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Abstract 

For an almost disjoint family (a.d.f.) C of subsets of w, let P(C) be the Mr6wka-Isbell space 

on C. In this article we will analyze the following problem: given an a.d.f. C and a function 
4: C + (0, 1) (respectively 4: C -+ R) is it possible to extend 4 continuously to a big enough 
subspace CU N of G(C) for which cly(n) N > C? Such an extension is called essential. We will 
prove that: (i) for every a.d.f. C of cardinality 2n0 we can find a function 4 : C -+ (0, 1) without 
essential extensions; (ii) for every m.a.d. family C there exists a function 4 : C --f R that has no 
essential extension; and (iii) there exists a Mr6wka-Isbell space P(C) of cardinality Ni such that 
every function 4 : C + W with at least two different uncountable fibers, has no full extension. On 
the other hand, under Martin’s Axiom every function 4 : C + (0, 1) (respectively d, : C --+ R) 
has an essential extension if /Cl < 2* O. Finally, we analyze these questions under CH and by 
adding new Cohen reals to a ground model m showing that the existence of an uncountable a.d.f. 
C for which every onto function 4: C -+ (0, 1) with infinite fibers has no essential extensions is 
consistent with ZFC. 0 1997 Elsevier Science B.V. 
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Arrow; wl-p-ultrafilter; Martin’s Axiom; Cohen real; Luzin gap; Booth’s Lemma 
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1. Introduction 

All spaces below will be Tychonoff. If X is a space and A c X, then clxA is the 

closure of A in X, and P(X) is the collection of all subsets of X. For a function 4, we 

denote its domain as dam(4) and its range as rng(@); furthermore,, if Y c dam($), $11 
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denotes the restriction of 4 to Y. As usual, w is the set of natural numbers, w* is the set 

of all free ultrafilters on w, and if A c w and C c P(w), then 

A* = {.F E w*: A E 3) and C* = {S*: S E C}. 

WI is the set of all countable ordinals, c is the cardinality of the continuum, and [w]” will 

denote the collection of all infinite subsets of w. Finally, for a space X, C,(X) is the 

space of all continuous real-valued functions defined on X considered with the pointwise 

convergence topology. Let X be a space, Y a subspace of X, and let 4 : Y + W be a 

continuous function. We say that a continuous function s: Z + W is an essential (this 

term was suggested by M.G. Tkachenko) extension of 4 if Y c 2 c X, 81~ = 4 and 

each y E Y is a limit point of 2. If there exists a continuous function &: X ---f W with 

$1~ = $J we will say that 4 is a full extension of $. If I/T’ is a subspace of some larger 

space T, we can use the term “essential extension of 4: Y + W into T” considering & 

as a function from 2 to T. 

As usual, we will call a collection C of infinite subsets of w an almost disjoint family 

(a.d.f.) if for every two different elements A, B of C we have IA n BI < No. A maximal 

almost disjoint family (m.a.d.f.) is a collection which is maximal with respect to the 

almost disjoint property. The symbols A C* B and A =* B mean that IA \ BI < No and 

[(A \ B) U (B \ A)1 < No, respectively. 

Let C be an almost disjoint family of subsets of w, and let us consider the following 

topology on 9(C) = w U C: each n E w is an isolated point, and a neighborhood of a 

point A E 2.2 is any set containing A and all of the points of A but a finite number. Such 

a space is called a Mrdwka-Zsbell space (also known as a @-space [3]. These spaces 

were first considered by Mr6wka in [ 121 and by Isbell). 

A Mr6wka-Isbell space P(C) is a first countable, locally compact and, if C is infinite, 

noncountably compact space; w is dense in e(C), and C is closed and discrete. Moreover, 

9(C) is pseudocompact iff C is a m.a.d. family; so, in this case 9(C) is not normal 

(for a more detailed analysis on basic properties of Mrbwka-Isbell spaces, see [4,3]). 

In this paper we will study essential and full extensions of real-valued functions defined 

on the subset of nonisolated points of Mr6wka-Isbell spaces. In Section 2 we will show 

some negative results obtained in ZFC; in Section 3 we prove some consistency results 

by adding a collection of Cohen reals to a ground model ZQ; Sections 4 and 5 are devoted 

to an analysis of essential extensions under CH and Martin’s Axiom. 

If C is an a.d.f. on w of cardinality < No, then it is not difficult to prove that every 

function f$ : C ---f (0, 1) (respectively 4 : C -+ R) has a full extension. So, from now on, 

if nothing is said to the contrary, a.d.f. will mean uncountable a.d.f. 

2. Some negative results 

Lemma 2.1. Let W be a space, 27 an a.d.$, and let f, ~$1 Z + W be two different 

functions. If N c w and f, 4: C U N + W are essential extensions of f and q5, 

respectively, then f”l~ # 41~. 
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Proof. There is A E C such that 2~1 = f(A) # @(A) = ‘~2. Since W is Hausdorff 

(every space is assumed to be even Tychonoff), there are disjoint open neighborhoods 

‘CFr, IV2 of ‘~11 and ~2. Since f and & are continuous, there are open neighborhoods Vt , 

Vz of the point A such that f^(VI ) c II/;, $(VZ) c It>. But N n VI n V, # 0. For every 

point 5 from this set we have f(s) # J(z). 0 

Observe that if W is a space with cardinality 6 2N0, then I{S : N -+ IV: N c LJ}I = 

2nn. So, by Lemma 2.1 we have: 

Proposition 2.2. Let W be a space and let C be an a.d.$ such that IWI 6 2*” < 21si. 

Then there exists a function d : C -+ I/I’ without essential extensions. 

The following proposition is a corollary of Proposition 2.2; we include an alternative 

constructive proof. 

Proposition 2.3. rf C is an almost disjoint family of cardinal@ 2Nn, then there exists a 

function 4: C -+ (0, 1) (respectively 4: C -+ II%) that has no essential extension. 

