ON THE ČECH NUMBER OF $C_p(X)$, II

OFELIA T. ALAS AND ÁNGEL TAMARIZ-MASCARÚA

ABSTRACT. The Čech number of a space Z, $\check{C}(Z)$, is the pseudocharacter of Zin βZ . In this article we obtain (in ZFC and assuming additional set theoretic consistent axioms) some upper and lower bounds of the Čech number of spaces of continuous functions defined on X and with values in \mathbb{R} or in [0, 1] with the pointwise convergence topology – denoted by $C_p(X)$ and $C_p(X, I)$ respectively – when: (1) Xhas countable functional tightness, (2) X is an Eberlein-Grothendieck space, (3) Xis a k-space and (4) X is a countable space. Also, we prove some results related to $kcov(C_p(X)) = min\{|\mathcal{K}| : \mathcal{K} \text{ is a compact cover of } C_p(X)\}$. And we answer several questions posed in [OT]; in particular, it is proved that $\check{C}(C_p(X)) = \mathfrak{c}$ for every metrizable space X with $|X| = \mathfrak{c}$, and a consistent example of a non-discrete space X with $\check{C}(C_p(X, I)) < \mathfrak{d}$ is provided.

1. NOTATIONS AND BASIC RESULTS

In this article, every space X is a Tychonoff space, and X' is the set of non isolated points in X. The symbols ω (or N), \mathbb{R} , I, \mathbb{Q} and \mathbb{P} stand for the set of natural numbers, the real numbers, the segment [0, 1], the rational numbers and the irrational numbers, respectively. Given two spaces X and Y, we denote by C(X,Y) the set of all continuous functions from X to Y, and $C_p(X,Y)$ stands for C(X,Y) equipped with the topology of pointwise convergence, that is, the topology in C(X,Y) of subspace of the Tychonoff product Y^X . We will denote by $[x_1, ..., x_n; A_1, ..., A_n]$ the canonical open subset $\{f \in C(X,Y) : f(x_i) \in A_i \ \forall i \in \{1, ..., n\}\}$ of $C_p(X,Y)$ where $x_1, ..., x_n \in X$, and $A_1, ..., A_n$ are open subsets of Y; in particular, for $Y \subset \mathbb{R}$ and $\delta > 0$, we will denote the set of continuous functions from X to Y such that $|f(x) - z| < \delta$ as $[x; (z - \delta, z + \delta)]$. The space $C_p(X, \mathbb{R})$ is denoted by $f \upharpoonright A$. For a space X, βX is its Stone-Čech compactification, and X^* is the subspace $\beta X \setminus X$ of βX .

Recall that for $X \subset Y$, the *pseudocharacter of* X in Y is defined as

 $\Psi(X,Y) = \min\{|\mathcal{U}| : \mathcal{U} \text{ is a family of open sets in } Y \text{ and } X = \bigcap \mathcal{U}\}.$

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -T_EX

¹⁹⁹¹ Mathematics Subject Classification. 54C35, 54A25, 54D50.

Key words and phrases. Topology of pointwise convergence, Čech number, Eberlein-Grothendieck space, Eberlein-compact space, functional tightness, sequential space, k-space, compact covering number, Novak number.

Research supported by Fapesp, CONACyT and UNAM

1.1. Definitions. (1) The Čech number of a space Z is $\check{C}(Z) = \Psi(Z, \beta Z)$.

(2) The k-covering number of a space Z is $kcov(Z) = \min\{|\mathcal{K}| : \mathcal{K} \text{ is a compact cover of } Z\}.$

We have that (see Section 1 in [OT]): $\check{C}(Z) = 1$ if and only if Z is locally compact; $\check{C}(Z) \leq \omega$ if and only if Z is Čech-complete; $\check{C}(Z) = kcov(\beta Z \setminus Z)$; if Y is a closed subset of Z, then $kcov(Y) \leq kcov(Z)$ and $\check{C}(Y) \leq \check{C}(Z)$; if $f: Z \to Y$ is an onto continuous function, then $kcov(Y) \leq kcov(Z)$; if $f: Z \to Y$ is perfect and onto, then kcov(Y) = kcov(Z) and $\check{C}(Y) = \check{C}(Z)$; if bZ is a compactification of Z, then $\check{C}(Z) = \Psi(Z, bZ)$.

We know that $\dot{C}(C_p(X)) \leq \aleph_0$ if and only if X is countable and discrete ([LMc]), and $\check{C}(C_p(X, I)) \leq \aleph_0$ if and only if X is discrete ([T]).

For a space X, ec(X) (the essential cardinality of X) is the smallest cardinality of a clopen subspace Y of X such that $X \setminus Y$ is discrete. Observe that, in this case, $\check{C}(C_p(X,I)) = \check{C}(C_p(Y,I))$. In [OT] it was pointed out that $ec(X) \leq \check{C}(C_p(X,I))$ and $\check{C}(C_p(X)) = |X| \cdot \check{C}(C_p(X,I))$ always hold. So, if X is discrete, $\check{C}(C_p(X)) = |X|$, and if |X| = ec(X), $\check{C}(C_p(X)) = \check{C}(C_p(X,I))$.

Consider in the set of functions from ω to ω , ${}^{\omega}\omega$, the partial order \leq^* defined by $f \leq^* g$ if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$. A collection D of $({}^{\omega}\omega, \leq^*)$ is *dominating* if for every $h \in {}^{\omega}\omega$ there is $f \in D$ such that $h \leq^* f$. As usual, we denote by \mathfrak{d} the cardinal number $\min\{|D|: D \text{ is a dominating subset of } {}^{\omega}\omega\}$. It is known that $\mathfrak{d} = kcov(\mathbb{P})$ (see [vD]); so $\mathfrak{d} = \check{C}(\mathbb{Q})$. Moreover, $\omega_1 \leq \mathfrak{d} \leq \mathfrak{c}$, where \mathfrak{c} denotes the cardinality of \mathbb{R} .

We will denote a cardinal number τ with the discrete topology, simply, as τ ; so, the space τ^{κ} is the Tychonoff product of κ copies of the discrete space τ . The cardinal number τ with the order topology will be symbolized as $[0, \tau)$.

In this article we will relate $\check{C}(C_p(X, I))$ with the functional tightness and the weak functional tightness of X (Section 3), and obtain some upper and lower bounds of $\check{C}(C_p(X, I))$ when X is one of the following: an Eberlein-Grothendieck space (Section 4), a k-space (Sections 5 and 6), a countable space (Section 7). We will relate $\check{C}(C_p(X, I))$ with the Novak numbers of \mathbb{R} and I^{τ} (Section 8). Also, we will consider $\check{C}(C_p(X, I))$ when some consistent axioms are assumed such as MA and GCH (Section 9). Some results involving the compact covering of $C_p(X)$ are proved (Sections 2 and 4), and several questions posed in [OT] are answered; in particular, we show that the existence of a countable space X for which $\check{C}(C_p(X, I)) < \mathfrak{d}$ is consistent with ZFC.

For notions and concepts not defined here the reader can consult [Ar] and [E].

2. Conditions on X which are implied by $\check{C}(C_p(X, I))$

For an infinite cardinal number τ , let \mathfrak{d}_{τ} be the smallest cardinality of a dominating family of functions from ω to τ . We have that $\mathfrak{d}_{\tau} = cof(\tau)$ if $cof(\tau) > \omega$ and $\mathfrak{d}_{\tau} = \mathfrak{d}$ if $cof(\tau) = \omega$. \mathfrak{d}_{τ} concide with $kcov([0, \tau)^{\omega})$. Of course, $\mathfrak{d}_{\omega} = \mathfrak{d}$. A space X is a P_{τ} -space if the intersection of less than τ open sets in X is an open set yet. We say that X is a *P*-space if it is a P_{ω_1} -space. Observe that every topological space is a P_{ω} -space.

We will say that a space X is a P_{τ} -space with respect to chains, or briefly, cP_{τ} -space, if for every sequence $\{A_{\lambda} : \lambda < \tau\}$ of open subsets of X with $A_{\lambda} \subset A_{\alpha}$ if

 $\alpha \leq \lambda$, we must have that $\bigcap_{\lambda < \tau} A_{\lambda}$ is open. So, we have: (1) X is a cP_{τ} -space iff it is $cP_{cof(\tau)}$ -space, (2) every P_{τ^+} -space is a cP_{τ} -space, (3) a space X is a P-space iff it is a cP_{ω} -space, (4) if $|X| < cof(\tau)$, then X is a cP_{τ} -space. Furthermore, for a regular cardinal number $\tau > \omega$, $[0, \tau)$ is a cP_{τ} -space which is not a P_{τ^+} -space (and it is not cP_{γ} -space for all cardinal number $\gamma < \tau$), and the topological space $(\tau + 1, \mathcal{T})$ where $\mathcal{T} = \{A \subset \tau + 1 : \text{either } \tau \notin A \text{ or } \tau \in A \text{ and } |\tau + 1 \setminus A| < \tau\}$ is a P_{τ} -space (and, then, it is a cP_{γ} -space for every $\gamma < \tau$) which is not a cP_{τ} -space.

For a cardinal number κ , we say that a space X is *initially* κ -compact if every open cover of X of cardinality $\leq \kappa$ has a finite subcover. It is known that X is initially κ -compact if and only if every subset E of X of cardinality $\leq \kappa$ has a complete accumulation point x; that is, for every neigborhood V of x, $|V \cap E| = |E|$ (see [St], Theorem 2.2). Of course, (1) every closed subset of an initially κ -compact shares this property, (2) a space is countably compact iff it is initially ω -compact, and (3) every compact space is initially κ -compact for every κ .

2.1. Theorem. Let X be a topological space and $\kappa < \mathfrak{d}_{\tau}$. Then $(1) \Rightarrow (2) \Rightarrow (3)$ where:

- (1) $C_p(X)$ is the union of κ initially τ -compact subsets.
- (2) $C_p(X, I)$ is the union of κ initially τ -compact subsets.
- (3) X is a cP_{τ} -space.

Proof. (1) \Rightarrow (2): Of course, if $C_p(X)$ is the union of κ initially τ -compact subsets, then so is $C_p(X, I)$ because it is a closed subset of $C_p(X)$.

(2) \Rightarrow (3): The proof follows the pattern of the proof of Corollary I.2.4 in [Ar]: Let $C_p(X, I) = \bigcup_{\alpha < \kappa} K_{\alpha}$, where each K_{α} is initially τ -compact. If X is not a cP_{τ} -space, there is an increasing sequence of closed sets $(F_{\lambda})_{\lambda < \tau}$ and a point $y_* \in \operatorname{cl}(\bigcup_{\lambda < \gamma} F_{\lambda}) \setminus \bigcup_{\lambda < \gamma} F_{\lambda}$. Denote by $K'_{\alpha} = \{f \in K_{\alpha} : f(y_*) = 0\}$ for each $\alpha < \kappa$. Since K'_{α} is a closed subset of K_{α}, K'_{α} is initially τ -compact.

