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ON QUASI-p-BOUNDED SUBSETS

BY

M. S A N C H I S (CASTELLÓ) AND

A. T A M A R I Z - M A S C A R Ú A (MÉXICO)

Abstract. The notion of quasi-p-boundedness for p ∈ ω∗ is introduced and investi-
gated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show
that the concepts of RK-compatible ultrafilter and P -point in ω∗ can be defined in terms
of quasi-p-pseudocompactness. For p ∈ ω∗, we prove that a subset B of a space X is
quasi-p-bounded in X if and only if B×PRK(p) is bounded in X ×PRK(p), if and only if
clβ(X×PRK(p))(B × PRK(p)) = clβX B × β(ω), where PRK(p) is the set of Rudin–Keisler
predecessors of p.

1. Introduction. All the spaces considered in this paper are Tikhonov
spaces. The Rudin–Keisler pre-order ≤RK on β(ω) is defined by p ≤RK q
if there exists a function g : ω → ω such that gβ(q) = p where gβ is the
continuous extension of g to β(ω). If p ≤RK q and q ≤RK p, for p, q ∈ ω∗,
then we say that p and q are RK-equivalent and we write p ≈RK q. It is not
difficult to verify that p ≈RK q if and only if there is a permutation σ of ω
such that σβ(p) = q. For p ∈ ω∗, we set PRK(p) = {r ∈ β(ω) : r ≤RK p}.
The type of p ∈ ω∗ is the set T (p) = {r ∈ ω∗ : p ≈RK r}. We denote by
Σ(p) the set T (p) ∪ ω.

For p, q ∈ β(ω) we write p <R q if there is a surjection f : ω → ω such
that fβ(q) = p and for every A ∈ q there is n < ω for which |A∩f−1(n)| = ω.
If p <R q, r ≈RK p and s ≈RK q, then r <R s. The Rudin pre-order ≤R on
β(ω), introduced in [17], is defined by p ≤R q if either p ≈RK q or p <R q.
It is obvious that p ≤R q implies p ≤RK q. For p ∈ ω∗ let PR(p) be the set
{r ∈ β(ω) : r ≤R p}.

An ω-partition of ω is a cover of ω consisting of infinite pairwise disjoint
subsets. For each A ⊂ ω the symbol Â indicates the set {p ∈ β(ω) : A ∈ p}.
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Two ultrafilters p, q ∈ ω∗ are RK-compatible if there is s ∈ ω∗ such that
s ≤RK p and s ≤RK q.

1.1. Definition. For p∈ω∗, a point x∈X is said to be a p-limit point of
a sequence (Un)n<ω of nonempty subsets of X (in symbols: x = p-lim(Un))
if, for each neighborhood V of x, the set {n < ω : Un ∩V 6= ∅} belongs to p.

This notion was introduced by Ginsburg and Saks [10] by generalizing
the notion of p-limit point discovered and investigated by Bernstein [1]. It
should be mentioned that Bernstein’s p-limit concept was also introduced,
in a different form, by Froĺık [5] and Katětov [13], [14]. A subset B of a space
X is said to be bounded (in X) if every real-valued continuous function on
X is bounded on B. In [15] N. Noble proved that B is bounded in X if
(and only if) every sequence of (pairwise disjoint) open sets of X meeting B
has a cluster point. Starting from this fact and the above concept of p-limit
point, S. Garćıa-Ferreira [7] introduced the notion of p-bounded subset for
p ∈ ω∗: a subset B is p-bounded (in X) if every sequence of open subsets
meeting B has a p-limit point. Obviously, for each p ∈ ω∗, every p-bounded
subset (in X) is bounded but the converse does not hold in general (see e.g.
[7, Theorem 1.10]). Later, p-boundedness was widely studied by the authors
in [18]. Here we are concerned with quasi-p-boundedness, a notion weaker
than p-boundedness:

1.2. Definition. Let p∈ω∗. A subset B of a space X is called quasi-
p-bounded in X if every sequence of pairwise disjoint open subsets of X
meeting B has a subsequence which admits a p-limit point.

Recall that a space is said to be pseudocompact if it is bounded in itself.
Analogously, for p ∈ ω∗, a space X is quasi-p-pseudocompact (respectively,
p-pseudocompact) if it is quasi-p-bounded (resp., p-bounded) in itself. If
either q <RK p or q and p are ≤RK-incomparable, then Σ(p) is a pseudo-
compact space which is not quasi-q-pseudocompact (see Corollary 3.4 and
Example 3.5). So, p-boundedness implies quasi-p-boundedness and quasi-
p-boundedness implies boundedness but none of these implications can be
reversed.

The paper is organized as follows: Section 2 is devoted to proving several
basic results on quasi-p-boundedness. In Section 3, we characterize the sub-
sets of β(ω) which are quasi-p-bounded for some p ∈ ω∗ and we apply these
results to determine when Σ(q), PRK(q) and T (q) are quasi-p-pseudocom-
pact. Finally, in Section 4, we show that, for p ∈ ω∗, a bounded subset B of
X is quasi-p-bounded if and only if its product with PRK(p) is bounded in
X × PRK(p), if and only if clβX B × β(ω) = clβ(X×PRK(p))(B × PRK(p)).

