X ,
Cα,u(X) will be denoted by Ck(X). It is a consequence of [6, Theorem 1.2.3]
that if one considers the cartesian product RX endowed with the compact-open
topology (see [2, Section 3.4]), then the relative topology of C(X) coincides with
the topology of Ck(X).

When α = {X}, we let Cu(X) := Cα,u(X). It is straightforward to verify
that Cu(X) is the subspace C(X) of RX endowed with the topology of uniform
convergence (see [2, Section 2.6]). In particular, Cu(X) is metrizable.

It should be clear that Cα,u(X) ≤ Cu(X) for any α.

Lemma 3.3. Let α be a base for an ideal on the topological space X . If we let

β := {A : A ∈ α}, then Cα,u(X) = Cβ,u(X).

Proof: It suffices to observe that for each f ∈ C(X), A ∈ α, and ε > 0 one gets

V (f,A, ε/2) ⊆ V (f,A, ε) ⊆ V (f,A, ε).
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�

Theorem 3.4. If α and β are bases for ideals on X , then the following are

equivalent:

(1) Cα,u(X) ≤ Cβ,u(X);

(2) for each A ∈ α there exists B ∈ β so that A ⊆ B.

Proof: Suppose that (2) holds. According to Lemma 3.3 there is no loss of gen-
erality in assuming that each element of β is closed. Therefore, given f ∈ C(X),
A ∈ α, and ε > 0 there exists B ∈ β with A ⊆ B. In particular, V (f,B, ε) ⊆
V (f,A, ε).

Now let us assume that (1) is true. Fix A ∈ α and f ∈ C(X). Since f is
an interior point of V (f,A, 1) in Cα,u(X), there exists B ∈ β and ε > 0 such

that V (f,B, ε) ⊆ V (f,A, 1). We claim that A ⊆ B. Assume otherwise and
fix a ∈ A \ B. There is g ∈ C(X) such that g[B] ⊆ {0} and g(a) = 1. Thus
g ∈ V (f,B, ε) \ V (f,A, 1). This contradiction finishes the argument. �

In particular, one gets that Cα,u(X) = Cu(X) iff there is A ∈ α satisfying

A = X . Similarly, Cp(X) ≤ Cα,u(X) is equivalent to X =
⋃
{A : A ∈ α}.

Corollary 3.5. Let κ be an infinite cardinal and let α be a base for an ideal

on X .

(1) If each element of α has density < κ (i.e., d(A) < κ for all A ∈ α), then
Cα,u(X) ≤ Cκ,u(X).

(2) If α = {A ⊆ X : d(A) < κ} and β = {A ∈ α : A = A}, then

Cκ,u(X) = Cα,u(X) = Cβ,u(X).

(3) If I is the ideal generated by α (i.e., I = {B ⊆ X : ∃A ∈ α (B ⊆ A)}),
then Cα,u(X) = CI,u(X).

Given a continuous map f : X → Y , the dual map f ♯ : C(Y ) → C(X) is
defined by f ♯(g) := g ◦ f , for all g ∈ C(Y ).

When Y is a subspace of X , the inclusion map iY : Y → X is continuous so

i♯Y is defined. This map will be called the restriction map and will be denoted by
πY . Note that πY (g) = g ↾ Y for all g ∈ C(X).

If α is a base for an ideal on a set X and f : X → Y is a function, then the
collection f [α] := {f [A] : A ∈ α} is a base for an ideal on Y .

Proposition 3.6. Let f : X → Y be a continuous function and assume that α
and β are bases for ideals on X and Y , respectively. The following statements are

true for the dual map f ♯ : Cβ,u(Y ) → Cα,u(X):

(1) f ♯ is continuous iff Cf [α],u(Y ) ≤ Cβ,u(Y );

(2) if f is onto, then f ♯ is an embedding iff Cβ,u(Y ) = Cf [α],u(Y );

(3) if f is a quotient map and α covers X , then ran(f ♯), the range of f ♯, is

a closed subset of Cα,u(X).
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Proof: Let us start with (1). Suppose that Cf [α],u(Y ) ≤ Cβ,u(Y ) and let g ∈

C(Y ), A ∈ α, and ε > 0 be arbitrary. Fix B ∈ β so that f [A] ⊆ B (Theorem 3.4)
and let h ∈ V (g,B, ε/2) be arbitrary. Then |h(y) − g(y)| < ε for all y ∈ B; in
particular, |h(f(x)) − g(f(x))| < ε, whenever x ∈ A, i.e., f ♯(h) ∈ V (f ♯(g), A, ε).
Thus f ♯ is continuous at g.

Now assume that Cf [α],u(Y ) 6≤ Cβ,u(Y ) and let A ∈ α be a witness to the
failure of item (2) in Theorem 3.4. Then, for each B ∈ β, there is a point xB ∈ A
and a map gB ∈ C(Y ) satisfying f(xB) /∈ B, gB(f(xB)) = 1, and gB[B] ⊆ {0}.
Note that if B0, B ∈ β satisfy B0 ⊆ B, then gB ∈ V (0, B0, ε); in other words,
〈gB : B ∈ β〉 is a net (in the sense of [2, Section 1.6]) which converges to 0 in
Cβ,u(Y ), but f ♯(gB) /∈ V (f ♯(0), A, 1) for all B ∈ β. Thus f ♯ is not continuous
and so the proof of (1) is complete.

Suppose that f is onto. One easily verifies that f ♯ is one-to-one so to prove
(2) we only need to argue that the continuity of the inverse of f ♯ is equivalent to
Cβ,u(Y ) ≤ Cf [α],u(Y ).

Start with the assumption Cβ,u(Y ) ≤ Cf [α],u(Y ). Given g ∈ C(Y ), B ∈ β,

and ε > 0, there is A ∈ α for which B ⊆ f [A], so when h ∈ C(Y ) satisfies

f ♯(h) ∈ V (f ♯(g), A, ε/2), we have that |h(y) − g(y)| ≤ ε/2 < ε, for all y ∈ f [A].
Therefore h ∈ V (g,B, ε).

For the opposite implication, let us assume that Cβ,u(Y ) 6≤ Cf [α],u(Y ) and,
as we did before, let us fix B ∈ β in such a way that for each A ∈ α there
are yA ∈ B and gA ∈ C(Y ) satisfying gA(yA) = 1 and gA[f [A]] ⊆ {0}. Note
that, by continuity, gA ◦ f [A] ⊆ {0}. Therefore 〈f ♯(gA) : A ∈ α〉 is a net in the
subspace ran(f ♯) which converges to f ♯(0). Since gA /∈ V (0, B, 1), for all A ∈ α,
we conclude that (f ♯)−1 is not continuous.

For (3), we claim that if g ∈ ran(f ♯), then g is constant on each fiber of f . By
contrapositive, assume that, for some z ∈ Y , there are x, y ∈ f−1[z] such that
g(x) 6= g(y) and fix A ∈ α for which x, y ∈ A; then set ε := |g(x) − g(y)|/3 and
notice that h ∈ V (g,A, ε) implies |h(x) − h(y)| > ε. In particular, h /∈ ran(f ♯).

