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ON THE ČECH NUMBER OF Cp(X), II

Ofelia T. Alas and Ángel Tamariz-Mascarúa

Abstract. The Čech number of a space Z, Č(Z), is the pseudocharacter of Z

in βZ. In this article we obtain (in ZFC and assuming additional set theoretic
consistent axioms) some upper and lower bounds of the Čech number of spaces of

continuous functions defined on X and with values in R or in [0,1] with the pointwise

convergence topology – denoted by Cp(X) and Cp(X,I) respectively – when: (1) X
has countable functional tightness, (2) X is an Eberlein-Grothendieck space, (3) X

is a k-space and (4) X is a countable space. Also, we prove some results related to
kcov(Cp(X)) = min{|K| : K is a compact cover of Cp(X)}. And we answer several

questions posed in [OT]; in particular, it is proved that Č(Cp(X)) = c for every

metrizable space X with |X | = c, and a consistent example of a non-discrete space

X with Č(Cp(X,I)) < d is provided.

1. Notations and Basic results

In this article, every space X is a Tychonoff space, and X ′ is the set of non
isolated points in X. The symbols ω (or N), R, I, Q and P stand for the set of
natural numbers, the real numbers, the segment [0, 1], the rational numbers and
the irrational numbers, respectively. Given two spaces X and Y , we denote by
C(X, Y ) the set of all continuous functions from X to Y , and Cp(X, Y ) stands
for C(X, Y ) equipped with the topology of pointwise convergence, that is, the
topology in C(X, Y ) of subspace of the Tychonoff product Y X . We will denote by
[x1, ..., xn; A1, ..., An] the canonical open subset {f ∈ C(X, Y ) : f(xi) ∈ Ai ∀i ∈
{1, ..., n}} of Cp(X, Y ) where x1, ..., xn ∈ X, and A1, .., An are open subsets of Y ;
in particular, for Y ⊂ R and δ > 0, we will denote the set of continuous functions
f from X to Y such that |f(x) − z| < δ as [x; (z − δ, z + δ)]. The space Cp(X, R)
is denoted by Cp(X). The restriction of a function f with domain X to A ⊂ X is
denoted by f � A. For a space X, βX is its Stone-Čech compactification, and X∗

is the subspace βX \ X of βX.
Recall that for X ⊂ Y , the pseudocharacter of X in Y is defined as

Ψ(X, Y ) = min{|U| : U is a family of open sets in Y and X =
⋂

U}.
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1.1. Definitions. (1) The Čech number of a space Z is Č(Z) = Ψ(Z, βZ).
(2) The k-covering number of a space Z is kcov(Z) = min{|K| : K is a compact

cover of Z}.
We have that (see Section 1 in [OT]): Č(Z) = 1 if and only if Z is locally

compact; Č(Z) ≤ ω if and only if Z is Čech-complete; Č(Z) = kcov(βZ \ Z); if Y
is a closed subset of Z, then kcov(Y ) ≤ kcov(Z) and Č(Y ) ≤ Č(Z); if f : Z → Y
is an onto continuous function, then kcov(Y ) ≤ kcov(Z); if f : Z → Y is perfect
and onto, then kcov(Y ) = kcov(Z) and Č(Y ) = Č(Z); if bZ is a compactification
of Z, then Č(Z) = Ψ(Z, bZ).

We know that Č(Cp(X)) ≤ ℵ0 if and only if X is countable and discrete ([LMc]),
and Č(Cp(X, I)) ≤ ℵ0 if and only if X is discrete ([T]).

For a space X, ec(X) (the essential cardinality of X) is the smallest cardinality
of a clopen subspace Y of X such that X \Y is discrete. Observe that, in this case,
Č(Cp(X, I)) = Č(Cp(Y, I)). In [OT] it was pointed out that ec(X) ≤ Č(Cp(X, I))
and Č(Cp(X)) = |X| · Č(Cp(X, I)) always hold. So, if X is discrete, Č(Cp(X)) =
|X|, and if |X| = ec(X), Č(Cp(X)) = Č(Cp(X, I)).

Consider in the set of functions from ω to ω, ωω, the partial order ≤∗ defined by
f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ ω. A collection D of (ωω,≤∗)
is dominating if for every h ∈ ωω there is f ∈ D such that h ≤∗ f . As usual, we
denote by d the cardinal number min{|D| : D is a dominating subset of ωω}. It is
known that d = kcov(P) (see [vD]); so d = Č(Q). Moreover, ω1 ≤ d ≤ c, where c
denotes the cardinality of R.

We will denote a cardinal number τ with the discrete topology, simply, as τ ;
so, the space τκ is the Tychonoff product of κ copies of the discrete space τ . The
cardinal number τ with the order topology will be symbolized as [0, τ ).

In this article we will relate Č(Cp(X, I)) with the functional tightness and the
weak functional tightness of X (Section 3), and obtain some upper and lower bounds
of Č(Cp(X, I)) when X is one of the following: an Eberlein-Grothendieck space
(Section 4), a k-space (Sections 5 and 6), a countable space (Section 7). We will
relate Č(Cp(X, I)) with the Novak numbers of R and Iτ (Section 8). Also, we will
consider Č(Cp(X, I)) when some consistent axioms are assumed such as MA and
GCH (Section 9). Some results involving the compact covering of Cp(X) are proved
(Sections 2 and 4), and several questions posed in [OT] are answered; in particular,
we show that the existence of a countable space X for which Č(Cp(X, I)) < d is
consistent with ZFC .

For notions and concepts not defined here the reader can consult [Ar] and [E].

2. Conditions on X which are implied by Č(Cp(X, I))

For an infinite cardinal number τ , let dτ be the smallest cardinality of a dom-
inating family of functions from ω to τ . We have that dτ = cof(τ ) if cof(τ ) > ω
and dτ = d if cof(τ ) = ω. dτ concide with kcov([0, τ )ω). Of course, dω = d. A
space X is a Pτ -space if the intersection of less than τ open sets in X is an open set
yet. We say that X is a P -space if it is a Pω1-space. Observe that every topological
space is a Pω-space.