Proof. Let C = {A a: cy < c}. Let {fa: cr < c} be an enumeration of all (0, I}-valued 

(respectively real-valued) functions f with the domain contained in w and such that C c 

clP(,rI(dom(f)). Let a < c; if lim,,, a f (a,,) does not exist for a sequence (a,),<, 

in A, n dom(fa), then we define 4(A,) = 0. Otherwise, we define #(A,) to be an 

r E (0, 1) (respectively T E R) which is not equal to any of these limits. Such an T 

exists, because the set 

L = { JIXfQ(o,): (onkw is a sequence in A, f? dom(fa) } 

has cardinality equal to 1 (respectively L is bounded). C$ is the required function. 0 

The following result relates essential extensions of real-valued functions to those of 

(0, 1 }-valued functions. 

Lemma 2.4. Let C be an a.d,$ Then 

(1) Zf 4:C + {O,l} ha s an essential extension $ : C U N + II%, then d, has an 

essential extension $: C U N --) (0, l}. 

(2) If ever?/ function $ : C --t IR has an essential extension, then every function C#J : C + 

(0, l} has an essential extension into (0, l}. 

(3) If ICI < 2’O and each onto function 4: C + (0, l} with in.nite fibers has no 

essential extensions into (0, l} then each + : C + IR with at least two infinite 

jibers has no essential extension. 

Proof. (2) is a consequence of (l), and the proof of this is similar to the one we are 

going to give for (3). Let $J : C + IR be a function with at least two infinite fibers, and 

suppose that c : C U N ---f IR is an essential extension of $. Fix a < b such that $-’ (u) 

and 4-‘(b) are infinite. Since IC/ < 2u0, there is c E (a, b) \ &C U N). Then, the 
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function $: CUN + (0, I} defined by s(z) = 0 if G(X) < c, and S(X) = 1 if q(z) > c 

is an essential extension of $1 c : C -+ (0, 1); a contradiction. 0 

When C is an m.a.d. family we also obtain some negative results: 

Proposition 2.5. For every infinite m.a.d. family C on ti there exists a function 4 : C + 

(0, 1)” (= The Cantor set) that has no essential extension. 

Proof. There exists F c (0, l}” such that 

(1) 1_7=[ = IX/ and 

(2) for every n < w, l{f E F: f(n) = i}l = ICJ for i E {O,l}. 

Thus, we can index C in a one-to-one and onto fashion with E 

c = {Af: f E 3). 

Consider the function 4: C + (0, 1)” defined by $(Af) = f. Let N be a subset of 

w such that ~1~~~) N > C. For each n < w and i E (0, l}, put J&i = {Af: f(n) = i}. 

It is not difficult to prove the following assertion and we do not include its proof (see 

the proof of the Theorem in [ 151). 

Clajm. There exist no < w and X c N such that 

C(X)={XnA: AECand(XnAl=No} 

is an injinite m.a.d. family, and for every Y c X, if 

C,,,i(Y) = {Y n A: A E C,,,, and IY n A( = No} 

is a m.a.d. family for some i E (0, I}, then J&,,i(Y) isjnite. 

Now suppose that 4: CUN + (0, 1)” IS an essential extension of 4. Define q& : C + 

(0, 1) as q& = R,O$ where 7rn is the projection to the nth factor, and &, : CUN + (0, 1) 

by &&) = &4(n). If A E G,,i is such that [A n XJ = No, then, because of the 

continuity of &“, we have I(&Ol_~)-l(i) n Al = No. Hence, since C = En,,0 U &“,I, 

either 

SO = { (&,Ix)-~(~) n A: A E -%,,o} or 

S1 = { (&Ix)-~(~) n A: A E &,l} 

is an infinite m.a.d. family; but this contradicts the claim. 0 

Corollary 2.6. For every injinite m.a.d. family C there exists a function #J : C + IF% that 

has no essential extension. 

Proof. Let @: Z + (0, l}” be a function without an essential extension (Proposi- 

tion 2.5). Suppose that there exists a continuous function 4: C U N -+ Iw that extends 

$. Since INI < 2 No, there exists a continuous function h : $(C U N) -+ (0, l}w such 

that for every A E C, h(G(A)) = &A) = $(A); hence ho $: C U N + (0, 1)“ is an 

essential extension of $, which is impossible. 0 
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Corollary 2.1. For every infinite m.a.d. family C there exists a function 4: C + (0, l} 

without full extension. 

Proof. Assume that for every C$ : C + (0, l} there exists a continuous extension $: 2 U 
w ----t (0, l} of $. Let +: C + (0, l}” be a function such that 11, has no essential 

extensions. By our assumption, for every n < w, tin = rrn 0 $1: C -+ (0, l} has a full 

extension $n : C U w --,{o,1}.so&cu w --+ (0. l}” defined by $(z)(n) = &(z) is 

a continuous extension of 4. This is a contradiction. 0 

Corollary 2.8. Let X c w and let C be an a.d.f If 

C(X)={AnX: AEC and jAnX/=No} 

is an infinite m.a.d. family, then there exists a function 4 : C -+ iI% (respectively q : C + 

(0) l}) without any essential (respectively full) extension. 

Problem 2.9. Is there, for each m.a.d. family C, a function 4: C + (0, 1) without 

essential extension? 

Let Co and ,221 be two families of infinite subsets of w. We say that Co and Ci are 

separated if there exists a set S c w such that A C* S for each A E CO and B n 5’ =* 0 
for each B E Cl ; in this case, we say that S separates CO from Cl. A pair (ZO, Cl) 

forms a Luzin gap if for every uncountable subsets Ch and Ci of C,-, and Ci, CA and 

C{ are not separated. 

Remark 2.10. N.N. Luzin constructed an almost disjoint family C of cardinality Ni 

such that every two disjoint uncountable subfamilies are not separated (see, e.g., [9] or 

~3, P. 1241). 

The concept of essential extension of real-valued functions defined on the subset of all 

nonisolated points of Mrowka-Isbell spaces is related with that?of Luzin gaps as follows: 

Lemma 2.11. Let C be an almost disjoint family and N c IA such that clp(c)N > C. 

