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1. Introduction

In this article we will assume that all spaces are Tychonoff spaces unless otherwise
stated. IfX is a space and C X, then cl (A) (or simply c(A)) denotes the closure of
in X. Forx € X, let NV (x) denote the set of all neighborhoodsxofFor a setX, P(X) is
the collection of subsets df, and| X| denotes the cardinality of. The Greek letters will
stand for infinite ordinal numbers. For an ordinal numbgfO, «) will indicate the space
of ordinal numbers. < « endowed with the order topology. The cardinal numbemnal|
also be denoted by If « is a cardinal number, then(@f) is the cofinality ofx; besides,
[X]=% (respectively[X]@‘, [X1%) will stand for the family of subsets of of cardinality
< « (respectively< o, = «); and® X is the set of functions from to X. The set of natural
numbers will be denoted by. The Stone€ech compactification of a space will be
denoted a®(X). The space8(w) is identified with the set of ultrafilters an, andw* is
the set of free ultrafilters, thatis* = 8(w) \ w. If f: X — Y is a continuous function, then
f#:B(X)— B(Y) denotes the Ston&ech extension of . TheRudin—Keisle(pre-)order
on B(w) is defined byp <gk ¢ if there is a functionf : w — w such thatf?(¢) = p, for
D, q € B(w). Observe that <grk p for everyn < w andp € 8(w), and if p <grk ¢, then
there exists a surjectiofi: v — w such thatf?(¢) = p. For p € w*, we set

Pre(p) = {r € B(w): r <rk p}.

If p <rk ¢ andq <grk p, for p,q € *, then we say thap andg are equivalent and
we write p ~rk ¢. It is not difficult to verify thatp ~rk ¢ iff there exists a permutation
0w — o such that? (p) = ¢q. Thetypeof p e w* is T (p) = {q € ®*: p ~rK ¢}

The concept ofp-limit, for p € w*, was discovered and investigated by Bernstein [1]
in connection with some problems in the theory of nonstandard analysis. Independently,
Frolik [10] and Ka&tov [20,21] introduced this concept in a different form, and Ginsburg
and Saks [17] generalized this notion as follows:

Definition 1.1. Let p € * and(S,), <, be a sequence of nonempty subsets of a sijace
A point x € X is a p-limit point of the sequencegs,),-., if for every V e N (x),
n<w: VNS, #£0}ep.

If x, € X andS, = {x,} for eachn < w, then ap-limit point of (x,),, is Bernstein’s
p-limit point of the sequencéx,), .. Note that if there exists @-limit point of a
sequencéx,), <, this has to be unique, sinééis Hausdorff; but, in general, a sequence
(Sn)n<w Of NONempty subsets of a spaXeould have more than one point. For instance, if
S, = {1/n} x R for eachn < w, then each point0, r) € R? is a p-limit point of (S, )<,
for eachp € w*.

Definition 1.2 (Bernstein, [1]).
(1) Letp € w*. A spaceX is p-compacif every sequenceéx,), . has ap-limit.
(2) A spaceX is ultracompactifX is p-compact for every € w*.
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Every compact space is ultracompact, and Vaughan proved [27, Theorem 4.9], that in
the class of regular spaces,is ultracompact iffX is w-bounded(= the closure of each
countable subset ok is compact). Ginsburg and Saks introduced in [17] the concept
of p-pseudocompactness and later Garcia-Ferreira defined the relative version of this
concept [11]:

Definition 1.3.

(1) Let p € w*. A subspace’ of a spaceX is said to bep-boundedn X if for every
sequencéV,), <, of nonempty open subsets &fwith Y NV, £ @, for all n < w,
there isx € X which is ap-limit point of the sequencéV,,), <.

(2) If X is p-bounded in itself, theX is called p-pseudocompact

These properties are productive and preserved by continuous functions (see [11,17]).
Besides, ifY is a regular closed subset of;fapseudocompact space, thenY itself is
p-pseudocompact; and i is p-bounded inX, then ck Y is p-bounded inX too. The
property of beingp-bounded is monotone with respect to the Rudin—Keisler pre-order,
that is, if¢ <rk p andY is p-bounded inX, thenY is g-bounded inX. It is well known
that a space is pseudocompact if for every sequertg), ., of open subsets of there
is a pointx € X such that for every € A/ (x),

|{n<a): VﬂUn;éQ)}!)No.

So, if X is p-pseudocompact for somee w*, thenX is pseudocompact.

The next concept and some of its properties were analyzed in [14)x laatd y be
cardinal numbers. A subsét of X is said to beC,-compact inX if f[B] is a compact
subset ofR* for every continuous functioff : X — R*. If o < y, then everyC, -compact
subset ofX is C,-compact; and ifX is Cy-compact in itself, then we say that is
a-pseudocompactA setY C X is a Gs-setin X if there is a sequencéU,),«, of
nonempty open sets i such that =", _,, U,. Asubset’ of X is Gs-dense inX if each
nonemptyG-setinX has a nonempty intersection with A spaceX is pseudocompact iff
X is Ro-pseudocompact; anBl is C,-compact (inX) iff B is G,-dense in ¢ix)(B). For
eachx < y there exists a spacé which isa-pseudocompact and is nptpseudocompact.
In fact, the space of ordinal numbd «™) with its order topology isx-pseudocompact
but is noty-pseudocompact.

Recall that a spac¥ is sequentially compadf every sequence iiX has a convergent
subsequence. A space is totally countably compacif every sequence irX has a
subsequence contained in a compact subsef.dEvery sequentially compact space is
totally countably compact, and if a spa&ehas this latter property, theX is countably
compact. Recall also that, for a topological propé?tya spaceX is o-P if X is the union
of a countable family of subspaces haviRg

If X andY are two spaces, we will denote I6( X, Y) the set of continuous functions
defined onX and with values inY. If Y =R, then we will write C(X) instead of
C(X,R). The set of real bounded continuous functions define® amdenoted byC* (X).
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A subspace’ of a spaceX is C*-embedded iiX if for every f € C*(Y) thereisg € C*(X)
such thatg|y = f; and it is a zero-set (respectively, cozero-set) if therg &C(X) such
thaty = f~1{0} (respectively,f ~1(R \ {0})).

