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Summary. In this work we present an improved numerical method for structured
convex hexahedral grid generation that also produces good quality grids.

1 Introduction.

In R3 it is difficult to have an efficient algorithm to generate structured hex-
ahedral grids (Knupp [5]). In this paper, we are going to follow the work of
Ivanenko [4] and Azarenok [1] in order to build harmonic convex hexahedral
grids using an improvement of Azarenok’s method through the quasi-harmonic
formulation used by Barrera [2] for the 2D problem.

2 Harmonic grids.

A structured grid can be defined as a mapping from the unitary cube onto a
simply connected region Ω ⊂ R3 as follows:

A grid x(ξ̄) on the region Ω ⊂ R3 is a homeomorphism

x : B → Ω (1)

where B is the unitary cube [0, 1]× [0, 1]× [0, 1].

This mapping induces a natural decomposition of ∂Ω into six faces, since
each face of the cube is mapped to a face of the boundary of Ω

x̄(∂B) = ∂Ω =
6⋃
i=1

Ωi (2)

with
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Fig. 1. Grid mapping.

Ω1 = x̄(B1) , Ω2 = x̄(B2),
Ω3 = x̄(B3) , Ω4 = x̄(B4), (3)
Ω5 = x̄(B5) , Ω6 = x̄(B6).

where Bi is each face of the untary cube. Hence, each face mapping induces
a continuous grid on the surface of Ωi

x̄
∣∣
Bi

: Bi → Ωi.

A first example of this decomposition is illustrated by the construction of
a grid on an ellipsoid, that can be made by using a similar method to that
used by LeVeque in [6] to construct a grid on the unitary sphere. Consider an
ellipsoid with center at the origin and radius lengths equal to 0.5 along the
x, z axes and 1 along the y axis; the method uses a radial mapping of the cube
defined in [−1, 1]× [−1, 1]× [−1, 1] such that each face of the cube determines
a face of the ellipsoid.

Fig. 2. Radial mapping from the cube to the ellipsoid.

Certainly, this process is more complicated in regions with a more complex
geometry, especially in those with irregular boundary (figure 3).

Hence, in order to find suitable grids with that properties, the harmonic
mappings are a powerful tool. If we define the local energy of the mapping x̄
at ξ̄
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Fig. 3. (a) Habana bay with its six faces. (b) A grid on the Habana bay.

E(x̄) =
1

33/2

(
||x̄ξ||2 + ||x̄η||2 + ||x̄ζ ||2

)3/2
x̄ξ · (x̄η × x̄ζ)

. (4)

then we can look for the mapping H that minimizes the total energy

H(x̄) =
∫
B

E(x̄)dξdηdζ (5)

subject to the given boundary conditions. Liseikin [8] shows that this mapping
exists and is an homeomorphism.

The harmonic grid generation problem consist in extending a given home-
omorphism φ : ∂B → ∂Ω to a homeomorphism x̄∗ : B → Ω in such a way
that φ is a minimizer of H. A possibility to find this extension is to solve the
associated Euler-Lagrange equations, however we don’t pursue this idea, but
that of Ivanenko et al [4] based on the discretization of the functional and the
calculation of its minimum through a numerical optimization process.

3 Discrete formulation.

Let us consider a uniform grid of dimension m× n× p on the unitary cube

U =
(

(ξi, ηj , ζk) =
(
i− 1
m− 1

,
j − 1
n− 1

,
k − 1
p− 1

) ∣∣∣∣1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p) ;

(6)
a discrete grid M of dimension m× n× p on Ω can be obtained as the image
of U under the homeomorphism x̄

M = x̄(U).

However, we require a specific order on its points, for this reason we introduce
the following definition of a structured discrete grid.
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Let m,n, p natural numbers higher than 2, the set of points of the space
that compose a structured discrete grid is given by

M = {Pi,j,k|i = 1, ...,m; j = 1, ..., n; k = 1, ..., p} (7)

where the grids on each one of the faces are given by

M1 = {Pi,1,k|i = 1, ...,m, k = 1, ..., p} ⊂ Ω1

M2 = {P1,j,k|j = 1, ..., n, k = 1, ..., p} ⊂ Ω2

M3 = {Pi,n,k|i = 1, ...,m, k = 1, ..., p} ⊂ Ω3 (8)
M4 = {Pm,j,k|j = 1, ..., n, k = 1, ..., p} ⊂ Ω4

M5 = {Pi,j,1|i = 1, ...,m, j = 1, ..., n} ⊂ Ω5

M6 = {Pi,j,p|i = 1, ...,m, j = 1, ..., n} ⊂ Ω6

Fig. 4. A structured discrete grid.