Since f is a quotient map, the previous claim guarantees that for each g ∈
ran(f ♯) there is h ∈ C(Y ) such that g = h ◦ f , i.e., g ∈ ran(f ♯). �

Remark 3.7. Let Y be a subspace of X and assume that α and β are as in the
previous proposition. Then β is a base for an ideal on X too and therefore πY is
continuous iff Cβ,u(X) ≤ Cα,u(X).

Assume that {fn : n ∈ ω} ∪ {f} ⊆ C(X). If α is a base for an ideal on X ,

the symbol fn
α
−→ f (respectively, fn

u
−→ f) means that the sequence 〈fn : n ∈ ω〉

converges to f in Cα,u(X) (respectively, Cu(X)). Also, the negation of fn
α
−→ f

will be represented by fn
α

6→ f and similarly for fn
u

6→ f .

Observe that fn
u
−→ f always implies fn

α
−→ f . We are interested in the opposite

implication:

Definition 3.8. Let α be a base for an ideal on a topological space X . We say
that α is pseudouniform on X (or simply pseudouniform when there is no risk of
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confusion) if for every sequence 〈fn : n ∈ ω〉 in C(X) and all f ∈ C(X) we have

that fn
α
−→ f implies that fn

u
−→ f .

Note that if α is pseudouniform on X and Cα,u(X) ≤ Cβ,u(X), then β is
pseudouniform too.

Remark 3.9. All pseudouniform bases have dense union. The proof will be by
contrapositive so assume that α is a base for an ideal on X and let z ∈ X \

⋃
α.

Then there is a continuous map f : X → R such that f(z) = 1 and f [
⋃
α] ⊆ {0}.

Now set fn := f , for each n ∈ ω, and note that fn
α
−→ 0 but fn

u

6→ 0.

Theorem 3.10. If α is a base for an ideal on X with dense union, the following

statements are equivalent.

(1) α is pseudouniform.

(2) For every family {Un : n ∈ ω} of nonempty open sets in X there exists

A ∈ α such that the set {n ∈ ω : Un ∩ A 6= ∅} is infinite.

(3) For every cellular family {Un : n ∈ ω} in X there exists A ∈ α such that

the set {n ∈ ω : Un ∩A 6= ∅} is infinite.

Proof: To prove that (1) implies (2) assume that U = {Un : n ∈ ω} is a family of
nonempty open subsets of X such that for each A ∈ α the set {n ∈ ω : A∩Un 6= ∅}
is finite.

For each n ∈ ω fix a point xn ∈ Un and fn ∈ C(X) such that fn(xn) = 1 and
fn[X \ Un] ⊆ {0}. Then fn /∈ V (0, X, 1) for all n. Therefore, in order to prove

that α is not pseudouniform, it suffices to show that fn
α
−→ 0.

Let A ∈ α and ε > 0 be arbitrary. Our assumption on U implies the existence
of an integer m such that A ∩ Un = ∅ for each n ≥ m. Hence fn ∈ V (0, A, ε) for
all n ≥ m.

Clearly (3) is a consequence of (2) so we only need to show that the negation
of (1) implies the negation of (3).

Suppose that α is not pseudouniform and fix {fn : n ∈ ω}∪{f} ⊆ C(X) so that

fn
α
−→ f but fn

u

6→ f . Thus there is ε > 0 so that b := {n ∈ ω : fn /∈ V (f,X, 2ε)}
is infinite. For each n ∈ b fix a point xn ∈ X satisfying |fn(xn)− f(xn)| > ε.

We face two cases. First, assume that {xn : n ∈ b} is infinite. Then use the
fact that X is completely regular to get an infinite set a ⊆ b and a cellular family
{Wn : n ∈ a} in X such that xn ∈Wn, for each n ∈ a. To finish this case we will
show that each member of α has nonempty intersection with only finitely many
elements of {Wn : n ∈ a}. Let A ∈ α be arbitrary. For some integer m we have
{fn : n ≥ m} ⊆ V (f,A, ε) and therefore A ∩Wn = ∅, for all n ∈ a \m.

When the first case fails, there is z ∈ X so that c := {n ∈ b : xn = z} is infinite.
For each n ∈ c let Un be a neighborhood of z such that |fn(y) − f(y)| > ε, for
all y ∈ Un. Notice that if z were an isolated point, there would be A ∈ α with
z ∈ A (recall that α has dense union) and hence {fn : n ∈ c} ∩ V (f,A, ε) = ∅;

a contradiction to fn
α
−→ f . Therefore z is not isolated and so we inductively

construct a sequence 〈yn : n ∈ c〉 in such a way that yn ∈ Un \ {yk : k ∈ c ∩ n},
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for each n ∈ c. Clearly {yn : n ∈ c} is infinite and |fn(yn)− f(yn)| > ε, whenever
n ∈ c; thus the arguments used for the first case work here and this ends the
proof. �

Recall that a subset A of a topological spaceX is bounded if, for each f ∈ C(X),
f [A] is a bounded subset of R.

Corollary 3.11. If α is a pseudouniform base for an ideal on X , the following

are equivalent:

(1) X is pseudocompact;

(2) each element of α is bounded; and

(3) Cα,u(X) is a topological vector space with the usual operations.

Proof: Clearly, (2) follows from (1). Now, to show that (2) implies (1), assume
that X is not pseudocompact and let f ∈ C(X) be an unbounded function. For
each n ∈ ω define Un := f−1[(n, n + 1)]. Then {Un : n ∈ ω} is a family of
nonempty open sets and hence, for some A ∈ α, the set {n ∈ ω : A ∩ Un 6= ∅} is
infinite. Thus A is not bounded.

Finally, [6, Theorem 1.1] states that (3) and (2) are equivalent (even if α is not
pseudouniform). �

The proof of our next result is a routine argument so we omit it.

Proposition 3.12. If α is a base for an ideal on X , then (Cα,u(X),+) is a

topological group and therefore w(Cα,u(X)) = χ(Cα,u(X)) · d(Cα,u(X)).

Proposition 3.13. Let α be a countable base for an ideal on X . If α is pseu-

douniform, then Cα,u(X) = Cu(X).

Proof: Let α = {An : n ∈ ω} and assume that Cu(X) 6≤ Cα,u(X). For each

integer n fix xn ∈ X \ An (Theorem 3.4) and fn ∈ C(X) in such a way that
fn(xn) = 1 and fn[An] ⊆ {0}.

Thus fn
α
−→ 0, but {fn : n ∈ ω} ∩ V (0, X, 1) = ∅, i.e., α is not pseudouniform.

�

Our previous proposition and Corollary 3.5-(3) guarantee that if α is pseudouni-
form and the ideal generated by α has a countable base, then Cα,u(X) = Cu(X).
On the other hand, I := [R]≤ω is an ideal on R with CI,u(R) = Cu(R) (Theo-
rem 3.4), but no countable subset of I is a base for I.

