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A NOTE ON p-BOUNDED AND QUASI-p-BOUNDED SUBSETS

Manuel Sanchis and Angel Tamariz-Mascarúa

Abstract. We discuss the relationship between p-boundedness and quasi-p-boun-

dedness in the realm of GLOTS for p ∈ ω∗. We show that p-pseudocompactness,
p-compactness, quasi-p-pseudocompactness and quasi-p-compactness are equivalent

properties for a GLOTS; that bounded subsets of a GLOTS are strongly-bounded;
and C-compact subsets of a GLOTS are strongly-C-compact. We also show that a

topologically orderable group is locally precompact if and only if it is metrizable.
For bounded subsets of a GLOTS, a version of the classical Gilcksberg’s Theorem on

pseudocompactness is obtained: if Aα is a bounded subset of a GLOTS Xα for each
α ∈ ∆, then clβ(

∏
α∈∆ Xα)(

∏
α∈∆ Aα) =

∏
α∈∆ clβ(Xα)Aα. Also we prove that

there exists an ultrapseudocompact topological group which is not quasi-p-compact

for any p ∈ ω∗. To see this example, p-pseudocompactness and p-compactness
are investigated in the field of Cπ-spaces, proving that ultracompactness, quasi-p-

compactness for a p ∈ ω∗ and countable compactness (respectively, ultrapseudo-
compactness, quasi-p-pseudocompactness for a p ∈ ω∗ and pseudocompactness) are

equivalent properties in the class of spaces of the form Cπ(X, [0,1]).

1. Introduction

In this article we will assume that all spaces are Tychonoff unless otherwise
stated. The set of natural numbers will be denoted by ω, and the Stone-C̆ech
compactification of a space X will be denoted as β(X). The space β(ω) is identified
with the set of ultrafilters on ω, and ω∗ = β(ω) \ ω is the set of free ultrafilters.

For p ∈ ω∗, Bernstein [B] introduced and investigated the concept of p-limit in
connection with some problems in the theory of nonstandard analysis. Indepen-
dently, Frólik [F] and Katĕtov [K1], [K2] introduced this concept in a different form,
and Ginsburg and Saks [GS] generalized this notion as follows:

1.1. Definition. Let p ∈ ω∗ and let (Sn)n<ω be a sequence of nonempty subsets
of a space X. A point x ∈ X is a p-limit point of the sequence (Sn)n<ω, in symbols
x = p − lim(Sn), if for every V ∈ N (x), {n < ω : V ∩ Sn 6= ∅} ∈ p.

If xn ∈ X and Sn = {xn} for each n < ω, then a p-limit point of (Sn)n<ω is
a Bernstein’s p-limit point of the sequence (xn)n<ω. Note that if there exists a
p-limit point of a sequence (xn)n<ω, this has to be unique, since X is Hausdorff;
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but, in general, a sequence (Sn)n<ω of nonempty subsets of a space X could have
more than one point. For instance, if Sn = { 1

n
} × R for each n < ω, then each

point (0, r) ∈ R2 is a p-limit point of (Sn)n<ω, for each p ∈ ω∗.
Let us recall that, for p ∈ ω∗, a space X is said to be p-compact if every sequence

(xn)n<ω in X has a p-limit. Spaces which are p-compact for every p ∈ ω∗ are called
ultracompact. Every compact space is ultracompact, and Vaughan proved in [V,
Theorem 4.9], that in the class of regular spaces, X is ultracompact if, and only
if, X is ω-bounded (that is, the closure of each countable subset of X is compact).
By using Definition 1.1, Ginsburg and Saks introduced in [GS] the concept of p-
pseudocompactness, and later Garćıa-Ferreira [GF1] defined the relative version of
this concept:

1.2. Definition. Let p ∈ ω∗. A subet A of a space X is said to be p-bounded in
X if for every sequence (Vn)n<ω of nonempty open subsets of X with A ∩ Vn 6= ∅,
for all n < ω, there is x ∈ X which is a p-limit point of the sequence (Vn)n<ω.

A space X is called p-pseudocompact if X is p-bounded in itself and X is called
ultrapseudocompact if it is p-pseudocompact for every p ∈ ω∗ .

In this article, we are not going to engage only in p-bounded spaces but also in
a weaker concept which has been introduced and analyzed in [STM2]:

1.3. Definition. Let p ∈ ω∗ and let A be a subset of a space X. We say that A
is a quasi-p-bounded subset of X if for every sequence (Un)n<ω of nonempty open
subsets of X whose elements meet A, there exist x ∈ X and f : ω → ω such that
|f(B)| = ℵ0 for every B ∈ p and x = p − lim(Uf(n)).

It is worth to mention that quasi-p-boundedness was defined in [STM2] by us-
ing the word “subsequence” which produces confusion since subsequence requires
strictly increasing functions. Here we present this notion in such a way a missun-
derstanding is not possible.