Claim: For each $\alpha < \kappa$ and each $k < \omega$, there is $\lambda(\alpha, k) \in \tau$ such that for every $f \in K'_{\alpha}$, there exists $y_f \in F_{\lambda(\alpha,k)}$ for which $f(y_f) < 1/2^{k+1}$.

Indeed, assume the contrary of the conclution of this Claim. That is, there are $\alpha < \kappa$ and $k < \omega$ such that for each $\lambda < \tau$ there is $f_{\lambda} \in K'_{\alpha}$ with $f_{\lambda}(y) \geq 1/2^{k+1}$ for all $y \in F_{\lambda}$. Since K'_{α} is initially τ -compact, there is $f \in K'_{\alpha}$ which is a complete accumulation point of the set $\{f_{\lambda} : \lambda < \tau\}$ in $C_p(X, I)$. Take $y \in \bigcup_{\lambda < \tau} F_{\lambda}$; say $y \in F_{\lambda_0}$. If $f(y) < 1/2^{k+1}$, then $f \in [y; (f(y) - \delta, f(y) + \delta)] = \{g \in C_p(X, I) : |f(y) - g(y)| < \delta\}$ where $\delta = 1/2^{k+1} - f(y)$. Since f is a complete accumulation point of $\{f_{\lambda} : \lambda < \tau\}$, there is $\lambda \geq \lambda_0$ such that $f_{\lambda} \in [y; (f(y) - \delta, f(y) + \delta)]$. But, this implies that $f_{\lambda}(y) < 1/2^{k+1}$, which is not possible because $y \in F_{\lambda_0} \subset F_{\lambda}$ and then, by assumption, $f_{\lambda}(y) \geq 1/2^{k+1}$.

Thus, f(y) must be $\geq 1/2^{k+1}$ for every $y \in \bigcup_{\lambda < \tau} F_{\lambda}$. Since f is continuous and $y_* \in \operatorname{cl} \bigcup_{\lambda < \gamma} F_{\lambda}$, then $f(y_*) \geq 1/2^{k+1} > 0$. But, $f \in K'_{\alpha}$ which implies that $f(y_*) = 0$, a contradiction. This proves the Claim.

Hence, for each $\alpha < \kappa$, we have a function $h_{\alpha} : \omega \to \tau$ defined by $h_{\alpha}(k) = \lambda(\alpha, k)$. Since $|\{h_{\alpha} : \alpha < \kappa\}| < \mathfrak{d}_{\tau}, \{h_{\alpha} : \alpha < \kappa\}$ is not dominating in τ^{ω} , so there is $h : \omega \to \tau$ such that $h \not\leq^* h_{\alpha}$ for all $\alpha < \kappa$. For each $k < \omega$, fix $g_k : X \to [0, 1/2^{k+1}]$, continuous, such that $g_k(y_*) = 0$ and $g_k(t) = 1/2^{k+1}$ when $t \in F_{h(k)}$. Let g be equal to $\Sigma_{k < \omega} g_k$. We have that $g \in C_p(X, I)$, so there is $\beta < \kappa$ for which $g \in K'_{\beta}$.

Since $h \not\leq h_{\beta}$, the set $\{n < \omega : h(n) > h_{\beta}(n)\}$ is infinite; fix m such that $h(m) > h_{\beta}(m)$. The relation $g \in K'_{\beta}$ implies that there is $y \in F_{h_{\beta}(m)}$ for which $g(y) < 1/2^{m+1}$. But $y \in F_{h_{\beta}(m)} \subset F_{h(m)}$ and $g(y) \ge 1/2^{m+1}$; a contradiction. \Box

2.2. Corollary. Let X be a topological space, and let γ be the first cardinal number such that X is not a P_{γ^+} -space. Then, $C_p(X)$ cannot be equal to the union of κ initially γ -compact subsets for any $\kappa < \mathfrak{d}_{\gamma}$.

2.3. Corollary. Let X be a topological space and $\kappa < \mathfrak{d}$. Then $(1) \Rightarrow (2) \Rightarrow (3)$, where:

- (1) $C_p(X)$ is the union of κ countably compact subsets.
- (2) $C_p(X, I)$ is the union of κ countably compact subsets.
- (3) X is a P-space.

For a cardinal number τ , we say that a space X is weak- τ -pseudocompact if every discrete collection of open sets in X has cardinality $< \tau$. Then, we have that a space X is pseudocompact if and only if it is weak- \aleph_0 -pseudocompact.

2.4. Theorem. Let X be a topological space and let $\kappa < kcov(\omega^{\tau})$. Then $(1) \Rightarrow (2) \Rightarrow (3)$, where:

- (1) X is not discrete and $\mathbb{R}^X \setminus C_p(X)$ is contained in the union of κ countably compact subsets of \mathbb{R}^X .
- (2) $C_p(X)$ is contained in the union of κ countably compact subsets of \mathbb{R}^X .
- (3) X is weak- τ -pseudocompact.

Proof. (1) \Rightarrow (2): Assume that $\mathbb{R}^X \setminus C_p(X)$ is contained in the union of κ countably compact subsets of \mathbb{R}^X . Since X is not discrete, there exists $f_0 \in \mathbb{R}^X \setminus C_p(X)$, and $C_p(X) + f_0 \subset \mathbb{R}^X \setminus C_p(X) \subset \bigcup_{\alpha < \kappa} K_\alpha$ where K_α is a countably compact subset of \mathbb{R}^X . Thus, $C_p(X) \subset \bigcup_{\alpha < \kappa} (K_\alpha - f_0)$. Moreover $K_\alpha - f_0$ is countably compact for every $\alpha < \kappa$.

(2) \Rightarrow (3): Now, assume that $C_p(X) \subset \bigcup_{\alpha < \kappa} K_\alpha \subset \mathbb{R}^X$, each K_α is countably compact, and assume that $(U_\lambda)_{\lambda < \tau}$ is a discrete collection of open nonempty subsets of X. For each $\lambda < \tau$ fix $b_\lambda \in U_\lambda$ and fix $h_\lambda : X \to [0, 1]$, continuous, such that $h_\lambda(b_\lambda) = 1$ and $h_\lambda(t) = 0$ if $t \in X \setminus U_\lambda$.

For each $\alpha < \kappa$ define $g_{\alpha} : \tau \to \omega$ as follows: For each $\lambda < \tau$ we define

$$g_{\alpha}(\lambda) = n_{\lambda}^{\alpha}$$
 where $\pi_{b_{\lambda}}[K_{\alpha}] \subset [-n_{\lambda}^{\alpha}, n_{\lambda}^{\alpha}]$

For each $\alpha < \kappa$, we take $C_{\alpha} = \prod_{\lambda < \tau} [-n_{\lambda}^{\alpha}, n_{\lambda}^{\alpha}]$. Each C_{α} is a compact subset of ω^{τ} . Since $\kappa < kcov(\omega^{\tau})$, there is $f : \tau \to \omega$ such that $f \notin \bigcup_{\alpha < \kappa} C_{\alpha}$.

Define $\phi : X \to \mathbb{R}$ as $\phi(t) = \sum_{\lambda < \tau} f(\lambda) \cdot h_{\lambda}(t)$. Since $(U_{\lambda})_{\lambda < \tau}$ is discrete, ϕ is continuous. Hence, there is $\beta < \kappa$ such that $\phi \in K_{\beta}$. For each $\lambda < \tau$, $\phi(b_{\lambda}) = f(\lambda)$, and $f(\lambda) \in [-n_{\lambda}^{\beta}, n_{\lambda}^{\beta}]$, hence, $f \in C_{\beta}$, which is a contradiction. Then, every discrete collection of nonempty open subsets of X must be of cardinality $< \tau$. \Box

For a space X we denote by $\vartheta(X)$ the supremum of the set $\{|\mathcal{C}| : \mathcal{C} \text{ is a discrete}$ collection of open sets of X}. By Theorem 2.4, if X is not discrete, $\vartheta(X) \leq$

 $kcov(C_p(X))$. Observe that if X is discrete and infinite, then $\check{C}(C_p(X)) = \check{C}(\mathbb{R}^X) = |X|$ (Lemma 2.1 in [OT]) and $kcov(C_p(X)) = kcov(\mathbb{R}^X) = kcov(\omega^X)$. In fact, since \mathbb{N}^X is a closed subset of \mathbb{R}^X , $kcov(\mathbb{R}^X) \ge kcov(\omega^X)$. On the other hand, \mathbb{R} is a continuous image of ω^{ω} , so \mathbb{R}^X is a continuous image of ω^X ; then, $kcov(\mathbb{R}^X) \le kcov(\omega^X)$.

Theorems 2.1 and 2.4 produce the following corollaries.

2.5. Corollary. Let X be a topological space and let $\omega \leq \kappa < \mathfrak{d}$. Then $C_p(X)$ is contained in the union of κ countably compact subsets of \mathbb{R}^X if and only if X is pseudocompact.

Proof. If X is pseudocompact, then $C_p(X) \subset \bigcup_{n < \omega} [-n, n]^X \subset \mathbb{R}^X$. The converse follows from Theorem 2.4. \Box

D.B. Shakmatov and V.V. Tkachuk, and N.V. Velichko proved that $C_p(X)$ is σ -compact $\Leftrightarrow C_p(X)$ is σ -countably compact $\Leftrightarrow X$ is finite (see [TS] and Corollary I.2.4 in [Ar]). The following result is a generalization of their result.

2.6. Corollary. $kcov(C_p(X)) < \mathfrak{d}$ if and only if X is finite.

Proof. If X is finite of cardinality n, then $kcov(C_p(X)) = kcov(\mathbb{R}^n) = \aleph_0 < \mathfrak{d}$. If $kcov(C_p(X)) < \mathfrak{d}$ then X is a pseudocompact P-space, that is, X is finite. \Box

2.7. Corollary. If X is a non-discrete space, then $kcov(C_p(X)) \geq \mathfrak{d}$.

We cannot have a similar result to the last corollary for $C_p(X, I)$. In fact, let $X = Y \cup \{p\}$ be the one point Lindelöfication of the discrete space $Y = \{y_\lambda : \lambda < \omega_1\}$, where $p \notin Y$ is the distinguished point. We have that $C_p(X, I)$ is equal to $\bigcup_{\alpha < \omega_1} F_\alpha$ where $F_\alpha = [0, 1]^{Y_\alpha} \times \Delta_\alpha$ where $Y_\alpha = \{y_\gamma : \gamma < \alpha\}$ and Δ_α is the diagonal in $[0, 1]^{X \setminus Y_\alpha}$. Each F_α is a closed subset of $[0, 1]^X$, so it is compact. Then $C_p(X, I)$ is the union of ω_1 compact subsets, and it is consistent with ZFC that $\omega_1 < \mathfrak{d}$.