Theorem 3.14. If α is a pseudouniform base for an ideal on X , the following

are equivalent:

(1) Cα,u(X) = Cu(X),
(2) Cα,u(X) is metrizable,

(3) Cα,u(X) is first countable,
(4) Cα,u(X) is Fréchet-Urysohn, and
(5) Cα,u(X) is sequential.
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Proof: Cu(X) is metrizable and therefore (2) follows from (1). Implications
(2)→ (3)→ (4)→ (5) hold for any space so we only need to show that (1) is a
consequence of (5).

Suppose that (1) fails and fix F , a closed subset of Cu(X) which is not closed
in Cα,u(X). To prove that (5) fails it suffices to show that F is sequentially

closed, so let {fn : n ∈ ω} ⊆ F and f ∈ C(X) be so that fn
α
−→ f . Since α is

pseudouniform, fn
u
−→ f and therefore f ∈ F . �

4. Almost pseudo-ω-bounded spaces

Let us recall that a topological space X is ω-bounded if the closure of any
countable subset of X is compact. Also, X is pseudo-ω-bounded if for each count-
able cellular family there is a compact set which intersects all members of the
family.

Definition 4.1. X will be called almost pseudo-ω-bounded if the collection of all
compact subsets of X is pseudouniform on X .

According to Theorem 3.10, X is almost pseudo-ω-bounded iff for any count-
able cellular family there is a compact subset of X which intersects infinitely many
elements of the family. This remark justifies the name we adopted for this notion.

A simple consequence of Corollary 3.11 is that every almost pseudo-ω-bounded
space is pseudocompact. This argument provides an alternative proof to the one
given in [4].

Proposition 4.2. Every almost pseudo-ω-bounded space is pseudocompact.

Proposition 4.3. There are pseudocompact spaces which are not almost pseudo-

ω-bounded.

Proof: LetX be an infinite pseudocompact space such that any countable subset
of it is closed discrete (such a space is constructed in [9]). Since X is Hausdorff
and infinite, it possesses an infinite cellular family {Un : n ∈ ω}. Suppose that
A is a subset of X for which b := {n ∈ ω : A ∩ Un 6= ∅} is infinite. Fix, for each
n ∈ b, a point xn ∈ A ∩ Un. Hence {xn : n ∈ b} is a closed discrete subset of A.
In particular, A is not compact. �

Notice that the following implications hold trivially:

compactness → ω-boundedness → pseudo ω-boundedness → almost
pseudo-ω-boundedness

To show that the last arrow cannot be reversed some concepts are needed.
A MAD family is an infinite collection A ⊆ [ω]ω such that (1) a∩ b is finite for

all a, b ∈ A with a 6= b and (2) for each infinite set a ⊆ ω there exists b ∈ A so
that a ∩ b is infinite.

The Isbell-Mrówka space Ψ(A) associated with the MAD family A is ω∪A en-
dowed with the topology in which {n} is open for each n ∈ ω and a neighborhood
base for a ∈ A is given by {{a} ∪ (a \ n) : n ∈ ω}.
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Proposition 4.4. There are almost pseudo-ω-bounded spaces which fail to be

pseudo-ω-bounded.

Proof: Assume that A is a MAD family and set X := Ψ(A). Since X is locally
compact and pseudocompact, Proposition 4.9 below applies and therefore X is
almost pseudo-ω-bounded.

Now let K be an arbitrary compact subspace of X . Then K \ω is finite because
K \ω is a closed discrete subspace of K. Fix a ∈ A\K and m ∈ ω in such a way
that K ∩ (a \m) = ∅. Hence K ∩ {n} = ∅, for all n ∈ a \m, and, in particular,
K does not meet all members of the cellular family {{n} : n ∈ ω}. Thus X is not
pseudo-ω-bounded. �

Observe that ifA is a MAD family, then A is an infinite closed discrete subspace
of Ψ(A). Thus we have the following.

Remark 4.5. There are almost pseudo-ω-bounded spaces which are not count-
ably compact and being almost pseudo-ω-bounded is not a weakly hereditary
property.

On the other hand, we also have:

Proposition 4.6. There are countably compact spaces which are not almost

pseudo-ω-bounded.

Proof: One can find in [12, 2.13] the construction of an infinite countably com-
pact space in which all compact subsets are finite. Thus this space is not almost
pseudo-ω-bounded. �

Theorem 4.7. Almost pseudo-ω-boundedness is a productive property which is

preserved by continuous maps.

Proof: The argument needed to show preservation under continuous maps is
straightforward so we will omit it.

The remaining part of our theorem will be proved by transfinite induction on
the number of factors.

If X and Y are almost pseudo-ω-bounded, then so is X × Y . Indeed, having
Theorem 3.10 in mind, let us suppose that {Un : n ∈ ω} is a family of nonempty
basic open sets in X × Y . Denote by πX and πY the corresponding projections.
Then there is a compact set K0 in X for which b0 := {n ∈ ω : K0∩πX [Un] 6= ∅} is
infinite (Theorem 3.10). Similarly, Y has a compact subset K1 for which the set
b1 := {n ∈ b0 : K1 ∩ πY [Un] 6= ∅} is infinite. Thus K0 ×K1 is a compact subset
of X × Y which has nonempty intersection with Un, for each n ∈ b1.

Let us assume that for some infinite cardinal κ the product of fewer than κ
factors, each one of them an almost pseudo-ω-bounded space, is almost pseudo-
ω-bounded (note that the preceding paragraph takes care of all finite cardinals).

Let X be the topological product of {Xξ : ξ < κ}, where each Xξ is almost
pseudo-ω-bounded. We consider two cases.

First, if κ has cofinality ω, there exists {δn : n ∈ ω}, an increasing cofinal se-
quence in κ with δ0 = 0. For each integer n define the product Yn =

∏
{Xξ : δn ≤
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ξ < δn+1} and denote by πn : Y → Yn the nth projection map. By our induc-
tive hypothesis, each Yn is almost pseudo-ω-bounded. Since X is homeomorphic
to Y :=

∏
n Yn, we only need to show that Y is almost pseudo-ω-bounded so

let {Un : n ∈ ω} be a sequence of nonempty open sets in Y (we will use Theo-
rem 3.10). Without loss of generality let us assume that each Un is a basic open
set.

We claim that there are two sequences, {bn : n ∈ ω} and {Cn : n ∈ ω}, such
that the following holds for all n ∈ ω: bn is an infinite subset of ω; bn+1 ⊆ bn; Cn

is a compact subset of Yn; and Cn ∩ πn[Um] 6= ∅, for all m ∈ bn. Indeed, there
is a compact set C0 ⊆ Y0 such that b0 := {m < ω : C0 ∩ π0[Um] 6= ∅} is infinite.
Assuming we have defined {bn : n < ℓ} and {Cn : n < ℓ} for some positive integer
ℓ, we apply Theorem 3.10 to {πℓ[Um] : m ∈ bℓ−1} to obtain a compact set Cℓ ⊆ Yℓ
for which bℓ := {m ∈ bℓ−1 : Cℓ ∩ πℓ[Um] 6= ∅} is infinite.