Given p ∈ ω∗, a space X is called quasi-p-pseudocompact if it is quasi-p-bounded
in itself. In a similar way, we say that a space X is quasi-p-compact if for each
infinite sequence (xn)n<ω of points in X, there exist x ∈ X and f : ω → ω such
that |f(B)| = ℵ0 for every B ∈ p and x = p− lim(xf(n)). This notion is implicit in
[STM2, Theorem 2.8].

The concepts of quasi-p-compactness and quasi-p-pseudocompactness coincide
with those of quasi-M -compactness and M -pseudocompactness, respectively, in-
troduced in [GF2] and [GF1], where M = PRK(p) \ ω and PRK(p) is the set of
Rudin-Keisler predessesors of p. We state these assertions, in a more formal way,
in the following theorem (the proof is left to the reader):

1.4. Theorem. Let p ∈ ω∗, let X be a space and A ⊂ X. Then A is quasi-p-
bounded in X (resp., quasi-p-compact) if and only if for every infinite sequence
(Un)n<ω (resp., (xn)n<ω) of nonempty open subsets of X whose elements meet A
(resp., of points in A), there are x ∈ X (resp., x ∈ A) and r ∈ PRK(p)\ω such that
x = r − lim(Un) (resp., x = r − lim(xn)).

At any rate, theorems 2.2, 3.2, 3.4, 3,5 and 3.8 and Corollary 2.3, below, re-
main true if we replace “quasi-p-compact”, “quasi-p-pseudocompact” and “quasi-
p-bounded” by “quasi-M -compact”, “M -pseudocompact” and “M -bounded” (the
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definition of this last concept must be clear), respectively, for a M ⊂ ω∗ such that
p ∈ M ⊂ PRK(p).

The properties p-pseudocompactness and ultrapseudocompactness are produc-
tive and preserved by continuous functions (see [GF1], [GS]). Besides, if A is a reg-
ular closed subset of a p-pseudocompact space X, then A itself is p-pseudocompact;
and if A is p-bounded in X, then clXA is p-bounded in X too. The property of
being p-bounded is monotone with respect to the Rudin-Keisler pre-order, that is,
if q ≤RK p and A is p-bounded in X, then A is q-bounded in X (see [GF1] for
details). Some of these properties remain true for quasi-p-pseudocompact spaces
(see [STM2, Lemma 2.4]) and some of them do not hold (see [STM2, Example
3.8]). It is well known that a subset A of a space X is bounded (in X) if every
sequence (Un)n<ω of open subsets of X meeting A admits a cluster point. So, if A
is p-bounded for some p ∈ ω∗, then A is quasi-p-bounded, and this implies that A
is bounded (in general, none of these implications can be reversed, see [STM2]). In
particular, p-pseudocompactness implies quasi-p-pseudocompactness and this im-
plies pseudocompactness.

In this article, we discuss the notions of boundedness in GLOTS and Cπ-spaces.
In the first section, we study the relationship among boundedness, (quasi)-p-boun-
dedness, (quasi)-p-pseudocompactness and (quasi)-p-compactness in GLOTS, and
a version of the classical Glicksberg’s Theorem on pseudocompactness is given in
the realm of GLOTS. These results are applied in the realm of topologically or-
dered groups. In particular, we prove that locally precompact topologically ordered
groups are metrizable. In the second section we prove that σ-p-pseudocompactness,
σ-quasi-p-pseudocompactness and σ-pseudocompactness on the one hand, and σ-
p-compactness, σ-quasi-p-compactness and σ-countable compactness, on the other,
are equivalent in the class of Cπ-spaces (Recall that for a topological property P,
a space X is σ-P if X is the union of a countable family of subspaces having P).
These results permit us to show that there exists an ultrapseudocompact topological
group which is not quasi-p-compact for any p ∈ ω∗. Our terminology and notation
are standard. For example, clXA stands for the closure of A in X, R means for the
real line endowed with the usual topology and a subset A of a space X is said to be
C∗-embedded in X if every bounded real-valued continuous function on A admits a
continuous extension to X.

2. Bounded subsets in GLOTS

A Linearly Ordered Topological Space (LOTS) is a space (X, τ ) where the topol-
ogy τ is generated by the initial and final segments, as a subbase, of a linear order
≤ defined on X. A Generalized Linearly Ordered Topological Space (GLOTS) is a
space homeomorphic to some subspace of a LOTS. Let (X,≤) be a LOTS and let
x ∈ X. A subset K of X is left (resp., right) cofinal at x in X if the set of elements
strictly less than x is not empty and for every a ∈ X with a < x (resp., the set of
elements strictly bigger than x is not empty, and for every a > x) there is y ∈ K
such that a < y < x (resp., x < y < a). It is well known that every GLOTS is col-
lectionwise normal (see [St]). On the other hand, if X is a normal space, it is easy
to check that clXA is a pseudocompact space (so, countably compact) whenever A
is a bounded subset of X. The following theorem improves this result in the realm
of GLOTS. First a lemma.
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2.1. Lemma. Let X be a LOTS. Let x ∈ X and let F ⊂ X be a countable left
(resp., right) cofinal at x subset in X. Then, there exists a sequence y0 > y1 >
· · · > yn > . . . (resp., y0 < y1 < · · · < yn < . . . ) of elements that belong to F
converging to x in X.