A grid cell Ci,j,k is formed by the vertices

r1 = Pi,j,k, r2 = Pi+1,j,k,

r3 = Pi+1,j+1,k, r4 = Pi,j+1,k,

r5 = Pi,j,k+1, r6 = Pi+1,j,k+1,

r7 = Pi+1,j+1,k+1, r8 = Pi,j+1,k+1.

where 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1 and 1 ≤ k ≤ p − 1. Note that if
1 < i < m− 1, 1 < j < n− 1, 1 < k < p− 1, Ci,j,k is an interior cell.

Consider two dodecahedrons with the same vertices, each one of them with
five tetrahedra, four at the corners and one in the interior. Then, each grid
cell will be divided into ten tetrahedra, eight at the corners and two interior
ones.
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Fig. 5. The cell Ci,j,k of the grid.

Fig. 6. The two dodecahedrons obtained from the cell.

This tetrahedral partition is very important since it will be used to define
the convexity conditions.

Fig. 7. The 10 tetrahedra in the cell.
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In the discrete formulation, we need to define what we understand for a
convex and hexahedral grid. Since a given M induces an approximation Ωh
of Ω called hexahedral approximation of Ω, it is straightforward to make
the following definition.

Convex hexahedral grid. Let Ω be a region in R3 whose discrete rep-
resentation is given by the hexahedral approximation Ωh, we say that a grid
M on Ωh is convex and hexahedral if all its cells are convex and hexahedral.

Thus, the main problem to solve is as follows:

Let Ω be a region in R3 whose discrete representation is given by the hex-
aedral aproximation Ωh, we want generate a discrete structured grid M on Ωh
such that the grid be convex and hexaedral.

We start by solving the problem of generating convex harmonic grids, later
on we discuss the hexahedral part. Then, we need to analyze the possible
convexity conditions on the cells.

3.1 Convexity conditions.

In 2D, the condition to guarantee that the mapping is a homeomorphism and
every cell is convex is that the Jacobian of the bilinear mapping to be positive
in all the points of the cell (particularly at the corners).

In 3D, the trilinear mapping from each cell of the unitary cube C =
{(ξ, η, ζ) : 0 ≤ ξ, η, ζ ≤ 1} onto a cell in the space x, y, z is given by

r(ξ, η, ζ) = w1 + w2ξ + w4η + w5ζ + w3ξη + w6ξζ + w7ξηζ (9)

with

w1 = r1, w2 = r2 − r1, w3 = r3 − r2 − r4 + r1

w4 = r4 − r1, w5 = r5 − r1, w6 = r6 − r2 − r5 + r1

w7 = r7 − r3 − r6 − r8 + r2 + r4 + r5 − r1, w8 = r8 − r4 − r2 + r1

and ri the coordinates of the vertex i of the cell (fig 5).

However, a similar condition to that in 2D can not be easily obtained since
the Jacobian of the trilinear mapping is given by the mixed product

J(ξ, η, ζ) = rξ · (rη × rζ) (10)

with
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rξ = w2 + w3η + w6ζ + w7ηζ, rη = w4 + w3ξ + w8ζ + w7ξζ,

rζ = w5 + w6ξ + w8η + w7ξη (11)

In this case, the Jacobian is a fourth degree polynomial that depends on
the variables ξ, η, ζ, hence we can’t have a necessary and sufficient convex-
ity condition based only on the Jacobian of the trilinear mapping evaluated
at the tetrahedrals. Up to the present date, such conditions remains unknown.

Using the analysis made by Azarenok [1] and Ushakova [9] it is possible to
give a short condition to verify the convexity of the cells which is reliable in
most of the cases. To do this, we use the dodecahedrical cells and the tetrahe-
dra illustrated in the figures 6 and 7. First, we need to consider an orientation
of the cells grid in such a way that a convex cell has all its tetrahedra with
positive volume.

Therefore, a convexity condition for a cell can be:

volume(Tl) > 0, l = 1, 2, ..., 10 (12)

with Tl the volume of the tetrahedron l of the cell Ci,j,k.

3.2 The harmonic functional (discrete version).

It is possible to approximate the discrete functional is by means of the trilinear
mapping (9), however, for this approximation the mapping x̄ might not be a
homeomorphism. Then using a set of linear transformations of the basic tetra-
hedron in the space ξ, η, ζ on its correspondent tetrahedron in the space x, y, z,
we can get a discretization of the harmonic functional in function of that ones.

