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SOME RESULTS AND PROBLEMS ABOUT

WEAKLY PSEUDOCOMPACT SPACES

Oleg Okunev and Angel Tamariz-Mascarúa

Abstract. A space X is truly weakly pseudocompact if X is either weakly pseu-

docompact or Lindelöf locally compact. We prove: (1) every locally weakly pseu-
docompact space is truly weakly pseudocompact if it is either a generalized linearly

ordered space, or a proto-metrizable zero-dimensional space with χ(x,X) > ω for
every x ∈ X ; (2) every locally bounded space is truly weakly pseudocompact; (3)

for ω < κ < α, the κ-Lindelöfication of a discrete space of cardinality α is weakly
pseudocompact if κ = κω.

All spaces considered in this paper are assumed to be Tychonoff (= completely
regular Hausdorff). A zero set in X is a set of the form Z(f) = f−1(0) for some
continuous function f : X → R. A z-ultrafilter is an ultrafilter of z-sets. For each
zero set Z in X, we denote by Z̃ the set of all z-ultrafilters containing Z. A space
Y is a compactification of a space X if Y is compact and X is a dense subspace
of Y . If X is a space, βX denotes the Stone-Čech compactification of X, that is,
βX is the space of all the z-ultrafilters on X where a base for its closed subsets is
{ Z̃ : Z is a zero set of X }. Notation and terminology not explained in the text are
as in [Eng], with the exception that the closure of a set A in a space X is denoted
as clX A (or simply cl A).

A space X is called weakly pseudocompact if there is a compactification bX of
X such that X is Gδ-dense in bX, which means that every nonempty Gδ-set in bX
meets X. The notion of weak pseudocompactness, introduced in [GG], is a natural
generalization of a well-known characterization of pseudocompact spaces as spaces
that are Gδ-dense in their Stone-Čech compactifications (which implies Gδ-density
in every compactification). Unlike pseudocompactness, weak pseudocompactness
in combination with realcompactness does not imply compactness (it is easy to
see that every locally compact non-Lindelöf space is weakly pseudocompact), but
every Lindelöf weakly pseudocompact space is compact. Nice properties of weak
pseudocompactness are that it is multiplicative (in any numbers), and implies the
Baire property.

Eckertson proved [Eck] that every open set in a weakly pseudocompact space is
either weakly pseudocompact or (Lindelöf) locally compact. This indicates that it
is natural to consider the class of spaces that are either weakly pseudocompact or
locally compact; we call such spaces truly weakly pseudocompact. Thus, every open
subset of a truly weakly pseudocompact space is truly weakly pseudocompact. A
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natural and, as it turns out, nontrivial question (still open in the general case) is
whether every locally weakly pseudocompact space is truly weakly pseudocompact
(a space is locally weakly pseudocompact if each of its points has a weakly pseu-
docompact neighborhood; by the above, this is equivalent to the requirement that
every point has a truly weakly pseudocompact open neighborhood). In [OT] the
true weak pseudocompactness of a locally weakly pseudocompact space was proved
for the class of paracompact generalized linearly ordered spaces. The main result
of Section 2 of this article is to prove that the requirement of paracompactness is
superfluous.

The above problem, of course, is a particular case of a general question: When
is a union of weakly pseudocompact spaces weakly pseudocompact? In particu-
lar, it is not even clear whether a space which is the union of two closed weakly
pseudocompact subspaces must be weakly pseudocompact. In Section 1 we give
some steps in this direction. It is worth mentioning that the free topological sum
of weakly pseudocompact spaces is truly weakly pseudocompact [Eck].

In Section 3 we look at some generalizations of the fact that every locally com-
pact space is truly weakly pseudocompact and obtain answers to questions about
the behavior of weak pseudocompactness under “nice” mappings in some special
classes of spaces. In Section 4 we study relations between local and global weak
pseudocompactness in some “very disconnected” spaces. Finally, in Section 5 we
prove weak pseudocompactness (or its absence) for some individual spaces; ques-
tions of this type turn out to be surprisingly difficult for some very simple spaces.
For example, it appears to be unknown to date whether Rω1 is weakly pseudocom-
pact.

We often abbreviate “weakly pseudocompact” to “w.p.”, “truly weakly pseudo-
compact” to “t.w.p.”, and “locally weakly pseudocompact” to “l.w.p.”.

1. Unions of truly weakly pseudocompact subspaces

In this section we give some sufficient conditions on subsets A and B in order to
guarantee that A ∪B is truly weakly pseudocompact.

We will need the following lemma for construction of compactifications.

1.1. Lemma. Let X be a normal (Hausdorff) space, and let q : X → Y be a
continuous (continuous and with compact fibers) function. If q is closed, then Y is
a Hausdorff space.

We divide our first theorem into several lemmas. These lemmas will refer to the
following objects:

Let X = A∪B be a topological space. Let bA and bB be Hausdorff extensions of
A and B. Let Y be the space (bA×{0})⊕ (bB×{1}), and let R be the equivalence
relation on Y defined by the rule: (x, i)R(y, j) iff either (x, i) = (y, j) or x = y and
x, y ∈ X. Let X0 be the space (A × {0}) ∪ (B × {1}), and consider h : X0 → X
defined by h(x, i) = x. Obviously, h is continuous. We denote by φ the function
from X to Y/R defined as φ(x) = p((x, 0)) if x ∈ A, and φ(x) = p((x, 1)) if x ∈ B\A
where p : Y → Y/R is the natural projection. Clearly, φ ◦ h = p.

1.2. Lemma. If A ∩ B has a locally finite in Y compact cover (in particular, if
A ∩B is compact), then p is closed.
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Proof. Let F be a closed subset of Y . Let F1 = F ∩ (bA×{0}) and F2 = F ∩ (bB×
{1}). We have to prove that p−1(p(F )) is closed in Y . Let D be a locally finite (in
Y ) compact cover of A ∩B. We have

p−1(p(F )) =
(
p−1(p(F )) ∩ (bA × {0})

)
∪

(
p−1(p(F )) ∩ (bB × {1})

)
.

Clearly, p−1(p(F ))∩(bA×{0}) = F1∪(F2∩A∩B). But (F2∩A∩B) is the union of a
locally finite family of compact sets, so it is closed in Y . Thus, p−1(p(F ))∩(bA×{0})
is closed in Y . Similarly, we conclude that p−1(p(F )) ∩ (bB × {1}) is closed in Y .
Since p is quotient, p(F ) is closed in Y/R. �

1.3. Lemma. If A and B are Gδ-dense in bA and bB, then φ(X) = p(A × {0} ∪
B × {1}) is Gδ-dense in Y/R.

Proof. X0 is Gδ-dense in Y , and φ(X) = p(X0). �

The following result is a generalization of Lemma 2.7 in [OT].