Since $C_p(X, I)$ is a closed subset of $C_p(X)$ and $C_p(X) = \mathbb{R}^X \cap C_p(X, [-\infty, \infty])$, then $kcov(C_p(X, I)) \leq kcov(C_p(X)) \leq kcov(C_p(X, I)) \cdot kcov(\omega^{|X|})$ always happens. Moreover, if $X = \beta \omega$, then $kcov(C_p(X)) \leq 2^{d(X)} = \mathfrak{c} < 2^{\mathfrak{c}} = ec(X) < kcov(\omega^{|X|})$.

3. $\check{C}(C_p(X))$ for spaces X with countable functional tightness

Let τ be a cardinal number. A function $f: X \to Y$ is called τ -continuous if for every subspace A of cardinality $\leq \tau$, the restriction of f to A is continuous. The functional tightness $t_{\theta}(X)$ of a space X is the smallest infinite cardinal τ such that every realvalued τ -continuous function on X is continuous [A2]. A function $f: X \to Y$ is called strictly- τ -continuous if for every subspace A of cardinality $\leq \tau$, there is a continuous function $g: X \to Y$ for which $g \upharpoonright A = f \upharpoonright A$. The weak functional tightness $t_{\mathbb{R}}(X)$ of a space X is the smallest infinite cardinal τ such that every realvalued strictly- τ -continuous function on X is continuous [A1], [A2]. It is obvious that for every space X, $t_{\mathbb{R}}(X) \leq t_{\theta}(X)$, and $t_{\mathbb{R}}(X) = t_{\theta}(X)$ if X is normal (see [Ar], Proposition II.4.8). Also, note that if t(X) denotes the tightness of X, then $t_{\theta}(X) \leq t(X)$. Besides, $t_{\theta}(X)$ is always \leq to the density d(X) of X(see Proposition II.4.2 in [Ar]). The topological cardinal function $t_{\mathbb{R}}$ measures some kind of degree of realcompactness of $C_p(X)$. In particular, $C_p(X)$ is realcompact if and only if $t_{\mathbb{R}}(X) = \aleph_0$, [Ar], Theorem II.4.16. **3.1. Proposition.** Let X be a space and κ be a cardinal number. Assume that $t_{\theta}(X) < cof(ec(X))$ and that for every subspace Z of X of cardinality < ec(X), $\check{C}(C_p(Z,I)) \leq \kappa$. Then $\check{C}(C_p(X,I)) \leq cof(ec(X)) \cdot \kappa$.

Proof. Let Y be a clopen subspace of X of cardinality ec(X) such that $X \setminus Y$ is discrete. Then $t_{\theta}(Y) = t_{\theta}(X)$ and $\check{C}(C_p(X, I)) = \check{C}(C_p(Y, I))$. Let $\{y_{\lambda} : \lambda < ec(X)\}$ be a faithful enumeration of Y. For each ordinal number $\gamma < ec(X)$, let $Z_{\gamma} = \{y_{\lambda} : \lambda < \gamma\}$ and $C_{\gamma} = \{f \in I^Y : f \upharpoonright Z_{\gamma} \in C_p(Z_{\gamma}, I)\}$. Let $\{\Omega_{\alpha} : \alpha < \kappa\}$ be a collection of open sets in $I^{Z_{\gamma}}$ which satisfies $C_p(Z_{\gamma}, I) = \bigcap_{\alpha < \kappa} \Omega_{\alpha}$. Consider the set $W_{\alpha} = \Omega_{\alpha} \times I^{Y \setminus Z_{\gamma}}$ for each $\alpha < \kappa$. They are open in I^Y and $\bigcap_{\alpha < \kappa} W_{\alpha} = C_{\gamma}$. So $\check{C}(C_{\gamma}) \leq \check{C}(C_p(Z_{\gamma}, I)) \leq \kappa$. On the other hand, $C_{\gamma}^0 = \{f \in C_{\gamma} : f(y_{\alpha}) = 0$ for every $\alpha \ge \gamma\}$ is a closed subset of C_{γ} which is homeomorphic to $C_p(Z_{\gamma}, I)$. Thus, $\check{C}(C_{\gamma}) = \check{C}(C_p(Z_{\gamma}, I))$. Moreover, it is easy to prove that $C_p(Y, I) \subset \bigcap_{\gamma < ec(X)} C_{\gamma}$. Now, from the fact that $t_{\theta}(Y) = t_{\theta}(X) < cof(ec(X))$, we get $C_p(Y, I) = \bigcap_{\delta < cof(ec(X))} C_{\gamma(\delta)}$. Therefore, $\check{C}(C_p(X, I)) \le cof(ec(X)) \cdot \kappa$. \Box

3.2. Theorem. For every space $X, \check{C}(C_p(X, I)) \leq ec(X)^{t_{\mathbb{R}}(X)}$.

Proof. Let Y be a clopen subspace of X with $X \setminus Y$ discrete and |Y| = ec(X). We are going to prove that $\check{C}(C_p(Y, I)) \leq |Y|^{t_{\mathbb{R}}(Y)}$. Observe that $t_{\mathbb{R}}(Y) = t_{\mathbb{R}}(X)$. Let \mathcal{A} denote the set of all infinite subsets of Y of cardinality $\leq t_{\mathbb{R}}(Y)$. (So, $|\mathcal{A}| \leq |Y|^{t_{\mathbb{R}}(Y)}$).

For each $A \in \mathcal{A}$ we consider the set $C_A = \{f \in C_p(A, I) : \exists g \in C_p(Y, I) \text{ with } g \upharpoonright A = f \upharpoonright A\}$. We have that $\check{C}(C_A) \leq 2^{|A|} \leq 2^{t_{\mathbb{R}}(Y)}$. Put $\lambda = 2^{t_{\mathbb{R}}(Y)}$ and fix a family $\{\Omega_{\alpha}^A : \alpha < \lambda\}$ of open subsets of I^A such that

(1)
$$\bigcap_{\alpha < \lambda} \Omega^A_{\alpha} = C_A.$$

Now define, for each $A \in \mathcal{A}$ and $\alpha < \lambda$, $W^A_{\alpha} = \Omega^A_{\alpha} \times I^{Y \setminus A}$ which is open in I^Y . We shall prove that

(2)
$$\bigcap_{A \in \mathcal{A}} \bigcap_{\alpha < \lambda} W^A_{\alpha} = C_p(Y, I).$$

Indeed, if $f \in C_p(Y, I)$, then $f \upharpoonright A \in C_A$ for every $A \in \mathcal{A}$ and $f \upharpoonright A \in \Omega^A_{\alpha}$, for every $\alpha < \lambda$, hence $f \in W^A_{\alpha}$ for every $A \in \mathcal{A}$ and every $\alpha < \lambda$. On the other hand, if $g: Y \to I$ is not continuous, there exists $A \subset Y$ of cardinality $\leq t_{\mathbb{R}}(Y)$ such that $g \upharpoonright A \notin C_A$; so, there is $\beta < \lambda$ for which $g \upharpoonright A \notin \Omega^A_{\beta}$. Therefore, $g \notin W^A_{\beta}$. \Box

3.3. Corollary. For every space X with $ec(X) = ec(X)^{t_{\mathbb{R}}(X)}$, $\check{C}(C_p(X, I)) = ec(X)$.

The following result, which follows from Corollary 3.3, answers Question 4.19 in [OT] in the affirmative.

3.4. Corollary. Let X be a metrizable space with $ec(X) = \mathfrak{c}$. Then

$$\check{C}(C_p(X,I)) = \mathfrak{c}$$

Theorem 3.2 produces:

3.5. Corollary. For every space X,

$$\check{C}(C_p(X,I)) \le ec(X)^{t_{\theta}(X)} \le \min\{ec(X)^{t(X)}, ec(X)^{d(X)}\}.$$

We have that $ec(\beta\omega) = ec(\omega^*) = |\omega^*| = 2^{2^{\omega}}$ and $t(\beta\omega) = t(\omega^*) = 2^{\omega}$; thus $\check{C}(C_p(\beta\omega, I)) = \check{C}(C_p(\omega^*, I)) = 2^{2^{\omega}}$.

3.6. Corollary. Let X be a topological space with $ec(X) = \mathfrak{c}$. If $C_p(X)$ is a realcompact space, then $\check{C}(C_p(X, I)) = \mathfrak{c}$.

Proof. The hypothesis of this Corollary implies that $t_{\mathbb{R}}(X) = \aleph_0$ (see II.4.16 in [Ar]). Now, in order to finish the proof, we have only to apply Corollary 3.3. \Box

Even for collectionwise normal spaces X with essential cardinality \mathfrak{c} , $ec(X) = \mathfrak{c} = \check{C}(C_p(X, I))$ does not imply the realcompactness of $C_p(X)$ as was noted by O. Okunev. In fact, let $X = [0, \mathfrak{c}]$. We have that $\mathfrak{c} = ec([0, \mathfrak{c}]) \leq \check{C}(C_p([0, \mathfrak{c}], I) \leq kcov(\mathfrak{c}^{\omega})) = \mathfrak{c}$ (see [AT]). On the other hand, $t_{\mathbb{R}}([0, \mathfrak{c}]) = \mathfrak{c} > \aleph_0$, so $C_p([0, \mathfrak{c}])$ is not realcompact. Also observe that $\check{C}(C_p([0, \mathfrak{c}], I) = \mathfrak{c})$ is strictly less than $ec([0, \mathfrak{c}])^{t_{\mathbb{R}}([0, \mathfrak{c}])} = 2^{\mathfrak{c}}$.

Since, for every non-discrete space X, $t_{\mathbb{R}}(X) \leq ec(X)$, we have $ec(X)^{t_{\mathbb{R}}(X)} \leq 2^{ec(X)}$. Therefore, for every non-discrete space X, $ec(X) \leq \check{C}(C_p(X,I)) \leq 2^{ec(X)}$. In particular, GCH implies $ec(X) \leq \check{C}(C_p(X,I)) \leq ec(X)^+$ for every non-discrete space X.

4. $\check{C}(C_p(X))$ for Eberlein-Grothendieck spaces X

A space X is an *Eberlein-Grothendieck* space or an *EG*-space if it is a subspace of a space $C_p(Y)$ where Y is a compact space (or, equivalently, X is a subspace of $C_p(Y)$ for a σ -compact space Y, [Ar], Theorem. III.1.11).