Let 4: C + (0, 1) be a function, CO = 4-l (0) and Cl = 4-‘(l). Then the following 

statements are equivalent 

(a) 4 has an essential extension on C U N. 

(b) Cl, = {A n N: A E CO} and Cl = {A n N: A E Cl} are separated. 

(c) There exist two disjoint sets P, Q c N such that clp(c)P > Co and clp(c)Q > 

C1, but clpCc)P n C, = 0 and cleCE)Q n CO = 0. 
(d) There exist two disjoint sets P, Q c N such that, for every A E 220 and B E Cl, 

A n P and B n Q are in$nite, but A n Q and B n P are finite. 

EJroof. (a)+(b) Let 6: C U N ---f (0, l} b e an essential extension of c$, and let S = 

q5 -’ (0) n w. Then, S separates Cf, from Cl. 
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(b) + (c) If S separates ,X6 from Ci, then the sets P = 5’ f’ IV and Q = N \ S satisfy 

the requirement. 

(c)+(a) Th_e function 8: C U N ---f (0, I} defined by $(A) = i if A E Ci, s(n) = 0 

if R E P and 4(n) = 1 if r2 E N \ P is an essential extension of 4. 

(c) @(d) This is trivial. •! 

Observe that for an a.d.f. C, a function 4: C + Iw trivially has a full extension over 

e(C) if there exists an r E R such that [{A E C: d(A) # r}I < No. 

Corollary 2.12. Let C be an almost disjoint family, and let (Co, Cl) be a partition of 

C. The pair (Co, Cl) is a Luzin gap iff evevfinction 4 from C’ c C -+ IR with at least 

two uncountablejbers, one contained in Co and the other in Cl, has no full extension. 

Proof. (+) Let 4 : C’ + R be a function such that ru = 4-l (TO) c Ca and ri = 

4-l (~1) c ,221 are uncountable where TO # r-1. Let r = TOUT,, and let $ : r + (r-0, ~1) 

be a function defined as +(A) = $(A) for A E P. If 4 has a full extension 6: C’ U w --f 

IF!, then slruwjT U w -+ R is a full extension of $. By Lemma 2.4, there exists a 

full extension ,$ : T U w --+ {ro, rl } of $. By Lemma 2.11, ro and rt are separated. 

Therefore (CO, Cl) is not a Luzin gap. 

(*) If (Co, c ) 1 IS not a Luzin gap, then there exists two uncountable sets Eh c CO 
and Cl c Et which are separated. Let C’ = Ch U Cl and let 4 : C’ + (0, 1) defined 

by 4(A) = 0 if A E CA and $(A) = 1 if A E Ci. Because of Lemma 2.11, 4 has a full 

extension. q 

The following proposition is a consequence of Remark 2.10 and Corollary 2.12. 

Proposition 2.13. There exists a Mrdwka-Isbell space !l’(C) of cardinal&y N1 such that 

every function 4: C + IR with at least two diferent uncountable jibers has no full 

extension. 

Definition 2.14 [6]. Let 3 be an ultrafilter on w. We say that 3 is an wl-p-ultra$lter if 

there exists a sequence (pc)~<_,, of infinite subsets of w such that for all < < r] < WI, 

(1) P, c* PC* 

(2) IPC \ ~~1 = NO and 

(3) VI3 E 3 3 < < WI (pc c* B). 

The existence of an wi-p-ultrafilter is a consequence of CH, and is also consistent 

with the negation of CH, but it is not a theorem of ZFC; in fact: 

Proposition 2.15. Let F E w*. 3 is an WI-p-ultraJilter if and only if 3 is a P-point 

with character equal to Nt. 

Proof. (+) Let (PC: < < wi) be a sequence of infinite subsets of w witnessing that 3 

is an WI-p-ultrafilter. Hence, V = {p;: < < WI} is a r-local base for 3, so I/ is a local 



VI. Malykhin, A. Tam&z-Mascartia / Topology and its Applications 81 (1997) 85-102 91 

base for 3 because each pF is clopen and V is a decreasing chain. These facts also imply 

that F is a P-point. 

(+) Let {IV,: < < UJ~} be a local base of F in w*. Since Z= is a P-point and w* is 

zero-dimensional, we can assume that each r/c; is clopen and for < < q < wl, L$; c I+; 

with IVV # IV,,. Then, for each < < LJI there is pc c J such that pf = WC. Thus, the 

sequence (PC: < < ~1) witnesses that F is an tit-p-ultrafilter. 0 

Recall that the existence of a free ultrafilter on L*: which has the character equal to Nr 

and is a P-point, is consistent with any admissible cardinal arithmetics (see [7]). 

Let F be an wt-p-ultrafilter and let (pc)~<~, be a sequence satisfying (l)-(3) in 

Definition 2.14. For each 6, fix an infinite set A, c pc \ pt+l. Note that the family 

C(F) = {At: < < tq} is almost disjoint. An argument similar to the proof of claim 3.5 

in [6] shows that if N C w is such that C(F) c c~~(~(~~~N, then every continuous 

function 4: C(F) U N 4 JR is eventually constant, i.e., there is an r E IR such that 

I{A E C(F): 4(A) # r}I < IC(F)l. So, we obtain 

Proposition 2.16. Let 3 be an WI -p-ultrajlter on w. If C$ : C(3) + IR is not eventually 

constant, then 4 has no essential extension. 

From Proposition 4.2 in [6], Proposition 2.16 and Corollary 2.12 we conclude that 

every WI-p-ultrafilter provides an example of a Luzin gap (X0, Cr) such that every 

function 4 : 230 U Cl + IR with two uncountable fibers has no essential extension. 

Definition 2.17. Let A be a family of subsets of a space X. We say that A is an arrow 

in X if there exists an element s E X such that for each neighborhood V of x we have 

({A E A: A @ V} 1 < ldl. If this is the case, we say that the arrow A converges to x, 

and we write d 4 x. 