1.4. Theorem. Let A and B be weakly pseudocompact spaces. Let X = A ∪B.
Assume that there are two compactifications bA and bB of A and B, respectively,
such that A and B are Gδ-densely embedded, and such that A∩B can be covered
by a locally finite (in Y = (bA×{0})∪ (bB × {1})) family of compact subsets. If h
is a quotient (in particular, if A and B are both open or closed), then X is weakly
pseudocompact.

Proof. By Lemma 1.2, p is closed. So φ is closed, because p = φ◦h. By assumption,
h is quotient, so φ is continuous. On the other hand, φ is one-to-one. Hence, φ
is an embedding. Therefore, X is Gδ-dense in the compact space Y/R by Lemma
1.3. �

1.5. Theorem. Let X = Y ∪ {x0} where Y is weakly pseudocompact and x0 has
a compact neighborhood in X. Then X is weakly pseudocompact.

Proof. Let U be an open neighborhood of x0 in X such that the closure of U in X
is compact. Let P = clY (U \{x0}) = clX (U )∩Y . Obviously, P is a locally compact
closed set in Y . Let bY be a compactification of Y in which Y is Gδ-dense, and
let F = clbY P \ P . Since P is locally compact, it is open in its compactification
clbY P ; hence F is compact; F ∩ Y = ∅ because P is closed in Y .

Let B = bY/F , p : bY → B the projection, {z0} = p(F ), and Z = p(Y ) ∪ {z0}.
Obviously, B is a compactification of Z in which Z is Gδ-dense; to end the proof
it suffices to verify that Z is homeomorphic to X. Note that Z is homeomorphic
to (Y ∪F )/F , because p is closed and Y ∪F = p−1(Z). Hence, it suffices to check
that the mapping p1 : Y ∪ F → X defined by the rule

p1(x) =
{

x if x ∈ Y ,
x0 if x ∈ F

is quotient. To that end it is enough to verify that the restrictions of p1 to the
elements of the closed cover {P ∪F, Y \V } of Y ∪F are closed. But the restriction
of p1 to Y \V is a homeomorphism, and the restriction of p1 to P ∪F is the standard
mapping of the compactification P ∪F = clbY P of the locally compact space P to
its Alexandroff compactification P ∪ {x0} = clX U . �
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2. GLOTS and weak pseudocompactness

Our main goal of this section is to prove that every locally weakly pseudocompact
GLOTS is truly weakly pseudocompact. Recall that a topological space X is called
generalized linearly ordered (GLOTS) if it is homeomorphic to a subspace of some
linearly ordered space Z. In what follows we assume the linearly ordered space
(Z, <) fixed; we have thus a linear order fixed on X. The symbols (a, b), [a, b), etc.
refer to intervals with respect to this order (we do not require a, b ∈ X); we denote

(←, a] = {x ∈ X : x ≤ a },
(←, a) = {x ∈ X : x < a },
[a,→) = {x ∈ X : a ≤ x },
(a,→) = {x ∈ X : a < x }

A point x0 ∈ X is locally compact at the left if x is the minimum of X or there is
an a ∈ (←, x) such that the interval [a, x] is compact. The notion of a point locally
compact at the right is defined symmetrically.

The following results were proved in [OT].

2.1. Proposition. Let X be a truly weakly pseudocompact GLOTS, and suppose
x0 is a point of X that is locally compact at the right. Then (←, x0] is truly weakly
pseudocompact.

2.2. Proposition. Let X be a GLOTS. If X has a point x0 such that both [x0,→)
and (←, x0] are truly weakly pseudocompact, then X is truly weakly pseudocom-
pact.

2.3. Proposition. Let X be a GLOTS which is not locally compact at any point.
Then X is w.p. iff for every x ∈ X, [x0,→) and (←, x0] are weakly pseudocompact.

2.4. Proposition. Let X be a GLOTS. Then the following statements are equiv-
alent:

(1) X is truly weakly pseudocompact.
(2) For every x, y ∈ X with x < y, (x, y) is truly weakly pseudocompact.
(3) For every a, b ∈ Z with a < b, (a, b) ∩X is truly weakly pseudocompact.
(4) For every x ∈ X, (x,→) and (←, x) are truly weakly pseudocompact.
(5) Every proper open subset of X is truly weakly pseudocompact.
(6) There exists x0 ∈ X such that (←, x0] and [x0,→) are truly weakly pseu-

docompact.

Using the above, we are now able to prove

2.5. Proposition. Let X be a GLOTS and A and B two open intervals in X. If A
and B are truly weakly pseudocompact, then A∪B is truly weakly pseudocompact.

Proof. If A ∩B = ∅, then A ∪ B is the free topological sum of two t.w.p. spaces,
so it is t.w.p. Suppose A ∩B 6= ∅. Let Z be a compact LOTS that contains X as
a dense subset. Let a, b, c, d ∈ Z be such that A = (a, b) ∩X and B = (c, d) ∩X.
Without loss of generality we assume that a ≤ c. If d ≤ b, then there is nothing to
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prove, because in this case B ∪ A = A. We can even assume that a < c < b < d,
because if a = c or b = d, then A ∪B = A or A ∪B = B.

Case 1. Suppose there is a point x0 ∈ A ∩ B with a compact neighborhood.
Then there is a compact neighborhood of x0 contained in A∩B = (c, b)∩X. Then
x0 is a point of the t.w.p GLOTS (a, b) ∩X = A which is locally compact, so, by
Proposition 2.1, (a, x0] ∩X is t.w.p. Similarly, [x0, d) ∩X is t.w.p. We conclude
that (a, d)∩X = A ∪B is t.w.p. by Proposition 2.2.

Case 2. Suppose now that E = (c, b) ∩X has no points of local compactness.
Observe that a point x in E cannot have an immediate predecessor and an imme-
diate successor in X, because in this case x would have a compact neighborhood
({x}). Take z ∈ E. If z does not have an immediate predecessor in X, then there is
a point e ∈ Z \X with c < e < z. By Proposition 2.3, (c, z]∩X is t.w.p. Since open
subsets of t.w.p spaces are t.w.p., (e, z] ∩X and (a, e) ∩ X are t.w.p. Therefore,
(a, z] ∩X =

(
(a, e)⊕ (e, z]

)
∩X is t.w.p. If z has an immediate successor w, then

[z, d)∩X is the free topological sum of two t.w.p. spaces: {z} and (z, d)∩X. Using
similar arguments we can prove that, in any case, (a, z]∩X and [z, d)∩X are t.w.p.
By Proposition 2.2, (a, d) ∩X = A ∪B is t.w.p. �

Let X be a GLOTS. For each x ∈ X consider the collection W(x) of all open
truly weakly pseudocompact intervals in X that contain x. Let Wx =

⋃
W(x).