The following lemma is proved in [OT, Lemma 4.3].

4.1. Lemma. Let X be a subspace of $C_p(Y)$, K a compact set in X, and let C be the set of all functions in I^X that are continuous at every point of K. Then there is a family $\{B_{mn} : m \in \mathbb{N}^+, n \in \mathbb{N}^+\}$ of subsets of I^X such that

- (1) $C = \bigcap_{m \in \mathbb{N}^+} \bigcup_{n \in \mathbb{N}^+} B_{mn}$, and
- (2) for any $m, n \in \mathbb{N}^+$, B_{mn} is a continuous image of a closed subspace of $Y^n \times I^X$.

We utilize Lemma 4.1 to prove the following result that generalizes Corollary 4.5 in [OT]. It is worth recalling here Definition 3.1 in [OT]: for two cardinal numbers $\tau \geq 1$ and λ , a space X is $K(\tau, \lambda)$ -analytic if X is a continuous image of a closed subspace of a product of τ^{λ} and a compact space.

4.2. Theorem. For every EG-space X,

$$ec(X) \leq C(C_p(X, I)) \leq kcov(ec(X)^{\omega}).$$

Proof. Let Z be a compact space such that X is a subspace of $C_p(Z)$. Let Y be a subspace of X such that $X \setminus Y$ is clopen, discrete and |Y| = ec(X). We have

that $\check{C}(C_p(X,I)) = \check{C}(C_p(Y,I))$. So we are going to prove that $\check{C}(C_p(Y,I)) \leq$ $kcov(|Y|^{\omega})$. Let \mathcal{C} be a compact cover of Y with minimal cardinality ($|\mathcal{C}| =$ kcov(Y)). For each $K \in \mathcal{C}$ we take the set $C_K = \{f \in I^Y : f \text{ is continuous } dx \}$ (as a function from Y to I) in each point of K}. Lemma 4.1 guaranties that there exists a family $\{B_{mn}^K : m, n < \omega\}$ of subsets of I^Y such that

- (1) $C_K = \bigcap_{m < \omega} \bigcup_{n < \omega} B_{mn}^K$, and (2) each B_{mn}^K is a continuous image of a closed subspace of $Z^n \times I^Y$.

Since Z is a compact space, each B_{mn}^K is compact, so $I^Y \setminus B_{mn}^K$ is an open subset of I^Y , but each open subset of I^Y is the union of |Y| compact subsets because I^Y is a locally compact space with weight equal to |Y|. Say $I^Y \setminus B_{mn}^K = \bigcup_{\alpha < |Y|} C_{\alpha}$ where C_{α} is compact for every $\alpha < |Y|$. Therefore, $I^{Y} \setminus C_{K} = \bigcup_{m < \omega} \bigcap_{n < \omega} \bigcup_{\alpha < |Y|} C_{\alpha}$ is a $K(|Y|, \omega)$ -analytic set. This means that $\check{C}(C_K) = kcov(I^Y \setminus C_K) \leq kcov(|Y|^{\omega})$ ([OT], Proposition 3.2). For each $K \in \mathcal{C}$, let \mathcal{A}_K be a family of open subsets of I^{Y} with cardinality $\leq kcov(|Y|^{\omega})$ satisfying $C_{K} = \bigcap \mathcal{A}_{K}$. We have that $C_{p}(Y, I) =$ $\bigcap_{K \in \mathcal{C}} C_K$; so $C_p(Y, I) = \bigcap_{K \in \mathcal{C}} \bigcap \mathcal{A}_K$. Thus, $\check{C}(C_p(Y, I)) \leq kcov(Y) \cdot kcov(|Y|^{\omega}) =$ $kcov(|Y|^{\omega})$. \Box

It was proved in [OT] that for every non-discrete space X the relation $ec(X) \leq$ $C(C_p(X,I))$ holds; and Corollary 4.12, in the same article, states that if X contains a convergent sequence, then $C(C_n(X,I)) \geq \mathfrak{d}$. Thus, since every non-discrete metrizable space is an EG-space and contains a non trivial convergent sequence, we obtain for every non-discrete metrizable space X, $ec(X) \cdot \mathfrak{d} \leq C(C_p(X, I)) \leq C(C_p(X, I))$ $kcov(ec(X)^{\omega})$. Moreover, if $\tau < \omega_{\omega}$, then $kcov(\tau^{\omega}) = \tau \cdot \mathfrak{d}$. So, if X is a metrizable non-discrete space and $ec(X) < \omega_{\omega}$, then $\check{C}(C_p(X, I)) = ec(X) \cdot \mathfrak{d}$.

For a cardinal number τ , a space X is a $K_{\sigma\tau}$ -set if X is a subspace of a space Y and there are σ -compact subspaces Y_{λ} of Y ($\lambda < \tau$) such that $X = \bigcap_{\lambda < \tau} Y_{\lambda}$. If X is a $K_{\sigma\tau}$ -set, then X is an $F_{\sigma\tau}$ -set in every space where X is embedded.

4.3. Proposition. Let X be a non-discrete EG-space and let $\tau = kcov(X)$. Then $C_p(X, I)$ is a $K_{\sigma\tau}$ -set.

Proof. Let $X = \bigcup_{\lambda < \tau} K_{\lambda}$ where K_{λ} is compact for all $\lambda < \tau$. By Lemma 4.1, for each $\lambda < \tau$, $C_{\lambda} = \{f : X \to I : f \text{ is continuous at each point in } K_{\lambda}\} =$ $\bigcap_{m < \omega} \bigcup_{n < \omega} B_{mn}^{\lambda}$ where B_{mn}^{λ} is compact for each $m, n < \omega$ and each $\lambda < \tau$. Therefore, $C_p(X, I) = \bigcap_{\lambda < \tau} \bigcap_{m < \omega} \bigcup_{n < \omega} B_{mn}^{\lambda}$; that is $C_p(X, I)$ is a $K_{\sigma\tau}$ -set. \Box

4.4. Corollary. If X is a non-discrete EG-space and $\tau = kcov(X)$, then

$$kcov(C_p(X, I)) \le kcov(\omega^{\top}) \le kcov(\omega^{|X|}).$$

Proof. By Proposition 4.5, $C_n(X, I)$ is an $F_{\sigma\tau}$ -set in I^X . So, it is $K(\omega, \tau)$ -analytic and $kcov(C_p(X,I)) \leq kcov(\omega^{\tau})$ (see Corollary 3.4 in [OT]). The last inequality follows because $kcov(X) \leq |X|$ always holds.

5. $\check{C}(C_n(X))$ when X is a sequential space

5.1. Definitions. ([S]) (a) For a topological space X, a collection \mathcal{P} of subsets of X is called a sequential base if for every point $x \in X$ one can assign a collection $\mathcal{P}_x \subset \mathcal{P}^\omega$ such that

(1) if $(P_n)_{n < \omega} \in \mathcal{P}_x$, then $x \in \bigcap_{n < \omega} P_n$ and $P_{n+1} \subset P_n$ for each $n < \omega$,

(2) a set V is open in X iff for every point $x \in V$ and every $(P_n)_{n < \omega} \in \mathcal{P}_x$ there exists $m < \omega$ such that $P_m \subset V$.

(b) Let \mathcal{P} be a sequential base of a space X. Then, the fan number of \mathcal{P} , denoted $fn(\mathcal{P})$, is the smallest cardinal τ such that for each $x \in X$, the collection \mathcal{P}_x may be chosen with cardinality $\leq \tau$.

S.A. Svetlichny proved in [S] that a space X is sequential iff X has a sequential base.

In the sequel we will use the following

5.2. Notations. For each $n < \omega$, we will denote as \mathcal{E}_n the collection of intervals

$$[0, 1/2^{n+1}), (1/2^{n+2}, 3/2^{n+2}), (1/2^{n+1}, 2/2^{n+1}), (3/2^{n+2}, 5/2^{n+2}), \dots$$
$$\dots, ((2^{n+2}-2)/2^{n+2}, (2^{n+2}-1)/2^{n+2}), ((2^{n+1}-1)/2^{n+1}, 1].$$

Observe that \mathcal{E}_n is an irreducible open cover of [0, 1] and each element in \mathcal{E}_n has diameter $= 1/2^{n+1}$. For a set S and a point $y \in S$, we will use the symbol $[yS]^{<\omega}$ in order to denote the collection of finite subsets of S containing y.

5.3. Theorem. For every non-discrete sequential space X with sequential base \mathcal{P} ,

$$ec(X) \cdot \mathfrak{d} \leq \check{C}(C_p(X, I)) \leq fn(\mathcal{P}) \cdot kcov(ec(X)^{\omega})$$

Proof. Let Y be a clopen subspace of X for which $X \setminus Y$ is discrete and |Y| = ec(X). For each $y \in Y$, each $(T_n)_{n < \omega} \in \mathcal{P}_y$ and each $n < \omega$, we take $S_n = T_n \cap Y$. Let $\mathcal{P}'_y = \{(S_n)_{n < \omega} : (T_n)_{n < \omega} \in \mathcal{P}_y\}$. Observe that $\mathcal{P}' = \{S_m : m < \omega, (T_n)_{n < \omega} \in \mathcal{P}_y\}$ and $y \in Y\}$ is a sequential base for Y where for each $y \in Y$, $\mathcal{P}'_y = \{(S_n)_{n < \omega} : (T_n)_{n < \omega} \in \mathcal{P}_y\}$. Moreover $fn(\mathcal{P}') \leq fn(\mathcal{P})$.

For each $y \in Y'$, $s = (S_n)_{n < \omega} \in \mathcal{P}'_y$, $m, n < \omega$, $E \in \mathcal{E}_n$ and $F \in [yS_m]^{<\omega}$, we take the set

$$B(y, s, E, m, F) = \prod_{z \in Y} J_z$$

where $J_z = E$ if $z \in F$ and $J_z = I$ if $z \notin F$. Let

$$B(y, s, n, m, F) = \bigcup_{E \in \mathcal{E}_n} B(y, s, E, m, F).$$

We define

$$B(y,s,n,m) = \bigcap \{B(y,s,n,m,F) : F \in [yS_m]^{<\omega}\}.$$

Because $S_m \subset Y$, B(y, s, n, m) is the intersection of $\leq ec(X)$ open subsets B(y, s, n, m, F) of I^Y . Now we define $G(y, s, n) = \bigcup_{m < \omega} B(y, s, n, m)$, $G(y, s) = \bigcap_{n < \omega} G(y, s, n)$, $G(y) = \bigcap_{s \in \mathcal{P}'_y} G(y, s)$ and, finally, $G = \bigcap_{y \in Y'} G(y)$.