Proof. Assume that the set F is countable left cofinal at x in X. Enumerate F as
F = {zn : 0 < n < ω}. We can assume, without loss of generality, that zn < x for
every n < ω. Let y1 = z1; y2 = zn2 where n2 = the first natural number such that
zn2 > max{y1, z2}. If we have chosen y1 < y2 < · · · < yk, let n(k+1) be the first
natural number such that zn(k+1) > max{yk, zk+1}. Let yk+1 = zn(k+1) . We have
that y1 < y2 < · · · < yn < . . . and sup{yn : 0 < n < ω} = x. It is easy now to
verify that (yn)n<ω converges to x in X. The proof is complete. �

2.2. Theorem. Let X be a GLOTS. For a subset A of X, the following conditions
are equivalent:

(1) A is bounded in X;
(2) clXA is sequentially compact;
(3) clXA is ultracompact;
(4) clXA is p-compact for some p ∈ ω∗;
(5) clXA is quasi-p-compact for some p ∈ ω∗.

Proof. (1) =⇒ (2) Since A is bounded in X, clXA is a countably compact GLOTS.
Now, by using Lemma 2.1 it can be proven that clXA is sequentially compact.

(2) =⇒ (3) Let p ∈ ω∗. There exists a LOTS (Y,≤) such that clXA can be
considered as a dense subspace of Y . Without loss of generality we can assume
that Y is compact. Let (xn)n<ω be a sequence in clXA. Since Y is compact, there
exists a p-limit point y ∈ Y of (xn)n<ω. Observe that, in order to establish what
we want, it is enough to show that y is an element of clXA. So, assume that y 6∈
{xn : n < ω} = F . Either for every a ∈ Y with a < y, the set {n < ω : xn ∈ (a, y]}
belongs to p, or for every b ∈ Y with x < b, the set {n < ω : xn ∈ [y, b)} belongs to
p. Without loss of generality, assume that the first case holds. So F is left cofinal
at y in Y . By Lemma 2.1, there exists a strictly increasing sequence (zn)n<ω of F
converging to y. But {zn : n < ω} ⊂ clXA and clXA is sequentially compact, then
y must belong to clXA, and, by assumption, y is the p-limit point of (xn)n<ω in
clXA.

(3) =⇒ (4) , (4) =⇒ (5) and (5) =⇒ (1) are clear. �

Let X be a topological space. A subset A of X is said to be strongly bounded
in X if for each infinite family of pairwise disjoint open subsets of X meeting A
contains an infinite subfamily {Un : n < ω} such that for each filter G of infinite
subsets of ω,

⋂

F∈G

clX

(⋃

n∈F

Un

)
6= ∅.

This concept was introduced by Tkac̆enko in [Tk], and in [BS] it was proved that a
subset A of a space X is strongly bounded if and only if for each space Y and each
bounded subset B of Y , the subset A × B is bounded in X × Y . According to the
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definition, it is clear that if clXA is ultracompact, then A is strongly bounded in
X. From this and the previous theorem we have:

2.3. Corollary. Let X be a GLOTS. For a subset A of X, the following conditions
are equivalent:

(1) A is bounded in X;
(2) A is p-bounded in X for every p ∈ ω∗;
(3) A is p-bounded in X for some p ∈ ω∗;
(4) A is quasi-p-bounded in X for some p ∈ ω∗;
(5) A is quasi-p-bounded in X for every p ∈ ω∗;
(6) A is strongly bounded in X.

Notice that the previous results imply that, in the field of GLOTS, ultrapseu-
docompactness, ultracompactness, pseudocompactness, quasi-p-pseudocompactness
(for some p ∈ ω∗ ), p-pseudocompactness (for some p ∈ ω∗ ) and quasi-p-compact-
ness (for some p ∈ ω∗ ) are equivalent properties. Since ultracompactness is a
productive property we can obtain:

2.4. Corollary. Let {Xα}α∈∆ be a family of pseudocompact GLOTS. Then the
product space

∏
α∈∆ Xα is an ultracompact space.

From now on, we are concerned with C-compact subsets and with a version, in
GLOTS, of the classical Gilcksberg’s Theorem on pseudocompactness. A subset A
of a space X is called C-compact (in X) if f(A) is a compact subset of R for every
real-valued continuous function on X, (equivalently, A is Gδ-dense in clβ(X)A). A
C-compact subset A of a space X is said to be strongly C-compact if, for each
space Y and each C-compact subset B of Y , the subset A × B is C-compact in
X × Y . Every C-compact subset is bounded but the converse fails to be true.
For general background on C-compact subsets, related topics, and the relationship
between strongly C-compactness and strongly boundedness, the reader may see
[GFG], [GFS] and [GFST].