2.6. Proposition. Let X be a l.w.p. GLOTS and let x ∈ X. Then Wx is a clopen
t.w.p. interval containing x.

Proof. We have x ∈ Wx, because X is l.w.p. Besides, it is open as the union of
open intervals. If |Wx| = 1, we have already finished. Now, assume that |Wx| > 1,
and take z, y ∈ Wx with z < y. Then there are open intervals A and B containing
x and containing z and y respectively, which are t.w.p. By Proposition 2.5, A∪B is
a t.w.p. open interval containing x, y and z. Thus, Wx is an interval, and (z, y)∩X
is t.w.p., because it is an open subset of the t.w.p. space A ∪ B. By Proposition
2.4, Wx is t.w.p. Now let us check that Wx is closed. Let y ∈ clX Wx. Since X
is l.w.p., there is an open t.w.p. interval V containing y. Since y ∈ clX Wx, there
is a t.w.p. open interval W containing x and intersecting V . By Proposition 2.5,
V ∪W is t.w.p, so V ∪W ∈ W(x), and y ∈Wx. �

Thus we obtain

2.7. Theorem. If X is a l.w.p. GLOTS, then X is t.w.p.

Proof. Let x, y ∈ X. Consider the t.w.p. spaces Wx and Wy. Because of Proposi-
tions 2.5 and 2.6, if Wx∩Wy 6= ∅, then Wx∪Wy is a t.w.p. open interval containing
x and y. Thus, Wx = Wy . That is, X is the free topological sum of t.w.p. spaces.
In fact, the relation x ∼ y iff Wx = Wy is an equivalence relation in X. If Z be
a subset containing one and only one element of each class of equivalence, then
X =

⊕
z∈Z Wz . Therefore, X is t.w.p. �
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3. Locally bounded spaces

We devote this section to exhibit some other classes of spaces where the property
of being locally weakly pseudocompact implies the property of being truly weakly
pseudocompact. The section is divided in two parts; in the first one, we are going
to prove that every locally pseudocompact space is t.w.p., and in the second part
we prove that “l.w.p. ⇒ t.w.p.” holds for spaces X such that K(X) is a b-lattice.

3.1. Definition. A subset B of a space X is called bounded in X if for every
continuous function f : X → R, f(B) is bounded in R.

A space X is locally bounded if every point of X has a bounded neighborhood.

A space X is locally pseudocompact if every point of X has a pseudocompact
neighborhood.

Obviously, the closure of a bounded (pseudocompact) set is bounded (pseudo-
compact), in particular, in a locally bounded (locally pseudocompact) space, every
point has a closed bounded (pseudocompact) neighborhood.

3.2. Lemma. Let F be a set in a space X. If F is Gδ-dense in clβX F , then F is
bounded in X.

Proof. Suppose there is a continuous function f : X → R such that f is not bounded
on F . Let C = R ∪ {∞} be the one-point compactification of R. Then ∞ is a
limit point for f(F ). Let f̃ : βX → C be the continuous extension of f . By the
compactness of clβX F ,∞ ∈ f̃ (clβX F ), hence, P = f̃−1(∞) is a Gδ-set that meets
clβX F . By the Gδ-density of F in clβX F , P ∩ F 6= ∅, and there is a point in F
such that the value of f in it is ∞; a contradiction. �

3.3. Lemma. If F is a bounded zero-set in X, then F is Gδ-dense in clβX F .

Proof. Let x0 ∈ clβX F , and suppose there is a Gδ-set in βX that contains x0 and
is disjoint with F . Then there is a continuous function g : X → [0, 1] such that
g̃(x0) = 0 and g̃(F ) ⊂ (0, 1] where g̃ : βX → [0, 1] is the continuous extension of g.
The sets F and F1 = g−1(0) are disjoint zero-sets in X, hence there is a continuous
function h : X → [0, 1] such that h(F ) ⊂ {0} and h(F1) ⊂ {1}. Let f0 = g + h and
f̃0 : βX → [0, 2] its continuous extension. Then f0|F = g|F , whence f0(F ) ⊂ (0, 1]
and f̃0(x0) = 0. Furthermore, f0(x) > 0 for all x ∈ X. The function f = 1/f0 is
well-defined and continuous on X and is unbounded on F . �

3.4. Lemma. Let F ⊂ X and let bX be a compactification of X. If F is Gδ-dense
in clβX F , then F is Gδ-dense in clbX F .

Proof. Let f : βX → bX be the continuous extension of the embedding X ↪→
bX. Since f is continuous and clβX F is compact, f(clβX F ) = clbX F . Thus,
f | clβX F : clβX F → clbX F is continuous and onto. Now if we had a nonempty
Gδ-set G in clbX F disjoint with F , then f−1(G) would be a nonempty Gδ-set in
clβX F disjoint with F . �
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3.5. Theorem. Every locally bounded space is truly weakly pseudocompact.

Proof. If X is locally compact, then, obviously, X is t.w.p. Now assume that X is
not locally compact.

For each point x ∈ X choose an open neighborhood Vx of x so that clX Vx is
a bounded zero-set in X. For each x ∈ X choose an open set Ṽx in βX so that
Ṽx ∩X = Vx. Consider the subset Y =

⋃
x∈X Ṽx of βX. Y is not compact and is

locally compact, because it is open in βX. Let αY = Y ∪ {z0} be the one-point
compactification of Y where z0 /∈ Y . Since X is not locally compact, there is a
point x0 ∈ X such that Ṽx0 \X 6= ∅. Let z1 be an element of Ṽx0 \X, and let Z
be the space obtained from αY by identifying z0 with z1. Let q : α(Y )→ Z be the
projection. Then Z is a Hausdorff (Lemma 1.1) compact space containing X as a
dense subset. Let us verify that X is Gδ-dense in Z. Indeed, let G be a nonempty
Gδ-set in Z. We have Z =

⋃
x∈X q(Ṽx), and for each x ∈ X, q(Ṽx) ⊂ clZ clX Vx.

Thus, Z =
⋃

x∈X clZ clX Vx. Hence, there is a ∈ X such that G ∩ clZ clX Va is a
nonempty Gδ-set in clZ clX Va. On the other hand, clX Va is a bounded zero-set
in X, so it is Gδ-dense in clβX clX Va by Lemma 3.3. Then clX Va is Gδ-dense in
clZ clX Va by Lemma 3.4. Therefore, G ∩ clX Va 6= ∅. We conclude that G meets
X. �
3.6. Corollary. If X is locally pseudocompact, then X is t.w.p.

3.7. Corollary. Let X be a space. The following statements are equivalent:

(1) X is t.w.p.
(2) X is Gδ-densely embedded in a locally bounded space.
(3) X is Gδ-densely embedded in a locally pseudocompact space.