Claim: G = C(Y, I).

Indeed, let $g \in C(Y, I)$, $y \in Y'$, $s = (S_n)_{n < \omega} \in \mathcal{P}'_y$ and $n < \omega$. We shall prove that $g \in G(y, s, n)$; that is, we are going to show that there is $m < \omega$ so that

 $g \in B(y, s, n, m)$. There is $E \in \mathcal{E}_n$ such that $g(y) \in E$. Since g is a continuous function in y, there exists an open set V of Y containing y for which $g(V) \subset E$. By definition of sequential base, there exists $N < \omega$ such that $S_N \subset V$. For every $F \in [yS_N]^{<\omega}$, $g \in B(y, s, E, N, F)$. Then, $g \in B(y, s, n, N)$. Therefore, $C(Y, I) \subset G$.

Now, assume that $h \in I^Y \setminus C(Y, I)$. There are a point $y \in Y'$, $\epsilon > 0$ and a sequence $x_0, x_1, ..., x_n, ...$ in $Y \setminus \{y\}$ which converges to y and such that

$$(*) |h(x_n) - h(y)| \ge \epsilon$$

for all $n < \omega$. Let $k \ge 1$ such that $1/2^k < \epsilon$. The set $W' = Y \setminus (\{x_n : n < \omega\} \cup \{y\})$ is open, and $W = Y \setminus \{x_n : n < \omega\}$ is not open. This means that there exists $s = (S_n)_{n < \omega} \in \mathcal{P}'_y$ such that, for every $m < \omega$,

$$(**) S_m \cap \{x_n : n < \omega\} \neq \emptyset.$$

We want to show that $h \notin G(y, s, k)$. Assume that for an $m < \omega, h \in B(y, s, k, m)$. This means that $h \in \bigcap \{B(y, s, k, m, F) : F \in [yS_m]^{<\omega}\}$. Because of (**), there is $x_t \in S_m$. Take $F = \{x_t, y\}$. Our hypothesis implies that h must belong to B(y, s, k, m, F). But this means that $|h(x_t) - h(y)| < 1/2^k$, which contradicts (*). So, we have to conclude that G = C(X, I).

Thus, the complement of G in I^Y is equal to

$$\bigcup_{y \in Y'} \bigcup_{s \in \mathcal{P}'_y} \bigcup_{n < \omega} (I^Y \setminus G(y, s, n));$$

that is, $I^Y \setminus G$ is the union of $\leq |Y'| \cdot fn(\mathcal{P}') \cdot \omega$ sets M_α ($\alpha < |Y'| \cdot fn(\mathcal{P}') \cdot \omega$) each of them being the countable intersection of sets of the form $I^Y \setminus B(y, s, n, m)$.

We have that $I^Y \setminus B(y, s, n, m) = I^Y \setminus \bigcap \{B(y, s, n, m, F) : F \in [yS_m]^{<\omega}\} = \bigcup \{I^Y \setminus B(y, s, n, m, F) : F \in [yS_m]^{<\omega}\}$. That is, each M_α is a set of the form $\bigcap_{m < \omega} \bigcup_{F \in [yS_m]^{<\omega}} (I^Y \setminus B(y, s, n, m, F))$. But this means that M_α is an $F_{|Y|\delta}$ -set in I^Y . Now, Corollary 3.4 in [OT] guaranties that $kcov(M_\alpha) \leq kcov(|Y|^\omega)$, so $I^Y \setminus G$ is the union of $\leq |Y'| \cdot fn(\mathcal{P}') \cdot kcov(|Y|^\omega)$ compact subsets of I^Y . That is,

$$\check{C}(C_p(X,I)) \le |Y'| \cdot fn(\mathcal{P}') \cdot kcov(|Y|^{\omega}) \le fn(\mathcal{P}) \cdot kcov(ec(X)^{\omega}). \quad \Box$$

A space X is weakly-quasi-first-countable if it has a sequential base with fan number $\leq \aleph_0$. In particular, every first countable space is weakly-quasi-first-countable. In fact, for each $x \in X$, we take a countable local base $\mathcal{B}_x = \{B_n : n < \omega\}$ of x in X satisfying $B_{n+1} \subset B_n$ for every n. The collection $\mathcal{P} = \bigcup_{x \in X} \mathcal{B}_x$ plus the assignment $x \to \mathcal{B}_x$ constitute a sequential base for X, and $fn(\mathcal{P}) = 1$. Theorem 5.3 implies:

5.4. Corollary. If X is a non-discrete weakly-quasi-first-countable space (in particular, if X is first countable), then

$$ec(X) \cdot \mathfrak{d} \leq \check{C}(C_p(X, I)) \leq kcov(ec(X)^{\omega}).$$

5.5. Corollary. If X is a non-discrete weakly-quasi-first-countable space (in particular, if X is non-discrete and first countable) of cardinality $< \omega_{\omega}$, then

$$C(C_p(X,I)) = ec(X) \cdot \mathfrak{d}.$$

Proof. This is a consequence of the previous result and Proposition 3.6, Corollaries 4.8 and 4.12 in [OT]. \Box

5.6. Problem. Does every Fréchet-Urysohn space X have a sequential base \mathcal{P} with the property $fn(\mathcal{P}) \leq kcov(ec(X)^{\omega})$?

The following result is Theorem 2.7 in [S].

5.7. Theorem. The following are equivalent for a space X and any cardinal τ :

- (1) X is a quotient of a metric space having cardinality τ .
- (2) $|X| \leq \tau$ and X has a sequential base \mathcal{P} such that $fn(\mathcal{P}) \leq \tau$.

As a consequence of this last result and Theorem 5.3, we have:

5.8. Corollary. If a non-discrete space X is the quotient of a metric space of cardinality τ , then

$$ec(X) \cdot \mathfrak{d} \leq \check{C}(C_p(X, I)) \leq \tau \cdot kcov(ec(X)^{\omega}).$$

Let X be a sequential space and $x \in X$. A base of sequences centered in x is a collection S of sequences in $X \setminus \{x\}$ converging to x and such that, for each sequence $(y_n)_{n < \omega}$ in $X \setminus \{x\}$ which converges to x, there is a sequence $(x_n)_{n < \omega} \in S$ such that $|\{x_n : n < \omega\} \cap \{y_n : n < \omega\}| = \aleph_0$. Denote by Seq(X, x) the minimum element in $\{|S| : S$ is a base of sequences centered in x}. Let $Seq(X) = sup\{Seq(X, x) : x \in X\}$. It is possible to prove that every sequential space X has a sequential base with fan number $\leq Seq(X)$; so the following result follows from Theorem 5.3.

5.9. Corollary. For every non-discrete sequential space X we have

 $ec(X) \cdot \mathfrak{d} \leq \check{C}(C_p(X, I) \leq Seq(X) \cdot kcov(ec(X)^{\omega}).$

6. The Čech number of $C_p(X)$ when X is a k-space

6.1. Definition. A family \mathcal{D} of closed subsets of a space X determines the topology of X if $F \subset X$ is closed in X iff $F \cap D$ is closed in D for every $D \in \mathcal{D}$.

Note that for a collection \mathcal{D} of closed subsets which determines the topology of $X, X \setminus \bigcup \mathcal{D}$ is discrete and clopen, and every base for the closed subsets of Xdetermines the topology of X. Furtheremore, $\mathcal{D} = \emptyset$ or $\mathcal{D} = \{\emptyset\}$ determines the topology of X iff X is discrete.

6.2. Lemma. Let \mathcal{D} be a collection of closed subsets of a topological space X which determines its topology. Let Y be a topological space. A function $f : X \to Y$ is continuous if and only if $f \upharpoonright D$ is continuous for every $D \in \mathcal{D}$.

Proof. Evidently, if $f: X \to Y$ is continuous, $f \upharpoonright D$ is continuous. Now, assume that $g: X \to Y$ is a non-continuous function; so there exists a closed subset F of Y such that $g^{-1}[F]$ is not a closed subset of X. This means that there is $D \in \mathcal{D}$ for which $D \cap g^{-1}[F] = (g \upharpoonright D)^{-1}[F]$ is not closed in D. But this implies that $g \upharpoonright D$ is not a continuous function. \Box

6.3. Theorem. Let \mathcal{D} be a collection of closed subsets of a non-discrete space X which determines the topology of X. Then $\check{C}(C_p(X, I)) \leq |\mathcal{D}| \cdot \sup_{D \in \mathcal{D}} \check{C}(C_p(D, I))$.

Proof. For each $D \in \mathcal{D}$, denote by κ_D the cardinal number $\check{C}(C_p(D,I))$, and let $\{V^D_\alpha : \lambda < \kappa_D\}$ be a collection of open sets in I^D such that $C_p(D,I) = \bigcap_{\alpha < \kappa_D} V^D_\lambda$. For each $\alpha < \kappa_D$ we take the set $W^D_\alpha = I^{X\setminus D} \times V^D_\alpha$. Then, $C_p(X,I) = \bigcap_{D \in \mathcal{D}} \bigcap_{\alpha < \kappa_D} W^D_\alpha$. We obtain the conclusion of the Theorem because each W^D_α is an open subset of I^X . \Box

For a k-space X we denote by $\mathcal{K}(X)$ a collection of compact subsets of X which determine the topology of X with the smallest possible cardinality, and we denote with k(X) the cardinality of $\mathcal{K}(X)$.

6.4. Corollary. $\check{C}(C_p(X, I)) \leq k(X) \cdot \sup_{K \in \mathcal{K}(X)} \check{C}(C_p(K, I))$ for every non-discrete k-space X.

If for each point x in a sequential space, S_x is a base of sequences centered in x, and $S = \bigcup_{x \in X} S_x$, then $\{\{x_n : n < \omega\} \cup \{x\} : (x_n)_{n < \omega} \in S_x, x \in X\}$ determines the topology of X. Then:

6.5. Corollary. For a non-discrete sequential space X,

$$ec(X) \cdot \mathfrak{d} \leq \check{C}(C_p(X, I)) \leq Seq(X) \cdot ec(X) \cdot \mathfrak{d}.$$

This last result improves Corollary 5.9. In particular, if Σ is an almost disjoint collection of subsets of ω , and $\Psi(\Sigma)$ is the Mrowka space determined by Σ , $\check{C}(C_p(\Psi(\Sigma), I)) = |\Sigma| \cdot \mathfrak{d}$. Also, we obtain $\check{C}(C_p(V(\aleph_0), I)) = \mathfrak{d}$ where $V(\aleph_0)$ is the Fréchet fan.