Our notation is standard: clX A and intX A denote the closure and the
interior, respectively, of a subset A of X. A subset A of X is called regular-
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closed if A = clX(intX A). The symbol R stands for the real numbers
endowed with the usual topology. For terminology and notation not defined
here and for general background see [4] and [8].

2. Basic results on quasi-p-bounded subsets. We begin by showing
several useful lemmas.

2.1. Lemma. Let p ∈ ω∗, (Un)n<ω be a sequence of subsets of a space
X, and x ∈ X. Then:

(1) If g : ω → ω is a function satisfying gβ(p) = r, then x = r-lim(Un)
if and only if x = p-lim(Ug(n));

(2) If there are r′ ∈ ω∗ with r′ ≤RK p, and a subsequence (Vn)n<ω of
(Un)n<ω such that x = r′-lim(Vn), then there is an r-limit point in X of
(Un)n<ω with r ≤RK p.

P r o o f. We obtain (1) because W ⊂ ω belongs to r if and only if
g−1(W ) ∈ p, and {n < ω : Ug(n) ∩ A 6= ∅} = g−1({n < ω : Un ∩ A 6= ∅}) for
every A ⊂ X.

Now we prove (2). For each n<ω there is k(n)<ω such that Vn=Uk(n).
Let g : ω → ω be defined by g(n) = k(n). By (1), x = r-lim(Un) where
r = gβ(r′). Moreover, r ≤ r′ ≤ p.

The following lemma is already known and we omit the proof.

2.2. Lemma. Let X be a Hausdorff space and let (An)n<ω be a sequence
of nonempty open subsets of X. Then either there exists n0<ω such that
An=An0

for every n ≥ n0 and |An0
| < ℵ0, or there is a sequence (kn)n<ω

of natural numbers and a sequence (Bn)n<ω of nonempty disjoint open sub-
sets of X such that Bn ⊂ Akn for every n < ω.

2.3. Theorem. Let X be a topological space and let p ∈ ω∗. For each
subset B of X, the following conditions are equivalent :

(1) B is quasi-p-bounded in X;
(2) Every sequence of open nonempty subsets of X meeting B has a

subsequence which has a p-limit point in X;
(3) For every sequence (Un)n<ω of nonempty open subsets of X meeting

B there are r ∈ ω∗, with r ≤RK p, and x ∈ X such that x = r-lim(Un);
(4) For every sequence (Un)n<ω of open nonempty subsets of X meeting

B, there are a subsequence (Vn)n<ω of (Un)n<ω, an r ∈ ω∗ with r ≤RK p,
and x ∈ X such that x = r-lim(Vn).

P r o o f. The implications (2)⇒(1) and (3)⇒(4) are trivial. Moreover, the
implications (1)⇒(2), (2)⇒(3), (4)⇒(3) and (3)⇒(2) are consequences of
Lemmas 2.2, 2.1(1), 2.1(2) and 2.1(1), respectively.
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In view of this last theorem, the concept of quasi-p-pseudocompactness
is equivalent to the concept of M -pseudocompactness, with M = PRK(p),
introduced in [7], which coincides with condition (3) of Theorem 2.3.

The proof of the following lemma is left to the reader.

2.4. Lemma. For each p ∈ ω∗, the following conditions hold :

(1) Quasi-p-boundedness is preserved under continuous functions;
(2) Quasi-p-pseudocompactness is inherited by regular closed subsets.

A Froĺık sequence in a space X is a sequence (Un)n<ω of open subsets of
X such that for each filter G of infinite subsets of ω,⋂

F∈G
clX

( ⋃
n∈F

Un

)
6= ∅.

A subset B of a space X is strongly bounded in X (see [19]) if each
infinite family of mutually disjoint open subsets of X meeting B contains a
disjoint subfamily (Un)n<ω which is a Froĺık sequence. The Froĺık class P is
the class of pseudocompact spaces whose product with each pseudocompact
space is also pseudocompact. So, Theorem 3.6 of [6] says:

2.5. Theorem. A pseudocompact space belongs to the Froĺık class P if ,
and only if , it is strongly bounded in itself.

2.6. Theorem. If a subset B is strongly bounded in X, then B is
quasi-p-bounded in X for each p ∈ ω∗.

P r o o f. Let p ∈ ω∗ and let (Un)n<ω be a sequence of pairwise disjoint
open sets whose elements meet B. Since B is strongly bounded in X, there
exist a subsequence (Un(k))k<ω of (Un)n<ω and x ∈ X such that

x ∈
⋂
F∈p

clX

( ⋃
k∈F

Un(k)

)
.

It is apparent that x is a p-limit point of (Un(k))k<ω.