Observe that if A = {A,: n < LJ} is an arrow of X, x, E A, for each 71 < ul 

and A 4 2, then the sequence (z,),<, converges to x. Since there is no convergent 

sequences in w*, every arrow in LJ* is uncountable. 

Proposition 2.18. Let C be an a.d.5 of regular cardinal@ o of infinite subsets of w. If 

C* = {A*: A E C} is an arrow in UJ* and 4: C 4 R is not eventually constant, then 

d has no essential extension. 

Proof. Let C = {AC: < < a} be a faithful enumeration of C. Let N be a subset of UJ 

such that clpc~) N > C, and suppose that @: C U N + R is a continuous function. We 

are going to prove that 4 is eventually constant. Since C* is an arrow in w*, there exists 

U E UJ* such that C” 4 U. 

We now proceed as in [6. pp. 5, 61: for every basic open interval (a, b) c R, let 

D(u.b) = (71 E N: q(n) E (a, b)} and E(a, b) = {< E cy: A, E cl~(~,o(a, b)}. 

Because No < (Cl, the following will complete the proof. 
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Claim. If a < b < c < d are real numbers, then at most one of the sets E(a, b) and 

E(c, d) has cardinal@ a. 

Proof. In fact, since D(a, b) n D(c, d) = 0, at most one of them is an element of U. 

Without loss of generality, suppose that D(a, 6) $ U. Then there exists U E U such that 

D(a, b) n U = 0. Since Z* converges to U and cof(cr) = (Y, there exists 6 E o such 

that AC C* U V< 2 6, hence [ $ E(a, b) for < > Q. That is, IE(a, b)( < cy. 0 

Proposition 2.19. If U E w* has a base of cardinal@ HI, then there exists a disjoint 

clopen arrow A converging to U. 

Proof. If U is not a P-point, then there exists a countable family of clopen subsets of 

w*,I,suchthatU@T=UT,butUEcl,~(T).LetB={V~: X<wi}bealocalbase 

of U in w*. We will construct A by transfinite induction. Let A0 be a nonempty clopen 

subset of w* such that A0 c VO and U 6 Ao. Suppose that we have already defined two 

o-sequences {Ax: X < a} and {r]~: X < cr} (a < WI) such that 

(a) Ax is a nonempty clopen subset of w* with Ax n T = 0; 

(b) Ax n A, = 0 if X # I; 

(c) every 7~ is a countable ordinal, 0 = ~0, and vx < v7 if A < y < a; 

(d) Ax c (f&rx V,) n (w* \ V&) for every X < Y < a. 
Let us make the following o-step. The sets Ma = lJ{Ax: X < a} and T are two 

disjoint open F, subsets of w*. Since w* is a normal F-space, cl,.Ma n cl,*T = 0; 
but U E cl,*T, so U +! cl,*A&. Then there exists va: < wi such that na > TX for every 

X < o, and I& n cl,*&& = 0. Besides, 

UEW,= n (w* \ clw*MO) n (w* \ T), 

and W, is a nonempty Gg subset of w*. Then W, contains an infinite interior. Let 1/ # U 

and V E int W,. Since w* is zero-dimensional, there exists a clopen set A, such that 

V~A,cintW,andU$A,. 

In this manner we can obtain a family A = {Ax: J < WI} that satisfies conditions 

(a)-(d). It can be proved that A is a disjoint clopen arrow converging to U. 

If U is a P-point in w*, we can construct A in a similar and easier way than before 

without the need of any auxiliary family 7. 0 

The following result is a consequence of the two previous propositions. 

Corollary 2.20. [CH] Let C be an almost disjoint family on w, and let q5 : C -+ R be a 

noneventually constant function. If E* is an arrow, then 4 has no essential extension. 
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3. Adding new Cohen reals 

In what follows, by a model we shall mean one that is standard and transitive for the 

axiom system ZFC of set theory (see [7]). 

Lemma 3.1. Let A be a countable a.d.$ on w in a model M. If !?I is a model obtained 

by adding a new Cohen real to 9X, then there exists B E [w]” in 9l such that 

(1) AU {B} is an a.d.t, and 

(2) IP n CUWW = IB n WPW = N 0 or every disjoint infinite partition f 
A = & U A1 with A, A1 E M and every function I,!I E EJX 1c, : A -+ [w]” with 

$(A) c A VA E A. 

Proof. Let lP be the set of all pairs of finite functions (f, F) such that 

(al dot@) c LJ and mg(f) c (($1); 
(b) dam(F) c A and mg(F) c LII; 

Cc) f(k) = 0 if k E UAEdom(Fj[(A n dam(f)) \ F(A)]. 
We define in P the following relation: (f, 3) < (g. G) iff 

ti) f 3 g, F 3 6, and 
(ii) f(lc) = 0 for every k E U{ [A n dam(f)] \ 4(A): A E dam(G)}. 

Since IP is countable, there exists an !?X-generic G c P. Let ‘32 = !%R[G], 

F = u {f: 3.T E A x ti((f,.F) E G)} 

and B = F-‘( 1). Now we will prove that B satisfies the requirements. 

It is easy to prove that for each a E w, the set V, = { (f,.F) E P: a E dam(f)} 

is dense in P. Besides, for each A E A, the set VA = {(f, F) E P: A E dam(F) 

and [dam(f) f1 A] \ F(A) # 0) is also dense. In fact, let (g, G) E P \ VA. We take 

al, (~2 E A such that a:! > al > max(dom(g)). If additionally A E dam(G), we have 

to be careful to choose u2 bigger than G(A). We define F: dam(6) U {A} + w and 

f : dam(g) U {u2} --) (0, 1) as o f 11 ows: F(G) = 6(G) if G E dam(4) and F(A) = al 

if A $! dam(G); and f(n) = g(n) if n E dam(g) and f(u2) = 0. Then (f,.F) E VA and 

(f. .T) G (93 G). 
Let ,4 E A and take (f, _F) E VA n G. Then there is ai E [dam(f) n A] \ g(A). 