Every countable compact space is a separable metrizable space, so, by the remark made after Theorem 4.2, $\check{C}(C_p(K, I)) = \mathfrak{d}$ for any non-discrete countable compact space K. Also, by Theorem 4.2, every non-discrete countable and sequential EGspace X satisfies $\check{C}(C_p(X, I)) = \mathfrak{d}$. As was noted to the authors by O. Okunev, not every countable EG-space is sequential. In fact, in [Ar] it is proved that $C_p(I)$ is not sequential (Lemma II.3.1). In this proof, it was considered a countable discrete subspace $\{f_n : n < \omega\}$ of $C_p(I)$ such that $X = \{f_n : n < \omega\} \cup \{\bar{0}\}$ is not sequential, where $\bar{0}$ is the constant function equal to 0. So X is a countable EG-space which is not sequential. Even more: X does not contain a non-trivial convergent sequence. On the other hand, every countable k-space is sequential. Then, for every countable k-space we have:

6.6. Corollary. For every non-discrete countable k-space X,

$$\mathfrak{d} \leq C(C_p(X, I)) \leq k(X) \cdot \mathfrak{d} \leq Seq(X) \cdot \mathfrak{d}.$$

We define θ as the smallest infinite cardinal number such that if (X, τ) is a countable sequential non-discrete space, there is a sequential base \mathcal{P} in X such that $fn(\mathcal{P}) \leq \theta$.

6.7. Proposition. Let (X, τ) be a Fréchet-Urysohn space. There is a sequential base \mathcal{P} of X such that $fn(\mathcal{P}) \leq \theta \cdot kcov(ec(X)^{\omega})$.

Proof. Let Y be a clopen subspace of X with |Y| = ec(X) and such that $X \setminus Y$ is discrete. Considering Y with its discrete topology, Y^{ω} can be covered by $kcov(ec(X)^{\omega}) = \lambda$ compact subsets K_{α} : $Y^{\omega} = \bigcup_{\alpha < \lambda} K_{\alpha}$. We may and shall assume that each K_{α} is of the type $\prod_{n < \omega} K_{\alpha,n}$, where $K_{\alpha,n}$ is a finite subset of Y. Fix $y \in X$, non isolated in (X, τ) . If $(b_n)_{n < \omega}$ is a sequence in Y converging to y with $b_n \neq b_m$ if $n \neq m$, then there is $\beta < \lambda$ such that

(1)
$$y \in \operatorname{cl}(\bigcup_{n < \omega} (K_{\beta, n} \setminus \{y\}).$$

As a subspace of (X, τ) , $\bigcup_{n < \omega} (K_{\beta,n} \setminus \{y\})$ is sequential and countable, so there is a sequential base $\mathcal{P}_{\beta,y}$ of $\bigcup_{n < \omega} (K_{\beta,n} \setminus \{y\})$ such that

(2)
$$fn(\mathcal{P}_{\beta,y}) \le \theta.$$

Now, we shall consider

(3)
$$\mathcal{P} = \bigcup \{ \mathcal{P}_{\beta, y} : \beta \text{ and } y \text{ satisfy } (1) \} \cup \{ \{ z \} : z \notin X' \},$$

and for each $y \in X'$ we take $\mathcal{P}_y = \{(P_n)_{n < \omega} : (P_n)_{n < \omega} \in \mathcal{P}_{\beta, y}\}$, and for $y \notin X'$, let $\mathcal{P}_y = \{(P_n)_{n < \omega}\}$ where $P_n = \{y\}$ for every $n < \omega$.

Claim: \mathcal{P} , with the assignment $y \to \mathcal{P}_y$, constitutes a sequential base of (X, τ) .

Conditions (1) and (2)(\Rightarrow) in Definition 5.1.(a) are evident for this \mathcal{P} and this assignment $y \to \mathcal{P}_y$. Now, let $V \subset X$ be such that for every $x \in V$ and $(P_n)_{n < \omega} \in \mathcal{P}_x$ there exists m such that $P_m \subset V$. We have to prove that V is open. Assume the contrary. Thus, $X \setminus V$ is not closed in (X, τ) , so there is a sequence of points in $X \setminus V$, $(b_n)_{n < \omega}$, converging to some $y \in V$. Fix $\beta < \lambda$ such that $(b_n)_{n < \omega} \in \prod_{n < \omega} K_{\beta,n}$. Since $\mathcal{P}_{\beta,y}$ is a sequential base, $V \cap (\bigcup_{n < \omega} K_{\beta,n} \cup \{y\})$ is open in the subspace $\bigcup_{n < \omega} K_{\beta,n} \cup \{y\}$. Hence, there is $\Omega \in \tau$ such that

(4)
$$V \cap \left(\bigcup_{n < \omega} K_{\beta, n} \cup \{y\}\right) = \Omega \cap \left(\bigcup_{n < \omega} K_{\beta, n} \cup \{y\}\right).$$

Since $y \in V$, $y \in \Omega$. Then, there is m_0 such that $b_m \in \Omega$ for every $m \geq m_0$. But this means that $b_m \in V$ for every $m \geq m_0$, which contradicts the choice of $(b_n)_{n < \omega}$. So, V must be open, and \mathcal{P} with the assignment $y \to \mathcal{P}_y$ is a sequential base of (X, τ) .

Moreover, $|\mathcal{P}_y| \leq \theta \cdot \lambda$ for every $y \in X$. \Box

6.8. Corollary. Let X be a non-discrete Fréchet-Urysohn space. Then,

$$ec(X) \cdot \mathfrak{d} \leq \check{C}(C_p(X, I) \leq \theta \cdot kcov(ec(X)^{\omega}).$$

7. $\check{C}(C_n(X))$ FOR COUNTABLE SPACES X

Recall that a separable completely metrizable space is called a *Polish space*; every subspace X of a Polish space which is a continuous image of a Polish space is called *analytic* (that is equivalent to saying that X is the continuous image of the space of irrational numbers with the topology inherited by the real line). A subspace Y of a Polish space X is called *co-analytic* if $X \setminus Y$ is analytic. A separable metrizable space is co-analytic if it is homeomorphic to a co-analytic set in a Polish space.

7.1. Proposition. If X is a Polish space and $F \subset X$ is co-analytic, then $\check{C}(F) \leq \mathfrak{d}$.

Proof. We have that $X \setminus F$ is analytic, so it is a continuous image of \mathbb{P} . Then $\check{C}(F) = kcov(X \setminus F) \leq kcov(\mathbb{P}) = \mathfrak{d}$. \Box

The following result is Corollary 21.21 in [Ke]

7.2. Theorem. Let X be a separable metrizable co-analytic space. Then X is Polish if and only if it contains no closed subset homeomorphic to \mathbb{Q} .

7.3. Proposition. Let X be a Polish space and let $F \subset X$ be co-analytic. If F is not Polish, then $\check{C}(F) = \mathfrak{d}$.

Proof. By Proposition 7.1, $\check{C}(F) \leq \mathfrak{d}$. Now, since F is not Polish it contains a closed copy of \mathbb{Q} . Hence, $\mathfrak{d} = \check{C}(\mathbb{Q}) \leq \check{C}(F)$. \Box

If X is a countable space, then $C_p(X, I)$ is a separable metrizable subspace of the Polish space I^{ω} . Moreover, if X is not discrete, $C_p(X, I)$ is not completely metrizable; so, in particular, if $C_p(X, I)$ is co-analytic it must contain a closed copy of \mathbb{Q} . Following this line of thoughts we get the following:

7.4. Theorem. If X is a countable non-discrete EG-space, then $\check{C}(C_p(X, I)) = \mathfrak{d}$.

Proof. Theorem 4.2 gives us $\check{C}(C_p(X, I)) \leq \mathfrak{d}$. On the other hand, by Proposition 4.5, $C_p(X, I)$ is co-analytic. Since X is not discrete, $C_p(X, I)$ is not a Polish space. Hence, $C_p(X, I)$ contains a closed copy of \mathbb{Q} (Theorem 7.2). This implies that $\mathfrak{d} \leq \check{C}(C_p(X, I))$. \Box

Of course, there are countable EG-spaces which are not metrizable. One way to construct such spaces is as follows: Let A be a dense countable subset of $C_p([0, 1])$. A is a countable EG-space, and A is not metrizable.

On the other hand, it is possible to give an example of a countable space which is not a EG-space. The Fréchet fan $V(\aleph_0)$ is a classic example.

7.5. Lemma. Let $a \in X$ and let $\{V_{\alpha} : \alpha < \kappa\}$ be a fundamental system of neighborhoods of a in X. Let $H_a = \bigcap_{n < \omega} \bigcup_{E \in \mathcal{E}_n} \bigcup_{\alpha < \kappa} (I^{X \setminus V_{\alpha}} \times E^{V_{\alpha}})$ (see Notations 5.2). Then, H_a is the set of all functions from X into I continuous at a.

Proof. Let $g: X \to I$ be continuous at a. For each $n < \omega$ there is $E \in \mathcal{E}_n$ such that $g(a) \in E$ and, since g is continuous at a, there is $\beta < \kappa$ such that $g[V_\beta] \subset E$, hence $g \in I^{X \setminus V_\beta} \times E^{V_\beta}$ and $g \in H_a$.

On the other hand, let $h \in I^X$ be a non continuous function at a. Hence, there is $n < \omega$ with the property

(*)
$$h[V_{\alpha}] \not\subset (h(a) - (1/2^{n+1}), h(a) + (1/2^{n+1}))$$

for all $\alpha < \kappa$. If $E \in \mathcal{E}_n$, the length of E is $\leq 1/2^{n+1}$. Because of (*), $h \notin I^{X \setminus V_\alpha} \times E^{V_\alpha}$ for all $E \in \mathcal{E}_n$, which implies $h \notin H_a$. \Box

For $a \in X$, denote by $\widetilde{\Delta}(X, a)$ the cardinal number $\min\{|V| : V \text{ is open and } a \in V\}$, and let $\widetilde{\Delta}(X) = \sup\{\widetilde{\Delta}(X, a) : a \in X\}$.