We will say that a space X is a Pτ -space with respect to chains, or briefly, cPτ -
space, if for every sequence {Aλ : λ < τ} of open subsets of X with Aλ ⊂ Aα if
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α ≤ λ, we must have that
⋂

λ<τ Aλ is open. So, we have: (1) X is a cPτ -space iff
it is cPcof(τ)-space, (2) every Pτ+ -space is a cPτ -space, (3) a space X is a P -space
iff it is a cPω-space, (4) if |X| < cof(τ ), then X is a cPτ -space. Furthermore, for
a regular cardinal number τ > ω, [0, τ ) is a cPτ -space which is not a Pτ+-space
(and it is not cPγ-space for all cardinal number γ < τ ), and the topological space
(τ + 1, T ) where T = {A ⊂ τ + 1 : either τ 6∈ A or τ ∈ A and |τ + 1 \ A| < τ} is a
Pτ -space (and, then, it is a cPγ-space for every γ < τ ) which is not a cPτ -space.

For a cardinal number κ, we say that a space X is initially κ-compact if every
open cover of X of cardinality ≤ κ has a finite subcover. It is known that X
is initially κ-compact if and only if every subset E of X of cardinality ≤ κ has a
complete accumulation point x; that is, for every neigborhood V of x, |V ∩E| = |E|
(see [St], Theorem 2.2). Of course, (1) every closed subset of an initially κ-compact
shares this property, (2) a space is countably compact iff it is initially ω-compact,
and (3) every compact space is initially κ-compact for every κ.

2.1. Theorem. Let X be a topological space and κ < dτ . Then (1) ⇒ (2) ⇒ (3)
where:

(1) Cp(X) is the union of κ initially τ -compact subsets.
(2) Cp(X, I) is the union of κ initially τ -compact subsets.
(3) X is a cPτ -space.

Proof. (1) ⇒ (2): Of course, if Cp(X) is the union of κ initially τ -compact subsets,
then so is Cp(X, I) because it is a closed subset of Cp(X).

(2) ⇒ (3): The proof follows the pattern of the proof of Corollary I.2.4 in
[Ar]: Let Cp(X, I) =

⋃
α<κ Kα, where each Kα is initially τ -compact. If X is

not a cPτ -space, there is an increasing sequence of closed sets (Fλ)λ<τ and a point
y∗ ∈ cl(

⋃
λ<γ Fλ) \

⋃
λ<γ Fλ. Denote by K ′

α = {f ∈ Kα : f(y∗) = 0} for each
α < κ. Since K ′

α is a closed subset of Kα, K ′
α is initially τ -compact.

Claim: For each α < κ and each k < ω, there is λ(α, k) ∈ τ such that for every
f ∈ K ′

α, there exists yf ∈ Fλ(α,k) for which f(yf ) < 1/2k+1.

Indeed, assume the contrary of the conclution of this Claim. That is, there are
α < κ and k < ω such that for each λ < τ there is fλ ∈ K ′

α with fλ(y) ≥ 1/2k+1

for all y ∈ Fλ. Since K ′
α is initially τ -compact, there is f ∈ K ′

α which is a complete
accumulation point of the set {fλ : λ < τ} in Cp(X, I). Take y ∈

⋃
λ<τ Fλ; say

y ∈ Fλ0 . If f(y) < 1/2k+1, then f ∈ [y; (f(y) − δ, f(y) + δ)] = {g ∈ Cp(X, I) :
|f(y) − g(y)| < δ} where δ = 1/2k+1 − f(y). Since f is a complete accumulation
point of {fλ : λ < τ}, there is λ ≥ λ0 such that fλ ∈ [y; (f(y) − δ, f(y) + δ)]. But,
this implies that fλ(y) < 1/2k+1, which is not possible because y ∈ Fλ0 ⊂ Fλ and
then, by assumption, fλ(y) ≥ 1/2k+1.

Thus, f(y) must be ≥ 1/2k+1 for every y ∈
⋃

λ<τ Fλ. Since f is continuous
and y∗ ∈ cl

⋃
λ<γ Fλ, then f(y∗) ≥ 1/2k+1 > 0. But, f ∈ K ′

α which implies that
f(y∗) = 0, a contradiction. This proves the Claim.

Hence, for each α < κ, we have a function hα : ω → τ defined by hα(k) = λ(α, k).
Since |{hα : α < κ}| < dτ , {hα : α < κ} is not dominating in τω, so there is
h : ω → τ such that h 6≤∗ hα for all α < κ.
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For each k < ω, fix gk : X → [0, 1/2k+1], continuous, such that gk(y∗) = 0
and gk(t) = 1/2k+1 when t ∈ Fh(k). Let g be equal to Σk<ωgk. We have that
g ∈ Cp(X, I), so there is β < κ for which g ∈ K ′

β.
Since h 6≤∗ hβ, the set {n < ω : h(n) > hβ(n)} is infinite; fix m such that

h(m) > hβ(m). The relation g ∈ K ′
β implies that there is y ∈ Fhβ (m) for which

g(y) < 1/2m+1. But y ∈ Fhβ(m) ⊂ Fh(m) and g(y) ≥ 1/2m+1; a contradiction. �

2.2. Corollary. Let X be a topological space, and let γ be the first cardinal
number such that X is not a Pγ+ -space. Then, Cp(X) cannot be equal to the union
of κ initially γ-compact subsets for any κ < dγ .

2.3. Corollary. Let X be a topological space and κ < d. Then (1) ⇒ (2) ⇒ (3),
where:

(1) Cp(X) is the union of κ countably compact subsets.
(2) Cp(X, I) is the union of κ countably compact subsets.
(3) X is a P -space.

For a cardinal number τ , we say that a space X is weak-τ -pseudocompact if every
discrete collection of open sets in X has cardinality < τ . Then, we have that a space
X is pseudocompact if and only if it is weak-ℵ0-pseudocompact.

2.4. Theorem. Let X be a topological space and let κ < kcov(ωτ ). Then (1) ⇒
(2) ⇒ (3), where:

(1) X is not discrete and RX \ Cp(X) is contained in the union of κ countably
compact subsets of RX .

(2) Cp(X) is contained in the union of κ countably compact subsets of RX .
(3) X is weak-τ -pseudocompact.

Proof. (1) ⇒ (2): Assume that RX \Cp(X) is contained in the union of κ countably
compact subsets of RX . Since X is not discrete, there exists f0 ∈ RX \Cp(X), and
Cp(X) + f0 ⊂ RX \Cp(X) ⊂

⋃
α<κ Kα where Kα is a countably compact subset of

RX . Thus, Cp(X) ⊂
⋃

α<κ(Kα − f0). Moreover Kα − f0 is countably compact for
every α < κ.