As an immediate consequence of the previous result, pseudocompact
spaces in the Froĺık class P are quasi-p-pseudocompact for every p ∈ ω∗.
We shall explore this fact in the following. Consider the (proper) subclass
P∗ of P defined as the class of spaces X with the property that each sequence
of disjoint open sets in X has a subsequence such that each of its elements
meets some fixed compact set. This class was introduced and studied by
N. Noble in [16]. In particular, Noble showed that X ∈ P∗ whenever kRX,
the kR-space associated with X (that is, the set X endowed with the weak
topology induced by the real-valued functions on X which are continuous on
all compact subsets of X) is pseudocompact. Thus, pseudocompact spaces
which are locally compact or sequential are quasi-p-pseudocompact for every
p ∈ ω∗ (for an example of a space in P∗ such that kRX is not pseudocompact,
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see [2] and [12]). As every completely regular space can be embedded as a
closed subspace of a pseudocompact kR-space [16, 2.3], we have the following
result.

2.7. Theorem. Every pseudocompact space can be embedded as a closed
subspace of a space which is quasi-p-pseudocompact for each p ∈ ω∗. So,
quasi-p-pseudocompactness is not inherited by closed pseudocompact subsets.

In the context of this result the question of characterizing quasi-p-pseu-
docompact spaces whose closed sets are also quasi-p-pseudocompact arises.
We are concerned with this question in the following theorem.

2.8. Theorem. Let p ∈ ω∗. Every closed subset of a space X is quasi-
p-pseudocompact if and only if every sequence in X contains a subsequence
which admits a p-limit.

P r o o f. Suppose that every closed subset of X is a quasi-p-pseudocom-
pact space and let (xn)n<ω be a sequence in X. We can assume, without loss
of generality, that {xn : n < ω} contains no p-limit points of (xn)n<ω. We
prove, by induction on n, that there is a subsequence (yn)n<ω of (xn)n<ω
which is a copy of ω. In fact, put y0 = x0 and suppose that, for k < ω,
there exist a subset {y0, . . . , yk} where ys = xg(s) and g(s) < g(s + 1),
s = 0, 1, . . . , k − 1, and a family (Un)n≤k of pairwise disjoint open subsets
such that

(1) yn ∈ Un, n = 0, 1, . . . , k,

(2) Mn = {t < ω : xt ∈ clX Un} 6∈ p.

By inductive hypothesis, M =
⋂
n≤k(ω \Mn) belongs to p. Let m ∈ M be

such that m > g(k). We define yk+1 = xm. The induction step is finished by
taking an open neighborhood V of yk+1 which does not meet Un for every
n ≤ k and such that {n < ω : xn ∈ V } 6∈ p, and by taking an open set Uk+1

containing yk+1 and such that its closure is a subset of V (so, Uk+1 is an
open neighborhood of yk+1 which does not meet Un for every n ≤ k and
such that {t < ω : xt ∈ clX Uk+1} 6∈ p).

Now, consider H = clX{yn}n<ω. Since {yn}n<ω is a copy of ω, it is a
sequence of open sets in H. By assumption, (yn)n<ω admits a subsequence
having a p-limit point, as was to be proved. The converse is clear.

Relating to the previous theorems, we construct a space in the class P
which is not p-pseudocompact for any p ∈ ω∗.

2.9. Example. For each p ∈ ω∗, let X(p) = β(ω) \ {p}. Since PRK(p)
is not contained in X(p), X(p) is not p-pseudocompact [7, Lemma 1.9]. Let
Y =

∏
p∈ω∗ X(p). For every p ∈ ω∗, the space Y is not p-pseudocompact

because the image of Y under the p-projection is X(p). But X(p) ∈ P for
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each p ∈ ω∗ [6, Example 4.4] and, since the class P is closed under arbitrary
products [16, Theorem 3.1], Y is also in P. In particular, by Theorem 2.6,
Y is quasi-q-pseudocompact for every q ∈ ω∗.

Later (in Example 3.2) we will see an example of a quasi-p-pseudocom-
pact space for every p ∈ ω∗ which does not belong to P.

Let α be a cover of a space X. A function g from X into a space Y
is α-continuous if the restriction of g to each member of α is continuous.
A space X for which every real-valued α-continuous function is continuous
is called an αR-space. We say that a point x ∈ X is an αR-point if there
exists a neighborhood of x which is an αR-space. For instance, kR-spaces are
αR-spaces when α is the cover of compact sets. In the following, if p ∈ ω∗,
we denote by α(p) the cover of all quasi-p-pseudocompact subsets of X.

2.10. Theorem. Let p∈ω∗ and let B be a bounded subset of a space X.
If every point of X is either an α(q)R-point for some q ≤RK p or a P -point ,
then B is quasi-p-bounded in X.