In this article we give some basic propertiesebounded subsety (€ »*) in terms of
z-ultrafilters and families of continuous functions (Section 2). In Section 3, we analyze the
relations betweemp-pseudocompactness with other pseudocompact-like properties such
as p-compactness ang-pseudocompactness wheres a cardinal number, we give an
example of a sequentially compact ultrapseudocompgrteudocompact space which is
not ultracompact, and an example of an ultrapseudocompact totally countably compact
a-pseudocompact space which is gatompact for any € »*, answering affirmatively
a question posed by S. Garcia-Ferreira ang@ikac in [12], and we discuss the relation
betweenp-pseudocompactness apecompactness in normal and first countable spaces.
Section 4 is dedicated to the product of tywebounded subsets; we show the distribution
law cl, (xxy)(A x B) =cl,x A x cl,y B, wherey Z denotes the Dieudonné completion
of Z, for p-bounded subsets, and we generalize the classical Glisckberg Theorem on
pseudocompactness in the realnpeboundedness. These results are applied to study the
degree of pseudocompactness in the produgtbbunded subsets.

2. p-boundedness

In this section we are going to give some alternative descriptiopstodundedness in
terms ofz-ultrafilters and families of continuous functions.

Definition 2.1. Let X be a spacey C X and letp € w*.

(1) A family A={A;: j € J} of subsets of a spack is p-generated relative td’
if there exists a collectioflU,,: n < w} of nonempty open subsets &f such that
Y NU, # ¢ for eachn < w, and for eacly € J, the set{n € w: U, C A;} belongs
to p (thatis, for eacly € J, there isF; € p satisfying:A; D UneFj U,). We simply
say thatA is p-generated when is p-generated relative t&.

(2) A collectionif of subsets o with the finite intersection property js-real relative
to Y if each collection{A;: j € J} C U which is p-generated relative t&, has
nonempty intersection. If = X we simply say that{ is p-real.

(3) A collectionA ={A,: n < w} of subsets o is locally p-finite if for eachx € X
there is a neighborhood of x such thafn < w: VN A, # @} ¢ p, thatis, A does
not admitp-limit points.

Observe that eaclp-generated family relative t& ¢ X has the finite intersection
property, and a locally-finite sequence of honempty open sets of a spaaannot be
a finite set because is an ultrafilter.

Theorem 2.2. Let X be a spaceY C X and p € o*. Then, the following assertions are
equivalent.
(1) X is p-pseudocompadtespectivelyy is p-bounded inX).
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(2) For every sequence of nonempty open §81s n < w} in X (respectively, such that
Y NU, # ¢ for eachn < w) we have

N c|X<U U,,) £,
Fep neF
(3) Eachp-generated familyA;: j € J}in X (respectively, relative t&) satisfies that
Njes CIA)) #0.
(4) Every z-ultrafilter onX is p-real (respectively, relative t&).
(5) If {Un: n < w} is a locally p-finite family of open sets iX (respectively, such that
Y NU, #0¥), then|{n < w: U, # 0}] < Ro.

Proof. We give the proof for the relative case.

(1) = (2) Letx € X be ap-limitof (Uy,), <, With Y NU,, for everyn < w, and letF € p.
If V is a neighborhood of thenGy ={n <w: VNU, #0} e p.Letme FNGy. We
have that,, NV # #; s0,x € clx(U,,cr Un)-

(2) = (3) Let (Uy)n<w be afamily of nonempty open sets thapeneratesA ;: j € J}
relative toY . Thus, for eachy € J, there existd"; € p such thaUneFj U, C A;. Therefore

(elx(a) > )clx ( U Un) > clx<U U,,) #0.
jeJ jeJ ner; Fep nelF

(3) = (4) This implication is trivial.

(4) = (5) Assume thatf = (U,), <, is a locally p-finite family of nonempty open sets
in X such thaty N U, # @. For eachx € X let V, € N'(x) be a cozero neighborhood of
x such that{n < w: V, N U, # @} ¢ p. We have then that = {V,: x € X} is a cover
of X. It happens now thaty = {X \ V,: x € X} is a family of zero setp-generated by
(Un)n<o relative toY, so it has the finite intersection property. L&tbe az-ultrafilter on
X containingWV. By hypothesisZ is p-real relative toY, hence there isg € [\ W; but
this means tha¥ does not covek, which is a contradiction.

(5) = (1) Itis easy to prove this implication.O

Definition 2.3. Let X be a spacey C X andp € w*.
(1) A collection{f,: n < w} of real-valued functions defined oXi is locally p-zero
relative toY if for eachy € Y we can find a neighborhodd, € /() which satisfies

{n<w: vy £70D) e p.

(2) A collection {f,: n < w} of real-valued functions defined oX is locally
p-bounded relative td if there exists- > 0 such that, for each € Y we can find a
neighborhood/, € N (y) which satisfies

{n <w. Vy,C fnfl([—r, r])} € p.
(3) A collection{f,: n < w} of real-valued functions defined a% is strongly locally

p-bounded(or p-equicontinuouprelative toY if for eachr > 0 and eacly € Y
there exists/(, ) € N'(y) such that

{n <w: Vi C fn_l([—r, r])} Ep.
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(4) A collection of functions{ f,: n < w} is p-bounded relative td’ if there exists
F € psuchthaf f,(y): n€ F,y € Y} is bounded irR.
We will say that{ f,: n < w} is locally p-zero(respectivelylocally p-bounded, strongly
locally p-bounded p-boundedlif the subset’ coincides to the whole spacé

Theorem 2.4. Let X be a spaceY C X and p € o*. Then, the following are equivalent

(1) X is p-pseudocompadtespectivelyy is p-bounded inX).

(2) Each locally p-zero collection{f, € C(X): n < w} is p-bounded(respectively,
relative toY).

(3) Each strongly locallyp-bounded collection f, € C(X): n < w} is p-bounded
(respectively, relative t@).

(4) Each locallyp-bounded collectioff,, € C(X): n < w} is p-boundedrespectively,
relative toY).

Proof. Observe that every locallp-zero family 7 = {f,: n < w} is strongly locally
p-bounded, and this implies that is locally p-bounded. Then we have that the
implications (4)= (3) = (2) are obvious. We are going to prove ) (1) = (4). We
give the proof for the relative case.

(2) = (1) Assume that’ is not p-bounded inX. Then there is a sequeng,), <, of
nonempty open sets ik such thatr N U, # @ for eachn < w, which is locally p-finite.
For eachn < w, we takey, € Y N U, and a continuous functiofj, : X — [0, n] defined by

fo(yn) =nandf,(y) =0if y ¢ U,.
Claim. The collectionF = {f,,: n < w} is locally p-zero.