Fix b ∈ [ω]ω in such a way that {b \ bn : n ∈ ω} ⊆ [ω]<ω. Now, given
n ∈ ω and m ∈ b \ bn, let xmn ∈ πn[Um] be an arbitrary point. Notice that
Kn := Cn ∪ {xkn : k ∈ b \ bn} is a compact subset of Yn which has nonempty
intersection with πn[Uk], for all k ∈ b. Hence K :=

∏
nKn is a compact subset of

Y satisfying K ∩ Uk 6= ∅, for each k ∈ b. This concludes the first case.
The remaining case is cf(κ) > ω. Let {Un : n ∈ ω} be a family of nonempty

basic open sets in X . Our assumption on the cofinality of κ implies the existence
of δ < κ such that πξ[Un] = Xξ, whenever n ∈ ω and δ ≤ ξ < κ. Define
Z0 :=

∏
ξ<δ Xξ and Z1 :=

∏
ξ∈κ\δXξ.

For each n ∈ ω let Wn := {x ↾ δ : x ∈ Un} (each x ∈ X is considered as a
function with domain κ so x ↾ δ, the restriction of x to δ, makes sense). A slight
abuse of notation gives X = Z0×Z1 and Un =Wn×Z1, for all n ∈ ω. According
to our inductive hypothesis, Z0 is almost pseudo-ω-bounded so there is a compact
set C ⊆ Z0 for which b := {n ∈ ω : C ∩Wn 6= ∅} is infinite. If we fix a point
z ∈ Z1, then K := C × {z} is a compact subset of X and K ∩ Un 6= ∅, for all
n ∈ b. �

A topological space X is Froĺık if for any pseudocompact space Y the product
X × Y is pseudocompact. For example, all compact spaces are Froĺık.

Theorem 4.8. All almost pseudo-ω-bounded spaces are Froĺık.

Proof: Let X be an almost pseudo-ω-bounded space and let Y be a pseudocom-
pact space. Seeking a contradiction let us assume that there exist {Un : n ∈ ω}
and {Vn : n ∈ ω} such that

(1) for each n ∈ ω, Un and Vn are nonempty open subsets of X and Y ,
respectively,

(2) {Un × Vn : n ∈ ω} is locally finite in X × Y , and
(3) m 6= n implies Um × Vm 6= Un × Vn.

Let K be a compact subset of X for which the set b := {n ∈ ω : K ∩ Un 6= ∅}
is infinite. Then {(K ∩ Un) × Vn : n ∈ b} is an infinite locally finite family
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of nonempty open subsets of K × Y , contradicting the fact that this space is
pseudocompact. �

For k-spaces the reverse implication is also valid.

Proposition 4.9. If X is a k-space, the following are equivalent:

(1) X is almost pseudo-ω-bounded,
(2) X is pseudocompact,

(3) X is Froĺık.

Proof: (3)→ (2) is trivial and (1)→(3) is Theorem 4.8, so let us assume that
X is pseudocompact. We will use Theorem 3.10-(3) to prove that X is almost
pseudo-ω-bounded.

Let U = {Un : n ∈ ω} be a cellular family in X and fix, for each integer n, a
nonempty open set Vn with Vn ⊆ Un. Since X is pseudocompact, there is a point
x ∈ X so that any neighborhood of it intersects infinitely many Vn’s. Clearly x
is an accumulation point of the set A :=

⋃
n∈ω Vn. Moreover, the fact that U

is a cellular family implies that x /∈ A. This shows that A is not closed in X .
Let K be a compact subset of X for which K ∩ A is not closed in K. Hence
|{n ∈ ω : K ∩ Vn 6= ∅}| = ω and therefore K has nonempty intersection with
infinitely many members of U . �

The following result is a consequence of Theorem 4.7 and Proposition 4.9.

Corollary 4.10. The product of any family of pseudocompact k-spaces is pseu-
docompact.

5. The topology of pseudouniform convergence

Note that Cp(X) ≤ Cs(X) ≤ Cu(X), for any space X .

Proposition 5.1. For any topological space X , we have:

(1) Cs(X) is a Tychonoff space;

(2) [X ]≤ω is pseudouniform (in other words, every converging sequence in

Cs(X) converges uniformly);
(3) Cs(X) = Cp(X) iff X is finite.

Proof: Since [X ]≤ω covers X , (1) is true. (2) is an immediate consequence of
Theorem 3.10 and (3) is a corollary of Theorem 3.4. �

It is tempting to think that if α is a pseudouniform base for X , then Cs(X) ≤
Cα,u(X), but this is not the case. Indeed, consider a topological space X possess-
ing two dense subsets D and E in such a way that D is countable and E is not a
separable subspace (for example, the product 2ω1 is separable and any Σ-product
of it is dense and non-separable). Using the density of E and Theorem 3.10 it is
easy to show that α := [E]≤ω is pseudouniform on X . We will use Theorem 3.4
to prove that Cs(X) 6≤ Cα,u(X): if A ∈ α satisfies D ⊆ A, then A would be a
countable dense subset of E, contradicting its non-separability.

An immediate consequence of Corollary 3.11 is that a topological space is
pseudocompact iff each countable subset of it is bounded.
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Recall that C∗(X) is the family of all bounded continuous functions from X
into R.

Proposition 5.2. For any topological space X , C∗(X) is dense in Cs(X) iff X
is pseudocompact.

Proof: When X is pseudocompact, C∗(X) = C(X). On the other hand, if X
is not pseudocompact, there are A ∈ [X ]ω and f ∈ C(X) such that f ↾ A is
unbounded. Hence V (f,A, 1) ∩C∗(X) = ∅. �

Observe that a topological space X is ω-bounded if and only if for each A ∈
[X ]≤ω there is a compact set B with A ⊆ B. Thus we can use Theorem 3.4 to
obtain the following.

Proposition 5.3. For any topological space X ,

(1) Cs(X) ≤ Ck(X) iff X is ω-bounded,
(2) Ck(X) ≤ Cs(X) iff every compact subspace of X is contained in a sepa-

rable subspace of X .

Let X be the topological sum of ω1 copies of R. Then X is not almost pseudo-
ω-bounded and as a consequence of the previous proposition and Theorem 3.4 we
obtain Ck(X) < Cs(X) < Cu(X).

In this paragraph we show that there is a space Z for which Cs(Z) is a topolog-
ical vector space but Ck(Z) and Cs(Z) are incomparable. Let X be a countably
compact space which is not ω-bounded (Proposition 4.6) and let Y be a compact
non-separable space. Then Z, the topological sum of X and Y , is countably com-
pact (therefore pseudocompact) and hence Cs(X) is a topological vector space
(Corollary 3.11). On the other hand, Z is not ω-bounded because X is a closed
subspace of it; thus Cs(Z) 6≤ Ck(Z). Finally, Ck(Z) 6≤ Cs(Z) because Y is a
compact subset of X which is not contained in any separable subspace of X .

Now we turn our attention to the analysis of some cardinal functions.