P r o o f. If B is not quasi-p-bounded in X, by Lemma 2.2 and Theo-
rem 2.3(4), there exists a sequence (Un)n<ω of pairwise disjoint open sets
in X meeting B such that for each quasi-q-pseudocompact subset Y of X,
with q ≤RK p, only a finite subcolection of {Un : n < ω} meet Y . We shall
see that this fact leads us to a contradiction. Consider a sequence (Vn)n<ω
of regular-closed sets meeting B and that Vn ⊂ Un for every n < ω. For
all n < ω, let xn ∈ intX Vn and define a real-valued continuous function fn
such that fn(xn) = n and fn(X \ Vn) = 0.

We prove that the function f(x) =
∑
n<ω fn is continuous. Let x ∈ X.

Since Vn ∩ Vm = ∅ when n 6= m, f is continuous in
⋃
m<ω intVm. If x is a

P -point of X belonging to X \
⋃
n<ω Vn, then f is zero on the neighborhood⋂

n<ω(X \ Vn) of x. So, f is continuous at x.

Suppose now that x ∈ X \
⋃
m<ω intVm is not a P -point. By assumption

x is an α(q)R-point for some q ≤RK p. So there exists a neighborhood V of
x which is an α(q)R-space. Let Q ⊂ V be a quasi-q-pseudocompact space.
Then Q only meets a finite subcollection of {Vn : n < ω} and, consequently,
f agrees on Q with a finite sum of continuous functions. Hence, f is contin-
uous at Q. Thus, since V is an α(q)R-space, f |V is continuous; but V is a
neighborhood of x, so f is continuous at x. As f is continuous on all of X
and unbounded on B, we have just obtained a contradiction.

2.11. Corollary. Let p ∈ ω∗. Each open pseudocompact subset of a
quasi-p-pseudocompact space is quasi-p-pseudocompact.

P r o o f. Let X be a quasi-p-pseudocompact space and consider an open
pseudocompact subset P of X. Since each point of P belongs to a regular-
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closed subset contained in P , each point of P is an α(p)R-point. Thus, the
result is a consequence of Theorem 2.10.

2.12. Corollary. Let p ∈ ω∗. A free topological sum X =
⊕

α∈AXα,
where Xα 6= ∅, is quasi-p-pseudocompact if and only if each Xα is quasi-p-
pseudocompact and |A| < ℵ0.

3. Quasi-p-pseudocompactness in β(ω). This section is devoted to
studying the notion of quasi-p-pseudocompactness in β(ω). In [7, Lemma
1.9] it was proven that PRK(p) is p-pseudocompact for every p ∈ ω∗. Our
first result in this section relates quasi-p-pseudocompactness to PRK(p).

3.1. Theorem. Let ω ⊂ X ⊂ β(ω) and p ∈ ω∗. Then the following
assertions are equivalent :

(1) X is quasi-p-pseudocompact ;
(2) X ∩ PRK(p) is quasi-p-pseudocompact ;
(3) (X ∩ PRK(p)) \ ω is dense in ω∗.

P r o o f. (1)⇒(2). Assume that X is quasi-p-pseudocompact, and let
(Un)n<ω be a sequence of pairwise disjoint open sets in X ∩ PRK(p). For
each n < ω, choose kn ∈ Un ∩ ω. The sequence ({kn})n<ω has an r-limit
point x ∈ X where r ∈ ω∗ and r ≤RK p. Define g : ω → ω by g(n) = kn.
If B ∈ x, then {n < ω : kn ∈ B} = {n < ω : g(n) ∈ B} = g−1(B) ∈ r. So
B ∈ gβ(r). Thus, gβ(r) = x; that is, x ≤RK r ≤RK p. We have just proved
that x ∈ X ∩ PRK(p) and x = r-lim(Ukn).

(2)⇒(3). Let A be an infinite subset of ω. We are going to prove that

there exists a free ultrafilter on ω that belongs to PRK(p) ∩ X ∩ Â. Let
g : ω → ω be an injective function which enumerates A: A = {g(n) : n < ω}.
By assumption, there is a subsequence of ({g(n)})n<ω which has a p-limit
point in PRK(p)∩X. By Lemma 2.1, the sequence ({g(n)})n<ω has an r-limit
point x ∈ X where r ∈ ω∗ and r ≤RK p. Thus, gβ(r) = x; that is, for every
B ∈ x, we have g−1(b) = {n < ω : g(n) ∈ B} ∈ r. So, B ∩ A 6= ∅. Then

A ∈ x; and this means that x ∈ Â∩X. Moreover, x ≤RK r ≤RK p, and x is
free because otherwise we contradict the injectivity of g.