For each a > al we can find (g, G) E V, n G. If (h,‘H) E G is a stronger condition 

than (f,.F) and (g, 6), then h(u) = 0. This means that IA n BI < No. So, B satisfies 

condition (1). 

On the other hand, if C c A is infinite and $J : C --f [w]” is a function such that 

q(C) c C for every C E C, then the set 

v(c.~)={(f;~)tP: 3rnE u+(c) (f(m)=l)} 
CEC 

is also dense in P. Let us verify this: let (g, 6) E P \ V(C, +). Since C is infinite, 

there is Cc E C \ dam@). S o, we can take m E $(CO) \ [dam(g) U mg(G)]. Let 

f : dam(g) U {m} --f (0, l} be the function that coincides with g in dam(g) and has the 

value 1 at m. Then (f.@ E V(C, $) and (f,@ 6 (g,G). 
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Now, using the density of D(C, $), we can prove that B also satisfies condition (2). 0 

Proposition 3.2. Let LIJI be a model. If one adds N1 new Cohen reals to 9X, then in a 

resulting model there is a Mrdwka-Isbell space P(C) of cardinal@ N1 for which every 

onto function q5 : C --) (0, 1) with injinite fibers has no essential extension. 

Proof. Let lK(w x cy, 2) be the partially ordered set of all finite functions from w x cy 

to (0, 1) with the relation f 6 g iff f > g. Let 9X,, be the generic extension of M by 

means of an m-generic subset G of IK(w x wt ,2). In 9X,, there is a transfinite sequence 

of models M = ma,. . . , tJ&, . . . ,9&,, , where mS, = 9.R[G fl W(w x Q, 2)]. For every 

o E wt we can consider 9X,+1 as a model which is obtained from 9Rn, by adding one 

new Cohen real; so, let C = {A,: pi < WI} be an a.d.f. in 9X,, obtained by using 

Lemma 3.1 in each step of a transfinite induction. 

Now,let$:C+{O,l}bea ny function satisfying min{]@‘(O)(, ]@‘(l)]} 3 No. We 

will prove that 4 has no essential extension. Indeed, let A& and A41 be disjoint subsets 

of w such that clP(~)M~ > 4-‘(O) an c P(~jhft d 1 > @‘(I). There is an ct < WI such 

that 4 n 332, E %Rn,, AJo n ?JX, E 332, and Mt n 5% E !?X,. Because of the way we 

defined Aa+, by using Lemma 3.1, we have that IAa+l n Mo( = (A,+1 n M,( = No. 

But this means that we cannot extend 4 essentially. 0 

Lemma 3.3. Let 93 be a countable model and % be obtained from !.?X by adding one 

new Cohen real r. Let C = {A n: n E w} be an a.d.5 in 9.X Let us define, in Tl, the 

functid: q3(An) = r(n) f or every n E w, and let 5 be an essential extension of C#L Let 

EO = $-'(0) nw and E1 = $-l(l) n w. If E is an injinite subset of w, E E 1M and 

I(cl*(~~E) \ El = No then E \ Ei is infinite for i = 0,l. 

Proof. Let us assume the contrary; say E \ EO is finite. By the assumption of the 

lemma, Q = {n E w: ) E n A, I > No} is an infinite element of 9X. It is known that 

l7-nKl= No = IK\ I f T or each infinite set K c w, K E 9.X So, there is an n E w such 

that q$(A,) = 1 and A, n EO is infinite; but this is in contradiction with the continuity 

of;. 0 

Proposition 3.4. By adding RI new Cohen reals to a model M, we obtain a model % 

in which for each uncountable a.d.f C there exists a function q4 : C --) (0, 1) without an 

essential extension in %. 

Proof. Let C = {A cy: o E WI} be an uncountable a.d.f. in 9I. There exists a transfinite 

sequence of models 5JR = !%J&J c . . . c 9X, c . . . c 9X,, = X, where 5% is the 

smallest model containing all preceding models if cy is a limit ordinal, and 9&+t is 

obtained from M, by adding one new Cohen real r,. 

Changing enumeration of models if necessary, we can assume that 

{A/j: @<w.~x+w}E~& 

for each 1y E WI. 
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Now let us describe a desired function 4: C --f (0, l}. We put_@(A,.,+,) = r,(n). 

This function has no essential extensions in V. Indeed, suppose 4 E % is an essential 

extension of 4. Then & = $-’ (0) n w and El = 6-l (1) n w belong to M. On the other 

hand, ‘P,(U) = l_{P&w): Q E wl}, where P,(w) = P(w) n M,. So, there exists 

a < LJI such that Eo, Et E ?YX,. Let & = $I~A~ a+,,: ntwl and 

& : {Aw.a+n: nt~}u(dom($)nti) -{O.l} 

be defined by $a(A;.a+n) = &(Ad.a+n) = r,(n) for every ‘n < ti, and &((n) = s(n) 

for every “_E dom( 4) nw. Then & is an essential extension of &, and EO = 6;’ (0) nti 

and Et = 4;‘(l) n w. But this is impossible because of Lemma 3.3. 0 

Corollary 3.5. It is consistent with any admissible cardinal arithmetics that for every 

uncountable a.d.f C there exists a function 4 : C + (0. 1) having no essential extension. 

Proposition 3.6. If one adds N2 new Cohen reals to a model 9X in which GCH is 

true, then in a resulting model 9I, for each uncountable a.d.f C there exists a function 

f$:S -+ R having no essential extension. 

The following lemma plays a crucial role. 

Lemma 3.7. Let C be an a.d.f of cardinal&y c in a model 9.X. If 9I is a model obtained 

by adding one new Cohen real to 2% then there exists a function 4 : C + R such that 

q5 has no essential extension in ‘37. 

Proof. Let 2: = {A a: Q: < c}, and let R be a partially ordered set for adding one Cohen 

real, /K/ = No. We construct 4 by transfinite induction. We may enumerate all the names 

for functions from w to R by using ordinals less than c: {fa: d < c}. Suppose that our 

function 4 is already defined on all Ap with p < cy. We are now going to define $(A,). 