The classical Gilsckberg’s Theorem on pseudocompactness says that on spaces
{Xα}α∈∆ the condition for the product space

∏
α∈∆ Xα to be pseudocompact is

equivalent to the condition that β(
∏

α∈∆ Xα) and
∏

α∈∆ β(Xα) be equivalent com-
pactifications of

∏
α∈∆ Xα.

Let p ∈ ω∗. It is known that the product of p-bounded subsets satisfies a rela-
tivized version of Glicksberg’ Theorem [STM1, Corollary 4.14]. Therefore, condition
(3) in Corollary 2.3 implies that

2.5. Corollary. Let {Xα : α ∈ ∆} be a family of GLOTS and let Aα be a bounded
subset of Xα for all α ∈ ∆. Then

clβ(
∏

α∈∆ Xα)(
∏

α∈∆

Aα) =
∏

α∈∆

clβ(Xα)Aα.

2.6. Corollary. Let {Xα : α ∈ ∆} be a family of GLOTS and let Aα be a C-
compact subset of Xα for all α ∈ ∆. Then

∏
α∈∆ Aα is C-compact in

∏
α∈∆ Xα.

Proof. Since every C-compact subset is bounded, by Corollary 2.5 we have

clβ(
∏

α∈∆ Xα)(
∏

α∈∆

Aα) =
∏

α∈∆

clβ(Xα)Aα.
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The result now follows from the fact that Aα is Gδ-dense in clβ(Xα)Aα for all α ∈ ∆
if and only if

∏
α∈∆ Aα is Gδ-dense in

∏
α∈∆ clβ(Xα)Aα [GFST, Lemma 3.3]. �

In the Corollary 2.9 we shall prove that every C-compact subset of a GLOTS
is strongly-C-compact. For this in turn, we shall show a version of the classical
Glicksberg’s Theorem on pseudocompactness when a factor is a GLOTS. We need
the following theorem taken from [GFSW, Theorem 2.8].

2.7. Theorem. Let A and B be two subsets of a space X and of a space Y ,
respectively. If A × B is bounded in X × Y and A is pseudocompact, then
clβ(X×Y )(A × B) = clβ(X)A × clβ(Y )B.

2.8. Theorem. Let A and B be two subsets of a space X and of a space Y ,
respectively. If A×B is bounded in X×Y and X is normal, then clβ(X×Y )(A×B) =
β(clX A) × clβ(Y )B.

Proof. Since A × B is bounded in X × Y , we have that clXA × B is also bounded
in X × Y . Because of normality of X, clXA is pseudocompact. So, by Theorem
2.7, clβ(X×Y )(A × B) = clβ(X)A × clβ(Y )B. On the other hand, normality of X
implies that clXA is C∗-embedded in X [GJ, 3D(3)] and, consequently, β(clXA) =
clβ(X)(clXA) = clβ(X)A [GJ, 6.9(a)]. This completes the proof. �

The following corollary is an easy consequence of Theorem 2.8.

2.9. Corollary. Let X be a GLOTS. If A is a bounded subset of X, then, for each
space Y and each bounded subset B of Y , clβ(X×Y )(A × B) = β(clX A) × clβ(Y )B.
Consequently, if A and B are C-compact subsets of X and Y , respectively, then
A × B is C-compact in X × Y .

Only special classes of spaces whose bounded subsets are strongly-bounded and
whose C-compact subsets are strongly-C-compact, are known; one of the most
interesting is the class of (Hausdorff) Topological Groups. In addition, it was
proved in [GFS] that a topological group G is pseudocompact if and only if G is p-
pseudocompact for some p ∈ ω∗ if and only if G is ultrapseudocompact. However, in
contrast with GLOTS, we can prove that p-compactness and p-pseudocompactness
are not equivalent properties in the realm of topological groups. And the same
for quasi-p-compactness and quasi-p-pseudocompactness. To see this we will need
several results on Cπ-spaces which are given in the next section.

Next, we shall apply the previous results in the field of topologically orderable
groups. A topological group (G, τ ) is called a topologically orderable group if the
topology τ is induced by a linearly (totally) order; that is, if (G, τ ) as a topological
space is a LOTS. The following theorem will be useful.

2.10. Theorem [NR, Theorem 6]. Let (G, τ ) be a topological group which is
not metrizable. The following conditions are equivalent:

(1) (G, τ ) is topologically orderable;
(2) the identity element of G has a totally ordered local base.

Since topologically orderable groups that are not metrizable are P -spaces (see
[NR, Remark 10], we have:
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2.11. Theorem. A non discrete topologically orderable group (G, τ ) is metrizable
if and only if G contains a non trivial convergent sequence.

Given a topological group (G, τ ), L (respectively, R, L ∨ R) stands for the left
(respectively, right, bilateral) uniformity on (G, τ ). A subset A of G is said to be
precompact if it is precompact for the left uniformity on (G, τ ). A topological group
(G, τ ) is called a locally precompact topological group if there exits a precompact
neighborhood of the identity. (G, τ ) is called precompact if G is precompact in
itself. It is well-known that a symmetric subset A of (G, τ ) is precompact for the
left uniformity if and only if A is precompact for the right uniformity if and only if
A is precompact for the bilateral uniformity (see, [RD, Lemma 9.12]). So, we can
replace the uniformity L either by R or by L ∨ R in the definition of precompact
(respectively, locally precompact) group.