Indeed, sinc&U,), <., is locally p-finite, for eachx € X there existsV, € A(x) such
thatin <w: ViNU, #0}¢ p. ThusF ={n <w: V,NU, =0} € p. S0,{n <w: Vy C
YO} D Fep.

Now, for eachF € p and eachn < w there isny € F with ng > n. By definition,
Jng(np) =np >n. Hence{f,(x): n € F, x € Y} is not bounded. This means thatis
not p-bounded relative t&’.

(1) = (4) Assume thatY is p-bounded inX and letF = {f, € C(X): n < w} be
a locally p-bounded collection. So there exists> 0 such that for eachh € X we
can find V, € N(x) satisfying{n < w: V, C f,jl([—r,r])} € p. For eachn < o, let
U, = f;l(R \ [—r,r]) and for eachF € p consider the sefAr = |, . U,. Suppose
thatY N Ar # @ for every F € p. Observe thatd is p-generated relative t&. Since
Y is p-bounded inX, thenﬂFepcIX(AF) # ¢ (Theorem 2.2). Lekg € ﬂFep Clx(Ap).
Thus, for eachF € p and eachV € N (xp) there existsi(F, V) € F andx(F,V) e V
such that f,(r,v)(x(F, V))| > r. We define the seFy = {n(F, V): F € p} C w for each
V e N(xp). If Gy ¢ p,thenHy = w\ Gy € p; s0, because of the definition 6f, and
n(Hy, V), ithappensthat(Hy, V) € Hy NGy, which is not possible. Therefotey € p
for everyV € N (xg). We also define the set

Ty ={n<w |fu(V)I<r} forV eN(xo).
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Claim. ForeachV e N (xg), Ty NGy = 0.

In fact, if n € Gy thenn = n(F, V) for someF € p. But | f,(x(F, V))| > r with
x(F,V)eV,son¢Ty.

SinceGy € p, Ty ¢ p; though this contradicts our hypothesis ab&uin the pointxo.
This contradiction was obtained by assuming that A # @ for every F € p; so there
must beE € p such thatt N A = @. That is, for eacth € E, Y N U, = @. This implies
that for everyy € Y and every: € E, | f,(y)| < r. ThereforeF is p-bounded with respect
toY. O

3. p-pseudocompactness ang-compactness

In this section we are going to realize how differgapseudocompactness apecom-
pactness can be, even in classes of spaces with strong properties as that of sequentially
compacta-pseudocompact spaces with arbitrary We construct our examples aof
pseudocompact spaces satisfying an additional profetityat is hereditary with respect to
subspaces satisfying propegly The basic construction consists of: First we take a space
that satisfie®, then convenient compact spadasandK, whereb X is a compactification
of X andK C bX. Finally we choose a cardinal numbesuch that:

(i) cf(k) > maXw, o},
(i) (K x[0,x))U (X x {k}) is C*-embedded ifK x [0,x))U (bX x {k}),and
(i) (X x {«}) satisfiesQ in (K x [0,x)) U (X x {«}).

Definition 3.1. We will say that a spac¥ is ultrapseudocompaidft X is p-pseudocompact
for everyp € w*.

Given an infinite cardinal number and p € w*, there exist spaces which ape
pseudocompact ang-pseudocompact. In fact, the space of ordinal numb@rs™) is
ultrapseudocompact ane-pseudocompact; and, of course, every compact spadée
ultrapseudocompact adpseudocompact for every cardinal numée®©n the other hand,
there arex-pseudocompact spaces which are pgtseudocompact for any € o*.

Example 3.2. Let « be a cardinal number. There exists a spatewhich is «-
pseudocompact and is nptpseudocompact for any € w*.

Proof. In fact, in [15] it was shown that iX is a pseudocompact subspaceseh) with

o C X, andx is a cardinal number with ¢) > 2, thenX is homeomorphic to the regular
closed subspack¥ x {x} of the spac&¥ = Y (X, k) = (w* x [0,x)) U (X x {«}), where

Y has the topology inherited by that of the productftw) x [0, «]. The spaceY is
C*-embedded ifw* x [0, k) U (B(w) x {k}) C B(w) x [0, k], S0B(Y) = (v* x [0, k))U
(B(w) x {k}). Moreover,Y is a-pseudocompact if ¢¢) > «, because, in this cas¥, is
Gy-dense ing(Y) (see Theorem 1.2 in [14]). It is shown by Comfort [3] and Frolik [9] that
all powers ofX (p) = w U T (p) are pseudocompact for evepye w*, and Garcia-Ferreira
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proved in [11] that ifp € w* is notRK-minimal, thenX (p) is notg-pseudocompact for
everyq € o*. Therefore, the spacE(X (p), ), wherep € »* is not RK-minimal and
cf(x) > max2°, «}, is a-pseudocompact and is nptpseudocompact for any € o*
because this property is inherited by regular closed subsets.

It is clear that everyp-compact space igp-pseudocompact fop € o*, but these two
properties are not equivalent. Indeed, the spBce (A(w) x [0,«]) \ {(xo0, )} where
A(w) = wU{xp} is the one-point compactification of the natural numbers, aftd cf w, is
an ultrapseudocompact locally compact angseudocompact space for every cf(x),
and itis notp-compact for any € »*, because it is not countably compact. Even more, we
can give an example of a totally countably compact space with these properties, answering
Question 6.5 in [12] affirmatively:

Example 3.3. Let « be a cardinal number. There exists a spécehich is an ultra-
pseudocompact, totally countably compact anpseudocompact space; besideéss not
g-compact for any € o*.

Proof. We obtain this example by modifying Example 2.14 in [27]. For eachw™ let
K, be the subspacg(w) \ {¢} of B(w). Every infinite setE in K, has a cluster point
in B(w) with r # ¢g. Thus any closed neighborhood:ofvhich does not contaig will be
a compact subset df, containing an infinite subset &. Thenk, is totally countably
compact, but is nog-compact since the only-limit point in g(w) of the countable set
w C K, is q. Take a cardinal numbersuch that ofc) > maxw, a}. For eachy € »*, let
Z, = B(w) x {g} be a copy of(w). Letxg be a point not belonging to ar¥,, and let

z:(@ Zq> U {xo}
qew*

be the one-point compactification of the free topological sum of the spggeket X
be equal to(@qew*(l(q x {g}) U {xo} with the topology inherited fron¥. SpaceX is
totally countably compact and is not evgrpseudocompact for any € w* (see [27]).
Now, consider the subspae= (Z x [0, x)) U (X x {«}) of the compact spaceg x [0, «].
The spacey is totally countably compact. Besides, x {«} is closed inY, soY is not
g-compactfor any € w* because this property is hereditary with respect to closed subsets.
If U is an open set itY, thenU N (Z x [0,«)) # @, so if (Uy)n<e IS @ sequence of
open sets i and for eactn < , (x,, yu) € U, N (Z x [0, «)), then{y,}n<w C [0, A]
for somei < k. SinceZ x [0, A] is a compact space, there ispalimit point a € Y
of the sequencéx,, y,)n<w- The pointa is a p-limit point of (U,),<,. Therefore,Y
is ultrapseudocompact. Finally, is a-pseudocompact becauseé,is C*-embedded in
Z x [0,k],508(Y) =Z x [0, k], andY is G,-dense in3(Y) because of ¢k) > «a. O

Now we are going to discuss the relationship betwgepseudocompactness and
p-compactness in the class of sequentially compact spaces. First some definitions.