(2) ⇒ (3): Now, assume that Cp(X) ⊂
⋃

α<κ Kα ⊂ RX , each Kα is countably
compact, and assume that (Uλ)λ<τ is a discrete collection of open nonempty subsets
of X. For each λ < τ fix bλ ∈ Uλ and fix hλ : X → [0, 1], continuous, such that
hλ(bλ) = 1 and hλ(t) = 0 if t ∈ X \ Uλ.

For each α < κ define gα : τ → ω as follows: For each λ < τ we define

gα(λ) = nα
λ where πbλ [Kα] ⊂ [−nα

λ , nα
λ].

For each α < κ, we take Cα =
∏

λ<τ [−nα
λ, nα

λ]. Each Cα is a compact subset of
ωτ . Since κ < kcov(ωτ ), there is f : τ → ω such that f 6∈

⋃
α<κ Cα.

Define φ : X → R as φ(t) = Σλ<τf(λ) · hλ(t). Since (Uλ)λ<τ is discrete, φ is
continuous. Hence, there is β < κ such that φ ∈ Kβ. For each λ < τ , φ(bλ) = f(λ),
and f(λ) ∈ [−nβ

λ, nβ
λ], hence, f ∈ Cβ, which is a contradiction. Then, every discrete

collection of nonempty open subsets of X must be of cardinality < τ . �
For a space X we denote by ϑ(X) the supremum of the set {|C| : C is a discrete

collection of open sets of X}. By Theorem 2.4, if X is not discrete, ϑ(X) ≤
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kcov(Cp(X)). Observe that if X is discrete and infinite, then Č(Cp(X)) = Č(RX) =
|X| (Lemma 2.1 in [OT]) and kcov(Cp(X)) = kcov(RX ) = kcov(ωX ). In fact, since
NX is a closed subset of RX , kcov(RX ) ≥ kcov(ωX ). On the other hand, R is a
continuous image of ωω , so RX is a continuous image of ωX ; then, kcov(RX ) ≤
kcov(ωX ).

Theorems 2.1 and 2.4 produce the following corollaries.

2.5. Corollary. Let X be a topological space and let ω ≤ κ < d. Then Cp(X) is
contained in the union of κ countably compact subsets of RX if and only if X is
pseudocompact.

Proof. If X is pseudocompact, then Cp(X) ⊂
⋃

n<ω[−n, n]X ⊂ RX .
The converse follows from Theorem 2.4. �
D.B. Shakmatov and V.V. Tkachuk, and N.V. Velichko proved that Cp(X) is

σ-compact ⇔ Cp(X) is σ-countably compact ⇔ X is finite (see [TS] and Corollary
I.2.4 in [Ar]). The following result is a generalization of their result.

2.6. Corollary. kcov(Cp(X)) < d if and only if X is finite.

Proof. If X is finite of cardinality n, then kcov(Cp(X)) = kcov(Rn) = ℵ0 < d.
If kcov(Cp(X)) < d then X is a pseudocompact P -space, that is, X is finite. �

2.7. Corollary. If X is a non-discrete space, then kcov(Cp(X)) ≥ d.

We cannot have a similar result to the last corollary for Cp(X, I). In fact, let
X = Y ∪ {p} be the one point Lindelöfication of the discrete space Y = {yλ :
λ < ω1}, where p 6∈ Y is the distinguished point. We have that Cp(X, I) is equal
to

⋃
α<ω1

Fα where Fα = [0, 1]Yα × ∆α where Yα = {yγ : γ < α} and ∆α is the
diagonal in [0, 1]X\Yα. Each Fα is a closed subset of [0, 1]X, so it is compact. Then
Cp(X, I) is the union of ω1 compact subsets, and it is consistent with ZFC that
ω1 < d.

Since Cp(X, I) is a closed subset of Cp(X) and Cp(X) = RX ∩Cp(X, [−∞,∞]),
then kcov(Cp(X, I)) ≤ kcov(Cp(X)) ≤ kcov(Cp(X, I)) ·kcov(ω|X|) always happens.
Moreover, if X = βω, then kcov(Cp(X)) ≤ 2d(X) = c < 2c = ec(X) < kcov(ω|X|).

3. Č(Cp(X)) for spaces X with countable functional tightness

Let τ be a cardinal number. A function f : X → Y is called τ -continuous if
for every subspace A of cardinality ≤ τ , the restriction of f to A is continuous.
The functional tightness tθ(X) of a space X is the smallest infinite cardinal τ such
that every realvalued τ -continuous function on X is continuous [A2]. A function
f : X → Y is called strictly-τ -continuous if for every subspace A of cardinality
≤ τ , there is a continuous function g : X → Y for which g � A = f � A. The
weak functional tightness tR(X) of a space X is the smallest infinite cardinal τ such
that every realvalued strictly-τ -continuous function on X is continuous [A1], [A2].
It is obvious that for every space X, tR(X) ≤ tθ(X), and tR(X) = tθ(X) if X is
normal (see [Ar], Proposition II.4.8). Also, note that if t(X) denotes the tightness
of X, then tθ(X) ≤ t(X). Besides, tθ(X) is always ≤ to the density d(X) of X
(see Proposition II.4.2 in [Ar]). The topological cardinal function tR measures some
kind of degree of realcompactness of Cp(X). In particular, Cp(X) is realcompact if
and only if tR(X) = ℵ0, [Ar], Theorem II.4.16.
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3.1. Proposition. Let X be a space and κ be a cardinal number. Assume that
tθ(X) < cof(ec(X)) and that for every subspace Z of X of cardinality < ec(X),
Č(Cp(Z, I)) ≤ κ. Then Č(Cp(X, I)) ≤ cof(ec(X)) · κ.

Proof. Let Y be a clopen subspace of X of cardinality ec(X) such that X \ Y is
discrete. Then tθ(Y ) = tθ(X) and Č(Cp(X, I)) = Č(Cp(Y, I)). Let {yλ : λ <
ec(X)} be a faithful enumeration of Y . For each ordinal number γ < ec(X), let
Zγ = {yλ : λ < γ} and Cγ = {f ∈ IY : f � Zγ ∈ Cp(Zγ , I)}. Let {Ωα :
α < κ} be a collection of open sets in IZγ which satisfies Cp(Zγ , I) =

⋂
α<κ Ωα.