2.12. Remark. In some contexts, precompact subsets of topological groups are
called bounded and precompact groups are called totally bounded groups. Hereon
we prefer the uniform notation in order to differentiate between the uniform concept
of precompactness and the topological concept of boundedness which is used in this
paper.

The following theorem characterizes metrizable topologically orderable groups
by means of precompact subsets.

2.13. Theorem. Let (G, τ ) be a nondiscrete topologically orderable group. The
following conditions are equivalent:

(1) (G, τ ) is metrizable;
(2) (G, τ ) contains an infinite countable bounded set;
(3) (G, τ ) contains an infinite countable precompact subset for the L ∨R uni-

formity.

Proof. (1) =⇒ (2) Since (G, τ ) is an infinite non discrete metrizable group, (G, τ )
contains a non trivial covergent sequence (xn)n<ω. Obviously, (xn)n<ω is bounded
in (G, τ ).

(2) =⇒ (3) Let A be an infinite countable bounded subset of (G, τ ). By Theorem
2.2, clGA is sequentially compact. So, there exists an infinite countable compact
subset K ⊂ clGA. It is clear that K is precompact for the L ∨R uniformity.

(3) =⇒ (1) Let G be a non-metrizable topologically orderable group. By Fox’s
Theorem [Fo], the completion Ĝ of the uniform space (G,L∨R) is a topologically
orderable, non-metrizable group. By the Remark 10 from [NR], Ĝ is a P -space and
hence every pseudocompact subspace of Ĝ is finite. Hence, if A is a precompact
subset of G, then clĜA is compact and so clĜA is finite. This shows that A is
finite. �

2.14. Remark. Given a topological group (G, τ ), a subset A is precompact for
U ∈ {L,R,L∨ R} if and only if the symmetric subset A ∪ A−1 is precompact for
U ∈ {L,R,L ∨ R}. So, the L ∨ R uniformity can be replaced either by the L
uniformity or by the R uniformity in Theorem 2.13.

2.15. Corollary. Every locally precompact topologically orderable group (G, τ )
is metrizable.
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Proof. We may assume that (G, τ ) is not discrete. Let U be a precompact sym-
metric neighborhood of the identity of (G, τ ). Since U is infinite, the result follows
from Theorem 2.13. �

2.16. Corollary. Every precompact (so, every compact) topologically orderable
group is metrizable.

2.17. Corollary. Every pseudocompact topologically orderable group is compact.

2.18. Remark. (a) Corollary 2.17 also follows from the Scott-Watson’s Theorem
which states that a paracompact pseudocompact space is compact [En, Theorem
5.1.20].

(b) Notice that every non discrete, locally compact, totally disconnected topo-
logically orderable group contains an open subgroup homeomorphic to the Cantor
set ([VRS, Theorem 2.5]).

(c) An algebraic ordered group is an abstract group G with a subset P closed
under the binary group operation (called the set of positive elements) such that G
is the disjoint union of P , P−1 and {e} (here e stands for the identity element of G).
Every algebraic ordered group G is a topologically ordered group via the topology
τP induced by the natural order x < y whenever yx−1 ∈ P . The topological group
(G, τP ) is never precompact. In fact, suppose that (G, τP ) is precompact. Then, by
Fox’s Theorem [Fo], the completion Ĝ of the uniform space (G,L∨R) is a compact
topologically ordered group and, consequently, we can find m ∈ Ĝ such that g ≤ m

for each g ∈ Ĝ ([En, 3.12.3]). Since every element of an algebraic ordered group
other than the identity is of infinite order, Ĝ is a non-discrete group. So, there exists
an increasing net {xλ : λ < α} in G converging to m such that e < xλ for each
λ < α. Since translation (in G) is order-preserving, for each λ0 < α, xλ0 < xλ0xλ

whenever λ < α. Then, for each λ0 < α, xλ0 ≤ xλ0m. Consequently, m ≤ m2

which implies m = e, a contradiction.

3. Boundedness in Cπ-spaces

If X and Y are two spaces, we will denote by C(X, Y ) the set of continuous
functions defined on X and with values in Y . If Y = R, then we will write C(X)
instead of C(X, R). The set of bounded real-valued continuous functions defined
on X is denoted by C∗(X). We will write Cπ(X, Y ), Cπ(X) and C∗

π(X) in order
to symbolize the sets C(X, Y ), C(X) and C∗(X) equipped with the pointwise
convergence topology.