Theorem 5.4. The following are equivalent for any space X :

(1) d(X) = ω;
(2) Cs(X) = Cu(X);
(3) Cs(X) is metrizable;

(4) χ(Cs(X)) = ω;
(5) Cs(X) is Fréchet-Urysohn;
(6) Cs(X) is sequential.

Proof: The fact that (1) and (2) are equivalent is a straightforward application
of Theorem 3.4. For the remaining implications we only need to invoke Theo-
rem 3.14. �

The following result is [8, Theorem 4.2.4].

Lemma 5.5. For any topological space X , d(Cu(X)) = w(βX).

Theorem 5.6. The following conditions are equivalent for any space X :
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(1) w(Cs(X)) = ω;
(2) d(Cs(X)) = ω;
(3) d(Cu(X)) = ω;
(4) w(Cu(X)) = ω.
(5) X is compact metrizable.

Proof: (2) is a trivial consequence of (1).
Let D be a countable dense subset of Cs(X). Seeking a contradiction let

us assume that D is not dense in Cu(X). There exist f ∈ C(X) and ε > 0
such that V (f,X, ε) ∩ D = ∅. Fix, for each d ∈ D, a point xd ∈ X such that
|d(xd) − f(xd)| ≥ ε. Since A = {xd : d ∈ D} is countable, there exists g ∈
V (f,A, ε) ∩D. In particular, |g(xg)− f(xg)| < ε. This contradiction shows that
(2) implies (3).

Since Cu(X) is metrizable, (3) and (4) are equivalent.
If we assume (4), then w(X) ≤ w(βX) = d(Cu(X)) ≤ w(Cu(X)) = ω

(Lemma 5.5) and therefore X is metrizable. Suppose that X is not compact,
i.e., that X possesses an infinite closed discrete subset Y = {yn : n ∈ ω}. Let
D = {dn : n ∈ ω} be a dense subset of Cu(X). Since Y is C-embedded, the
function g : Y → R defined by g(yn) = dn(yn) + 1 has an extension f ∈ C(X).
Hence V (f,X, 1) and D are disjoint. This is a contradiction that shows that X
is compact.

Now suppose that X is compact metrizable. Since d(Cu(X)) = w(βX) =
w(X) = ω (Lemma 5.5) and Cu(X) is metrizable, Cu(X) is second countable. On
the other hand, Theorem 5.4 gives Cu(X) = Cs(X). So w(Cs(X)) = ω. �

Given an infinite set E, a subset S ⊆ [E]ω will be called cofinal in [E]ω if for
each a ∈ [E]ω there is b ∈ S such that a ⊆ b. The cofinality of [E]ω is defined
as the minimum cardinality of a cofinal subset of [E]ω and it will be denoted
by cf([E]ω). If E is countable, cf([E]ω) = 1; when E is uncountable, we get
|E| ≤ cf([E]ω) ≤ |E|ω .

Note that the collection of all infinite initial segments in ω1 is cofinal in [ω1]
ω

and therefore cf([E]ω) = ω1, whenever |E| = ω1. By finite induction one shows
that the same is true when one replaces ω1 with ωn, n ∈ ω, but the cofinality of
[ωω]

ω cannot be decided within ZFC.
Let X be an infinite topological space. We shall denote by ϕ(X) the least

cardinality of an infinite family S ⊆ [X ]≤ω such that

(†) ∀A ∈ [X ]≤ω ∃S ∈ S (A ⊆ S).

Thus, for any space X , we get (1) ϕ(X) ≤ cf([X ]ω) and (2) ϕ(X) = ω iff X is
separable. Also, when X is discrete, ϕ(X) = cf([X ]ω).

Proposition 5.7. For any infinite topological space X ,

(1) iw(X) ≤ d(Cs(X)) ≤ w(βX);
(2) χ(Cs(X)) = ϕ(X); and
(3) d(X) = ψ(Cs(X)) = iw(Cs(X)).
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Proof: Since Cp(X) ≤ Cs(X) ≤ Cu(X), we apply Lemma 5.5 and the equal-
ity d(Cp(X)) = iw(X) [1, Theorem I.1.5] to obtain d(Cs(X)) ≤ w(βX) and
iw(Cs(X)) ≤ d(Cs(X)), respectively.

Let us prove (2). According to Proposition 3.12, κ := χ(Cs(X)) = χ(0, Cs(X))
so assume that {V (0, Aα, εα) : α < κ} is a local neighborhood base for Cs(X) at 0,
where A := {Aα : α < κ} ⊆ [X ]≤ω and {εα : α < κ} is a collection of positive
real numbers. To show that ϕ(X) ≤ κ, we shall argue that A satisfies (†). Given
A ∈ [X ]≤ω, fix α < κ in such a way that V (0, Aα, εα) ⊆ V (0, A, 1). Note that the
existence of a point z ∈ A \ Aα would lead to the existence of a map f ∈ C(X)
satisfying f [Aα] ⊆ {0} and f(z) = 1; in particular, f ∈ V (0, Aα, εα) \ V (0, A, 1).
Hence A ⊆ Aα.

To prove the remaining inequality assume that S ⊆ [X ]≤ω satisfies (†) and
|S| = ϕ(X). It suffices to show that {V (0, S, 1/n) : S ∈ S ∧ n ∈ N} is a local
neighborhood base for Cs(X) at 0. Given A ∈ [X ]≤ω and ε > 0, there are S ∈ S
and n ∈ N such that A ⊆ S and 1/n < ε. Thus V (0, S, 1/n) ⊆ V (0, A, ε).

To prove (3) we will show that iw(Cs(X)) ≤ d(X) ≤ ψ(Cs(X)) ≤ iw(Cs(X)).
First, the fact Cp(X) ≤ Cs(X) implies that iw(Cs(X)) ≤ iw(Cp(X)) = d(X) (see
[1, Theorem I.1.4]). Now set κ := ψ(Cs(X)) and let {Uα : α < κ} be a family of
open subsets of Cs(X) such that

⋂
{Uα : α < κ} = {0} (see Proposition 3.12).

Then, for each α < κ, there exist Aα ∈ [X ]≤ω and εα > 0 such that V (0, Aα, εα) ⊆
Uα. If D :=

⋃
{Aα : α < κ} were not dense in X , there would be a point z ∈ X\D

and therefore, for some continuous map f : X → R, f(z) = 1 and f [D] ⊆ {0};
in particular, f ∈

⋂
{Uα : α < κ} \ {0}. This absurdity guarantees that D is

dense in X and hence d(X) ≤ |D| ≤ ψ(Cs(X)). Finally note that the inequality
ψ(Y ) ≤ iw(Y ) holds for any topological space Y . �

Notice that if X is ω-bounded, then Cs(X) ≤ Ck(X) (Proposition 5.3) and
therefore iw(X) ≤ d(Cs(X)) ≤ d(Ck(X)) = iw(X) (see [8, Theorem 4.2.1] for the
last equality), i.e., d(Cs(X)) = iw(X).