7.6. Corollary. For every non-discrete space X,

$$ec(X) \leq \check{C}(C_p(X, I)) \leq ec(X) \cdot kcov(\chi(X)^{\Delta(X)})$$

Proof. Let Y be an essential subspace of X of cardinality ec(X) $(X \setminus Y)$ is discrete and clopen). Let $\kappa = \chi(Y)$, and for each $y \in Y$, $\{V_{y,\alpha} : \alpha < \kappa\}$ be a fundamental system of neighborhoods of y in Y. Because of Lemma 7.5,

$$C_p(Y,I) = \bigcap_{y \in Y} \bigcap_{n < \omega} \bigcup_{E \in \mathcal{E}_n} \bigcup_{\alpha < \kappa} (I^{X \setminus V_{y,\alpha}} \times E^{V_{y,\alpha}}).$$

On the other hand,

$$I^{X \setminus V_{y,\alpha}} \times E^{V_{y,\alpha}} = \bigcap_{b \in V_{y,\alpha}} (I^{X \setminus \{b\}} \times E^{\{b\}}).$$

So,

$$\bigcup_{E \in \mathcal{E}_n} \bigcup_{\alpha < \kappa} (I^{X \setminus V_{y,\alpha}} \times E^{V_{y,\alpha}}) = \bigcup_{E \in \mathcal{E}_n} \bigcup_{\alpha < \kappa} \bigcap_{b \in V_{y,\alpha}} (I^{X \setminus \{b\}} \times E^{\{b\}}).$$

Let us call this last set G_y . Since $I^{X \setminus \{b\}} \times E^{\{b\}}$ is an open set in I^Y , $|\mathcal{E}_n| < \aleph_0$ and $\kappa \leq \chi(Y)$, G_y is a $G_{\widetilde{\Delta}(Y),\chi(Y)}$ -set. Then $\check{C}(G_y) \leq kcov(\chi(Y)^{\widetilde{\Delta}(Y)})$ (Corollary 3.5 in [OT]). So $\check{C}(C_p(X,I)) = \check{C}(C_p(Y,I)) \leq ec(X) \cdot kcov(\chi(Y)^{\widetilde{\Delta}(Y)})$ (Corollary 1.11 in [OT]). But $\chi(Y) = \chi(X)$ and $\widetilde{\Delta}(Y) = \widetilde{\Delta}(X)$; so, we have finished the proof of this corollary. \Box

7.7. Corollary. For every countable space $X, \check{C}(C_p(X, I)) \leq kcov(\chi(X)^{\omega})$.

In [LMP], Lutzer, van Mill and Pol defined for each subset S of the Cantor set 2^{ω} a topological space Σ_S as follows: let $T_n = 2^n$ be the set of functions from $\{0, 1, ..., n-1\}$ into $\{0, 1\}$. Let $T = \bigcup_{n \ge 1} T_n$ and partially order T by function extension. A branch of T is a maximal linearly ordered subset of T, i.e., a linearly ordered subset $B \subset T$ having $|B \cap T_n| = 1$ for each $n \ge 1$. Given $x \in 2^{\omega}$, the set $B_x = \{(x(0)), (x(0), x(1)), (x(0), x(1), x(2)), ...\}$ is a branch of T. Conversely, each branch B of T has the form $B = B_x$ for a unique $x \in 2^{\omega}$. For each subset $S \subset 2^{\omega}$, the collection $\{T \setminus (B_{x_1} \cup ... \cup B_{x_n} \cup F) : n \ge 1, x_i \in S$ and $F \in [T]^{<\omega}\}$ is a filter base. Let p_S be the filter generated by that filter base. Let $\Sigma_S = T \cup \{p_S\}$. Topologize Σ_S by isolating each point of T and by using the family $\{P \cup \{p_S\} : P \in p_S\}$ as a neighborhood base at p_S . All spaces Σ_S are Fréchet (the sequence (1), (0, 1), (0, 0, 1), ... converges to p_S). So:

7.8. Proposition. For every $S \subset 2^{\omega}$,

$$\mathfrak{d} \leq \check{C}(C_p(\Sigma_S)) = \check{C}(C_p(\Sigma_S, I)).$$

7.9. Proposition. If $S \subset 2^{\omega}$ is a co-analytic subset of 2^{ω} , then $\mathfrak{d} = \check{C}(C_p(\Sigma_S)) = \check{C}(C_p(\Sigma_S, I)).$

Proof. Since S is co-analytic in 2^{ω} , then $C_p(\Sigma_S, I)$ is co-analytic in I^{Σ_S} ([LMP], Theorem 3.1); so, $I^{\Sigma_S} \setminus C_p(\Sigma_S, I)$ is analytic. This means that

$$kcov(I^{\Sigma_S} \setminus C_p(\Sigma_S, I) \leq \mathfrak{d}.$$

Therefore, $\check{C}(C_p(\Sigma_S, I)) \leq \mathfrak{d}$. By Proposition 7.8, we must have $\check{C}(C_p(\Sigma_S, I)) = \mathfrak{d}$. \Box

For each filter \mathcal{F} on ω , we define the space $X_{\mathcal{F}} = \omega \cup \{\mathcal{F}\}$ with the following topology: each point in ω is isolated and a basic system of neighborhoods for \mathcal{F} are the sets of the form $\{\mathcal{F}\} \cup F$ where $F \in \mathcal{F}$.

In [C], Jean Calbrix considers, in addition to spaces of type Σ_S , countable spaces constructed as follows: Let X be a non-discrete metrizable separable space which contains a countable dense set ω where each of its points is isolated. Let $A = X \setminus \omega$. We identify A to a point p and we obtain the quotient space $X_{\mathcal{F}} = \omega \cup \{p\}$, where \mathcal{F} is the filter in ω generated by the trace in ω of the basic system of neighborhoods of p in $X_{\mathcal{F}}$. Calbrix called this kind of filters as filters of type \mathcal{A} . He proved also that every countable k-space with only a non-isolated point is Fréchet-Urysohn ([C], Lemma 2.1), and he mentions that for every filter \mathcal{F} of type \mathcal{A} , $X_{\mathcal{F}}$ is a sequential space. Thus for this kind of spaces, we have:

7.10. Corollary. For an \mathcal{A} -filter \mathcal{F} , $\mathfrak{d} \leq \check{C}(C_p(X_{\mathcal{F}}, I)) \leq |X| \cdot \mathfrak{d}$. In particular, if $|X| \leq \mathfrak{d}$, $\check{C}(C_p(X_{\mathcal{F}}, I)) = \mathfrak{d}$.

Proof. This is a consequence of Corollary 5.8. \Box

The final remarks of this section are due to a colleague. We truly thank him for his comments.

It is consistent with ZFC that there is a countable space X such that $\mathfrak{d} < \check{C}(C_p(X,I))$. Indeed, let S be a Bernstein set in the Cantor set 2^{ω} (that is, both S and $2^{\omega} \setminus S$ do not contain perfect subsets of 2^{ω}). Since all compact subsets of S and $2^{\omega} \setminus S$ are countable and $|S| = |2^{\omega} \setminus S| = 2^{\omega}$, we have that $kcov(S) = \check{C}(S) = 2^{\omega}$. Now, consider the corresponding space Σ_S defined in some paragraphs above. Since Σ_S is countable, $kcov(\omega^{|\Sigma_S|}) = \mathfrak{d}$. From the fact that $C(\Sigma_S)$ contains a closed copy of S ([LMP]), it follows that $kcov(C_p(\Sigma_S)) = \check{C}(C_p(\Sigma_S)) = 2^{\omega}$.

This example also shows that the strict inequality in Corollary 2.7 and the relation $\check{C}(C_p(X,I)) > kcov(ec(X)^{t_{\mathbb{R}}})$ (see Theorem 3.2) can consistently happen.

Since for every metrizable and separable space X, $|X| \leq 2^{\omega}$, if $\mathfrak{d} = 2^{\omega}$, then equalities in Corollary 7.10 hold. On the other hand, assume that $\mathfrak{d} < 2^{\omega}$ and let X be an uncountable compact metrizable space containing a countable dense set ω consisting of isolated points. Then $X_{\mathcal{F}}$ is homeomorphic to a convergent sequence. Hence, $\tilde{C}(C_p(X_{\mathcal{F}}, I)) = \mathfrak{d} < 2^{\omega} = |X|$.

> 8. Relations between $\check{C}(C_p(X))$ and Other cardinal topological functions

For each space X we define $nov(X) = min\{|\mathcal{C}| : \mathcal{C} \text{ is a cover of } X \text{ constituted by}$ nowhere dense subsets of X}, and, if X is realcompact, $Exp(X) = min\{\kappa : X \text{ can}$ be embedded as a closed subset of $\mathbb{R}^{\kappa}\}$. We also consider $\mathfrak{N} = min\{\tau : nov(I^{\tau}) = \tau\}$ **8.1. Lemma.** ([vD], Lemma 8.19) Let X be a separable metrizable space (or more generally, a space that has a perfectly normal compactification) that is not locally compact. Then $Exp(X) = kcov(bX \setminus X)$ for each compactification bX of X.

8.2. Corollary. Let X be a non-discrete countable space. Then, $\check{C}(C_p(X, I)) = Exp(C_p(X, I))$.

We always have that $\omega_1 \leq \mathfrak{N} \leq nov(\mathbb{R}) \leq \mathfrak{d}$ ([M]), and Martin's Axiom implies $\mathfrak{N} = \mathfrak{c}$. The following result can be proved similarly to Theorem 5.3 in [OT].

8.3. Proposition. If X is a non-discrete countable space, then $\hat{C}(C_p(X,I)) \geq nov(\mathbb{R})$.

8.4. Lemma. For every cardinal number $\tau \ge \omega$, $nov(\{0,1\}^{\tau}) = nov([0,1]^{\tau})$.

Proof. It is well known that there is an onto continuous irreducible map $G : \{0,1\}^{\tau} \to [0,1]^{\tau}$. If $S \subset \{0,1\}^{\tau}$ is closed and nowhere dense, then G[S] is closed and nowhere dense. And for each closed and nowhere dense subset $S \subset [0,1]^{\tau}$, $G^{-1}[S]$ is nowhere dense. Therefore, $nov(\{0,1\}^{\tau}) = nov([0,1]^{\tau})$. \Box

In [OT] it is asked if $nov(\mathbb{R})$ is equal to $\mathfrak{N} = \min\{\tau : nov(I^{\tau}) = \tau\}$ ([OT], Question 5.2). It was proved in [M] that it is consistent with ZFC that $nov(\mathbb{R}) = \aleph_2$ and $nov(\{0, 1\}^{\omega_1}) = \omega_1$. This proves, using Lemma 8.4, that the answer to Question 5.2 in [OT] is consistently negative.

It is easy to prove that $\check{C}(C_p(X, I)) \geq \check{C}(C_p(X, \{0, 1\})) \geq nov(I^{\tau})$ for every non-discrete 0-dimensional space X, where $\tau = ec(X)$.