(3)⇒(1). Let (An)n<ω be a sequence of nonempty subsets of ω. We are

going to prove that the sequence (Ân ∩X)n<ω of nonempty open subsets of
X has an r-limit point in X, where r ∈ ω∗ and r ≤RK p. For each n < ω,
let g(n) be an element of An. Take the set A = {g(n) : n < ω}. Using our

hypothesis, we obtain an xg ∈ X∩PRK(p)∩Â∩ω∗. Hence, A ∈ xg, xg ≤RK p,
xg∈X and xg is a free ultrafilter. The collection {g−1(g(n)) : n < ω} defines
a partition on ω, so it defines an equivalence relation R in ω. Let ω/R be
the collection of equivalence classes, and let c : ω → ω/R be the function
which assigns to each n < ω its equivalence class. We choose a function ξ
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on {c(n) : n < ω} with values in ω such that ξ(c(n)) ∈ g−1(g(n)). Also,
we take a function h : ω → ω which satisfies hβ(p) = xg. Finally, we define
φ : ω → ω in the following way: φ(n) = ξ(c(m)) if h(n) = g(m), and
φ(n) = 0 if h(n) 6∈ A. The relation φ is a function from ω to ω. Let rg be
the image of p under φβ . In particular, we have rg ≤RK p.

We are going to prove that xg = rg-lim{g(n)}, that is, for every B ∈ xg,
g−1(B) ∈ rg. In order to do this, it is enough to prove that for every B ∈ xg,
φ−1g−1(B) ∈ p. But g−1(B) ⊃ g−1(B ∩ A) (recall that B ∩ A ∈ xg). Then
φ−1(g−1(B)) ⊃ φ−1(g−1(B ∩A)), and this last set contains h−1(B ∩A). In
fact, let x ∈ h−1(B ∩A), so h(x) = g(m) for some m < ω. This means that
φ(x) = ξ(c(m)) ∈ g−1(g(m)). Hence, g(φ(x)) = g(m) ∈ B ∩ A. Therefore,
φ(x) ∈ g−1(B ∩ A). Since h−1(B ∩ A) ∈ p, φ−1(g−1(B)) ∈ p. This implies
that g−1(B) ∈ rg, so xg = rg-lim{g(n)}.

Now, we obtain some results that are consequences of the previous the-
orem.

3.2. Example. Let p be a free non-RK-minimal ultrafilter on ω. The
space X = β(ω)\T (p) is quasi-q-pseudocompact for all q ∈ ω∗ and does not
belong to P.

P r o o f. In fact, let q ∈ ω∗. If p 6≈RK q then T (q) ⊂ X ∩ PRK(q), and if
p ≈RK q then X ∩ PRK(q) ⊃ T (r) where r ∈ ω∗ is strictly less that p in the
Rudin–Keisler pre-order. So, in both cases, X ∩ PRK(q) is dense in ω∗. By
Theorem 3.1 we conclude that X is quasi-q-pseudocompact for every q ∈ ω∗.

Now we are going to prove that X does not belong to P. Let Un = {n}
for each n ∈ ω, and let {Vn : n < ω} be a subsequence of {Un : n < ω}
such that Vn 6= Vm if n 6= m; that is, for each n < ω there is kn < ω such
that Vn = Ukn . The function f : ω → ω defined by f(n) = kn is one-to-one.
Moreover,⋂

N∈p
clX

( ⋃
n∈N

Vn

)
=
⋂
N∈p

clX(f(N)) =
( ⋂
N∈p

clβ(ω) f(N)
)
∩X.

But
⋂
N∈p clβ(ω) f(N) = {fβ(p)} and fβ(p) ∈ T (p); therefore,⋂

N∈p
clX

( ⋃
n∈N

Vn

)
= ∅.

We conclude, using Theorem 2.5, that X is not in P.

Another consequence of Theorem 3.1 is the following.

3.3. Corollary. For p, q ∈ ω∗, PRK(q) is quasi-p-pseudocompact if and
only if p and q are RK-compatible.

Blass and Shelah [3] have defined a model M of ZFC in which

M |= ∀p, q ∈ ω∗ ∃r ∈ ω∗ (r ≤RK p ∧ r ≤RK q),
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so, by Corollary 3.3,

M |= ∀p ∈ ω∗ (PRK(p) is quasi-q-pseudocompact for every q ∈ ω∗).
(Observe that PRK(p) does not belong to P because if p <RK q, then
PRK(p)×Σ(q) is not pseudocompact.)

By definition, if q ≤RK p, then every quasi-q-pseudocompact space is
quasi-p-pseudocompact. Moreover, Theorem 3.1 shows that Σ(q) is quasi-
q-pseudocompact, and if Σ(q) is quasi-p-pseudocompact, then we must have
q ≤RK p. So, we obtain:

3.4. Corollary. Let p, q ∈ ω∗. The following are equivalent :

(1) q ≤RK p;
(2) Every quasi-q-pseudocompact space is quasi-p-pseudocompact ;
(3) Σ(q) is quasi-p-pseudocompact.

Now we are able to give an example of a pseudocompact space which is
not quasi-p-pseudocompact for any p ∈ ω∗.

3.5. Example. Let K be the one-point compactification of the space⊕
p∈ω∗(β(ω)× {p}). The subspace X =

⊕
p∈ω∗(Σ(p) × {p}) ∪ {x0} of K,

where x0 is the distinguished point in K, is a pseudocompact space. Also,
X contains a clopen copy of Σ(p) for each p ∈ ω∗. Since ω∗ does not have
≤RK-maximal elements, and because of Lemma 2.4 and Corollary 3.4, X is
not quasi-p-pseudocompact for any p ∈ ω∗.