Proof. Of course, if X is w.p., then it is Gδ-dense in a compactification bX of X,
which is locally pseudocompact. If X is locally compact, then X is Gδ-dense in
itself. Suppose now that X is Gδ-dense in a locally bounded space Y . By the
previous theorem, there is a compactification bY of Y in which Y is Gδ-dense.
Therefore, bY is a compactification of X in which X is Gδ-dense. �

As usual, we denote by υX the Hewitt realcompactification of X. The space υX
can be identified with the subset of βX of all z-ultrafilters on X with the countable
intersection property (this kind of z-ultrafilters are the so called real z-ultrafilters).

Let bX and cX be two compactifications of the space X. We write bX ≤ cX if
there is a continuous function f : cX → bX such that f(x) = x for every x ∈ X.
The compactifications bX and cX are equivalent if bX ≤ cX and cX ≤ bX. We
denote by K(X) the set of equivalence classes of compactifications of X, and call
a compactification bX ∈ K(X) simple if the standard mapping βX → bX has at
most one fiber that is not a singleton; thus, a simple compactification of X is the
quotient space βX/K where K ⊂ βX \X is a compact set. The family K(X) is
said to be a b-lattice (see [U]) if the simple compactifications of X are dense in the
ordered set K(X), that is, if for each bX ∈ K(X) there is a simple compactification
b′X such that b′X ≤ bX.

In [GFS] the authors determine when υX is w.p. in terms of Wallman bases.
In what follows we characterize weak pseudocompactness for spaces X such that
K(X) is a b-lattice.

The following lemma is immediate from one of the equivalent definitions of υX.



SOME RESULTS AND PROBLEMS ABOUT WEAKLY PSEUDOCOMPACT SPACES 9

3.8. Lemma. A space X is Gδ-dense in a subset Y of βX containing X if and
only if Y ⊂ υX.

It is not difficult to prove the next two statements.

3.9. Lemma. Let X be a space. If X is contained in IntβX υX, then X is locally
bounded.

3.10. Lemma. Let X be a space. Then, X is contained in IntβX υX if and only
if there is a locally compact subspace Y of βX such that X ⊂ Y ⊂ υX.

3.11. Theorem. Let X be a space such that K(X) is a b-lattice. Then the follow-
ing statements are equivalent.

(1) X is t.w.p.
(2) X is locally bounded.
(3) There is a locally compact space Y such that X ⊂ Y ⊂ υX.
(4) X ⊂ IntβX υX.

Moreover, if X is normal, we can add to the previous list the following:

(5) X is locally pseudocompact.

Proof. The equivalence (3) ⇔ (4) is Lemma 3.10, (4) =⇒ (2) is Lemma 3.9, and
the implication (2) =⇒ (1) is Theorem 3.5. Let us prove (1) =⇒ (3): If X is
locally compact and Lindelöf, then X is realcompact and υX = X is open in βX.
Assume now that υX does not contain an open subset of βX that contains X. We
will prove that X is not w.p. Since K(X) is a b-lattice, it is enough to prove that
for every compact K ⊂ βX \X, X is not Gδ-dense in βX/K.

By our hypothesis, we can pick a p ∈ βX \ (υX ∪K). There is a Gδ-subset G of
βX such that p ∈ G and G ∩ (υX ∪K) = ∅. Let q : βX → βX/K be the natural
projection. The set q(G) is a nonempty Gδ subset of β(X)/K that does not meet
X. Therefore, X is not w.p.

Obviously, every locally pseudocompact space is locally bounded. If X is normal,
then every closed bounded set in X is C-embedded, and hence pseudocompact, so a
normal locally bounded space is locally pseudocompact. This shows the equivalence
of (5) to the rest conditions in the case where X is normal. �

As a consequence of the previous result we obtain Theorem 3.2 in [Eck]:

3.12. Corollary. Let X be a realcompact space such that K(X) is a b-lattice.
Then X is t.w.p iff X is locally compact.

3.13. Lemma. Let X be a space. Then υX is locally compact if and only if
for each real z-ultrafilter p on X there are zero-sets Z ∈ p and W /∈ p such that
Z ⊃ X \W and Z is bounded in X.

Proof. Assume that υX is locally compact, and let p ∈ υX (that is, let p be a real
z-ultrafilter). Let V be a compact neighborhood of p contained in υX. Thus, there
exist Z ∈ p and W /∈ p such that Z ⊃ X \W and Z ⊂ V ∩X (see [GJ, 7.12]). Since
V is compact and V ⊂ υX, Z is bounded in X.

Now suppose that p ∈ υX, and let Z and W two zero sets such that
(1) Z ∈ p, W /∈ p, Z ⊃ X \W , and
(2) Z is bounded in X.
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By (1), clβX Z is a neighborhood of p in βX ([GJ, 7.12]), and because of (2),
clβX Z ⊂ υX. �

Combining Corollary 3.12 and Lemma 3.13, we obtain

3.14. Corollary. Let X be a space such that K(X) is a b-lattice. Then the
following statements are equivalent:

(1) υX is t.w.p.,
(2) υX is locally compact,
(3) For each real z-ultrafilter p on X there are zero-sets Z ∈ p and W /∈ p such

that Z ⊃ X \W and Z is bounded in X.

In [GFS] and [Eck] questions were posed about the invariance of weak pseudo-
compactness under perfect or open maps, and whether X is w.p. whenever X×X is
w.p. Using Theorems 3.5 and 3.11, we obtain affirmative answers to these questions
for the spaces X such that K(X) is a b-lattice. Indeed,

3.15. Lemma.

(1) If f : X → Y is a perfect or an open map, and X is locally bounded, then
Y is locally bounded.

(2) If the product space
∏

λ<α Xλ is locally bounded, then Xλ is locally boun-
ded for every λ < α.

Proof. Since the projections from a product space to each of its factors are open,
(1) implies (2).

So let us prove (1).
Suppose f is perfect, and let y ∈ Y . Since X is locally bounded and f−1(y) is

compact, there is a bounded neighborhood V of f−1(y). Then Y \ f(X \ V ) is a
bounded neighborhood of y in Y .

If f is open and y ∈ Y , pick x ∈ f−1(y), and let V be a bounded neighborhood
of x in X. Then f(V ) is a bounded neighborhood of y in Y . �

3.16. Theorem. Let f : X → Y be a perfect map onto Y , and assume that K(X)
is a b-lattice. If X is t.w.p., then Y is t.w.p.

Proof. By Theorem 3.11, X is locally bounded. Applying the previous lemma, we
obtain that Y is locally bounded. Y is t.w.p. by Theorem 3.11. �

A similar argument proves

3.17. Theorem. If K
(∏

λ<α Xλ

)
is a b-lattice and

∏
λ<α Xλ is t.w.p., then Xλ is

t.w.p. for every λ < α.

4. Zero-dimensional spaces

We begin with the following remark, which will be very useful for our purposes.