In this section we are going to give necessary and sufficient conditions in the
space X in order to have P and σ-P for Cπ(X, [0, 1]) and Cπ(X) where P ∈ {p-
pseudocompactness, p-compactness, quasi-p-pseudocompactness, quasi-p-compact-
ness, and p-boundedness}. As usual, if P is a topological property, then a space X
is σ-P if X is the countable union of subspaces having P. A space X is a P -space
if every Gδ-set in X is open. For a cardinal number α, a space X is α-b-discrete if
every subset Y of X of cardinality ≤ α is discrete and C∗-embedded in X. A space
X is b-discrete if X is ω-b-discrete. A subset Y of a product X =

∏
j∈J Xj is said to

be α-dense in X if for every K ⊂ J of cardinality ≤ α we have πK(Y ) =
∏

k∈K Xk,
where πK : X →

∏
k∈K Xk is the K-projection. Observe that if γ < α and Y is α-

dense in X, then Y is γ-dense and dense in X. For k ∈ J and A ⊂ Xk, we will denote
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by [k; A] the set {f ∈
∏

j∈J Xj : f(k) ∈ A} = π−1
k (A); and [k1, ..., kn; A1, ..., An]

will be the intersection of the sets [k1; A1], [k2; A2],... and [kn; An].

3.1. Notation. In order to be brief, we will denote by Q one of the following
properties: ultracompactness, p-compactness for some p ∈ ω∗, quasi-p-compactness
for every p ∈ ω∗, quasi-p-compactness for some p ∈ ω∗, countable compactness.
We will denote by S one of the following properties: ultrapseudocompactness, p-
pseudocompactness for some p ∈ ω∗, quasi-p-pseudocompactness for every p ∈ ω∗,
quasi-p-pseudocompactness for some p ∈ ω∗, pseudocompactness. And T will be
one of the following: p-boundedness for every p ∈ ω∗, p-boundedness for some
p ∈ ω∗, quasi-p-boundedness for every p ∈ ω∗, quasi-p-boundedness for some p ∈ ω∗,
boundedness.

Our first result in this section generalizes Theorem 1 in [ST].

3.2. Theorem. Let X be a space. Then, the following conditions are equivalent:

(1) X is a P -space;
(2) Cπ(X, [0, 1]) has Q;
(3) Cπ(X, [0, 1]) has σ-Q;
(4) C∗

π(X) has σ-Q.

Proof. Property Q implies trivially σ-Q, and if the space Cπ(X, [0, 1]) has Q, then
C∗

π(X) has σ-Q because C∗
π(X) =

⋃
n<ω Cπ(X, [−n, n]). Besides, property Q im-

plies countable compactness, so (i) ⇒ (1) for all i ∈ {2, .., 4} ([ST]). And since
ultracompactness implies Q, we need only to prove that the assertion in (1) implies
that Cπ(X, [0, 1]) is ultracompact:

Let p be an arbitrary element in ω∗, and assume that Cπ(X, [0, 1]) is not p-
compact. Then there exists a sequence (fn)n<ω in Cπ(X, [0, 1]) which does not
have a p-limit point. Since [0, 1]X is a compact space, then there is f ∈ [0, 1]X \
Cπ(X, [0, 1]) that is a p-limit point of (fn)n<ω. Since f is not a continuous function,
there exist x ∈ X and an open set A of [0, 1] such that f(x) ∈ A and for every
V ∈ N (x) we have f(V ) ∩ ([0, 1] \A) 6= ∅. Let B be an open set in [0, 1] such that
f(x) ∈ B ⊂ cl[0,1]B ⊂ A. Since f is a p-limit point of (fn)n<ω and f ∈ [x, B],
F = {k ∈ ω : fk ∈ [x, B]} ∈ p. So x belongs to the Gδ-set C =

⋂
k∈F f−1

k (B).
Since X is a P -space, C is open in X. Besides, fk(C) ⊂ B ⊂ A for every k ∈ F .
On the other hand, there exists c ∈ C such that f(c) 6∈ A. Let W = [0, 1]\ cl[0,1]B.
Consider the open set T = [x, B] ∩ [c, W ]. We have that f ∈ T , fk 6∈ T for all
k ∈ F (because fk(c) ∈ B and B ∩ W = ∅), and that G = {n < ω : fn(x) ∈ B and
fn(c) ∈ W} ∈ p. Then ∅ = F ∩ G ∈ p, which is a contradiction. �

3.3. Remark. If K is a compact space, then K is homeomorphic to a closed subset
of [0, 1]w(K), where w(K) is the weight of K. So, Cπ(X, K) is homeomorphic to
a closed subset of Cπ(X, [0, 1]w(K)) ∼= Cπ(X, [0, 1])w(K). Besides, if K contains a
nontrivial path, then K contains a closed copy of [0, 1]. In this case, Cπ(X, [0, 1]) is
homeomorphic to a closed set of Cπ(X, K). Since p-compactness is productive and
inherited by closed subsets, then, for a compact space K, each one of the assertions
(1)-(4) in Theorem 3.2 implies that Cπ(X, K) is ultracompact. Furthermore, if
K contains a nontrivial path, then Cπ(X, K) is ultracompact if and only if it is
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p-compact for some p ∈ ω∗; if and only if it is quasi-p-compact for some p ∈ ω∗; if
and only if X is a P -space.