In [OT] it is asked what the Cech number of the Σ -product of ω_1 copies of [0, 1]is; and it is remarked that the relation $\omega_1 \leq \check{C}(\Sigma I^{\omega_1}) \leq \mathfrak{d}$ holds. Observe that ΣI^{ω_1} and $I^{\omega_1} \setminus \Sigma I^{\omega_1}$ are dense subsets of I^{ω_1} , so $nov(I^{\omega_1}) \leq \check{C}(\Sigma I^{\omega_1})$. On the other hand, $\Sigma(0, 1)^{\omega_1} \cong C_p(Y)$, where Y is the one point Lindelöfication of the discrete space of cardinality ω_1 . Moreover, $\Sigma(0, 1)^{\omega_1} = \bigcap_{\lambda < \omega_1} A_{\lambda}$ where $A_{\lambda} = \{f \in \Sigma I^{\omega_1} : f(\lambda) \in (0, 1)\}$. Since A_{λ} is an open subset of ΣI^{ω_1} , $\Sigma(0, 1)^{\omega_1}$ is a G_{ω_1} -set of ΣI^{ω_1} . This means that $\check{C}(\Sigma(0, 1)^{\omega_1}) \leq \omega_1 \cdot \check{C}(\Sigma I^{\omega_1})$ (see Proposition 1.12 in [OT]). On the other hand, ΣI^{ω_1} is a closed subset of $\Sigma \mathbb{R}^{\omega_1}$. So, we have:

8.5. Proposition. $\omega_1 \leq nov(I^{\omega_1}) \leq \check{C}(\Sigma I^{\omega_1}) = \check{C}(\Sigma \mathbb{R}^{\omega_1}) \leq kcov((\omega_1)^{\omega}) = \mathfrak{d}.$

By the way, $ec(\Sigma I^{\omega_1}) = \mathfrak{c}$, then, using Corollary 4.8 in [OT] we know that $\check{C}(C_p(\Sigma I^{\omega_1}, I)) \geq \mathfrak{c}$. Moreover, Kombarov proved in [Ko] that the tightness of ΣI^{ω_1} is \aleph_0 , so, by Theorem 3.2, $\mathfrak{c} \geq \check{C}(C_p(\Sigma I^{\omega_1}, I))$. In summary:

8.6. Proposition. $\check{C}(C_p(\Sigma I^{\omega_1}, I)) = \mathfrak{c}.$

9. The Cech number of $C_p(X)$ and additional axioms consistent with ZFC

Let X be a nondiscrete space. We know that $\check{C}(C_p(X)) \ge \omega_1$; so, CH implies that $\check{C}(C_p(X)) \ge \mathfrak{c}$. We get the same conclusion if we assume MA: Let $\omega \le \kappa < \mathfrak{c}$. $MA(\kappa)$ implies that if $(\Omega_{\alpha})_{\alpha < \kappa}$ is a family of open dense subsets of \mathbb{R}^X , then $\bigcap_{\alpha < \kappa} \Omega_{\alpha}$ is dense in \mathbb{R}^X . **9.1. Proposition.** If we assume $MA(\kappa)$ and X is not discrete, then $C(C_p(X)) > \kappa$.

Proof. Assume that $\check{C}(C_p(X)) \leq \kappa$. We may assume that ec(X) = |X|. Then, |X| must be $\leq \kappa$. We have $C_p(X) = \bigcap_{\alpha < \kappa} \Omega_{\alpha}$ and Ω_{α} is an open subset of \mathbb{R}^X . Fix $f_0: X \to \mathbb{R}$ non continuous (it exists because X is not discrete). $f_0 + C_p(X)$

Fix $f_0: X \to \mathbb{R}$ non continuous (it exists because X is not discrete). $f_0 + C_p(X)$ and $C_p(X)$ are dense in \mathbb{R}^X , $W_\alpha = f_0 + \Omega_\alpha$ is open and dense in \mathbb{R}^X for each $\alpha < \kappa$; hence $(f_0 + C_p(X)) \cap C_p(X)$ is not empty, which implies that f_0 would be continuous; a contradiction. \Box

9.2. Corollary. $MA(\kappa)$ implies $\kappa < \mathfrak{d}$.

Proof. If $MA(\kappa)$ and $\kappa = \mathfrak{d}$, then for every non-discrete space X, $\check{C}(C_p(X)) > \mathfrak{d}$ (Proposition 9.1). But this is not the case, for example, $\check{C}(C_p([0, \omega])) = \mathfrak{d}$. \Box

Martin Axiom is equivalent to $MA(\kappa)$ for every $\kappa < \mathfrak{c}$. (Also MA implies $\mathfrak{d} = \mathfrak{c}$, see Theorem 5.1 in [vD]) Then, by Proposition 9.1, we get:

9.3. Corollary. If we assume MA and X is not discrete, then $C(C_p(X, I)) \ge \mathfrak{c} = \mathfrak{d}$.

Proof. Let Y be a clopen subset of X such that |Y| = ec(X) and $X \setminus Y$ is discrete. We have that $\check{C}(C_p(X, I)) = \check{C}(C_p(Y, I)) = \check{C}(C_p(Y))$. Since Y is not discrete, Proposition 9.1 guaranties that $\check{C}(C_p(Y)) \ge \mathfrak{d} = \mathfrak{c}$. \Box

We will finish this section proving that it is consistent with ZFC the existence of a countable space X for which $\omega_1 = \check{C}(C_p(X, I)) < \mathfrak{d}$.

9.4. Proposition. Let $q \in \omega^*$ and consider the set $X = \omega \cup \{q\}$ as a subspace of $\beta\omega$. Then, $\check{C}(C_p(X, I)) \leq \chi(q, \beta(\omega))$.

Proof. Let $g: X \to I$ non continuous; then it is not continuous at q and there is $\omega > m \ge 1$ such that

$$g^{-1}[(g(q) - 1/m, g(q) + 1/m)] \notin q.$$

Since q is an ultrafilter, then $U = X \setminus g^{-1}[(g(q) - 1/m, g(q) + 1/m)] \in q$. So, $t \in U$ implies $|g(t) - g(q)| \ge 1/m$.

Let \mathcal{B} be a local base of q in $\beta \omega$ of cardinality $\chi(q, \beta(\omega))$. We have that

$$I^X \setminus C_p(X, I) = \bigcup_{1 \le m} \bigcup_{U \in \mathcal{B}} \{ f \in I^X : |f(t) - f(q)| \ge 1/m \ \forall \ t \in U \}.$$

Claim. $F_{U,m} = \{f \in I^X : |f(t) - f(q)| \ge 1/m \ \forall t \in U\}$ is closed in I^X .

Indeed, assume $h \in cl(F_{U,m}) \setminus F_{U,m}$; then, there is $b \in U$ such that |h(b) - h(q)| < 1/m. Choose $r_1, r_2 > 0$ such that $r_1 + r_2 + |h(b) - h(q)| < 1/m$, and consider $V = \prod_{x \in X} V_x$ the open neighborhood of h where $V_x = I$ if $x \notin \{q, b\}$, $V_b = (h(b) - r_1, h(b) + r_1)$ and $V_q = (h(q) - r_2, h(q) + r_2)$. Choose $f \in F_{U,m} \cap V$; it follows that $|f(b) - h(b)| < r_1$ and $|f(q) - h(q)| < r_2$. Thus, we have

$$1/m > |h(b) - h(q)| + r_1 + r_2 > |f(b) - f(q)| \ge 1/m_2$$

which is a contradiction. \Box

The following example answers question 5.1 in [OT] in the affirmative.

9.5. Example. There is a model M of ZFC containing a countable space X with the property $\check{C}(C_p(X, I)) = \omega_1 < \mathfrak{d}$. (We thank Professor Frank Tall for his concern to this problem and for leading us to [BS]).

Proof. In [BS] it was proved that there is a model M of ZFC in which there is a free ultrafilter q with $\chi(q, \beta(\omega)) = \aleph_1$ and $\mathfrak{d} = \aleph_2$. So, in $M, \check{C}(C_p(\omega \cup \{q\}, I)) = \aleph_1 < \mathfrak{d}$. \Box

Acknowledgment. The authors are grateful to Professor Oleg Okunev for his comments to a previous version of this article. Also, the authors thank the referee for his detailed revision and his useful suggestions to this work.

References

- [A1] A.V. Arkhangel'skii, Functional tightness, Q-spaces and τ-embeddings, Comm. Math. Univ. Carolinae 24: 1 (1983), 105-120.
- [A2] A.V. Arkhangel'skii, Topological properties of function spaces: duality theorems, Soviet Math. Dokl. 27 (1983), 470-473.
- [Ar] A.V. Arkhangel'skii, Topological Function Spaces, Kluwer Academic Publishers, 1992.
- [AT] O.T. Alas and Á. Tamariz-Mascarúa, The Čech number of $C_p(X)$ when X is an ordinal space, manuscript.
- [BS] A. Blass and S. Shelah, There may be simple P_{\aleph_1} and P_{\aleph_2} -points, and the Rudin-Keisler ordering may be downward directed, Ann. Pure and Appl. Logic **33** (1987), 213-243.
- [C] J. Calbrix, k-spaces and borel filters on the set of integers, Trans. Amer. Math. Soc. 348: 5 (1996), 2085-2090.
- [vD] E. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam–New-York–Oxford, 1984, pp. 111-167.
- [E] R. Engelking, *General topology*, PWN, Warszawa, 1977.
- [Ke] A.S. Kekchris, *Classical Descriptive Set Theory*, Springer-Verlag, 1994.
- [Ko] A.P. Kombarov, On tightness and normality of Σ-products, Soviet Math. Dokl. 19 (1978), 403-407.
- [LMc] D.J. Lutzer and R.A. McCoy, Category in function spaces, I, Pacific J. Math. 90 (1980), 145-168.
- [LMP] D. Lutzer, J. van Mill and R. Pol, Descriptive Complexity of Function Spaces, Trans. Amer. Math. Soc. 291 (1985), 121-128.
- [M] A.W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Simbolyc Logic 47 (1982), 275-288.
- [OT] O. Okunev and A. Tamariz-Mascarúa, On the Čech number of $C_p(X)$, Topology and its Appl **137** (2004), 237-249.
- [S] S.A. Svetlichny, Some classes of sequential spaces, Bull. Austral. Math. Soc. 47 (1993), 377-384.
- [St] R.M. Stephenson Jr., Initially κ-compact and related spaces, in Handbook of Set Theoretical Topology, edit. K. Kunen and J. Vaughan (1984), 603-632.
- [T] V.V. Tkachuk, Decomposition of $C_p(X)$ into a countable union of subspaces with "good" properties implies "good" properties of $C_p(X)$, Trans. Moscow Math. Soc. **55** (1994), 239-248.
- [TS] V.V. Tkachuk and D.B. Shakhmatov, When is space $C_p(X)$ σ -countably-compact, Moscow Univ. Math. Bull. **41** (1986), 73-75.

UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66281, CEP 05311-970, SÃO PAULO, BRASIL *E-mail address*: alas@ime.usp.br

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AU-TÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, MÉXICO D.F. 04510, MÉXICO.

E-mail address: atamariz@servidor.unam.mx