4.1. Lemma. The union of a countable family of clopen t.w.p. subsets of a space
X is t.w.p.
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4.2. Definition. A collection N of subsets of a set X is called Noetherian if N
contains no infinite increasing sequence (with respect to the inclusion).

A collection N of subsets of a set X is ℵ0-Noetherian if N contains no uncount-
able increasing sequences.

A collection N of subsets of a set X is said to be of subinfinite rank (of countable
rank, of rank n) if for each x ∈ X, every antichain of the elements of N that contain
x is finite (resp., countable, has cardinality ≤ n).

The non-archimedean spaces are the spaces having a base of rank 1. These spaces
are zero-dimensional, and are GLOTS ([NR]). Therefore, every non-archimedean
l.w.p. space is t.w.p. (Theorem 2.7). An important subclass of non-archimedean
spaces is the class of ωµ-metrizable spaces with µ > 0, which are the spaces with
a compatible uniformity that has an uncountable totally ordered base (see [NR]).
There is a subclass of zero-dimensional spaces wider than that of non-archimedean
spaces in which l.w.p. implies t.w.p.: a space X is called ultraparacompact if every
open cover of X has a clopen disjoint refinement. Observe that a space X is ultra-
compact if and only if every open cover of X has a locally finite clopen refinement.
We can generalize this concept as follows:

4.3. Definition. Let α be a cardinal. A space X is α-paracompact if every open
cover of X can be refined by a clopen cover C such that for each C ∈ C,

∣∣{D ∈ C : C ∩D 6= ∅ and C ∩ (X \D) 6= ∅ }
∣∣ ≤ α.

Obviously, ultraparacompactness is equivalent to 1-paracompactness, every α-
paracompact space is zero-dimensional, and if α, κ are two cardinals and α < κ,
then α-paracompactness implies κ-paracompactness.

4.4. Theorem. Every ω-paracompact l.w.p. space is t.w.p.

Proof. For each x ∈ X let Vx be a t.w.p. open set containing x. Let C be a
clopen refinement of {Vx : x ∈ X } that satisfies the condition in the definition of
ω-paracompactness of X. Fix an x ∈ X. Put A1 =

⋃
{C ∈ C : x ∈ C }. There is a

countable subcollection C1 of C such that A1 =
⋃
C1. Let

C2 = {C ∈ C : C ∩D 6= ∅ and C ∩ (X \D) 6= ∅ for some D ∈ C1 }.

By induction, let

Cn+1 = {C ∈ C : C ∩D 6= ∅ and C ∩ (X \D) 6= ∅ for some D ∈ Cn },

and
D =

⋃

n<ω

Cn.

Obviously, |D| ≤ ω.
Let Wx =

⋃
n<ω

⋃
Cn. We claim that Wx is a clopen t.w.p. subspace of X.

Indeed, let D = {Dn : n < ω }. Because each Dn is t.w.p. and clopen, D0, D0 ∪
D1, D0 ∪ D1 ∪ D2, . . . are t.w.p. Besides, Wx is the free topological sum of the
collection {En : n < ω } where En = Dn+1 \ (D0 ∪ · · · ∪ Dn). Since each En is
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t.w.p., the set Wx is t.w.p. Now suppose y ∈ clX Wx. Then y ∈ C for some C ∈ C,
and there is n < ω such that C ∩Dn 6= ∅. There is k < ω such that Dn ∈ Ck. If
C ∩ (X \Dn) = ∅, then y ∈ C ⊂ Dn ⊂ Wx. If C ∩ (X \Dn) 6= ∅, then C ∈ Ck+1,
and this implies that y ∈ C ⊂ Wx. Therefore, Wx is clopen in X.

Using the same argument than before, we can prove that Wx ∩Wy = ∅ if Wx

and Wy are not equal. So, X is a free topological sum of t.w.p. spaces. Therefore,
X is t.w.p. �

4.5. Corollary. Every ultraparacompact l.w.p is t.w.p. In particular, if X is
paracompact, extremely disconnected and l.w.p., then X is t.w.p.

4.6. Definition. A collection C of subsets of a space X is of rank α (< α) with
respect to a collection F if for each F ∈ F , the cardinality of any antichain C′ ⊂ C
such that each element of C′ meets F , has cardinality ≤ α (< α).

A space X is called ℵ0-N -refinable if every open cover of X has an open refine-
ment which is ℵ0-Noetherian and is of rank ω with respect to itself.

4.7. Theorem. Let X be a zero-dimensional ℵ0-N -refinable l.w.p space. Then X
is t.w.p.

Proof. Let V be a clopen cover of X consisting of t.w.p. subspaces. Let C be an open
refinement of V which is ℵ0-Noetherian and of rank ω with respect to itself. Let
x ∈ X. Let E0 = C0 ∈ C where x ∈ C0. Put E1 = St(E0, C), . . . ,En+1 = St(En, C),
. . . , and Ex =

⋃
n<ω En.

Claims.

(1) There exists a sequence {Cn : n < ω } in C such that Ex =
⋃

n<ω Cn.
(2) Ex is t.w.p.
(3) Let z ∈ Ex, and let C1, . . . , Ck ∈ C such that z ∈ C1 and Ci ∩Ci+1 6= ∅ for

every i = 1, . . . , k− 1. Then, Ck ⊂ Ex.
(4) If y ∈ Ex, then Ey ⊂ Ex.
(5) If x, y ∈ X are distinct points, then either Ex ∩Ey = ∅, or Ex = Ey.

Condition (1) holds because C is ℵ0-Noetherian of rank ω with respect to itself.
Now, we prove condition (2): For each n < ω let Vn ∈ V be such that Cn ⊂ Vn.
Then Ex =

⋃
n<ω Cn ⊂

⋃
n<ω Vn = V . Ex is open, and V is t.w.p as the countable

union of t.w.p clopen subsets of X. So Ex is t.w.p.
Claim (3) implies (4) , and this one implies condition (5). Let us prove (3). If

z ∈ Ex, then there is n < ω such that z ∈ En. Therefore, Ak ⊂
⋃
{Ei : n ≤ i ≤

n + k } ⊂ Ex.

Let ∼ be the equivalence relation defined by the rule: x ∼ y if and only if
Ex = Ey. Let Y be a subset of X containing exactly one element of each class of
equivalence. Then X =

⊕
{Ey : y ∈ Y }. Therefore, X is t.w.p. �

4.8. Definition. A base B of a space X is called an ortho-base if for every B′ ⊂ B,
either

⋂
B′ is open, or for some x ∈ X,

⋂
B′ = {x} and B′ is a base of neighborhoods

of x. A space X is called proto-metrizable if it is paracompact and has an ortho-base.