Consider the set Wα = Ωα × IY \Zγ for each α < κ. They are open in IY and⋂
α<κ Wα = Cγ . So Č(Cγ) ≤ Č(Cp(Zγ , I)) ≤ κ. On the other hand, C0

γ = {f ∈
Cγ : f(yα) = 0 for every α ≥ γ} is a closed subset of Cγ which is homeomorphic
to Cp(Zγ , I). Thus, Č(Cγ) = Č(Cp(Zγ , I)). Moreover, it is easy to prove that
Cp(Y, I) ⊂

⋂
γ<ec(X) Cγ . Now, from the fact that tθ(Y ) = tθ(X) < cof(ec(X)), we

get Cp(Y, I) =
⋂

δ<cof(ec(X)) Cγ(δ). Therefore, Č(Cp(X, I)) ≤ cof(ec(X)) · κ. �

3.2. Theorem. For every space X, Č(Cp(X, I)) ≤ ec(X)tR(X).

Proof. Let Y be a clopen subspace of X with X \ Y discrete and |Y | = ec(X).
We are going to prove that Č(Cp(Y, I)) ≤ |Y |tR(Y ). Observe that tR(Y ) = tR(X).
Let A denote the set of all infinite subsets of Y of cardinality ≤ tR(Y ). (So,
|A| ≤ |Y |tR(Y )).

For each A ∈ A we consider the set CA = {f ∈ Cp(A, I) : ∃ g ∈ Cp(Y, I) with
g � A = f � A}. We have that Č(CA) ≤ 2|A| ≤ 2tR(Y ). Put λ = 2tR(Y ) and fix a
family {ΩA

α : α < λ} of open subsets of IA such that

(1)
⋂

α<λ

ΩA
α = CA.

Now define, for each A ∈ A and α < λ, W A
α = ΩA

α × IY \A which is open in IY .
We shall prove that

(2)
⋂

A∈A

⋂

α<λ

W A
α = Cp(Y, I).

Indeed, if f ∈ Cp(Y, I), then f � A ∈ CA for every A ∈ A and f � A ∈ ΩA
α , for

every α < λ, hence f ∈ W A
α for every A ∈ A and every α < λ. On the other hand,

if g : Y → I is not continuous, there exists A ⊂ Y of cardinality ≤ tR(Y ) such that
g � A 6∈ CA; so, there is β < λ for which g � A 6∈ ΩA

β . Therefore, g 6∈ W A
β . �

3.3. Corollary. For every space X with ec(X) = ec(X)tR(X), Č(Cp(X, I)) =
ec(X).

The following result, which follows from Corollary 3.3, answers Question 4.19 in
[OT] in the affirmative.

3.4. Corollary. Let X be a metrizable space with ec(X) = c. Then

Č(Cp(X, I)) = c

Theorem 3.2 produces:
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3.5. Corollary. For every space X,

Č(Cp(X, I)) ≤ ec(X)tθ(X) ≤ min{ec(X)t(X) , ec(X)d(X)}.

We have that ec(βω) = ec(ω∗) = |ω∗| = 22ω

and t(βω) = t(ω∗) = 2ω; thus
Č(Cp(βω, I)) = Č(Cp(ω∗, I)) = 22ω

.

3.6. Corollary. Let X be a topological space with ec(X) = c. If Cp(X) is a

realcompact space, then Č(Cp(X, I)) = c.

Proof. The hypothesis of this Corollary implies that tR(X) = ℵ0 (see II.4.16 in
[Ar]). Now, in order to finish the proof, we have only to apply Corollary 3.3. �

Even for collectionwise normal spaces X with essential cardinality c, ec(X) =
c = Č(Cp(X, I)) does not imply the realcompactness of Cp(X) as was noted by O.
Okunev. In fact, let X = [0, c]. We have that c = ec([0, c]) ≤ Č(Cp([0, c], I) ≤
kcov(cω) = c (see [AT]). On the other hand, tR([0, c]) = c > ℵ0, so Cp([0, c])
is not realcompact. Also observe that Č(Cp([0, c], I) = c is strictly less than
ec([0, c])tR([0,c]) = 2c.

Since, for every non-discrete space X, tR(X) ≤ ec(X), we have ec(X)tR(X) ≤
2ec(X). Therefore, for every non-discrete space X, ec(X) ≤ Č(Cp(X, I)) ≤ 2ec(X).

In particular, GCH implies ec(X) ≤ Č(Cp(X, I)) ≤ ec(X)+ for every non-discrete
space X.

4. Č(Cp(X)) for Eberlein-Grothendieck spaces X

A space X is an Eberlein-Grothendieck space or an EG-space if it is a subspace
of a space Cp(Y ) where Y is a compact space (or, equivalently, X is a subspace of
Cp(Y ) for a σ-compact space Y , [Ar], Theorem. III.1.11).

The following lemma is proved in [OT, Lemma 4.3].

4.1. Lemma. Let X be a subspace of Cp(Y ), K a compact set in X, and let C be
the set of all functions in IX that are continuous at every point of K. Then there
is a family {Bmn : m ∈ N+, n ∈ N+ } of subsets of IX such that

(1) C =
⋂

m∈N+

⋃
n∈N+

Bmn, and

(2) for any m, n ∈ N+, Bmn is a continuous image of a closed subspace of
Y n × IX .

We utilize Lemma 4.1 to prove the following result that generalizes Corollary 4.5
in [OT]. It is worth recalling here Definition 3.1 in [OT]: for two cardinal numbers
τ ≥ 1 and λ, a space X is K(τ, λ)-analytic if X is a continuous image of a closed
subspace of a product of τλ and a compact space.

4.2. Theorem. For every EG-space X,

ec(X) ≤ Č(Cp(X, I)) ≤ kcov(ec(X)ω ).