A spaceX is finally «-compact wherec is a cardinal number, if for every open cover
of X there exists a subcover of cardinality less than
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Define the quasi-ordec™ on ®w by f <* g if f(n) < g(n) for all but finitely many
n < w. A subset ofw is calledunboundedf it is unbounded iN(“w, <*).
Define the quasi-order* on P (w) by

FCc*G if F\Gisfinite.

We say thatd is apseudo-intersectioaf a family 7 if A c* F for eachF e F. We call
T C [w]® atowerif 7 is well ordered by>* and has no infinite pseudointersection. We
say that a family of countable sets has #sfi®ng finite intersection proper{gfip) if every
nonempty finite subfamily has an infinite intersection.

Consider the following cardinal numbers introduced by van Douwen in [6]:

b =min{|B|: B is an unbounded subset®b};

p =min{|F|: F is a subfamily ofw]® with thesfip
which has no infinite pseudointersect}on

t=min{|T|: T is a towe}.
It was proved in [6], Theorem 3.7, that

t= min{T: T C [w]? is well ordered byc* andVT € 7, (w\ T) is infinite,
andVH € [w]” 3T € T such thai(H N T) is infinite}.

Example 3.4. Let o be a cardinal number. There is a sequentially compact ultrapseudo-
compactx-pseudocompact locally compact and zero-dimensional spa@éich is not
ultracompact.

Proof. Let X = [w, t) U w. There exists
T={H: o< <t} Clw]S

such that

(1) H, =¥ and|H,| = Rg for everyw < A < t;

(2) o <y <AimpliesH, C* Hy;

(3) foreveryw < A <t, |w\ Hy| =Ro; and

(4) for everyH e [w]® there existgy» < A < tsuch that H N H,| = Rp.

We topologizeX as follows:w and points ot are isolated, and a basic neighborhood
of w < A < t has the form

N(y,%; F)=(y,\U ((H.\ Hy) \ F),

wherew <y < AandF € [w]=. It was proved by van Douwen [6, Example 7.1], tiais
a non-compact zero-dimensional separable sequentially compact locally compact normal
space. Even more, he proved thais an almost compact space (thatfgX) \ X| =1).
Thus, X is a-pseudocompact for every < t. Besides, ¢t v = X is not compact, s is
notw-bounded, that isX is not ultracompact.

Let A(X) be the one-point compactification &f (in this caseA(X) = (X)), and let
« be a cardinal number with cofinality bigger than naxx, t). The spaceA(X) is still
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sequentially compact because of Theorem 6.3 in [6]. Consider the prad¥otx [0, «]
and the subspac& = (A(X) x [0,«x)) U (X x {«}). Since X and A(X) x [0, ] are
sequentially compact for every ordinal number(see [6, Theorem 6.9]), theki is
sequentially compact; and because of the fact fhds closed inY, this space is not
ultracompact. Using similar arguments as in Example 3.4, it is possible to prov& that
is ultrapseudocompact andpseudocompact; moreovét,s locally compact and zero-di-
mensional. O

Example 3.5 [b = ¢]. Let o be a cardinal number. There is a sequentially compact zero-
dimensional ultrapseudocompacpseudocompact space which is petompact for any
p € w*.

Proof. In [6, Example 13.1], van Douwen constructed, for each »* a first countable
countably compact (hence sequentially compact) locally compact zero-dimensional (and
separable) spac&, such that]_[pew* X, is not countably compact. We have that the
spaceX, is not p-compact (it is not everp-pseudocompact). For eagh e o*, let

K, = B(X,) be the StoneSech compactification of ,, and letk = Do+ Kp be the

free topological sum of the familyK ,: p € w*}. Take the one point compactification of
the spaceX,, K=KU {xo}, wherexg is a point not belonging t&. Choose a cardinal
numberx such that ofc) > maxw, «, ¢}, and consider the produéf: K x [0, «].
Finally, consider the subspadé = (I? x [0,4)) U (X x {k}) of Y, where X is the
subspaceé@pew* X,) U {xo} of K. Because of the same arguments given in the previous
examples, we have thatis ultrapseudocompact (&f) > w). It is not p-compact for any

p € o* because there is a sequenceXip x {x} without a p-limit in Y. Using similar
reasoning to thatin Example 3.3, we conclude that sequentially compact. Besidésis
a-pseudocompact because itG$-embedded and;,-dense inY (here we are using the
facts that cfx) > max{a, ¢} and|X ,| = c for everyp € 0*). O

One of the common characteristics of all the examples we have already constructed is
that none of them is neither normal nor first countable. Using Corollary 6.6 in [27], we
deduce that every normal finaljycompact space which ig-pseudocompact for at least
a p € o* is ultra-compact; and applying Theorem 6.8 in [27] we conclude that assuming
p > w1, every perfectly normagh-pseudocompact space is compact. Furthermopesifo™
and(U,), < IS a sequence of open sets.dh\ {p}, then, sincep does not have a countable
local base, there is an open détin »* that containsp and such that, \ U # @. If
qn € U, \ U, thenK = cl,+{g,: n < w} is a compact subset in* \ {p}. Thus, ther-limit
point of (g;)n<e iN K is anr-limit point of (U,), <, Wherer € w*. Thereforew™ \ {p} is
an ultrapseudocompact space. On the other handgifo* is not a weaklyP-point, then
o* \ {p} is not ultracompact becauseyifbelongs to the closure ¢f,: n < w}, then there
is ¢ € w* such that is theg-limit of the sequencéy, ), <, Itis known that ifp € w* is an
accumulation point of some countable discrete subset‘pthenw™ \ {p} is not normal.
Besides, under CH, evewy* \ { p} is not normal (see, for example, [22]) and it is not known
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yet if it is consistent with ZFC that there exists a nBfpoint p € o* for whichw* \ {p} is

normal. (Also note that in the class of paracompact spae@seudocompactness implies
compactness, because in this class pseudocompactness and compactness coincide.) These
facts suggest the following questions:

Question 3.6. Is it consistent with ZFC that, for every € w*, each p-pseudocompact
space satisfying? € P must be p-compact, whereP = {normality, perfect normality,
collectionwise normality, normality- countable paracompactné®@s

Question 3.7. Is everyp-pseudocompact first countable Tychonoff (respectively, normal)
space, g-compact space?