Let P = {p E K: p 1 limnEA,,n_ocfa:(n) = tp}. For each p E ‘P we can find some 

q < p and some segment [a,, bp] with rational ends whose length &p is as small as we 

wish so that q t +, E [a,,b,]. As IPl = N 0, we can find 2, E R \ lJ{ [+. bp]: r) E P}. 

put @(A,) = .r,. 0 

It is not difficult to prove that 

Lemma 3.8. The function d, constructed in Lemma 3.3 has no essential extension after 

adding any Cohen reals. 

Proof of Proposition 3.6. Let M be a ground model, and Yl a resulting model obtained 

after adding N2 new Cohen reals. It is possible to prove that c = N? in % (see, for 

example, Lemma 5.14 in [7]). If C E % is an a.d.f. and ICI = N2 = c, then, according 

to Proposition 2.3, on this C there exists a function 4 without essential extensions. Let 

C E !X and I C/ = N1. Then there exists an intermediate model E with C E & and 
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IC( = 2*O in E. Now we may apply Lemmas 3.7 and 3.8 and define a function 4 which 

has no essential extension in 3. 0 

Corollary 3.9. It is impossible to construct in ZFC or just in ZFC + XH an uncount- 

able a.d.J: C such that every function C$ : C + IR has an essential extension. 

In [6] it was noted that C,(!P(C)) IS not a normal space if C is an a.d.f. of cardinality 

N1 such that 

(1) for each countable subset C’ of C, every function f : C’ -+ LR can be extended to 

a continuous function g : 9(C) -+ R such that for an T E IR, I{x E p(C): g(z) # 

r}/ < No (that is, g is eventually constant); and 

(2) every g E C,(!P(JJ) is eventually constant. 

This is the case when C = E(3) where F is an wl-p-ultrafilter, and also when C 

satisfies the conditions 

(*) every partition of C is a Luzin gap, and 

(**) every countable subset of C can be separated from its complement. 

In [6] it was proved that there exists an a.d.f. C satisfying (*) and (**), and van 

Douwen [3] proved that it is consistent with ZFC that every a.d.f. with (*) also satis- 

fies (**). 

Remark 3.10. The Mr6wka-Isbell space Q(C) constructed in Proposition 3.2 has very 

interesting properties, namely: 

(1) For each f E C,(!&(C), (0, l}), either f-‘(O) or f-‘(l) is finite; and only func- 

tion_s 4: C + (0, 1) with a finite fiber can-be continuously extended to all p(C). 

(2) If 4: p(C) + IR is continuous and 4 = $1x, then there exists T E R such that, 

either 

(a) JC \ 4-l (r)I < NO, or 

(b) 1.X \ $-‘(?-)I = No, mg($) = {r} U {rn E R: n E N}, (T,),~N converges to 

T and I@‘(rn)J < No for each n E N. Besides, 

(3) If 4: C -+ IR is such that there is T E IR satisfying (a) or (b), then q5 has a full 

extension 5: p(C) --) IR. 

Problem 3.11. Let p(C) be the Mr6wka-Isbell space constructed in Proposition 3.2. Is 

C,(*(E)) a normal space? 

4. Essential extensions under CH 

In this section we will prove that under CH we can also obtain an example of an a.d.f. 

C such that none of its onto (0, 1}-valued functions with infinite fibers have an essential 

extension. 

Proposition 4.1. [CH] There exists an uncountable a.d,$ C on w such that nofinction 

C#I : C + (0, 1) for which I&’ (O)( 2 No and I$-‘(l)/ > No, has an essential extension. 
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Proof. We will construct C = {AD: /3 < WI} by transfinite induction. Let {Jol: LY < WI} 

be a collection of subsets of i~r such that J, = 8 for all n < LJ and { Ja: w < cy < WI} 

is a partition of til consisting of uncountable disjoint subsets. Let {Al,, . . . AL?. . .} be 

a countable a.d.f. on w. We are going to define the following sets for every B < WI: 

(1) il/? c w, 
(2) a collection Tp, each of its elements being a two-element set consisting of disjoint 

subsets of UJ, 

(3) two infinite and disjoint subsets PO and Qp of w, 

(4) an ordinal w < CY~ < ~1, and 

(5) two infinite and disjoint subsets a{ and a? of /j, 

such that 

(i) for every n < w, A, = A;, Q, = 0 and T,, = P,, = Qn = a,” = a;( = 8; 

(ii) the collection {Ad: /3 < tin} is an a.d.f.; 

and for every w < 13 < UJI: 

(iii) Tp = {{P,Q}: P,Q c w,PnQ = 0 and 

min{l{X<@: IPnAxI =No}j, [{X<8: IQnAxl=No}l) =No; 

(iv) 1(X < B: [PO n Ax/ = No}1 = 1(X < 8: IQ9 n AxI = No}1 = NO; 
(v) either op E [w,wt) \ (0~: X < p} if B E lJxia Ja, or “0 is such that p E Ja, 

if P $ lJxCp JUx; 

(vi) af = {X < p: lPp n AxI = No}, a? = {X < ,d: IQ0 n AxI = No}; and 

(vii) IAp n UxEaf(P~ n Ax)1 = NO and I& n Ux,,$Q~ n -Ml = NO. 

Suppose we have already carried out everything we want to for every ,8 < K < ulr 

with w < h;. Now, we are going to define all we need for the K-step: Let Q, be an ordinal 

< UJI such that either K E J,, if K 4 lJp.,, Jaj, or Q, is an ordinal different from any 

q (8 < K) if ti E Us_ Ja,. Let 

T,= {P?Q}: P,Qcw? PnQ=0, \{X<K: lPnA,I=N,}I=N,,and 
1 

~{X<K: lQnAxj=No}l =No}. 