Proof. Let Z be a compact space such that X is a subspace of Cp(Z). Let Y be
a subspace of X such that X \ Y is clopen, discrete and |Y | = ec(X). We have
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that Č(Cp(X, I)) = Č(Cp(Y, I)). So we are going to prove that Č(Cp(Y, I)) ≤
kcov(|Y |ω). Let C be a compact cover of Y with minimal cardinality (|C| =
kcov(Y )). For each K ∈ C we take the set CK = {f ∈ IY : f is continuous
(as a function from Y to I) in each point of K}. Lemma 4.1 guaranties that there
exists a familly {BK

mn : m, n < ω} of subsets of IY such that
(1) CK =

⋂
m<ω

⋃
n<ω BK

mn, and
(2) each BK

mn is a continuous image of a closed subspace of Zn × IY .
Since Z is a compact space, each BK

mn is compact, so IY \BK
mn is an open subset

of IY , but each open subset of IY is the union of |Y | compact subsets because IY is
a locally compact space with weight equal to |Y |. Say IY \BK

mn =
⋃

α<|Y | Cα where
Cα is compact for every α < |Y |. Therefore, IY \ CK =

⋃
m<ω

⋂
n<ω

⋃
α<|Y | Cα is

a K(|Y |, ω)-analytic set. This means that Č(CK) = kcov(IY \ CK) ≤ kcov(|Y |ω)
([OT], Proposition 3.2). For each K ∈ C, let AK be a familly of open subsets of
IY with cardinality ≤ kcov(|Y |ω) satisfying CK =

⋂
AK . We have that Cp(Y, I) =⋂

K∈C CK ; so Cp(Y, I) =
⋂

K∈C
⋂
AK . Thus, Č(Cp(Y, I)) ≤ kcov(Y ) ·kcov(|Y |ω) =

kcov(|Y |ω). �
It was proved in [OT] that for every non-discrete space X the relation ec(X) ≤

Č(Cp(X, I)) holds; and Corollary 4.12, in the same article, states that if X con-
tains a convergent sequence, then Č(Cp(X, I)) ≥ d. Thus, since every non-discrete
metrizable space is an EG-space and contains a non trivial convergent sequence,
we obtain for every non-discrete metrizable space X, ec(X) · d ≤ Č(Cp(X, I)) ≤
kcov(ec(X)ω ). Moreover, if τ < ωω, then kcov(τω) = τ · d. So, if X is a metrizable
non-discrete space and ec(X) < ωω, then Č(Cp(X, I)) = ec(X) · d.

For a cardinal number τ , a space X is a Kστ -set if X is a subspace of a space Y
and there are σ-compact subspaces Yλ of Y (λ < τ ) such that X = ∩λ<τYλ. If X
is a Kστ -set, then X is an Fστ -set in every space where X is embedded.

4.3. Proposition. Let X be a non-discrete EG-space and let τ = kcov(X). Then
Cp(X, I) is a Kστ -set.

Proof. Let X =
⋃

λ<τ Kλ where Kλ is compact for all λ < τ . By Lemma 4.1,
for each λ < τ , Cλ = {f : X → I : f is continuous at each point in Kλ} =⋂

m<ω

⋃
n<ω Bλ

mn where Bλ
mn is compact for each m, n < ω and each λ < τ . There-

fore, Cp(X, I) =
⋂

λ<τ

⋂
m<ω

⋃
n<ω Bλ

mn; that is Cp(X, I) is a Kστ -set. �
4.4. Corollary. If X is a non-discrete EG-space and τ = kcov(X), then

kcov(Cp(X, I)) ≤ kcov(ωτ ) ≤ kcov(ω|X|).

Proof. By Proposition 4.5, Cp(X, I) is an Fστ -set in IX . So, it is K(ω, τ )-analytic
and kcov(Cp(X, I)) ≤ kcov(ωτ ) (see Corollary 3.4 in [OT]). The last inequality
follows because kcov(X) ≤ |X| always holds. �

5. Č(Cp(X)) when X is a sequential space

5.1. Definitions. ([S]) (a) For a topological space X, a collection P of subsets of
X is called a sequential base if for every point x ∈ X one can assign a collection
Px ⊂ Pω such that

(1) if (Pn)n<ω ∈ Px, then x ∈
⋂

n<ω Pn and Pn+1 ⊂ Pn for each n < ω,
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(2) a set V is open in X iff for every point x ∈ V and every (Pn)n<ω ∈ Px there
exists m < ω such that Pm ⊂ V .

(b) Let P be a sequential base of a space X. Then, the fan number of P, denoted
fn(P), is the smallest cardinal τ such that for each x ∈ X, the collection Px may
be chosen with cardinality ≤ τ .

S.A. Svetlichny proved in [S] that a space X is sequential iff X has a sequential
base.

In the sequel we will use the following

5.2. Notations. For each n < ω, we will denote as En the collection of intervals

[0, 1/2n+1), (1/2n+2, 3/2n+2), (1/2n+1, 2/2n+1), (3/2n+2, 5/2n+2), ...

..., ((2n+2 − 2)/2n+2, (2n+2 − 1)/2n+2), ((2n+1 − 1)/2n+1, 1].

Observe that En is an irreducible open cover of [0, 1] and each element in En has
diameter = 1/2n+1. For a set S and a point y ∈ S, we will use the symbol [yS]<ω

in order to denote the collection of finite subsets of S containing y.

5.3. Theorem. For every non-discrete sequential space X with sequential base P,

ec(X) · d ≤ Č(Cp(X, I)) ≤ fn(P) · kcov(ec(X)ω ).

Proof. Let Y be a clopen subspace of X for which X\Y is discrete and |Y | = ec(X).
For each y ∈ Y , each (Tn)n<ω ∈ Py and each n < ω, we take Sn = Tn ∩ Y . Let
P′

y = {(Sn)n<ω : (Tn)n<ω ∈ Py}. Observe that P′ = {Sm : m < ω, (Tn)n<ω ∈ Py

and y ∈ Y } is a sequential base for Y where for each y ∈ Y , P′
y = {(Sn)n<ω :

(Tn)n<ω ∈ Py}. Moreover fn(P′) ≤ fn(P).
For each y ∈ Y ′, s = (Sn)n<ω ∈ P′

y, m, n < ω, E ∈ En and F ∈ [ySm]<ω, we
take the set

B(y, s, E, m, F ) =
∏

z∈Y

Jz

where Jz = E if z ∈ F and Jz = I if z 6∈ F . Let

B(y, s, n, m, F ) =
⋃

E∈En

B(y, s, E, m, F ).

We define
B(y, s, n, m) =

⋂
{B(y, s, n, m, F ) : F ∈ [ySm ]<ω}.

Because Sm ⊂ Y , B(y, s, n, m) is the intersection of ≤ ec(X) open subsets
B(y, s, n, m, F ) of IY . Now we define G(y, s, n) =

⋃
m<ω B(y, s, n, m), G(y, s) =⋂

n<ω G(y, s, n), G(y) =
⋂

s∈P′
y
G(y, s) and, finally, G =

⋂
y∈Y ′ G(y).

Claim: G = C(Y, I).