Definition 5.8. We will say that a topological space X satisfies (⋆) if the closure
of any countable subset of X is C-embedded in X .

For example, if X is normal or ω-bounded, then X satisfies (⋆).
Let us recall that a cardinal number λ is a caliber for the topological space X

if any family of λ nonempty open subsets of X contains a collection of size λ with
nonempty intersection. If we relax the requirement and only ask for a subfamily
of size λ with the finite intersection property, then λ will be called a precaliber

for X . Therefore, if λ+ is a precaliber for X , then c(X) ≤ λ.

Proposition 5.9. For any space X satisfying (⋆), we have the following:

(1) if X is Fréchet-Urysohn, then (2c)+ is a precaliber for Cs(X) and hence

c(Cs(X)) ≤ 2c and
(2) if S ⊆ [X ]≤ω satisfies (†),

sup{w(βS) : S ∈ S} ≤ d(Cs(X)) ≤ c · χ(Cs(X)).



Pseudouniform topologies on C(X) given by ideals 571

Proof: We will prove (1). Let θ := (2c)+ and assume that {Uα : α < θ}
is a family of non-empty open subsets of Cs(X) such that Uα 6= Uβ whenever
α < β < θ. For each α < θ, let fα ∈ Cs(X), Aα ∈ [X ]≤ω, and εα > 0 be so that
V (fα, Aα, εα) ⊆ Uα.

Our assumption on X guarantees that each member of A := {Aα : α < θ}
has size at most c; a straightforward application of [7, II Theorem 1.6] produces
H ∈ [θ]θ and A ⊆ X so that {Aα : α ∈ H} is a ∆-system with root A (if |A| < θ,
there is γ < θ for which H := {α < θ : Aα = Aγ} has size θ). Thus Aα ∩Aβ = A,
whenever α and β are distinct members of H .

Since |RA| ≤ 2c < |H |, there is H0 ∈ [H ]θ in such a way that if α, β ∈ H0, then
fα ↾ A = fβ ↾ A. We claim that {Uα : α ∈ H0} has the finite intersection property.

Indeed, suppose that F is a finite subset ofH0 and define f :=
⋃
{fα ↾ Aα : α ∈ F}

to obtain a continuous map from B :=
⋃
{Aα : α ∈ F} into R; note that B is the

closure of
⋃
{Aα : α ∈ F} and use (⋆) to get g ∈ Cs(X) so that g ↾ B = f . Hence

g ∈
⋂
{V (fα, Aα, εα) : α ∈ F}.

In order to prove the inequality on the right of (2), fix a family S0 ⊆ [X ]ω of
cardinality ϕ(X) which satisfies (†). Let S ∈ S0 be arbitrary. There exists DS, a
dense subset of Cs(S), such that |DS | = w(βS) (Theorem 5.4-(2) and Lemma 5.5).
Observe that βS is separable and therefore |DS | ≤ c ([2, Theorem 1.5.3]). Now,
for each g ∈ DS let ĝ ∈ Cs(X) be so that ĝ ↾ S = g (X satisfies (⋆)).

Define E := {ĝ : S ∈ S0 ∧ g ∈ DS}. We only need to show that E is dense
in Cs(X) because |E| ≤ ϕ(X) · c. Given f ∈ Cs(X), A ∈ [X ]≤ω, and ε > 0 let
S ∈ S be so that A ⊆ S. Since DS is dense in Cs(S), there is g ∈ DS satisfying
|g(x)− f(x)| < ε, for all x ∈ A, and therefore ĝ ∈ V (f,A, ε).

For the remaining inequality, fix S ∈ S. Let D be a dense subset of Cs(X)
of minimum cardinality. Theorem 5.4-(2) and Lemma 5.5 imply that d(Cs(S)) =
w(βS) so we only need to show that {f ↾ S : f ∈ D} is a dense subset of Cs(S).
Given g ∈ Cs(S), A ∈ [S]≤ω, and ε > 0, there is ĝ ∈ C(X) satisfying ĝ ↾ S = g
and therefore f ∈ D ∩ V (ĝ, A, ε) implies f ↾ S ∈ V (g,A, ε). �

Proposition 5.10. If X is an infinite discrete topological space, then

(1) d(Cs(X)) ≤ c · cf([X ]ω),
(2) c

+ is a caliber for Cs(X),
(3) c(Cs(X)) = c,

(4) χ(Cs(X)) = ω · cf([X ]ω), and
(5) ψ(Cs(X)) = iw(Cs(X)) = |X |.

Proof: For (1) and (4), note that ϕ(X) = ω ·cf([X ]ω) and apply Propositions 5.7
and 5.9.

Now set θ := c
+ and assume that {Uα : α < θ} is a family of non-empty open

subsets of Cs(X) such that Uα 6= Uβ whenever α < β < θ. Proceeding as we did
in the proof of Proposition 5.9-(1), fix H0 ∈ [θ]θ and A ∈ [X ]≤ω in such a way
that for each α ∈ H0 there are fα ∈ Cs(X), Aα ∈ [X ]≤ω, and εα > 0 satisfying
(i) V (fα, Aα, εα) ⊆ Uα, (ii) {Aξ : ξ ∈ H0} is a ∆-system with root A, and (iii)
fα ↾ A = fβ ↾ A, for all α, β ∈ H0.
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Conditions (ii) and (iii) above guarantee that there is a function g : X → R

such that g ↾ Aα = fα ↾ Aα, for all α ∈ H0. Thus condition (i) gives g ∈
⋂
{Uα :

α ∈ H0} and this completes the proof of (2).
An immediate corollary of (2) is c(Cs(X)) ≤ c. For the remaining inequality:

let Y be an infinite countable subset of X and for each A ⊆ Y let χA : X → {0, 1}
be the characteristic function of A. Then {int(V (χA, Y, 1/2)) : A ⊆ Y } is a cellular
family in Cs(X) of size c.

(5) is a consequence of Proposition 5.7(3). �

The bounds for the density given in Proposition 5.7-(1) are not optimal: if X
is the discrete space of size c, then c = c(Cs(X)) ≤ d(Cs(X)) ≤ c · cf([X ]ω) = c.
On the other hand, iw(X) = d(Cp(X)) = d(Rc) = ω (see [1, Theorem I.1.5]) and
therefore iw(X) < d(Cs(X)) < w(βX).

Corollary 5.11. If c(Cs(X)) < c, then X is pseudocompact.

Proof: Assume that X is not pseudocompact and let Y be a countable dis-
crete subspace of X which is C-embedded in X . Since the restriction map
πY : Cs(X) → Cs(Y ) is continuous and onto (Proposition 3.6 and the fact that
Y is C-embedded), we obtain c = c(Cs(Y )) ≤ c(Cs(X)). �

Theorem 5.12. Let κ be a regular uncountable cardinal. If X = [0, κ) or

X = [0, κ], then

(1) d(Cs(X)) = iw(Cs(X)) = κ,
(2) w(Cs(X)) = χ(Cs(X)), and
(3) e(Cs(X)) ≥ κ.