4. p-boundedness and products

It was proved in [11, Theorem 1.3], that an arbitrary producpdfounded subsets is
also ap-bounded subset. In this section we improve this result by showing a version of
the classical Glisckberg Theorem on pseudocompactness which characterizes when the
arbitrary product of pseudocompact spaces is pseudocompact by using the distribution
of the functor of the Ston&ech compactification. As a consequence we obtain that, for
each cardinak, C,-compactness is preserving under products gicompactp-bounded
subsets. First, we need several notations.fLetC(X x Y). For eachc € X we will denote
by f; the function fromY into R defined by the requirementt. (y) = f(x, y) whenever
yeY.ForyeY, the functionf” is defined in a similar way. We will denote bhyX the
Dieudonné completioor universal completionf X. For eachf € C(X), f¥ indicates the
continuous extension of to y X. Let H be a family of real-valued continuous function on
X x Y and letA, B be two subsets ok andY, respectively. We shall define the families
Hpg, Ha as follows:

Hp={f":yeB, feH}, Ha={fi:x€A, feH).
The symbols;|A, H’ | B denote the families:

HylA={F" " eHpg}, HAIB ={Fy: fx € Hal,
whereF?, F, are defined as

FY = (f") ol x as Fe=(f)lcl,y B

for (x,y)e X x Y.

We recall that a familyH of real-valued continuous functions oXi is said to be
equicontinuousf for eachx € X and everyes > O there exists a neighborhodd of x
suchthat f (y) — f(x)| < e whenevely € V and f € H. H is calledpointwise bounded
{f(x): f eH}isboundedirR for everyx € X. Let

osd f, V) =sup{|f(x) — fF(]|: x,y e V}.
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Theorem 4.1.1f 'H is an equicontinuous pointwise bounded family of real-valued
functions onX x Y, then for each(xg, yo) € X x yY and eacte > O there exists a regular
closed neighborhootf,, of yg in yY such that

0SA Fyy, Vyy) < &

wheneverr,, € Hy|X.

Proof. Let (xo, yo) € X x yY and lete > 0. Define
Mo ={fro! f €H}.

It is clear thatH,, is equicontinuous and pointwise boundedlonBy [24, Theorem 7],
the family{fx’g: f € H} is equicontinuous (and pointwise boundedyin. Therefore, we
can find a regular closed neighborhodg of yg in yY such thaﬂfx’f)(y) - fx};(yo)l < %a
whenevery € V. The result now follows from the triangle inequalityx

Remark 4.2. Notice that, in the previous theorem, we can replace yY and Fy, by
yX x Y andF>°, respectively.

The following result on extensions will be used in the sequel. In the proof we follow the
patterns given in [19, Lemma 4.4].

Theorem 4.3. Let A, B be twop-bounded subsets &f and Y, respectively. LeH be an
equicontinuous pointwise bounded family of real-valued function enY. Then'H* | B
is equicontinuous oal, y B.

Proof. Suppose that there exists € cl,,y B such that{’ | B is not equicontinuous af.
We will define by induction a sequen¢g™),, -, C H, a sequencéay,, y,))n<e Of points
in X x Y, and two sequenc&¥,”), <, (U, X Vi)n<e Of regular closed subsets pt” and
X x Y respectively, satisfying:

(1) |Fz (yn) — Fz (yo)| > & for eachn < o,

(2) foreacm <w, V' is a neighborhood ofo (in yY) and os¢F;; , V) < %e,

(3) for eachn < w, (U, x V,) is a neighborhood ofa,, y,) (in X x Y) with

osa f"*, Uy x V) < %s,

(4) foreachn <o, inty V,, Cint,y V¥ andinty V,* Cint,y V" ;.

Since™’ | B is not equicontinuous afg, then there exist > 0, (x,y) € A x B and
f € H such that

|Fx(Y) - Fx(y0)| > &

Forn =1, we definei; =x, y1 =y andf! = f. Sincef! is continuous orX x Y, we
can find a regular closed neighborhoodXin< Y), Uy x V1, of (a1, y1) such that

Osc(fl, Ui x V1) < %s.
By Theorem 4.1, there exists a regular closed neighborhogd{()nV;* of yo such that

0SA Fyy, V7)< e
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for each f € ‘H. This completes the step = 1. For » > 1, since H%|B is not
equicontinuous ato, there existy, e int,y V* ; N B, a, € A and f" € 'H such that

|Fann () — F, (yo)| > e.

Let U, x V, be a regular closed neighborhood ¢hx Y) of (a,, y,) with inty V, C
int,y V*_; such that

osa f", U, x V) < %s.

By Theorem 4.1, we can find a neighborhoodiK) V,* of y, with V,* C V* ; such
that

osaF, , V) < ze.

This completes the induction. Now, singgn B = 4 for eachn < w, the sequencé,,),, <.
has ap-limit v € Y. Applying condition(4) it is easy to check thaf is also a cluster
point of the sequencéV,*),, and, consequently; € V,* for eachn < w. Since each
(f”)(ﬂ is continuous onX, there exists a sequencg,), -, of regular closed sets iX
such thaw,, €inty T, c U,, and OSC(f”)(ﬂ, T,) < %e for eachn < w. Letx be ap-limit
of (T)n<w- Then(x,y) is both ap-limit of (7, x V,)n<e and of (T}, x V,5), <. SinceH
is equicontinuous oiX x Y, we can find an open subgétx V with (x,y) € U x V such
that

|FO, ) — FED)| < ge

wheneverf e Hand(x,y)e U x V.
Let H={n <w: (U x V)N(T, x V,) # #}. By condition (4), H is contained in
{n <w: (U x V)N (T, x V) #}. It follows from condition(3) that

| f" G D) = [ (an. yn)| < Ze
whenevemn € H.