Indeed, let g ∈ C(Y, I), y ∈ Y ′, s = (Sn)n<ω ∈ P′
y and n < ω. We shall prove

that g ∈ G(y, s, n); that is, we are going to show that there is m < ω so that
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g ∈ B(y, s, n, m). There is E ∈ En such that g(y) ∈ E. Since g is a continuous
function in y, there exists an open set V of Y containing y for which g(V ) ⊂ E.
By definition of sequential base, there exists N < ω such that SN ⊂ V . For
every F ∈ [ySN ]<ω, g ∈ B(y, s, E, N, F ). Then, g ∈ B(y, s, n, N ). Therefore,
C(Y, I) ⊂ G.

Now, assume that h ∈ IY \ C(Y, I). There are a point y ∈ Y ′, ε > 0 and a
sequence x0, x1, ..., xn, ... in Y \ {y} which converges to y and such that

(*) |h(xn) − h(y)| ≥ ε

for all n < ω. Let k ≥ 1 such that 1/2k < ε. The set W ′ = Y \ ({xn : n < ω}∪{y})
is open, and W = Y \ {xn : n < ω} is not open. This means that there exists
s = (Sn)n<ω ∈ P′

y such that, for every m < ω,

(**) Sm ∩ {xn : n < ω} 6= ∅.

We want to show that h 6∈ G(y, s, k). Assume that for an m < ω, h ∈
B(y, s, k, m). This means that h ∈

⋂
{B(y, s, k, m, F ) : F ∈ [ySm]<ω}. Because

of (**), there is xt ∈ Sm. Take F = {xt, y}. Our hypothesis implies that h must
belong to B(y, s, k, m, F ). But this means that |h(xt) − h(y)| < 1/2k, which con-
tradicts (*). So, we have to conclude that G = C(X, I).

Thus, the complement of G in IY is equal to
⋃

y∈Y ′

⋃

s∈P′
y

⋃

n<ω

(IY \ G(y, s, n));

that is, IY \ G is the union of ≤ |Y ′| · fn(P′) · ω sets Mα (α < |Y ′| · fn(P′) · ω)
each of them being the countable intersection of sets of the form IY \B(y, s, n, m).

We have that IY \ B(y, s, n, m) = IY \
⋂
{B(y, s, n, m, F ) : F ∈ [ySm]<ω} =⋃

{IY \ B(y, s, n, m, F ) : F ∈ [ySm]<ω}. That is, each Mα is a set of the form⋂
m<ω

⋃
F∈[ySm ]<ω (IY \B(y, s, n, m, F ). But this means that Mα is an F|Y |δ-set in

IY . Now, Corollary 3.4 in [OT] guaranties that kcov(Mα) ≤ kcov(|Y |ω), so IY \G
is the union of ≤ |Y ′| · fn(P′) · kcov(|Y |ω) compact subsets of IY . That is,

Č(Cp(X, I)) ≤ |Y ′| · fn(P′) · kcov(|Y |ω) ≤ fn(P) · kcov(ec(X)ω ). �

A space X is weakly-quasi-first-countable if it has a sequential base with fan num-
ber ≤ ℵ0. In particular, every first countable space is weakly-quasi-first-countable.
In fact, for each x ∈ X, we take a countable local base Bx = {Bn : n < ω} of
x in X satisfying Bn+1 ⊂ Bn for every n. The collection P =

⋃
x∈X Bx plus the

assignment x → Bx constitute a sequential base for X, and fn(P) = 1. Theorem
5.3 implies:

5.4. Corollary. If X is a non-discrete weakly-quasi-first-countable space (in par-
ticular, if X is first countable), then

ec(X) · d ≤ Č(Cp(X, I)) ≤ kcov(ec(X)ω ).
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5.5. Corollary. If X is a non-discrete weakly-quasi-first-countable space (in par-
ticular, if X is non-discrete and first countable) of cardinality < ωω, then

Č(Cp(X, I)) = ec(X) · d.

Proof. This is a consequence of the previous result and Proposition 3.6, Corollaries
4.8 and 4.12 in [OT]. �
5.6. Problem. Does every Fréchet-Urysohn space X have a sequential base P
with the property fn(P) ≤ kcov(ec(X)ω )?

The following result is Theorem 2.7 in [S].

5.7. Theorem. The following are equivalent for a space X and any cardinal τ :

(1) X is a quotient of a metric space having cardinality τ .
(2) |X| ≤ τ and X has a sequential base P such that fn(P) ≤ τ .

As a consequence of this last result and Theorem 5.3, we have:

5.8. Corollary. If a non-discrete space X is the quotient of a metric space of
cardinality τ , then

ec(X) · d ≤ Č(Cp(X, I)) ≤ τ · kcov(ec(X)ω ).

Let X be a sequential space and x ∈ X. A base of sequences centered in x is a
collection S of sequences in X\{x} converging to x and such that, for each sequence
(yn)n<ω in X \{x} which converges to x, there is a sequence (xn)n<ω ∈ S such that
|{xn : n < ω} ∩ {yn : n < ω}| = ℵ0. Denote by Seq(X, x) the minimum element
in {|S| : S is a base of sequences centered in x}. Let Seq(X) = sup{Seq(X, x) :
x ∈ X}. It is possible to prove that every sequential space X has a sequential base
with fan number ≤ Seq(X); so the following result follows from Theorem 5.3.

5.9. Corollary. For every non-discrete sequential space X we have

ec(X) · d ≤ Č(Cp(X, I) ≤ Seq(X) · kcov(ec(X)ω ).

6. The Čech number of Cp(X) when X is a k-space

6.1. Definition. A family D of closed subsets of a space X determines the topology
of X if F ⊂ X is closed in X iff F ∩ D is closed in D for every D ∈ D.

Note that for a collection D of closed subsets which determines the topology
of X, X \

⋃
D is discrete and clopen, and every base for the closed subsets of X

determines the topology of X. Furtheremore, D = ∅ or D = {∅} determines the
topology of X iff X is discrete.

6.2. Lemma. Let D be a collection of closed subsets of a topological space X which
determines its topology. Let Y be a topological space. A function f : X → Y is
continuous if and only if f � D is continuous for every D ∈ D.