3.4. Theorem. Let J be a set, let X =
∏

j∈J Xj be a product of compact metriz-
able spaces and let Y be a dense subset of X. For p ∈ ω∗, the following conditions
are equivalent:

(1) Y is ω-dense in X;
(2) Y is Gδ-dense in X;
(3) Y is C-compact in X;
(4) Y has S;
(5) Y is ultrapseudocompact.

Proof. The equivalences (1) ⇔ (3) ⇔ Y is pseudocompact, are already known (see
[GFST]), and (5) ⇒ (4) ⇒ Y is pseudocompact are trivial. It remains to prove
(2) ⇒ (1) ⇒ (5) ⇒ (2). The condition of metrizability of the spaces Xj is require
to prove the implications (2) ⇒ (1) (see below) and (3) ⇒ (1) (see the proof of
(2) =⇒ (3) of Lemma 4.7 in [GFST]).

(2) =⇒ (1) Let N be a countable subset of J , and let x = (xj)j∈N be an element
of
∏

j∈N Xj . We are going to find a y ∈ Y for which πN (y) = x. For each j ∈ N ,
let (U j

n)n<ω be a local base at xj. The set U =
⋂

j∈N

⋂
n<ω π−1

j (U j
n) is a nonempty

Gδ-set in X. So, there is y ∈ Y ∩ U . We have that πN (y) = x.
(1) =⇒ (5) Let p be an element in ω∗. Consider a sequence (Un)n<ω of nonempty

open subsets of Y . For each n < ω, there exists a basic nonempty open set An =
[jn

1 , ..., jn
kn

; An
1 , ..., An

kn
] satisfying Vn = An ∩ Y ⊂ Un. We will prove that there

exists a p-limit point of (Vn)n<ω in Y . We take the countable set N = {jn
i : n <

ω, 1 ≤ i ≤ kn} and let πN : X →
∏

j∈N Xj be the projection.
Claims:

(1) πN (Vn) = πN (An).
(2) π−1

N πN (An) = An.

1. Indeed, it is clear that πN (Vn) ⊂ πN (An). Now, let a ∈ An. We want to
prove that there is b ∈ Vn for which π(b) = πN (a). Since Y is ω-dense in X, there
is b ∈ Y such that πN (b) = πN (a). This means that, for every j ∈ N , a(j) = b(j).
In particular, a(jn

i ) = b(jn
i ) for all 1 ≤ i ≤ kn. So, b belongs to An, and therefore

b ∈ An ∩ Y = Vn.
2. The relation An ⊂ π−1

N πN (An) is trivial. If x ∈ π−1
N πN (An), then there is

a ∈ An with the property πN (x) = πN (a). But this implies that x belongs to An.
Now we continue the proof of (1) =⇒ (5). The sequence (Bn)n<ω, where

Bn = πN (Vn) = πN (An) for each n < ω, is a sequence of nonempty open sets
in
∏

j∈N Xj = XN . The space XN is compact, so it is p-pseudocompact. Hence,
there exists y0 ∈ XN which is a p-limit point of (Bn)n<ω .

Claim: Each point in π−1
N (y0) is a p-limit point of the sequence (An)n<ω.

In order to prove this claim, we take a point x ∈ π−1
N (y0) and a basic open

set A = [t1, ..., tm; T1, ..., Tm] in X containing x. The set πN (A) is open, and
y0 ∈ πN (A). Thus, P = {n < ω : πN (A) ∩ Bn 6= ∅} ∈ p. Take n0 ∈ P . We
are going to prove that A ∩ An0 = A ∩ π−1

N (Bn0 ) 6= ∅. Let z be an element of
πN (A) ∩ Bn0 = πN (A) ∩ πN (An0). There are a ∈ A and an0 ∈ An0 satisfying



12 MANUEL SANCHIS AND ANGEL TAMARIZ-MASCARÚA

πN (a) = z = πN (an0). But this last equality implies that a belongs to An0 too. So,
{n < ω : A ∩ An 6= ∅} ∈ p. That is, x is a p-limit point of (An)n<ω.

Since Y is ω-dense, we can take a point l in Y ∩ π−1
N (y0). Because of the last

claim, l is a p-limit of (An)n<ω. We will finish the proof of the implication (1) ⇒
(5), by proving that l is a p-limit point of (Vn)n<ω:

Let L be an open neighborhood of l in Y . The set L is of the form L̃∩Y , where
L̃ is an open set in X which contains l. Since l is a p-limit point of the sequence
(An)n<ω, P0 = {n < ω : L̃∩An 6= ∅} ∈ p. Now, for each n ∈ P0, L̃∩An is an open
set of X. But Y is dense in X, so L∩Vn = (L̃∩Y )∩ (An∩Y ) = (L̃∩An)∩Y 6= ∅.
Therefore, {n < ω : L ∩ Vn 6= ∅} ∈ p. This implies that l is a p-limit point
of (Vn)n<ω; that is, Y is p-pseudocompact. Since p was arbitrarily selected, we
conclude that Y is ultrapseudocompact.