We finish this section by studying the space T (p) related to the properties
that we are analyzing. We begin by determining when T (q) is quasi-p-pseu-
docompact and we characterize P -points in ω∗ in terms of quasi-p-pseudo-
compactness of T (p). The following result, proved in [7], will help us.

3.6. Theorem. For p, q ∈ ω, p <R q if and only if T (q) is p-pseudo-
compact.

3.7. Theorem. Let p, q ∈ ω∗. The space T (q) is quasi-p-pseudocompact
if and only if (PRK(p) ∩ PR(q)) \Σ(q) 6= ∅.

P r o o f. Assume that T (q) is quasi-p-pseudocompact and let (An)n<ω be

an ω-partition of ω. There are r ≤RK p and s ∈ T (q) such that s = r-lim Ân.

Thus, for each A ∈ s, {n<ω : Â∩ Ân 6=∅} ∈ r. Since {n<ω : |A∩An|=ℵ0}
⊃ {n < ω : Â ∩ Ân 6= ∅}, it follows that {n < ω : |A ∩ An| = ℵ0} ∈ r. Let
f : ω → ω be defined by f(m) = n if m ∈ An. The function f is surjective
and {n < ω : |A ∩ f−1(n)| = ℵ0} ∈ r for each A ∈ s. Then r <R s. Since
s ≈RK q, we have r <R q. Therefore, r ∈ (PRK(p) ∩ PR(q)) \Σ(q).

Now, if r∈(PRK(p)∩PR(q)) \Σ(q), then r<R q, so T (q) is r-pseudocom-
pact (Theorem 3.6). In particular, T (q) is quasi-p-pseudocompact.

The result that follows generalizes Theorem 5.3 in [10].
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3.8. Corollary. Let q ∈ ω∗. The following are equivalent :

(1) q is a P -point in ω∗;
(2) T (q) is not pseudocompact ;
(3) T (q) is not quasi-q-pseudocompact ;
(4) T (q) is not quasi-p-pseudocompact for any p ∈ ω∗;
(5) T (q) is not p-pseudocompact for any p ∈ ω∗.
P r o o f. The implications (2)⇒(3)⇒(4)⇒(5) are trivial, and (5)⇒(1) is

a consequence of Theorem 3.6 (it is also a result due to Ginsburg and Saks
in [10]). Finally, (1)⇒(2) holds because if q is a P -point in ω∗, then T (q)
is a P -space, and so it cannot be pseudocompact because pseudocompact
P -spaces are finite.

Also, as a consequence of Theorems 3.6 and 3.7, the space T (q) is quasi-
p-pseudocompact if and only if T (q) is r-pseudocompact for some r ≤RK p.

4. Products of quasi-p-bounded subsets. Let p ∈ ω∗. In [7] it
was proved that, if X and Y are p-pseudocompact spaces, then so is X×Y .
However, in Example 2.9 a space Y in the Froĺık class P has been constructed
which is not p-pseudocompact for any p ∈ ω∗. Since Y ∈ P, the product
space X×Y is pseudocompact for each pseudocompact space X. These facts
suggest the question of characterizing the spaces whose product with every
p-pseudocompact space is pseudocompact. The following theorem answers
this question.

4.1. Theorem. Let p ∈ ω∗. For a subset A of a space X the following
conditions are equivalent :

(1) A is quasi-p-bounded in X;
(2) For each p-bounded subset B of a space Y , A×B is quasi-p-bounded

in X × Y ;
(3) For each p-bounded subset B of a space Y , A × B is bounded in

X × Y ;
(4) A× PRK(p) is bounded in X × PRK(p).

P r o o f. (1)⇒(2). Let (Un×Vn)n<ω be a sequence of open sets in X×Y
meeting A×B. We prove that there is a subsequence of (Un×Vn)n<ω which
admits a p-limit point. By assumption, (Un)n<ω has a q-limit point for
some q ≤RK p. So, by Lemma 2.1(1), there exists a subsequence (Ug(n))n<ω
of (Un)n<ω and a point x ∈ X such that x = p-lim(Ug(n). Now, since B
is p-bounded in Y , we can find y ∈ Y such that y = p-lim(Vg(n)). Thus,
(x, y) = p-lim(Ug(n) × Vg(n))n<ω.

(2)⇒(3) and (3)⇒(4) are clear.
(4)⇒(1). Let (Un)n<ω be a sequence of open sets in X meeting A. Since

X ×PRK(p) is bounded, (Un×{n})n<ω has a cluster point (x, r). We claim
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that x = r-lim(Un). In fact, suppose to the contrary that there exists a
neighborhood U of x such that the set M = {n < ω : Un ∩ U 6= ∅} 6∈ r.