On the other hand, singee V', for eachn < w, |f"(an,y) — F} (yo)| < %e for each
n < w. Moreover, because o(ig”’)@, T, < %s for eachn < w, if a € T;, then

| /"(@,3) = f"(@n, D) < ge.
As a consequencef” (ax, ya) — F,, (yo)| < & wheneven € H. This contradicts that

|F}! (yn) — F (yo)| > ¢

In

forn=1,2,.... O

We recall that a subset of a spaceX is said to béboundedin X) if every real-valued
continuous function otX is bounded om. Itis not hard to see that a subsets bounded
in X if every sequence of open sets () meetingA has a cluster point irX. So, if
p € w*, every p-bounded subset is bounded and a topological space is pseudocompact if
and only if it is bounded in itself. However there exist pseudocompact spaces which are
not p-pseudocompact for any € w* (see Example 3.2 and [17]). We make mention of a
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lemma proved by Pupier in [23, Lemma 3.3]. For eaclt X, we will denote byA, the
uniform space defined as endowed with the restriction of the finest uniformity &n

Lemma 4.4. Let A, B be two bounded subsetsXfandY, respectively. Then the following
assertions are equivalent
(1) For each equicontinuous and pointwise bounded fafilin C(X x Y), Ha (res-
pectively,H g) is uniformly equicontinuous oA, (respectively, o, ).
(2) (AxB),=A4A, xB,.

We recall that a compactification of a spakeis a compact spac& such thatX is
dense inK. Two compactificationsy, K» of X are called equivalent if there exists a
homeomorphism® from K1 onto K> which leavesX pointwise fixed. We will write
K1 = K> wheneverK; and K, are two equivalent compactifications &f If A C X, it
is well known that ¢} x A is the completion of4,, (see, for example, [7, Theorems 8.3.6
and 8.3.12] for details). Lgt € w*. Since everyp-bounded subset is bounded, ¢lx A
is a compactification oft. In fact, it is well known that ¢lx A = clgx A for each bounded
subsetA of X. We can apply this fact and the previous results in order to obtain:

Theorem 4.5.If A; is a p-bounded subset &f; fori =1, 2,...,n, then

n n
C|yX l_[A,' = l_[dVXi A;,
i=1 i=1
n
whereX =[]i_; X;.

Proof. First, we shall study the cage= 2. Applying Theorem 4.3, the subsets andA»
satisfy condition(1) in Lemma 4.4. So, ¢kx,xx,) (A1 x Ap) and ¢l x, A1 x cl,x, A2
are completions of the uniform spa¢di x Az),. So, because the identity mapping
on Ay x Az is a uniform isomorphism oriA; x Az),, it is extendable to a uniform
isomorphism from ¢l x, x x,) (A1 x A2) onto cl, x, A1 xcl, x, A2 (Theorem 8.3.11in [7]).

Now, since p-boundedness is preserving under arbitrary products, the general case
follows from a straightforward induction argument

Corollary 4.6. Let{p;}!_; C »* be such that there existse »* with ¢ <rk p; for each
i=1,2,...,n.If A; is a p;-bounded subset of; fori =1, 2, ..., n, then the restriction
to []/_; A; of each real continuous function 4rj/_; X; admits a continuous extension to

n
[Tizaclyx; Ai.

Corollary 4.7. Let X = []/_; X; and let{p;}!'_; C »* be such that there exists€ »*
with g <rk pi foreachi =1,2,...,n.If A; is a p;-bounded subset of; fori =1,2, ...,
then

n n
C|yX l_[A,' = l_[dVXi A;.
i=1 i=1
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As for each bounded subsgtof X, cl, x A = clgx A, Theorem 4.5 is a version of the
classical Glisckberg Theorem on pseudocompactness in the regiibadinded subsets.
Our goal in the sequel is to obtain a version of the Glisckberg Theorem for arbitrary
products. Lemma 4.9 below is a straightforward version of Lemma 2.5 in [15]. We first
need the following result; its proof is a routine adaptation of the proof of Lemma 2.1 in [8]
and it is left to the reader.

Lemma 4.8. Let X, Y be two topological spaces and lat B be two infinite subsets of
andY, respectively. IfA x B is not bounded inX x Y, then there exists a locally finite
family {U,, x V,},<» Of nonempty canonical open sets}f ¥ meetingA x B such that
the families{U,,}, {V,,} are pairwise disjoint.

Lemma 4.9. Let X, Y be two topological spaces and ldt, B be two infinite subsets of
X andY, respectively. IElgxxy)(A x B) =clgx A x clgy B, thenA x B is bounded in
XxY.

Proof. Suppose thatt x B is not bounded inX x Y. According to Lemma 4.8 we can
find a locally finite family {U, x V,},<» Of open canonical sets (iX x Y) meeting
A x B such that{U,}, <, and{V,},,-, are pairwise disjoint. Choose, for eaeh< w, a
pointz, = (x,, y») € (U, x V;,) N (A x B). Now, for eachn < w, consider a real-valued
continuous functiory, on X x Y satisfying:

0< fu <L fut)=1  fu((X x¥)\ (Uy x V) =0.

Since{U, x V,,}, < is locally finite, the real-valued functiofion X x Y defined as

fx,y)=supfu(x,y), (x,y)eXxY

n<w

is a bounded real-valued continuous function. get f”|ci, ., axs)- By hypothesis,
clgxxy)(A x B) is a compactification oA x B equivalentto ¢ix A x clgy B. So, we can
consider thag is defined on ¢Jx A x clgy B. Let(x, y) e clgx A x clgy B a cluster point
of the sequencg(x,, y.)}»<w. Then, for each canonical open set (ipcA x clgy B)
U x V containing(x, y), we can choose,m € w with n # m such that(x,, y,) and
(xm, ym) belongtoU x V. So,(x,, yn) € U x V and, consequently,(x, y) = 0. But, since
(x, y) is a cluster point of the sequeng@;,, v,)}»<w, £(x, y) = 1, a contradiction. O

Theorem 4.10.Let {X,}oc; be a family of topological spacesy = [],.; X. and
{Aqy}aecr be afamily of sets such that, is bounded inX,, for eacha € 1. If

Clgx l_[ Ay = l_[dﬂxa Ag,

ael ael

then[],.; A« is bounded inX.