Observe that IT,/ = c = HI. So, we can make an enumeration of the elements of 

T, by using a one-to-one and onto correspondence with the elements of J,,: T, = 

{{Px, Qx): X E Jet,); ~0, {P&y Qn} E UxG, TX. We set a[ = {X < KC: IP,nAxl = No} 
and a; = {X < 6.: iQK n AxI = No}; th ese are infinite subsets of K. and we enumerate 

them as at = {X,: n. < w}, a; = {En: n < w}. 
We are going to construct the set A, by induction. Take 

x0 E P, n Ax,, , YO E (QEi n ilcO) \ ilxO, 

and if we have already taken different elements 20, . . 1 cc,, and ~0.. . . , yn, we can choose, 

since {Ax: X < K} is an a.d.f. and P, n AX,+, , QK n A,,,, are infinite sets, 

J,+~ E (P, n Ax,,, )\( u Ax, u u A& and 
7<n+1 I<n+l 
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Y~+I E (Qr; n A,,,,) \ u Ax, u u A& . 
i<Tl+1 i<n+1 > 

Let A, = {cm: R < w} U {y,: n < LJ}. 

It happens that {A A: X 6 K} is an a.d.f., 

A,n u(~&nA,) =No and A,n U(QKnAx) =N,, 
XEcg &a; 

In this way, we can obtain all the sets listed in (l)-(5) with properties (i)-(vii). 

Now we are going to prove that C = {Ax: X < WI } satisfies the requirement. Let 

4: C -+ (0, 1) be a function where 4-l (0) and 4-l (1) are infinite subsets of C. Let 

N C w be such that cl~(~~N > C. and let $: C U N + (0, l} be a function that 

extends 4. We will prove that $ is not a continuous function. Take Ma = 8-l (0) n N 
and Mi = &-‘(1)fVV. If for an i E (0, l} there exists Ax E c,-‘(i) with IILfinAxl < No, 
then $ is not continuous at the point Ax. Now assume the contrary: llllz n AxI = No 
for all Ax E 4-‘(i) and i E (0, l}. Let 2, = {X < WI: Ax E q’-‘(i)} and let 2,’ 

be a countable and infinite subset of 2, for i E (0, 1 }. If ~0 = sup( 26 U Zi), then 

{Ala, b1i } belongs to T,,,; so there exists 70 E Jo,, such that {MO, A/r] } = {P,,, , Qy,,}. 

Thus IA,, n h&l = No = IA,,, n MI I because of property (vii). But this means that & is 

not continuous at the point A,,. •I 

5. Essential extensions and Martin’s Axiom 

In contrast with the previous sections we will now see that the scenery changes when 

Martin’s Axiom is assumed. 

The following assertion, which is called Booth’s Lemma (BL), is a consequence of 

Martin’s Axiom (MA) and was first proved by D. Booth in [2]: 

BL. If C is a family of subsets of w with /Cl < 2N0 and / n C’I = No for every jnite 

subfamily C’ of C, then there exists an infmite subset B of w such that I B \ Al < No for 

every A E C. 

This combinatorial principle (also denoted by P(c) or p = c) is equivalent to a strict 

weakening of MA, the so-called Martin’s Axiom for a-centered partially ordered sets 

(see [Ml). 
BL has significant and interesting consequences (see for example [ 1, lo]); among them 

is the following statement: every m.a.d. family on w has cardinali@ c. 

It is very possible that the following result belongs to the set-theoretical folklore (see, 

e.g., U 11). 

Lemma 5.1. BL is equivalent to the following statement: 

(*) If-k~cV ) f 1 w are ami ies of cardinal@ less than 2N~, and for allJinite C c A 
andBEB, (B\UCI=No, thenthereisanMCwsuchthatIB\ikI=N~for 

allB~t3and~A\h!iJ<N~forallA~d. 
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Proof. Theorem 7 of [ 131 guarantees that MA implies (*). In order to obtain BL =S (*), 

we can use the same argument in proof of the cited theorem because the partial order P 

used there is cr-centered (see [ 11). 

The statement (*) + BL is Corollary 8 in [ 131. 0 

Proposition 5.2. [BL] Let C be an a.d.jI of cardinality < c. Then, every function 4 : C + 
(0, l} has an essential extension. 

Proof. Let $: C + {O,l} b e a function and set Ci = 4-‘(i) (i = 0, 1). Because of 

Lemma 5.1. there are two sets Aleo, iIft c UJ such that \A \ Ml = No and \A \ MI 1 < No 

for all A E & and JB\hfal < No and IB\nr,I = No for all I3 E Ct. Define S’ = LIJ\IUO 

and 7” = LJ \ Aft. Then, for A E CO, An S’ = A \ (d \ S’) = A \ MO is infinite. Similarly, 

for all A E CO. and for all B E Et, T’ n B is infinite and S’ n B, T’ n A are finite. The 

sets S = S’ \ T’ and T = T’ are disjoint and, for each A E CO and each B E Ct. An S, 

B n T are infinite and A n T, B n S are finite. We define $lc = 4, g(s) = 0 for every 

s E S and s(t) = 1 for every t E T. The function $ is an essential extension of d. •J 

The following definition and theorem appear in [ 14, p. 5.51: we include their formula- 

tions for the sake of completeness. 

Definition 5.3. An a.d.f. (A x ~~~ is called a tree if for each d < a and every y. < < o, ) 

eitherAgrlA,cAgnA~orApnA~cAynA,. 

Proposition 5.4. [MA] If C is an a.d.& of cardinal@ < 2’0 which is a tree, then eve? 

function 4: C + (0, 1) has a full extension. 

For arbitrary a.d.f. of cardinality < 2N0, MA also implies the real-valued essential 

version of Proposition 5.2: 

Proposition 5.5. [MA] Let C be an a.d.J: of cardinali < 2N”. Then evev function 

4:s + E% has an essential extension. 