Since r is an ultrafilter, ω\M ∈r. So, U× ̂ω \M is a neighborhood of (x, r)
missing Un × {n} for all n < ω, which leads us to a contradiction.

Consequently, a space X is quasi-p-pseudocompact for a p ∈ ω∗ if and
only if X × PRK(p) is pseudocompact.

We remind the reader that a compactification K of a space X is a com-
pact space containing X as a dense subset. Two compactifications K1 and
K2 of X are said to be equivalent if the identity map on X admits a con-
tinuous extension to a homeomorphism from K1 onto K2. In this case we
write K1 = K2.

For bounded subsets A and B of two topological spaces X and Y , re-
spectively, the equality clβ(X×Y )(A×B) = clβX A× clβY B has been widely
studied (see e.g. [9], [11], [18]). In what follows we analyze this equality in
the field of quasi-p-bounded subsets. The following lemma is necessary for
our purposes. A proof is available in [9, Lemma 2.5].

4.2. Lemma. Let A and B be bounded subsets of X and Y , respectively.
If clβ(X)A× clβ(Y )B = clβ(X×Y )(A×B), then A×B is bounded in X×Y .

We remind the reader that a family {fδ}δ∈D of real-valued functions on
a space X is said to be equicontinuous at x0 ∈ X if for every ε > 0 there
exists a neighborhood V of x0 such that, for each δ ∈ D, |fδ(x)−fδ(x0)| < ε
whenever x ∈ V . For each real-valued bounded continuous function on a
product space X×Y we denote by β(f) its continuous extension to β(X×Y ).
Given x ∈ X, β(f)(a,−) stands for the continuous extension to βY of
the bounded function g on Y defined by the requirement g(y) = f(x, y)
whenever y ∈ Y . For each y ∈ βY , β(f)(a, y) stands for β(f)(a,−)(y) and,
if y ∈ βY , β(f)(−, y) for the function from X into R defined by

β(f)(−, y)(x) = β(f)(x, y)

whenever x ∈ X. As usual, for each subset U of X, we define the oscillation
of f in U , osc(f, U), as sup{|f(x)− f(y)| : (x, y) ∈ U × U}.

4.3. Theorem. Let p ∈ ω∗. For a bounded subset A of X, the following
conditions are equivalent :

(1) A is quasi-p-bounded ;
(2) For each p-bounded subset B of a space Y , clβ(X×Y )(A × B) =

clβX A× clβY B;
(3) For each p-pseudocompact space Y , clβ(X×Y )(A×Y ) = clβX A×βY ;
(4) clβ(X×PRK(p))(A× PRK(p)) = clβX A× β(ω).

P r o o f. (1)⇒(2). Let β(i) be the continuous extension to β(X × Y ) of
the identity mapping i : X × Y −→ X × Y ⊂ βX × βY . It is
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clear that β(i)|clβ(X×Y )(A×B) maps clβ(X×Y )(A×B) onto clβX A×clβY B. We
prove that β(i)|clβ(X×Y )(A×B) is injective. For this, suppose to the contrary
that there exist two different points a and b in clβ(X×Y )(A×B)\(A×B) such
that β(i)(a) = β(i)(b) = (a0, b0). Choose a real-valued continuous function
f on β(X × Y ) such that f(a) = 0 and f(b) = 1.

We begin by checking that the family {β(f)(a,−) : a ∈ A} is not equicon-
tinuous at b0. Indeed, let (bδ)δ∈D be a net in B converging to b0. Then, if
{β(f)(a,−) : a ∈ A} were equicontinuous at b0, the function β(f)(−, a0) is
the uniform limit (on A) of the net (β(f)(−, bδ))δ∈D and, consequently, it
admits a continuous extension g to clβX A. Consider now a net (aδ, bδ)δ∈D
in A×B converging to a. Then (aδ, bδ)δ∈D converges to (a0, b0). Let ε > 0.
Since {β(f)(a,−) : a ∈ A} is equicontinuous at b0 and g is continuous on
clβX A, there exists δ0 ∈ D such that

|f(aδ, bδ)− β(f)(aδ, b0)| < ε/2, |β(f)(aδ, b0)− g(a0)| < ε/2

whenever δ > δ0. So, by the triangle inequality,

|f(aδ, bδ)− g(a0)| ≤ ε.
Thus, g(a0) = 0. In the same way, we obtain g(a0) = 1, a contradiction.

We have just proved that {β(f)(a,−) : a ∈ A} is not equicontinuous at
b0. Hence the following condition is satisfied:

(E) there exists ε > 0 such that, for each neighborhood V of b0 in βY ,
there are a ∈ A and b ∈ V ∩B such that

|f(a, b)− β(f)(a, b0)| > ε.