Proof: Our assumptions on κ imply that X is ω-bounded and βX = [0, κ].
Therefore (see Proposition 5.7 and the paragraph after it)

iw(X) = d(Cs(X)) ≤ w(βX) = κ.

Hence we only need to show that κ ≤ d(Cs(X)) to complete the proof of (1).
Let Y ∈ [Cs(X)]<κ be arbitrary. To prove that Y is not dense in Cs(X) start

by noticing that for each f ∈ Y there is αf < κ such that f ↾ (X \ [0, αf )) is
constant. Now set β := sup{αf : f ∈ Y } and observe that V (χ[0,β], {β, β+1}, 1/2)
is disjoint from Y .

According to Propositions 3.12 and 5.7, to prove (2) it suffices to show that
ϕ(X) ≥ κ; so assume that S ⊆ [X ]≤ω satisfies |S| < κ. Then β := sup

⋃
S < κ

and, in particular, β + 1 /∈ S, for all S ∈ S.
For each α < κ, define fα := χ[0,α] and set Y := {fξ : ξ < κ}. Note that, for

each α < κ, V (fα, {α, α+ 1}, 1/2)∩ Y = {fα} and therefore (3) will be proved if
we show that Y is closed.

Fix g ∈ Cs(X) \ Y . If there is β ∈ X with g(β) /∈ {0, 1}, then Y is disjoint
from V (g, {β},min{|g(β)|, |1− g(β)|}); so let us assume that g : X → {0, 1}. Set
δ := min{ξ < κ : g ↾ (X \ [0, ξ)) is constant}. If g(δ) 6= 1, then V (g, {δ}, |1−g(δ)|)
is disjoint from Y so suppose that g(δ) = 1. Since g 6= fδ, there is β < δ with
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g(β) = 1. The way δ was chosen guarantees that g(γ) = 0 for some β < γ < δ
and therefore V (g, {β, γ}, 1/2)∩ Y = ∅. �

6. Lindelöf property in Cs(X)

Since Lindelöf’s property and separability are equivalent for metric spaces, the
following result is a consequence of Theorem 5.4.

Proposition 6.1. If X is a separable space, then Cs(X) is Lindelöf iff Cs(X) is
separable.

Theorem 6.2. If Cs(X) is Lindelöf, then X is pseudocompact.

Proof: Assume that X is not pseudocompact. Then there is a discrete family
U = {Un : n ∈ ω} of nonempty open subsets of X . For each n ∈ ω let xn ∈ Un.
We will show that if A := {xn : n ∈ ω} then {V (f,A, 1) : f ∈ C(X)} has no
countable subcover.

Let {fn : n ∈ ω} ⊆ C(X) be arbitrary. For each n ∈ ω let gn ∈ C(X) be so that
|gn(xn) − fn(xn)| ≥ 1 and gn[X \ Un] ⊆ {0}. Since U is discrete, g :=

∑
n∈ω gn

is a continuous function; moreover, for any n ∈ ω, g(xn) = gn(xn) and therefore
g /∈ V (fn, A, 1). �

Note that if Cs(X) is Lindelöf, then so is Cp(X). The converse fails: Zenor-
Veličko’s theorem [1, Theorem II.5.10] implies that Cp(R) is hereditarily Lindelöf
but, according to Theorem 6.2, Cs(R) is not Lindelöf.

Lemma 6.3. Let X be such that Cs(X) is Lindelöf. If A is a countable subset

of X such that A is C-embedded in X , then A is compact metrizable.

Proof: Define Y = A and let πY : Cs(X) → Cs(Y ) be the restriction map. Note
that πY is continuous (Proposition 3.6) and onto because Y is C-embedded in X .
Hence Cs(Y ) is Lindelöf and metrizable (Theorem 5.4); in particular, Cs(Y ) is
separable and thus Y is compact metrizable (Theorem 5.6). �

To simplify writing, we will say that a topological space is ckm if the closure
of any countable subset of it is compact metrizable.

Proposition 6.4. The property of being ckm is countably productive, preserved

under continuous mappings, and weakly hereditary.

Proof: Let {Xn : n ∈ ω} be a family of ckm spaces and set X :=
∏

nXn. If A
is a countable subset of X , then we can project A into Xn, for each n ∈ ω, to
obtain Kn, a compact metrizable subspace of Xn, in such a way that A ⊆

∏
nKn.

Therefore, A is compact metrizable.
Assume that X is ckm and that f : X → Y is continuous and onto. If B is a

countable subset of Y , there is a countable set A ⊆ X for which f [A] = B. Hence
A is compact metrizable and therefore f [A] is a compact metrizable subspace of
Y ([2, Theorem 3.1.22]) which contains the closure of B.

It is immediate to prove that any closed subspace of a ckm space is ckm. �
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Proposition 6.5. If X satisfies (⋆) and Cs(X) is Lindelöf, then X is ckm and

all its finite powers are Fréchet-Urysohn.

Proof: The fact that X is ckm is a consequence of Lemma 6.3. To prove the
second assertion: let n ∈ ω, A ⊆ Xn, and x ∈ A be arbitrary. Our assumption on
Cs(X) implies that Cp(X) is Lindelöf so, by Asanov’s theorem [1, Theorem I.4.1],

Xn has countable tightness. Thus there is a countable set B ⊆ A with x ∈ B.
Since B is metrizable, there is a sequence in B converging to x. �

A result of Nakhmanson [1, Theorem IV.10.1] establishes that L(Cp(X)) =
w(X) for any linearly ordered compactum X ; therefore if X is an Aronszajn
continuum (see [10, Section 3]), then X is ckm and χ(X) = ω, but Cs(X) is not
Lindelöf.

Corollary 6.6. If Cs(X) is Lindelöf, then X is normal iff X is ω-bounded.

Proof: Proposition 6.5 shows that, under our assumptions, normal implies
ω-bounded and since Cp(X) is Lindelöf, the reverse implication is [1, Corol-
lary I.4.14]. �

Given a set E, a collection C ⊆ [E]ω is called a club in [E]ω (see [5, Section 8])
if C is cofinal in [E]ω and for each increasing sequence {an : n ∈ ω} ⊆ C we get⋃

n an ∈ C.

Definition 6.7. Assume that S is the Σ-product of the family of topological
spaces {Mα : α < κ} about the point z.

(1) For each a ⊆ κ, the natural retraction ra : S → S is defined by

ra(x) := (x ↾ a) ∪ (z ↾ (κ \ a)).

(2) A subspace X ⊆ S will be called ω-invariant if there is a club C in [κ]ω

such that ra[X ] ⊆ X , for all a ∈ C.

The proof of [3, Lemma 1] shows that the following is true.

Remark 6.8. Any closed subspace of a Σ-product of separable metric spaces is
ω-invariant.

We also have the following.

Proposition 6.9. If S is as in Definition 6.7, then the union of countably many

ω-invariant subspaces of S is ω-invariant too.