The class of proto-metrizable spaces contains all non-archimedean spaces and all
metrizable spaces.
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4.9. Theorem. Let X be a zero-dimensional proto-metrizable space with χ(x, X)
> ω for every x ∈ X. If X is l.w.p., then X is t.w.p.

Proof. Let B be an ortho-base for X, and let C be a clopen cover of X where each
C ∈ C is t.w.p. We take a countable collection {Dn : n < ω } where Dn+1 is a
subcollection of B which is a star refinement of Dn, and D0 ⊂ B is a star refinement
of C. For each x ∈ X, put Ax =

⋂
n<ω St(x,Dn). Since B is an ortho-base and

χ(x, X) > ω for every x ∈ X, each Ax is an open set. Let A = {Ax : x ∈ X }.
Fix a point x ∈ X. Consider the sequence E0 = St(x,A), E1 = St(E0,A), . . . ,
En+1 = St(En,A), . . . For every n < ω there exist Dn ∈ Dn and Cn ∈ C such that
En ⊂ Dn ⊂ Cn. Of course, each En is open. Besides, Ex =

⋃
n<ω En is an open

subset of
⋃

n<ω Cn = C, and C is t.w.p., because it is a countable union of clopen
sets. Hence, Ex is t.w.p.

Reasoning as in the proof of Theorem 4.9, we can show the following

Claims.

(1) Let z ∈ Ex, and let A1, . . . , Ak ∈ A such that z ∈ A1 and Ai ∩Ai+1 6= ∅ for
every i = 1, . . . , k− 1. Then Ak ⊂ Ex.

(2) If y ∈ Ex, then Ey ⊂ Ex.
(3) Let x, y ∈ X. If Ex ∩Ey 6= ∅, then Ex = Ey.

Thus, X is the free topological sum of some of its Ex subsets. We conclude that
X is t.w.p. �

Problem. Is restriction on the character necessary in Theorem 4.9?

4.10. Problems. 1. Is every l.w.p. zero-dimensional metrizable space t.w.p.?
2. Is every l.w.p. zero-dimensional paracompact space t.w.p.?
3. Is every l.w.p. zero-dimensional metacompact developable space t.w.p?
4. Is every l.w.p. zero-dimensional spaces with a Noetherian base of subinfinite

rank t.w.p?
5. Is every l.w.p. zero-dimensional space with a base of rank 2 t.w.p.?

4.11. Problems. 1. Let X be a non-archimedean space. Let Y be a zero-
dimensional metrizable space, and f : X → Y a perfect mapping onto Y . Is Y
t.w.p. if X is t.w.p.?

2. Let X be a non-archimedean space. Let Y be a zero-dimensional metrizable
space, and f : X → Y a perfect mapping onto Y . Is X t.w.p. if Y is t.w.p.?

5. Some examples

We have already proved the following:

5.1. Theorem. A non-Lindelöf space X is w.p. if and only if it is homeomorphic
to a Gδ-dense subspace of a locally pseudocompact space.

So, if P is a topological property such that compactness implies P and P implies
pseudocompactness, then the following are equivalent for a non-Lindelöf space X.

(1) X is w.p.
(2) X can be embedded as a Gδ-dense subspace of a space satisfying P locally.
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An example of a property P between compactness and pseudocompactness is
initial α-compactness (every open cover of cardinality ≤ α has a finite subcover).
In particular, countable compactness is such a property. Recall that a space X is
countably compact if every countable subset of X has a limit point. These remarks
motivate the following concepts.

5.2. Definition. Let α be a cardinal.
A space X is α-w.p. if it can be Gδ-densely embedded into a Tychonoff space Y

in which each subset of cardinality α has a limit point.
A space X is completely-α-w.p. if it can be Gδ-densely embedded into a Ty-

chonoff space Y in which each subset of cardinality α has a complete accumulation
point.

A space X is relatively-α-w.p. if it can be Gδ-densely embedded into a Tychonoff
space Y so that every set of cardinality α contained in X has a limit point in Y .

A space X is completely-relatively-α-w.p. if it can be Gδ-densely embedded into a
Tychonoff space Y so that every set of cardinality α contained in X has a complete
accumulation point in Y .

5.3. Definition. The degree of w.p. (of c.w.p., r.w.p., c.r.w.p ) of a space X
is defined as the minimum of cardinals α such that X is α-w.p. (completely-α-
w.p., relatively-α-w.p., completely-relatively-α-w.p.); we denote these by wp(X),
cwp(X), rwp(X), and rcwp(X).

Observe that a space X is ω-w.p. iff X is w.p. Obviously, if X is α-w.p.
(relatively-α-w.p.) and γ > α, then X is γ-w.p. (relatively-γ-w.p.). Also, complete-
ly-α-w.p. implies α-w.p., and α-w.p. implies relatively-α-w.p. Finally, rwp(X) ≤
wp(X) ≤ e(X)+ ≤ l(X)+ , wp(X) ≤ cwp(X) ≤ |X|+, and rwp(X) ≤ rcwp(X) ≤
cwp(X), where e(X) and and l(X) are the extent and the Lindelöf number of X.
Thus, every noncompact Lindelöf space X satisfies wp(X) = ω1. The next result
guarantees in particular that for every Lindelöf space X, wp(X) = rwp(X).

5.4. Theorem. A space X is w.p. if an only if it is ω-r.w.p.

Proof. Let Y be a space such that X is Gδ-dense in Y and every countable subset
of X has a limit point in Y . We are going to prove that Y is a pseudocompact
space.

Let f : Y → R be a continuous function. If f is unbounded, then f is unbounded
on X, and for every n ∈ N there is a point xn ∈ X such that |f(x)| ≥ n. The set
{xn : n ∈ N } is infinite, so by the hypothesis it has a limit point y ∈ Y . This
is a contradiction, since by the continuity of f we then must have that |f(xn)| ≤
|f(y)| + 1 for infinitely many n ∈ ω.

Thus, Y is Gδ-dense in βY ; since X is Gδ-dense in Y , it is also Gδ-dense in
βY . �

Remark. The spaces Y that have a dense subspace X with the property that every
infinite subset of X has a limit point in Y are called relatively countably compact; the
above argument proves a well-known fact that every relatively countably compact
space is pseudocompact.

5.5. Example. The Moore-Niemytsky Plane N satisfies cwp(X) = wp(X) =
rwp(X) = rcwp(X) = ω1.
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Proof. Consider the following subsets of N : N0 = { (x, y) ∈ R2 : y > 0} and
N1 = { (x, 0) : x ∈ R }. The space N is not w.p., because the subspace N0 ∪
{ (r, 0) : r ∈ Q } is an open Lindelöf non-locally compact subspace of N0 (re-
call that every open set of a w.p. space is t.w.p.). Therefore, ω < rwp(N ) ≤
min{wp(N ), rcwp(X)} ≤ max{wp(N ), rcwp(X)} ≤ cwp(N ). We will finish the
proof by showing that cwp(X) ≤ ω1. Let Z = N ∪ {a} where a /∈ N . We consider
the topology τ in Z generated by all open subsets of N and all the sets of the form
{a}∪V where V is an open subset of N such that |N1 \V | < ω. The space (Z, τ ) is
Tychonoff, every of its subset of cardinality ω1 has a complete accumulation point,
and N is Gδ-dense in Z. �

In order to prove the assertion in the following example we need some results
and definitions. The first definition and theorem can be found in [CN, p. 286-288].