Since ∫
B

E(x̄)dξdηdζ =
∑
i,j,k

∫
Bi,j,k

E(x̄)dξdηdζ,

and there is a set of linear transformations that define the tetrahedra in
the physical space, we can discretize the functional by simply averaging over
the 10 tetrahedra defined by the two dodecahedrons in fig. 6∫

Bi,j,k

E(x̄)dξdηdζ ≈
10∑
i=1

1
10

[Ei];

hence we can approximate the total sum in a similar form and get the discrete
version of the harmonic functional

Hd(M) =
1
Nc

Nc∑
j=1

10∑
i=1

1
10

[Ei]j (13)
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with M a discrete structured grid, [Ei]j the value of the integrand in each
tetrahedron i of the cell j, and Nc the total number of grid cells.

The discretization is well defined only for grids having positive volume in
all the tetrahedra. Working with that kind of grids we can solve the problem

Compute : M∗ = argmin
M

Hd(M) (14)

and get an harmonic grid through a large-scale optimization problem with
3(m− 2)(n− 2)(p− 2) variables.

However, the construction of an initial grid with this property can be very
expensive and in the optimization process we could obtain tetrahedra with
negative volume.

To overcome this pitfall we propose a variant of the discrete harmonic func-
tional, namely the Hω functional, using the main ideas developed by Barrera
and Domı́nguez in [3] for the 2D problem.

3.3 The quasi-harmonic functional Hω.

Let us write the function (4) in the form λ(x̄)
V (x̄) where

λ(x̄) =
1

33/2

(
||x̄ξ||2 + ||x̄η||2 + ||x̄ζ ||2

)3/2
V (x̄) = x̄ξ · (x̄η × x̄ζ).

For the latter formula one can see that if for a tetrahedron Ti the value of
V (Ti) = volume(Ti) is very small or negative the optimization process can fail.

The idea in Hω functional consist in choosing a suitable parameter value
ω > 0, next to define a positive, convex and strictly decreasing real function
ϕω(V ) ∈ C1, and use it to “fix” the functional Hd. Due to numerical purposes,
an effective election is

ϕω(V ) =

{
2ω−V
ω2 , V < ω

1
V , V ≥ ω

(15)

since if V takes a value smaller than ω then the functional takes a “safe” value
instead of the natural value of the functional (see the figure 8) . Thus we get
a functional with a numerical performance which is close similar to that of
Hd but without its numerical complications.

Hence, the functional Hw is defined as
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Fig. 8. Graphic visualization of the funcion ϕω(V ).

Hw =
1
Nc

Nc∑
j=1

10∑
i=1

1
10
λi,jϕωi,j , (16)

where λi,j and ϕωi,j represent the evaluations of λ and ϕω(V ) in the tetrahe-
dron i of the cell j, and Nc is the total number of cells.

4 Optimization procedure (convex harmonic grids).

Once the discrete functional Hw has been defined, the next step is to compute
the minimum of a large scale optimization problem without restrictions.

The process starts with a possibly non-convex initial generated by alge-
braic methods. Note that not all the grid points have to be taken into account
in the optimization process since only the interior points are variable, there-
fore, before the optimization process we need determinate those tetrahedra in
the grid cells having all its vertices in the boundary and verify wether its vol-
umes is positive. Other important condition is the convexity of the boundary
grids.

Hence, the optimization problem to be solved is:

Compute : M∗ = argmin
M

Hw(M) (17)

over the set of grids for the hexaedral aproximation Ωh.
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To solve this problem a Newton truncated method with a trust region
strategy is used [7]. The main requirements for the method are:

a) Function evaluations.
b) Value of the function gradients.
c) Sparsity patron of the hessian matrix.

The formulas used for the function and gradients evaluations are the same
ones used by Azarenok in [1].

4.1 Practical algorithm.

The basic structure of the algorithm is as follows:

a) Choose an initial and admisible grid M0 (usually non convex).
b) Choose ω0 > 0 such that the functional Hω is well defined for M0.
c) Solve a large scale optimization problem to find an optimal grid M∗ of

Hω(M).
d) Update

M0 ← M∗

ω0 ←
1
2
ω0

e) Repeat the process until a convex harmonic grid has been found.

Next we show some examples of three dimensional harmonic convex grids
generated by this algorithm.

Fig. 9. A Grid of the swan of dimension 20× 20× 7.
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Fig. 10. (a) Grid of an oil reservoir (1) of dimension 35 × 25 × 5. (b) Grid of the
Great Britain of dimension 30× 30× 6.

Fig. 11. (a) Grid of a ellipsoid of dimension 20×20×20. (b) Grid of an oil reservoir
(2) of dimension 35× 35× 6.
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The next example shows a comparison between a grid for a sphere genera-
ted by LeVeque in [6] using a radial mapping of the unitary cube and a grid
generated with our algorithm. We can appreciate the discontinuities in the
first grid and their lack in the second grid, also the smoothness caused by the
functional Hω is clearly illustrated.

Fig. 12. (a) Grid of a sphere of dimension 20 × 20 × 20 generated by Leveque in
[6] and some layers. (b) Grid of a sphere of dimension 20× 20× 20 and some layers
generated by our algorithm.