(5) =⇒ (2) Since Y is ultrapseudocompact, Y is pseudocompact. So, it is Gδ-
dense in its Stone-C̆ech-compactification ([H]). This implies that Y is Gδ-dense in
all its compactifications. In particular, Y is Gδ-dense in X. �

It was proved in [Tka] that X is b-discrete if and only if Cπ(X, [0, 1]) is pseudo-
compact if and only if Cπ(X, [0, 1]) is σ-bounded if and only if C∗

π(X) is σ-bounded.
These facts and Theorem 3.4 imply the following:

3.5. Corollary. Let X be a space. Then, the following are equivalent

(1) X is b-discrete;
(2) Cπ(X, [0, 1]) is C-compact in [0, 1]X;
(3) Cπ(X, [0, 1]) has S;
(4) Cπ(X, [0, 1]) has σ-S;
(5) C∗

π(X) has σ-S;
(6) Cπ(X, [0, 1]) has σ-T ;
(7) C∗

π(X) has σ-T .

We recall that a metric continuum K (that is, a compact, connected metric
space) is said to be a Peano’s Continuum if K is the continuous image of the unit
interval [0, 1]. The well-known Hahn-Mazurkiewicz’s Theorem asserts that Peano’s
Continuum agrees with metric continuum locally connected spaces ([En, 6.3.14].
We have the following result

3.6. Corollary. If X is a b-discrete space and K is a Peano’s Continuum, then
Cπ(X, K) is ultrapseudocompact.

Proof. Let h : [0, 1] → K be a continuous and onto function. We have that the
function h∗ : Cπ(X, [0, 1]) → Cπ(X, K) defined by h∗(F ) = f ◦h is continuous. Let
W = [x1, ..., xn; A1, ..., An] be a canonical open set in Cπ(X, K). The set h−1(Ai)
is nonempty for every i = 1, ..., n. But X is a Tychonoff space, so there is a con-
tinuous function f : X → [0, 1] such that f(xi) ∈ h−1(Ai). So, h ◦ f ∈ W . We
conclude that h∗(Cπ(X, [0, 1]) is a dense subset of Cπ(X, K). Since X is a b-discrete
space, Cπ(X, [0, 1]) is ultrapseudocompact (Corollary 3.5). Besides, ultrapseudo-
compactness is preserved by continuous functions and every space containing an ul-
trapseudocompact dense subspace satisfies this property too. Therefore, Cπ(X, K)
is ultrapseudocompact. �
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It was proved in [GFS] that a topological group G is pseudocompact if and only if
G is p-pseudocompact for some p ∈ ω∗, if and only if G is ultrapseudocompact. Us-
ing the previous results we can prove that p-compactness and p-pseudocompactness
are different properties even in the class of Topological Groups. And the same for
quasi-p-compactness and quasi-p-pseudocompactness.

3.7. Example. There exists an ultrapseudocompact Topological Group which is
not quasi-p-compact for any p ∈ ω∗.

Proof. D.B. Shakhmatov constructed in [Sh] an example of a pseudocompact b-dis-
crete space Z which, of course, is not a P -space. (Another example of a pseudo-
compact b-discrete space is given, as the referee pointed out to the authors, by the
subspace T (q) of ω∗ of all the ultrafilters equivalent to q, where q is a weak P -point
and is not a P -point.) So, for this Z, Cπ(Z, [0, 1]) is ultrapseudocompact and it is
not quasi-p-compact for any p ∈ ω∗ (Theorem 3.2 and Corollary 3.5). Because of
Remark 3.3, Cπ(Z, K) is not quasi-p-compact for any p ∈ ω∗ and for every compact
space K containing a nontrivial path. Hence, Cπ(Z, S1) is not quasi-p-compact for
any p ∈ ω∗ where S1 is the unit circle. On the other hand, by Corollary 3.6, it is
ultrapseudocompact and the proof is complete. �

We finish this section with the following result which is a consequence of Theorem
1.5.4 in [Tka] and Corollary 3.5.

3.8. Theorem. Let X be a space. Then the following assertions are equivalent.

(1) X is pseudocompact and b-discrete.
(2) Cπ(X) has σ-S.
(3) Cπ(X) has σ-T .

4. Open questions

By Theorem 6 from [NR], totally disconnected topologically orderable groups
belong to the class of ωµ-metrizable spaces [ST], which were originally defined by
Sikorski as those spaces X with a distance function d : X × X −→ (G,≤), where
G is an algebraically ordered group, the distance function being required to satisfy
all the formal properties of a metric. The class of ωµ-metrizable spaces is identical
with the class of those spaces which admit a uniformity with a totally ordered
base. Beginning from this facts and the previous results, the following two specific
questions seem worthy of study:

4.1. Question. Let X be an ωµ-metrizable space. If X contains an infinite count-
able bounded subset, is X metrizable?

4.2. Question. Is every precompact ωµ-metrizable space metrizable?
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and Appl. 77 (1997), 139–160.
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