Proof. First notice that, as the product of a compact subset and a bounded subset
is bounded (see, for example, Proposition 1 in [2]), we can suppose, without loss of
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generality, that the familyfA,}oe; contains at least two infinite sets, and A,. Let
J =1\ {o}. We shall prove that gk [[,.; A« and [],.;,Clsx, A« are equivalent
compactifications of [, ; A« WhereY =[],.; X«. To see this, according to [16, 10E] it
suffices to prove that the functions @ (] [, ., A«) that are extendable togl [ |
are the same as those extendablB[iq ; clsx, Ax

Let f € C([],ey Clpx, Aa). Since[ ], Clgx, Aa is compact, there exists a continuous
extensiong of f to [[,.; BX.. Considerh = 8o, Xo- 1t is clear that the restriction
of n# to clgy [[,c; Ae iS @ continuous extension of I[1,,., A~ Conversely, if f €
C(clgy [14es Aa), the restriction off to [[,.; A« admits a continuous extension to
[1,es Clpx, Aw. Infact, since gy [[,.; A« is compact, there is a real-valued continuous
functiong on Y such that

aEJ

g|1_[ozej Aq = f|1_[ozel Ag-

Consider a real-valued continuous functioon ], ., X, defined as

ael
h(xe) =g(71 (),  ¥a €] [ X
ael

wherern; is the projection map fronp[,.; Xo onto[[,.,
and, consequently, it admits a continuous extenafoto C(8([]

C|ﬁX l_[ Ay and l_[CIﬂXa Ay

ael ael

X,. Thenh € C*([]
X4q)). As

aEl

ael

are equivalent compactifications pf
that

wer Aa, there existsn € C*([],; Clgx, A«) Such

mlnael A(Y = h|l_[ael Aa'
Now fix x, € A, Itis clear that the functiom™ defined as
m*(xq) =m(xys, xe) Wheneverx,) € 1_[ clgx, Aa
ael

is a continuous function o[, ., clgx, A, Satisfying

ok
f|HaeJ Ay =m |1_[aeJ Ay

Thus, [[,csClpx, Ae and chy [[,.; A« are equivalent compactifications pf,. ; Aq.
Therefore we have

C|ﬁX l_[ Ay = l_[CIﬂXa Ay = ClﬁXU Ags X C|/3Y l_[ Agy.
ael ael ael

Since A, and[],., As are infinite (becausg]
follows by Lemma 4.9. O

wcs Aq CONtaiNsA,), the desired result

Let X = [],c; Xo- Consider a family of set$A,}qaer With A, C X, for eacha € 1
and let f € C(X). For each finite subsef of / and eachb € [[,¢/\; Aa, We Will
denote byf;(—, b) the function from[],.,; Ax into R defined by the requirement that

ael
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fi(a,b) = f(a,b) wheneveu € [[,.; Ax. We will denote byH(f, J) the family defined
as

H(f. )= {fj(—,b): be [] Aa}.
ael\J
The following results about extensions of maps and projection maps are needed. We
recall that a magf from X into Y is said to bez-closed if f(Z) is closed inY whenever
Z isazero setirX.

Theorem 4.11 (Taimanov [25]). Let S be a dense subspace of a topological spaand
let ¢ be a continuous map frori into a compact Hausdorff spad. Suppose thab is
a base for the closed sets Bifwhich is closed under finite intersections. Thiran be
continuously extended ov&rif and only if for every pairB1, B2 of disjoint elements df
the inverse imageg—1(B1) and¢—1(B,) have disjoint closures if .

Theorem 4.12 (Comfort and Hager [5]).The following conditions on the product space
X x Y are equivalent
(1) The projection mapyx from X x Y onto X is z-closed.
(2) If fis abounded real-valued continuous functionX®x Y, then{f>: y e Y}isan
equicontinuous family o .

Theorem 4.13.Let {X,}oc; be a family of topological spacesy = [[,.; Xo and
{Aq}acr be a family of sets such that, is bounded inX, for eacha € I. Then, the
following assertions are equivalent
(1) [[,es Aw is bounded in][,.; X, and, for each finite subset of / and each
f € C([1yes Xo), the family H(f, J) admits an equicontinuous extension to
Hae] Clﬂxa AO!'
(2) Foreachf € C([]ye; Xa), fI,., 4. @dmits a continuous extension to
Hozel Clﬂxa Aqg.
() clgx [loes Aa =Ilaes Clpx, Aa-

Proof. (1) = (2) Let f € C([],e; Xo). First, following the patterns given in [7,
3.12.20(a)], we shall prove that, for every- 0, there exists a finite s& c I with the
property that if forx, y € [, .; A« We have that ifp, (x) = pe(y) Whenevew € Sp, then

[f(x) = fnl <e.

Assume that there is no sudg. Fix o1 € 1. Then, there existy, y1 € [[,c; A« SUCh

that pay (¥1) = ey (y1) and| f (x1) — f(yo)| > e.
LetUr=T],c; UL, V1 =T],c; V. be open neighborhoods ef, y1, respectively, such
that

osaf,UY <de,  osaf,vh <ie,
andU}, = V. . Let $1 = {1} and defineS; in the following way:

lael: U # X 0 Vi # Xo ).
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By assumption (sincs; is finite), we can finde,, y2 such thatp, (x2) = py (y2) whenever
a €Sz and|f(x2) — f(y2)| > 3e.

In this way, by induction, we can find two sequences of poirtS,<w, (Vn)n<w IN
[1oer Aar @ sequences, ), <. of finite subsets of and two sequences of open subsets in
[Toer Xar UMn<w, (V"n<w, satisfying:

D) 1f ) = fFm)| = 3e foralln < o,

(2) 0s&f,U") < %, 0sq f, V") < %e foralln < o,

(3) If Sy ={ael: Ut#X,or vt =+£X,}, thens, C S,41 foralln < w,

(4) Uy, = Vo, whenever; € S,.

SinceU" N[[,c; Aa D foralln <wand[],.; Aq is boundedif[,.; Xo, {U"}1<w has
a cluster point € [[,.; Xo. Let W be an open neighborhood piwith osd f, W) < %s.
The fact that, is a cluster point ofU"),, -, joint conditions(3) and(4) imply that we can
find n < w such that

WNU"£0, WNV"£Q.

Applying condition(2) we have that f(z) — f(xn)| < &/4 and| f(2) — f(yn)| < %15
which contradicts condition (1).

Now, consider the functiog = fl._, 4,- Since[],.; A« is bounded in[], ., Xa,
we can find a compact interv@dk, ] such thatg([ [,.; A«) is contained infa, B]. Set
Y = []yesClpx, Ae. Let K1, K2 be two pairwise disjoint closed subsets[af ]. By
Talmanov'’s theorem we only need to prove that

cly g_lKl Ncly g_le =0.