Proof: For each n ∈ ω let Xn be an ω-invariant subspace of S as witnessed by
the club Cn ⊆ [κ]ω . Then C :=

⋂
n Cn is a club (see [5, Theorem 8.3]) and if

a ∈ C, then ra[Xn] ⊆ Xn, for all n ∈ ω, so ra[
⋃

nXn] ⊆
⋃

nXn. �

Definition 6.10. Let η be a nonempty family of subsets of a topological space X .
We will denote by Cη(X) the space that results of endowing C(X) with the
topology which has the collection of all sets of the form {f ∈ C(X) : f [S] ⊆ U},
where U is an open subset of R and S ∈ η, as a subbase.
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It should be noticed that if X is ckm and we let α := {A : A ∈ [X ]≤ω}, then
Lemma 3.3 and [6, Theorem 1.2.3] imply that Cs(X) = Cα(X).

Remark 6.11. If Ck(X) is Lindelöf, then all compact subspaces of X are metriz-
able. Indeed, suppose that K is a compact subset of X . Thus Ck(K) = Cu(K)
(Proposition 3.4) and since πK : Ck(X) → Ck(K), the restriction map, is contin-
uous and onto (Proposition 3.6 and [2, Exercise 3.2.J]), we have that Cu(K) is
Lindelöf. Therefore K is metrizable (Theorem 5.6).

Theorem 6.12. Let X be an ω-invariant subspace of a Σ-product of separable
metric spaces. Then:

(1) Ck(X) is Lindelöf iff each compact subspace of X is metrizable and

(2) if X is ckm, then Cs(X) is Lindelöf.

Proof: The direct implication in (1) is Remark 6.11. For the converse more
tools are needed.

Let us denote by α the collection of all compact metrizable subspaces of X .
A minor modification of the proof of [3, Lemma 2] shows that Cα(X) (recall
Definition 6.10) is Lindelöf. On the other hand, [8, Theorem 1.2.3] implies that
Cα,u(X) = Cα(X) and therefore Cα,u(X) is Lindelöf.

To complete the proof of (1) note that when all compact subsets of X are
metrizable, one has Ck(X) = Cα,u(X).

Finally, if X is ckm, Theorem 3.4 gives Cs(X) ≤ Cα,u(X) and so (2) is proved.
�

Corollary 6.13. If X is a Corson compactum (i.e., a compact subspace of a

Σ-product of separable metric spaces), then Cs(X) is Lindelöf.

Proof: If A is an arbitrary subset of X , then A is a Corson compactum and
therefore w(A) = d(A) (see, for example, [11, Corollary on p. 158]). So when A
is countable, A is compact and second countable, i.e., A is compact metrizable.
This suffices in view of Remark 6.8. �

Corollary 6.14. Let Z be the topological product of a family of compact metric

spaces. If X is a closed subspace of Z which is contained in a Σ-product of Z,
then all finite powers of Cs(X) are Lindelöf.

Proof: Let n ∈ N be arbitrary. A routine argument shows that, in general,
Cs(X)n is homeomorphic to Cs(X × n) (note that X × n is the topological sum
of n copies of X). Thus, if X is as in the statement of our corollary, X × n is a
closed subspace of Z × n which is contained in a Σ-product of Z × n. Hence it
suffices to prove that Cs(X) itself is Lindelöf.

Assume that {Mα : α < κ} is the family of compact metrizable spaces whose
product is Z. We will use Theorem 6.12, so let A ∈ [X ]≤ω be arbitrary. For each
a ∈ A let s(a) be its support. Then N :=

⋃
{s(a) : a ∈ A} is a countable subset

of κ; moreover, clX(A) is homeomorphic to a subspace of the product
∏

α∈N Mα

and therefore it is metrizable. On the other hand, clX(A) is clearly a compact
subspace of Z. �
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Proposition 6.15. If X is a dense subspace of Y , then L(Cs(βY )) ≤ L(Cs(βX)).

Proof: Our assumption on X and Y implies that there is a continuous map f
from βX onto βY . f is a quotient map because f is closed ([2, Corollary 2.4.8]).
Moreover, Proposition 3.6 applies and therefore Cs(βY ) is homeomorphic to a
closed subspace of Cs(βX). �

Note that if X and Y are as in the previous proposition and Y is pseudocom-
pact, then the restriction map πY : Cs(βY ) → Cs(Y ) is continuous and onto.
Hence L(Cs(Y )) ≤ L(Cs(βX)).

The following result is probably well-known.

Lemma 6.16. If w(Y ) = ω, then hL(X × Y ) = hL(X) for any space X .

Proof: Set κ := hL(X). Fix B = {Bn : n ∈ ω}, a base for Y , and assume that
Z is a subspace of X×Y . In order to prove that L(Z) ≤ κ it suffices to show that
if U = {Vξ ×Wξ : ξ < θ} covers Z, where, for each ξ < θ, Vξ is an open subset of
X and Wξ ∈ B, then U has a subset of size ≤ κ which covers Z.

Let n ∈ ω. Define Sn := {ξ < θ : Wξ = Bn} and set Xn :=
⋃
{Vξ : ξ ∈ Sn}.

Thus there is Hn ∈ [Sn]
≤κ in such a way that {Vξ : ξ ∈ Hn} covers Xn.

Now note that {Vξ×Bn : n ∈ ω∧ξ ∈ Hn} ⊆ U has size at most κ and covers Z.
On the other hand, X embeds as a closed subspace of X × Y and therefore

hL(X × Y ) ≥ κ. �

Let us note that if α < ω1, then [0, α] is compact metrizable and therefore
Theorem 5.6 implies that hL(Cs([0, α])) = ω.

Proposition 6.17. hL(Cs([0, ω1])) = ω1.

Proof: Let X := [0, ω1]. For each α < ω1 define the following subspace of
Cs(X),

Yα := {f ∈ C(X) : f ↾ (α, ω1] is constant}.

Then the map h : Yα → Cs([0, α]) × R given by h(f) = (f ↾ [0, α], f(α+ 1)) is a
homeomorphism, so Lemma 6.16 gives hL(Yα) = ω.

Since Cs(X) =
⋃
{Yα : α < ω1}, we obtain hL(Cs(X)) ≤ ω1. The other

inequality follows from the fact that Cs(X) is not Lindelöf (Proposition 6.5). �

7. Questions

In the following questions X represents an arbitrary Tychonoff space.

(1) Does the inequality w(X) ≤ d(Cs(X)) always hold?
(2) Assuming that X is normal, Fréchet-Urysohn and ckm, is there an upper

bound for the Lindelöf degree of Cs(X) which does not depend on X (e.g.
L(Cs(X)) ≤ ω1)?

(3) Does there exist an X satisfying the hypotheses of Proposition 5.9 for
which c(Cs(X)) = 2c?

(4) Does there exist a Froĺık space which is not almost pseudo-ω-bounded?
(5) Does the equality L(Cs(X)) = ω imply any of the following statements?
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(a) X is Froĺık.
(b) X is a k-space.
(c) X is almost pseudo-ω-bounded.

(6) Does the equality d(Cs(X)) = L(Cs(X)) always hold?
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