In the process of generating a convex harmonic grid using the quasi-
harmonic functional not all the cells in the optimal grid are hexahedral in
the sense that all the cell faces are plane, the next table shows the number of
interior non-hexahedral cells in the examples.

Grid Dimension Interior cells No hexahedral cells in the optimal grid

Ellipsoid 20× 20× 20 4913 4909

Great Britain 30× 30× 6 2187 2007

Oil reservoir (1) 35× 25× 5 1408 1384

Oil reservoir (2) 35× 35× 6 3072 3015

Sphere 20× 20× 20 4913 4905

Swan 20× 20× 7 1156 1154

Table 1. Optimal grids and its no hexahedral cells.



Structured Hexahedral Harmonic Grid Generation. 13

5 Convex hexahedral harmonic grid generation.

If a face of a cell is not plane this can be seen as a tetrahedron, then if we use
all the tetrahedra associated to the grid cell faces without repetitions we can
include a measure of coplanarity calculating the volume Vf of the tetrahedron
that corresponds at each face, hence given ε > 0 sufficiently small we say that
a face is ε-plane if

Vf =
∣∣volume(face(Ci,j,k))

∣∣ < ε

so, for each cell the condition is given by

α

6∑
f=1

V 2
f (18)

is small, where α is a positive constant.

However, to include this coplanarity restrictions explicitly in the optimiza-
tion problem produces a large scale problem with restrictions which is more
complicated. So we include the coplanarity conditions inside the functional as
a regularization, hence the actual optimization problem to solve is

Calculate : M∗ = arg min
(M,α)

Hw(M) + α

NF∑
f=1

V 2
f (19)

over the set of grids for the hexaedral aproximation Ωh and the total number
of faces in the grid without repetitions NF .

An important aspect is the number of variables and restrictions in the
optimization problem in order to determine if it is well defined. The amount
of variables is given by the the interior points of the grid and the variables by
the planar faces desired on the grid.

Until this moment we have studied two cases:

a) The coplanarity only in the interior cells.
b) The coplanarity in all the interior faces (including the interior faces on

cells of the boundary).

In order to find a hexahedral grid, i.e. a grid with all the interior cells
hexahedral, is easy to prove that the case (a) is well defined. The case (b) is
in general not well defined and we need add some variables or eliminate some
restrictions. We present the analysis for the first case and a few examples of
hexahedral grids.
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5.1 Analysis of variables and restrictions.

We have already seen that the number of variables is

Nvar = 3(m− 2)(n− 2)(p− 2),

and taking the layers in the direction x, y, z we can get the faces for the block
of interior cells as

FCint = (m− 2)(n− 3)(p− 3) + (n− 2)(m− 3)(p− 3) + (p− 2)(m− 3)(n− 3).

To guarantee a well-posed optimization problem we need

FCint
< Nvar

which is easy to prove. Hence the coplanarity in the block of interior cells
defines a well-posed problem and we can find a harmonic grid with hexahedral
interior cells by minimization.

5.2 Optimization procedure (convex hexaedral harmonic grids).

For the implementation of the coplanarity condition we add the regulariza-
tion in the functional Hω and apply the optimization process until we find a
hexahedral grid without losing the convex cells. The proposed algorithm is as
follows:

a) Choose an initial convex grid M0.
b) Choose ω0 = 10−8 (the limit value since the initial grid is convex), and

α = 1/(2µ) with µ starting in 0.1.
c) Solve Hw(M) + α

∑NF

f=1 V
2
f to find the optimal grid M∗, here the face

volume tolerance is ε = 10−6.
d) Update

M0 ← M∗

µ← 0.1µ

e) Repeat the process until find a convex hexahedral harmonic grid.

In the figures 13 and 14 we illustrate some examples of hexahedral grids
generated by this algorithm.

6 Final remarks and future work.

In this work we illustrate a quasi-harmonic functional to generate convex
harmonic grids in 3D. The process usually starts with a non convex initial
grid and solving a large scale optimization we get a convex harmonic grid,
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Fig. 13. Swan grid of dimension 20 × 20 × 7 and some cells before and after the
coplanarity algorithm.

Fig. 14. Elipsoid grid of dimension 20× 20× 20 and some cells before and after the
coplanarity algorithm.

however this process not guarantee that the grid have hexahedral cells. We
proof that it is possible, in general, to generate grids with all the interior
cells hexahedra and propose an algorithm to solve this problem based in a
regularization applied to the quasi-harmonic functional. An interesting point
to be worked is the application of our grids in simulations of real problems,
especially in those solved by partial differential equations, taking advantage
of the good quality of the grids in the performance of that problems.
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