Next, we define by induction a sequence (an, bn)n<ω ⊂ A × B and two
sequences (Wn)n<ω, (Un×Vn)n<ω of regular-closed subsets of βY and X×Y ,
respectively, such that:

(1) |f(an, bn)− β(f)(an, b0)| > ε for each n < ω;
(2) For each n < ω, b0 ∈ intβY Wn and osc(β(f)(an,−),Wn) < ε/4;
(3) For each n < ω, (an, bn) ∈ intX×Y (Un × Vn) and osc(f, Un × Vn)

< ε/4;
(4) For each n < ω, intY Vn ⊂ intβY Wn−1 and intβY Wn ⊂ intβY Wn−1.

In fact, by condition (E), we can find a point (a1, b1) ∈ A×B such that

|f(a1, b2)− β(f)(a, b0)| > ε.

As f and β(f)(a1,−) are both continuous functions on X × Y and on βY ,
respectively, there exists a regular-closed neighborhood (in X × Y ) U1 × V1
of (a1, b1) and a regular-closed neighborhood (in βY ) W1 of b0 such that

osc(f, U1 × V1) < ε/4, osc(β(f)(a1,−),W1) < ε/4.

This completes step n = 1.
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For n > 1, by condition (E) again, there exist bn ∈ intβY Wn−1 ∩B and
an ∈ A such that

|f(an, bn)− β(f)(an, b0)| > ε.

From an argument similar to that given in step n = 1, we can find a
regular-closed neighborhood (in X × Y ) Un × Vn of (an, bn) with intY Vn ⊂
intβY Wn−1 and a regular-closed neighborhood (in βY ) Wn of b0 with
intβY Wn ⊂ intβY Wn−1 such that

osc(f, Un × Vn) < ε/4, osc(β(f)(an,−),Wn) < ε/4.

This completes the induction.
Now, since B is quasi-p-bounded, there exists a subsequence (Vn(k))k<ω

which admits a p-limit y in Y . By (4) it is an easy matter to check that y is a
cluster point of (Wn)n<ω and, consequently, y belongs to Wn for each n < ω.
On the other hand, as β(f)(−, y) is continuous, we can find a sequence
(Mn)n<ω of regular-closed sets in X with an ∈ intXMn ⊂ Un such that
osc(β(f)(−, y),Mn) < ε/4 for each n < ω. The subset A being p-bounded,
we can choose a p-limit x of the sequence (Mn(k))k<ω. It is clear that (x, y)
is a cluster point of both (Mn(k), Vn(k))k<ω and (Mn(k),Wn(k))k<ω.

Next, let U × V be a regular-closed neighborhood on X × Y such that
|f(a, b) − f(x, y)| < ε/4 whenever (a, b) ∈ U × V and consider the set
J={k < ω : (U × V ) ∩ (Mn(k) × Vn(k)) 6=∅}. According to (4), J⊂{k < ω :
(U × V ) ∩ (Mn(k) × Vn(k)) 6= ∅}. So, by (3),

|f(x, y)− f(an(k), bn(k))| < ε/4

whenever k ∈ J .
On the other hand, because y ∈Wn(k) and osc(β(f)(−, y),Mn(k)) < ε/4

for each k < ω, we have

|f(an(k), y)− β(f)(an(k), b0)| < ε/4, |f(a, y)− f(an(k), y)| < ε/4

whenever a ∈ Mn(k). Therefore, |β(f)(a, y) − β(f)(an(k), b0)| < ε/2 when-
ever k < ω. This contradicts the fact that

|f(an(k), bn(k))− β(f)(an(k), b0)| > ε.

Thus, the function β(i) is injective, as was to be proved.
(2)⇒(3) and (3)⇒(4) are clear.
(4)⇒(1). Since ω ⊂ PRK(p) ⊂ β(ω), we have βPRK(p) = β(ω). So,

condition (4) and Lemma 4.2 imply that A × PRK(p) is bounded in X ×
PRK(p). The result follows from Theorem 4.1.

4.4. Corollary. Let p ∈ ω∗. A bounded subset A of a space X is
quasi-p-bounded in X if and only if for each p-bounded subset B of a space
Y , the restriction to A×B of every real-valued continuous function on X×Y
admits a continuous extension to clβX A× clβY B.
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4.5. Corollary. Let p∈ω∗. A pseudocompact space X is quasi-p-pseu-
docompact if and only if β(X × PRK(p)) = βX × β(ω).

We give an example which points out that quasi-p-boundedness is not
preserved under finite products.

4.6. Example. Let p ∈ ω∗ be a non-RK-minimal free ultrafilter and
choose r <RK p. By Corollary 3.4 both Σ(p) and Σ(r) are quasi-p-pseudo-
compact subsets. Since the sequence ((n, n))n<ω of open sets in Σ(p)×Σ(r)
does not have cluster points, the space Σ(p)×Σ(r) is not pseudocompact.
Now, consider Z = Σ(p) ⊕ Σ(r). By Corollary 2.12, Z is quasi-p-pseudo-
compact. However, Z × Z has a clopen copy of Σ(p) × Σ(r) which is not
pseudocompact and, consequently, Z × Z is not pseudocompact.
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