Becausdo, ] is compact, there exists> 0 such thatk; — k2| > ¢ whenever(ky, ko) €

K1 x K». Let J be a finite subset of such thatig(x) — g(y)| < %s wheneverp, (x) =
pa(y), @ € J and x,y € [[,; Ae- FoOr convenience, in the sequel we will denote
[ 1oy Clgx, Ae by M. We shall first prove that

cly ps (g7 (KD) Nely ps (g7 (K2)) = 0.
Suppose that, contrary to what we claim, there exists

pecly ps(g  (Kn) Ncly ps (g1 (K2).
Since {f;(—,b): b € ]'[ae,\J Ay} has an equicontinuous extensigy;(—,b): b €
]'[ae,\J Ay} 10 [,/ Clpx, Ae We can find two points = (xg)ues € ps(g~1(K1)) and
¥ = (Ya)aes € ps(g~1(K>2)) such that

£ (P b) = f7 (e b)| < 3e. | f7(p.b) = f7(v.D)] < 3¢
wheneverb € [1,cp\; Aa- Let b1, b2 be in [],c\ s Ae With (x,b1) € g7*(K1) and
(v, b2) € g1 (K2). Then,

| f(x,b1) — (v, b2)| < |f(x,b1) = f7(p. b1)|

+ 15 (p.b1) — F(. bD| + | f (3, b1) — f (3, b2)|
<3e+3e+ |0 b0) — f(,b2).
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Sincepy(y, b1) = ps(y, b2), we have thatf (y, b1) — f(y,b2)| < %s, and consequently,
|f(x,b1) — f(y,b2)| < e. But this leads us to a contradiction, becayse, 1) € K1 and
f(y,b2) € K». Thus,

cly ps (¢ (K1) Nely pr (s (K2)) = 0.

Now, suppose that there jse cly g~1(K1) N cly g~1(K>). Then every open neighbor-
hoodW of ¢ in Y such that

W=]]Vex [] clox, Aa

ael aecl\J

where [ ],
Therefore

V, is a basic open set if],., Clgx, Ao, Mmeetsg=1(K1) N g71(K2).

p1(q@) € cly ps(g~ (KD) Ncly ps(s7H(K2),

a contradiction.

(2) = (3) Both clg1, _, x,) A« @and[],, Clgx, A« are compactifications df],.; Aa.
By (2), the functions off [ ,; A« continuously extendable togty , x,) [14es Ax are the
same than the functions continuously extendablB[ip , clgx, A«. SO, by [16, 10E(2)],
Cla([,., X A« @nd[ [, Clpx, A are equivalent compactifications pf, . ; Aq-

(3) = (1) By Theorem 4.10[[,,.; A, is bounded in [, .; Xq. Let f € C([[,e; Xa)
and letJ be a finite subset of. Consider the continuous extensignof S Myes Aa 1O
[ 1, Clpx, Aw. Since

1_[ C|/3xa Ay X 1_[ C|/3xa Agy
ael aecl\J

is compact, the projection magy, _, ciyy, 4, 1S z-closed. So, according to Theorem 4.12,
H(g, J) is equicontinuous ofi[,, ., Clgx, A, and the proofis complete.o

We can apply Theorem 4.13 in order to obtain

Corollary 4.14. Let {X,}scr be a family of topological spaces and [&t=[],.; Xa-
Consider, for eachr € I, a subsetd, of X, such thatA, is p,-bounded inX, with

pa € w*. If there existy € w™ such thatp <rk po forall « € I, then

C|/3x l_[AO‘ = 1_[0|/3xa Ag.

ael ael

Let @ be a cardinal number. A subsgtof X is said to beC,-compact if f(A) is a
compact subset ®&* for each continuous function fro into R*. C,,-subsets are called
C-compact subsets. The cardinal number

p(A, X) =sufa: Ais Cy-compact inX}

is calledthe degree of pseudocompactnesst in X. The reader might consult [14] for
basic results on degree of pseudocompactness. iriseC,-compact inX if and only
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if Ais Go-dense in ¢dx A (see Theorem 1.2 in [14]), we can apply Theorem 4.23 and
Lemma 3.3 in [14] in order to obtain

Corollary 4.15. Let p € w*. If, for eacha € I, A, is a p-boundedC-compact subset of
X,, then

p(l_[Aa, l_[Xa> =min{p(Aq, Xo): € 1}.

ael ael

In particular, the product of a family gf-bounded(,-compact subsets is@,-compact
subset.

The interval(0, 1) is a trivial example of @-bounded subset (iR) for all p € w* which
is notC-compact. The following example improves this result. For each topological space
X, we denote byF(X) the free topological group generated Ky(see Sections 2.3 and
9.20in [4] for definition). It is well known thaX is a closed”-embedded subset &f(X).

Example 4.16. For every cardinal humber > w there exists a bounded subset of a
topological groups which is notC,-compact inG.

Proof. Let @« > w be a cardinal number. Le¥ be a pseudocompact space which is not
Cy-compact in itself [14, Corollary 2.8]. Consider the free topological gré) over

X. SinceX is C-embedded inF (X), X is not C,-compact inF(X). Moreover, because
every bounded subset of a topological group-isounded for allp € w* (see Remark 4.17
below), X is p-bounded inF (X) forall p e w*. O

Remark 4.17.

(1) As a consequence of Theorem 2.6 and Theorem 2.8 in [15], conditioim
Theorem 4.13 is satisfied when considering a family of pseudocompact subsets
whose finite products are also pseudocompact and whose product is bounded in the
whole space. So, P, }«cr is a family of pseudocompact spaces such fijat ; Py
is pseudocompact for each finite subsetf 7 and[ [, ., Py is boundedi [, .; X,
then

Clﬂ(l_[aez Xo) P, = 1_[0|/3xa P,.
ael

In addition, Comfort’s example [3] of a non-pseudocompact product space whose
finite subproducts are pseudocompact spaces, points out that we can not omit that
[1,e; P« be bounded.

(2) A slight modification of the proof of Theorem 1 of [26] shows that every bounded
subset of a topological grou@ is p-bounded for eacly € w* (see Theorem 4.3
of [13] for details). So, Corollaries 4.14 and 4.15 give alternative proofs of
Corollary 3in [18], Corollary 3.8 in [14] and Corollary 4.1 in [19].
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