Proof. Evidently, if f : X → Y is continuous, f � D is continuous. Now, assume
that g : X → Y is a non-continuous function; so there exists a closed subset F of Y
such that g−1[F ] is not a closed subset of X. This means that there is D ∈ D for
which D ∩ g−1[F ] = (g � D)−1[F ] is not closed in D. But this implies that g � D is
not a continuous function. �
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6.3. Theorem. Let D be a collection of closed subsets of a non-discrete space X
which determines the topology of X. Then Č(Cp(X, I)) ≤ |D|·supD∈DČ(Cp(D, I)).

Proof. For each D ∈ D, denote by κD the cardinal number Č(Cp(D, I)), and
let {V D

α : λ < κD} be a collection of open sets in ID such that Cp(D, I) =⋂
α<κD

V D
λ . For each α < κD we take the set W D

α = IX\D × V D
α . Then,

Cp(X, I) =
⋂

D∈D
⋂

α<κD
W D

α . We obtain the conclusion of the Theorem because
each W D

α is an open subset of IX . �

For a k-space X we denote by K(X) a collection of compact subsets of X which
determine the topology of X with the smallest possible cardinality, and we denote
with k(X) the cardinality of K(X).

6.4. Corollary. Č(Cp(X, I)) ≤ k(X) · supK∈K(X)Č(Cp(K, I)) for every non-dis-
crete k-space X.

If for each point x in a sequential space, Sx is a base of sequences centered in x,
and S =

⋃
x∈X Sx, then {{xn : n < ω} ∪ {x} : (xn)n<ω ∈ Sx, x ∈ X} determines

the topology of X. Then:

6.5. Corollary. For a non-discrete sequential space X,

ec(X) · d ≤ Č(Cp(X, I)) ≤ Seq(X) · ec(X) · d.

This last result improves Corollary 5.9. In particular, if Σ is an almost dis-
joint collection of subsets of ω, and Ψ(Σ) is the Mrowka space determined by Σ,
Č(Cp(Ψ(Σ), I)) = |Σ| · d. Also, we obtain Č(Cp(V (ℵ0), I)) = d where V (ℵ0) is the
Fréchet fan.

Every countable compact space is a separable metrizable space, so, by the remark
made after Theorem 4.2, Č(Cp(K, I)) = d for any non-discrete countable compact
space K. Also, by Theorem 4.2, every non-discrete countable and sequential EG-
space X satisfies Č(Cp(X, I)) = d. As was noted to the authors by O. Okunev, not
every countable EG-space is sequential. In fact, in [Ar] it is proved that Cp(I) is
not sequential (Lemma II.3.1). In this proof, it was considered a countable discrete
subspace {fn : n < ω} of Cp(I) such that X = {fn : n < ω}∪ {0̄} is not sequential,
where 0̄ is the constant function equal to 0. So X is a countable EG-space which is
not sequential. Even more: X does not contain a non-trivial convergent sequence.
On the other hand, every countable k-space is sequential. Then, for every countable
k-space we have:

6.6. Corollary. For every non-discrete countable k-space X,

d ≤ Č(Cp(X, I)) ≤ k(X) · d ≤ Seq(X) · d.

We define θ as the smallest infinite cardinal number such that if (X, τ ) is a
countable sequential non-discrete space, there is a sequential base P in X such that
fn(P) ≤ θ.
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6.7. Proposition. Let (X, τ ) be a Fréchet-Urysohn space. There is a sequential
base P of X such that fn(P) ≤ θ · kcov(ec(X)ω ).

Proof. Let Y be a clopen subspace of X with |Y | = ec(X) and such that X \
Y is discrete. Considering Y with its discrete topology, Y ω can be covered by
kcov(ec(X)ω )= λ compact subsets Kα: Y ω =

⋃
α<λ Kα. We may and shall assume

that each Kα is of the type
∏

n<ω Kα,n, where Kα,n is a finite subset of Y . Fix
y ∈ X, non isolated in (X, τ ). If (bn)n<ω is a sequence in Y converging to y with
bn 6= bm if n 6= m, then there is β < λ such that

(1) y ∈ cl(
⋃

n<ω

(Kβ,n \ {y}).

As a subspace of (X, τ ),
⋃

n<ω(Kβ,n \ {y}) is sequential and countable, so there
is a sequential base Pβ,y of

⋃
n<ω(Kβ,n \ {y}) such that

(2) fn(Pβ,y) ≤ θ.

Now, we shall consider

(3) P =
⋃

{Pβ,y : β and y satisfy (1)} ∪ {{z} : z 6∈ X ′},

and for each y ∈ X ′ we take Py = {(Pn)n<ω : (Pn)n<ω ∈ Pβ,y}, and for y 6∈ X ′, let
Py = {(Pn)n<ω} where Pn = {y} for every n < ω.

Claim: P, with the assignment y → Py, constitutes a sequential base of (X, τ ).

Conditions (1) and (2)(⇒) in Definition 5.1.(a) are evident for this P and this
assignment y → Py. Now, let V ⊂ X be such that for every x ∈ V and (Pn)n<ω ∈
Px there exists m such that Pm ⊂ V . We have to prove that V is open. Assume the
contrary. Thus, X\V is not closed in (X, τ ), so there is a sequence of points in X\V ,
(bn)n<ω, converging to some y ∈ V . Fix β < λ such that (bn)n<ω ∈

∏
n<ω Kβ,n.

Since Pβ,y is a sequential base, V ∩ (
⋃

n<ω Kβ,n ∪ {y}) is open in the subspace⋃
n<ω Kβ,n ∪ {y}. Hence, there is Ω ∈ τ such that

(4) V ∩ (
⋃

n<ω

Kβ,n ∪ {y}) = Ω ∩ (
⋃

n<ω

Kβ,n ∪ {y}).

Since y ∈ V , y ∈ Ω. Then, there is m0 such that bm ∈ Ω for every m ≥ m0.
But this means that bm ∈ V for every m ≥ m0, which contradicts the choice of
(bn)n<ω. So, V must be open, and P with the assignment y → Py is a sequential
base of (X, τ ).

Moreover, |Py| ≤ θ · λ for every y ∈ X. �

6.8. Corollary. Let X be a non-discrete Fréchet-Urysohn space. Then,

ec(X) · d ≤ Č(Cp(X, I) ≤ θ · kcov(ec(X)ω ).
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7. Č(Cp(X)) for countable spaces X

Recall that a separable completely metrizable space is called a Polish space; every
subspace X of a Polish space which is a continuous image of a Polish space is called
analytic (that is equivalent to saying that X is the continuous image of the space of
irrational numbers with the topology inherited by the real line). A subspace Y of
a Polish space X is called co-analytic if X \ Y is analytic. A separable metrizable
space is co-analytic if it is homeomorphic to a co-analytic set in a Polish space.