Proof. Let P be the set of all pairs p = (f,, FP), where f, and FP are functions 

satisfying the following conditions: 

(1) dom(f,) c w and mg(fp) c Q; 

(2) Idom(fr,) U dom(Fp)l < NO; 

(3) dom(Fr,) c C, and Fp(A) = ( u”,,ff,) E w x Q+ for each A E dom(FP); and 

(4) if A E dom(&) and k E (A \ u”,) n dom(f,), then 

If,@) - dM)I < ~5. 

(Q and Q+ denote the sets of rational numbers and of positive rational numbers, respec- 

tively.) 

We define in IP the following partial order: p < q iff the following conditions hold: 

(i) f, 2 fq; 
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(ii) dom(3,) > dom(3q); 

and for each A E dom(3q), 

(iii) upA > 2~%, TEA 6 T>; 

(iv> [dom(f,) \ dom(.f,)] n A c A \ u>; 

(v) for each k E (A \ u>) n dom(f,), lfp(k) - $(A)[ < r>. 
The pair (IP, <) is a partially ordered set. Indeed, let us verify that the relation 6 is 

transitive. Suppose that p, q, s E P are such that p < s and s 6 q. We are going to 

prove that p < q. It is easy to see that the conditions (i)-(Z) hold. We now prove the 

statement (iv). Let us suppose that A E dom(3q) and no E [dom(f,) \ dom(f,)] rl A. 

We need to prove no 3 ~5. But 

dom(f,) \ dom(f,) = [dom(f,) \ dom(fs)] U [dom(.&) \ dom(fq)l . 

If no E dom(f,) \ dom(fs), then 720 > uA , ’ > 2~;, and if no E dom(fs) \ dom(f,), then 

no > ui too. 

It remains to prove that p and q satisfy (v). Let A E dom(3q) and k E (A \ ui) n 

dom(fp). Since s < q, if k E dom(fs) then 

Ifs(k) - 4(A)] = Ifs - 4(A)l < 6 

If k q! dom(fs), then k E [dom(f,) \dom(fs)] nA c A\ u>, so If,(k) - 4(A)I -c ri 6 
ri. It is easy to verify that < is reflexive and antisymmetric. 

Now let us check that c(P) < No. Let & be a subset of P of cardinality N, We can find 

an uncountable subset &I C & such that f,, = fq for every p, q E El. Moreover, we can 

find a finite subset A c C and an uncountable El c II such that dom(3P) ndom(3q) = 

A for all different p, q E E2 [5, p. 871. As the range of all possible values of every F(A) 

is countable, there exists an uncountable Ej C & such that .Tp(A) = Fq(A) for each 

A E A and all p, q E 83. If p, q E E3, then they are compatible: in fact, (f, Ufq, 3P U3q) 

extends p and q. 

Now we will define a convenient system 9 of dense subsets of P. 

Claim 1. For each (A, n, r) E C x w x Qf the set 

D(A, n, T) = (p = (f, 3) E P: A E dam(3), F’(A) = (m, t) and m > n, t < T) 

is dense. 

Indeed, let (g, G) E P \ D(A, n, T), and let 3 : dam(6) U {A} + w x Qf defined by 

the conditions: 

- 3(G) = 6(G) if G E dam(G) \ {A}, 

- 3(A) = (T&TO), where ‘UO = max{dom(g) U {m,n}} + 1 and r. = min{t,r}, if 

A E dam@) and Q(A) = (m,t), and 

- 3(A) = (max{dom(g) U {n}} + 1,~) if A $! dam(G). 
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It is easy to see that (g, 3) satisfies conditions (l)-(3) above; and since (g, G) E p 

and (A \ ~0) n dam(g) = 8, (g, F) satisfies (4) too; so (g, F) E P. Besides. it can be 

proved without difficulty that (g? F) E D(A. 71, T) and (g? F) < (9, G). 

Claim 2. For each (A, m) E C x w, the set 

‘FI(A, m) = {p = (f-F): A E dom(3) and dam(f) n (A \ m) # 0} 

is dense. 

Indeed, let g = (g, 6) E P \ ‘H(A, m). S ince C is an a.d.f. of infinite subsets of LJ, we 

can take t E A \ iJ{G: G E dam(6) \ {A}} such that 

t > max{m,max{u~: GE dom(C?)}}. 

Let f : dam(g) U {t} ---f Q defined by f(n) = g(n) if n E dam(g) and f(t) = $(A). On 

the other hand, if A E dam(G), let F = G, and, if A $ dam(G), let F : dam(6) U {A} -+ 

Qf be defined by F(G) = G(G) for all G E dom(&Y) and F(A) = (u”, , r”,) where 

IL: > max{dom(g)} and T: E Q+. It can be proved that (f>F) E ‘H(A,m) and 

(f.3) G (g,Q. 
So, the collection 

li)={D(A,n,r): AEC, ~ELJ. ~EQ+}u{‘FI(A,~): AEC, mow} 

is a system of dense subsets of P. Since IDI < 2’“, and using MA, there exists a 

Dgeneric G c P. Let 

$=U{f: 3p~G(p= (.f;3))} and 

M=U{dom(f): 3p~G(p= (f,F))}. 

Since G is a-generic, we have 

Claim 3. For each (A, k, E) E C x ti x Q+ there exist m(A, k, E) E (M n A) \ k and 

(f, F) = p E G such that m(A, k, E) E dam(f) and If(m(A, k, E)) - 4(A)l < E. 

Indeed, let q = (f,,Fq) E G n D(A, k, E). Hence, A E dom(Fq) and Fq(A) = 

(mo, to) with mo 3 k and to 6 E. Let s = (fs,Fs) E G n 7f(A, mo) and let p = 

(f. F) E G such that p < q and p < s. By the assumption, E = dom(fs) n (A \ mo) is 

not empty. An element m(A, k, -_) in E satisfies the above requirements. 

For each A E C let n(A,O) = 0 and n(A, i + 1) = m(A, n(A, i), l/(i + l)), and take 

N = {,n(A,i): A E C, i E u}. The function 6: C U N + R defined by & = 4 and 

&I) = $(n) for each n E N is an essential extension of ~5. q 
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