5.6. Definition. Let ω ≤ κ ≤ α. A family C of subsets of α is a κ-almost disjoint
family on α if |C| ≥ κ for all C ∈ C, and |C0 ∩C1| < κ for all distinct C0, C1 ∈ C.

An ω-almost disjoint family is called simply an almost disjoint family.

We denote by S(α, κ) the smallest cardinal β such that there is no κ-almost
disjoint family on α of cardinality β.

For two cardinals α and κ, we denote by

α<κ = sup{αλ : λ < κ }.

5.7. Theorem. Let κ be an infinite cardinal and α ≥ 2. Then S(α<κ, κ) = (ακ)+.

The following result is a variation of the last theorem.

5.8. Lemma. Let γ, κ and α be cardinals such that ω ≤ γ ≤ κ ≤ α<γ . Then
there exists a family C of subsets of α<γ such that

(1) |C| = κ for every C ∈ C,
(2) |C1 ∩C2| < γ for all distinct C1, C2 ∈ C,
(3) if D ⊂ α<γ and |D| = κ, then there is C ∈ C such that |C ∩D| ≥ γ,
(4) α<γ ≤ |C| ≤ αγ .

Proof. Let D be a partition of α<γ into subsets of cardinality κ with |D| = α<γ .
Let Υ be the collection of all families of subsets of α<γ satisfying (1) and (2) and
containing D. Consider Υ with the order defined by inclusion. By the Zorn Lemma,
there exists a family C containing D and satisfying (1), (2) and (3). Besides, C must
satisfy (4) because of Theorem 5.7 and the fact that D ⊂ C and |D| = α<γ . .

Now assume that α = αγ . In this case we can take the partition D of cardinality
α; the collection C will satisfy α ≤ |C| ≤ αγ = α. �

5.9. Lemma. Let γ, κ and α be cardinals such that ω ≤ γ ≤ κ ≤ α = αγ . Then
there exists a family C of subsets of α such that

(1) |C| = κ for every C ∈ C,
(2) |C1 ∩C2| < γ for all distinct C1, C2 ∈ C,
(3) If D ⊂ α and |D| = γ, then there is C ∈ C such that |C ∩D| = γ,
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Proof. Let D be a family of subsets of α satisfying (1)–(3) in Lemma 5.8 and of
cardinality αγ . Let E be the set of all subsets of α of cardinality equal to γ. We
have then |E| = αγ . Enumerate faithfully D and E :

D = {Dλ : λ < αγ },
E = {Eλ : λ < αγ }.

We will construct the family C by an inductive process. If for every E ∈ E there
is D ∈ D such that |E∩D| = γ, then D satisfies all the requirements. If not, let ξ0

be the first ordinal such that for every D ∈ D, |D ∩Eξ0 | < γ. Put D̃0 = D0 ∪Eξ0 .
Assume that we have already constructed the sets Eξλ and D̃λ for every λ < η < αγ .
If for every δ ≥ sup{ ξλ : λ < η } there is a D ∈ { D̃λ : λ < η }∪ {Dλ : η ≤ λ < αγ}
such that |Eδ ∩ D| ≥ γ, then we put C = { D̃λ : λ < η } ∪ {Dλ : η ≤ λ < αγ }.
Otherwise, let ξη be the first ordinal greater or equal to sup{ ξλ : λ < η } such
that for every D ∈ { D̃λ : λ < η } ∪ {Dλ : η ≤ λ < αγ }, |Eξη ∩ D| < γ. Let
D̃η = Dη ∪Eξη . This process will stop after at most αγ steps. �

In the following example we answer affirmatively a question posed in [Eck].

5.10. Example. Let α and κ be two cardinals such that ω ≤ κ ≤ α. Let D(α) be
the discrete space of cardinality α, and let Aκ(α) = D(α) ∪ {o}, where o /∈ D(α),
be the space with the topology generated by all the subsets of D(α) and all the sets
of the form {o} ∪ V where V ⊂ D(α) and |α \ V | ≤ κ. Then we have:

if κ = ω, then Aκ(α) is a Lindelöf non-locally compact space;
if κ = α, then Aκ(α) is a discrete space of cardinality α; and
if ω < κ < α, and κω = κ then Aκ(α) is weakly pseudocompact.

Proof. The first two assertions are trivial. We will prove the third by cases.
Case 1. Assume that α = αω. By Lemma 5.9, there is an almost disjoint family

C of subsets of α such that |C| = ω1 for every C ∈ C, |C1 ∩ C2| < ω for different
C1, C2 ∈ C, and for every infinite D ⊂ α, D ∩C is infinite for some C ∈ C.

For each C ∈ C, let eC be an element not belonging to Aκ(α) and such that
eC 6= eD if C, D ∈ C and C 6= D. Consider the space Z = Zκ(α) = Aκ(α) ∪ Y
where Y = { eC : C ∈ C }, with the topology generated by all the subsets of D(α),
the sets of the form eC ∪V where V ⊂ C and |C \V | < ω, and the sets of the form
{o} ∪ V ∪W where V ⊂ D(α) and |D(α) \ V | ≤ κ, and W ⊂ Y such that eC ∈W
iff |C \V | < ω. It is not difficult to prove that these sets form a base of a Hausdorff
topology τ on Z. Besides, Aκ(α) is a Gδ-dense subspace of Z, and every subset of
Aκ(α) of cardinality ω has a limit point in Z because of the properties of C. By
Theorem 5.4, to finish the proof it is enough to show that Z is a Tychonoff space.
We are going to prove that in fact, Z is a zero-dimensional space.

In order to do this it is enough to verify that every standard neighborhood of
o contains a clopen subset that contains o. Let O = {o} ∪ V ∪W be a standard
neighborhood of o as described above. Let V0 = D(α) \ V . V0 has cardinality ≤ κ.
Put

C0 = {C ∈ C : |C ∩ V0| ≥ ω},
D0 = {C ∩ V0 : C ∈ C0 }
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and
W0 = { eC : C ∈ C0 }.

Then |D0| = |C0|, because if C, D ∈ C0 and C 6= D, then |C ∩ D| < ω and
min{ |C ∩V0|, |D∩V0| } ≥ ω. Hence, C ∩V0 and D ∩V0 must be different. Besides,
|W0| = |C0|, |V0| ≤ κ, and D0 is an almost disjoint family in V0. Thus, |W0| ≤ κω =
κ. Consider V1 = V0∪

⋃
C0. The cardinality of V1 is less or equal to κω = κ. Assume

that we have constructed sequences {Vλ : λ < η }, {Wλ : λ < η }, { Cλ : λ < η }
and {Dλ : λ < η } such that

Vλ =
⋃
{Vγ : γ < λ } if λ is a limit ordinal, and

Vλ = Vγ ∪
⋃
Cγ if λ = γ + 1,

Cλ = {C ∈ C : |C ∩ Vλ| ≥ ω },
Dλ = {C ∩ Vλ : C ∈ Cλ }, and

Wλ = { eC : C ∈ Cλ }.

These sequences have the following properties.
1) Vλ ⊂ α, Wλ ⊂ Y , and Cλ ⊂ C for all λ < η;
2) Dλ is an almost disjoint family on Vλ for every λ < η;
3) |Vλ| = |Wλ| = |Cλ| = |Dλ| ≤ κω = κ for every 0 < λ < η, and |V0| ≤ |W0| =
|C0| ≤ κω = κ;

4) if ξ < λ < η, then Vξ ⊂ Vλ, Wξ ⊂ Wλ, and Cξ ⊂ Cλ;
If η < κ+, we can continue this process by putting Vη =

⋃
λ<η Vλ if η is a limit

ordinal, and Vη = Vζ ∪
⋃
Cζ if η = ζ + 1, and

Cη = {C ∈ C : |C ∩ Vη | ≥ ω },
Dη = {C ∩ Vη : C ∈ Cη },

and Wη = { eC : C ∈ Cη }. It is not difficult to prove, as was done when η = 0 and
using the fact that η < κ+, that the new families {Vλ : λ ≤ η }, {Wλ : λ ≤ η },
{ Cλ : λ ≤ η }, and {Dλ : λ ≤ η } satisfy the properties 1), 2), 3) and 4) above.

Continue this inductive construction to ω1, and put Ṽ =
⋃
{Vλ : λ < ω1 },

W̃ =
⋃
{Vλ : λ < ω1 }, and F = F (V0) = Ṽ ∪ W̃ . We claim that Z \ F is a clopen

neighborhood of o contained in O.
Indeed, suppose eC ∈ F . Then there is λ < ω1 such that eC ∈ Wλ. The union

{eC}∪C is an open set containing eC and contained in Vλ+1∪Wλ+1 ⊂ F . Besides,
o /∈ F . Thus, F is an open set. Now suppose eB ∈ clZ F . This means that
|B ∩ Ṽ | ≥ ω. Let E be an infinite countable subset of B ∩ Ṽ . There is a λ < ω1

such that E ⊂ Vλ. The collection {C∩Vλ : C ∈ Cλ+1 } is a maximal almost disjoint
family in Vλ, so there exist D ∈ Cλ+1 such that |B∩D| ≥ |E∩D| ≥ ω. This means
that eD ∈ Wλ+1 ⊂ F is a limit point for D. But this is possible only if eB = eD .
Thus, eB ∈ F . Besides, o /∈ clZ F , because |Ṽ | ≤ κω · ω1 = κ, and, as we have
already seen, if eC /∈ W̃ , then |C ∩ Ṽ | < ℵ0. Thus, Z \ F is a clopen subset of Z
containing o and contained in O. Therefore, Z is zero-dimensional.
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Case 2. Assume only that α > ω.
Let β = 2α. Then βω = β. Let Z = Zκ(β) as constructed in the proof in Case 1.

Then Z is zero-dimensional, hence Tychonoff.
For every subset K of D(β) of cardinality κ we can take the clopen subset F (K)

of Aκ(β) constructed from K as in the proof in Case 1. Let K0 be a subset of D(β)
of cardinality κ. Then |F (K0) ∩ D(β)| < β, so we can take K1 ⊂ D(β) \ F (K0)
of cardinality κ. In this manner we can construct two α-sequences {Kλ : λ < α}
and {F (Kλ) : λ < α } such that if λ < ξ, then Kξ ⊂ D(β) \ F (Kλ). Let F =⋃
{F (Kλ) : λ < α }. The set F is open in Aκ(β).
Claim 1. (F ∩D(β)) ∪ {o} is Gδ-dense in clZ F .
Indeed, suppose p ∈ clZ F ∩

⋂
n<ω An where An is open in Z. Assume that

p /∈ (F ∩ D(β)) ∪ {o}. We can assume that An ⊂ Am if n > m and o /∈ An for
all n < ω. Then for each n < ω, Bn = An ∩ clZ F is open in Z, and p ∈ Bn for
every n < ω. Hence,

⋂
n<ω Bn is a Gδ-set in Z. Then

⋂
n<ω Bn ∩D(β) 6= ∅. But

Bn ⊂ clZ F for every n < ω, so if z ∈
⋂

n<ω Bn ∩D(β), then z ∈ F ∩D(β).

Claim 2. Every countable subset of (F ∩D(β))∪{o} has an accumulation point
in clZ F .

In fact, this is trivial, because if N is a countable infinite subset of (F ∩D(β)) ∪
{o}, then N \ {o} ⊂ F has a limit point in Z, and it is clear that this point must
be in clZ F .

Thus, clZ F is relatively countably compact, and therefore pseudocompact. Since
(F ∩D(β)) ∪{o} is Gδ-dense in clZ F , (F ∩D(β)) ∪{o} is weakly pseudocompact.

Claim 3. Aκ(α) is homeomorphic to (F ∩D(β)) ∪ {o}.
Indeed, F ∩D(β) is a discrete space of cardinality α, and if V is a neighborhood

of o in (F ∩D(β)) ∪ {o} if and only if o ∈ V and |(F ∩D(β)) \ V | ≤ κ. �

5.11. Problems.
1. Is Aκ(α) w.p. without any restriction on uncountable κ and α?
2. What are rcw(X), wp(X), rcwp(X) and cwp(X) when X is

(1) the Michael line?

(2) the square of the Sorgenfrey line?

(3) X = Vγ(Aκ(α)), the quotient spaces obtained by identifying the points (λ, o)
λ < α, in the space D(γ) × Aκ(α) to a single point?

3. Find examples of spaces X, Y and Z such that rwp(X) < wp(X), wp(Y ) <
cwp(Y ) and rcwp(Z) < cwp(Z).

References

[CN] Comfort, W.W. and Negrepontis, S., The Theory of Ultrafilters, Springer-Verlag Berlin

Heidelberg New York, Heidelberg, 1974.

[Eck] F. Eckertson, Sums, products and mappings of weakly pseudocompact spaces, Topol. Appl.

72 (1996), 149–157.

[Eng] R. Engelking, General Topology, PWN, Warszawa, 1977.
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