7.1. Proposition. If X is a Polish space and F ⊂ X is co-analytic, then Č(F ) ≤ d.

Proof. We have that X \ F is analytic, so it is a continuous image of P. Then
Č(F ) = kcov(X \ F ) ≤ kcov(P) = d. �

The following result is Corollary 21.21 in [Ke]

7.2. Theorem. Let X be a separable metrizable co-analytic space. Then X is
Polish if and only if it contains no closed subset homeomorphic to Q.

7.3. Proposition. Let X be a Polish space and let F ⊂ X be co-analytic. If F is
not Polish, then Č(F ) = d.

Proof. By Proposition 7.1, Č(F ) ≤ d. Now, since F is not Polish it contains a
closed copy of Q. Hence, d = Č(Q) ≤ Č(F ). �

If X is a countable space, then Cp(X, I) is a separable metrizable subspace of
the Polish space Iω. Moreover, if X is not discrete, Cp(X, I) is not completely
metrizable; so, in particular, if Cp(X, I) is co-analytic it must contain a closed copy
of Q. Following this line of thoughts we get the following:

7.4. Theorem. If X is a countable non-discrete EG-space, then Č(Cp(X, I)) = d.

Proof. Theorem 4.2 gives us Č(Cp(X, I)) ≤ d. On the other hand, by Proposition
4.5, Cp(X, I) is co-analytic. Since X is not discrete, Cp(X, I) is not a Polish space.
Hence, Cp(X, I) contains a closed copy of Q (Theorem 7.2). This implies that
d ≤ Č(Cp(X, I)). �

Of course, there are countable EG-spaces which are not metrizable. One way to
construct such spaces is as follows: Let A be a dense countable subset of Cp([0, 1]).
A is a countable EG-space, and A is not metrizable.

On the other hand, it is possible to give an example of a countable space which
is not a EG-space. The Fréchet fan V (ℵ0) is a classic example.

7.5. Lemma. Let a ∈ X and let {Vα : α < κ} be a fundamental system of neigh-

borhoods of a in X. Let Ha =
⋂

n<ω

⋃
E∈En

⋃
α<κ(IX\Vα × EVα) (see Notations

5.2). Then, Ha is the set of all functions from X into I continuous at a.

Proof. Let g : X → I be continuous at a. For each n < ω there is E ∈ En such that
g(a) ∈ E and, since g is continuous at a, there is β < κ such that g[Vβ] ⊂ E, hence
g ∈ IX\Vβ × EVβ and g ∈ Ha.

On the other hand, let h ∈ IX be a non continuous function at a. Hence, there
is n < ω with the property

(*) h[Vα] 6⊂ (h(a) − (1/2n+1), h(a) + (1/2n+1))
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for all α < κ. If E ∈ En, the length of E is ≤ 1/2n+1. Because of (*), h 6∈
IX\Vα × EVα for all E ∈ En, which implies h 6∈ Ha. �

For a ∈ X, denote by ∆̃(X, a) the cardinal number min{|V | : V is open and
a ∈ V }, and let ∆̃(X) = sup{∆̃(X, a) : a ∈ X}.

7.6. Corollary. For every non-discrete space X,

ec(X) ≤ Č(Cp(X, I)) ≤ ec(X) · kcov(χ(X)∆̃(X)).

Proof. Let Y be an essential subspace of X of cardinality ec(X) (X \ Y is discrete
and clopen). Let κ = χ(Y ), and for each y ∈ Y , {Vy,α : α < κ} be a fundamental
system of neighborhoods of y in Y . Because of Lemma 7.5,

Cp(Y, I) =
⋂

y∈Y

⋂

n<ω

⋃

E∈En

⋃

α<κ

(IX\Vy,α × EVy,α).

On the other hand,

IX\Vy,α × EVy,α =
⋂

b∈Vy,α

(IX\{b} × E{b}).

So, ⋃

E∈En

⋃

α<κ

(IX\Vy,α × EVy,α) =
⋃

E∈En

⋃

α<κ

⋂

b∈Vy,α

(IX\{b} × E{b}).

Let us call this last set Gy. Since IX\{b} ×E{b} is an open set in IY , |En| < ℵ0 and
κ ≤ χ(Y ), Gy is a G∆̃(Y ),χ(Y )-set. Then Č(Gy) ≤ kcov(χ(Y )∆̃(Y )) (Corollary 3.5

in [OT]). So Č(Cp(X, I)) = Č(Cp(Y, I)) ≤ ec(X) · kcov(χ(Y )∆̃(Y )) (Corollary 1.11
in [OT]). But χ(Y ) = χ(X) and ∆̃(Y ) = ∆̃(X); so, we have finished the proof of
this corollary. �

7.7. Corollary. For every countable space X, Č(Cp(X, I)) ≤ kcov(χ(X)ω).

In [LMP], Lutzer, van Mill and Pol defined for each subset S of the Cantor set
2ω a topological space ΣS as follows: let Tn = 2n be the set of functions from
{0, 1, ..., n − 1} into {0, 1}. Let T =

⋃
n≥1 Tn and partially order T by function

extension. A branch of T is a maximal linearly ordered subset of T , i.e., a linearly
ordered subset B ⊂ T having |B ∩ Tn| = 1 for each n ≥ 1. Given x ∈ 2ω, the
set Bx = {(x(0)), (x(0), x(1)), (x(0), x(1), x(2)), ...} is a branch of T . Conversely,
each branch B of T has the form B = Bx for a unique x ∈ 2ω. For each subset
S ⊂ 2ω, the collection {T \ (Bx1 ∪ ...∪Bxn ∪F ) : n ≥ 1, xi ∈ S and F ∈ [T ]<ω} is
a filter base. Let pS be the filter generated by that filter base. Let ΣS = T ∪{pS}.
Topologize ΣS by isolating each point of T and by using the family {P ∪ {pS} :
P ∈ pS} as a neighborhood base at pS . All spaces ΣS are Fréchet (the sequence
(1), (0, 1), (0, 0, 1), (0,0, 0, 1), ... converges to pS). So:

7.8. Proposition. For every S ⊂ 2ω,

d ≤ Č(Cp(ΣS )) = Č(Cp(ΣS , I)).
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7.9. Proposition. If S ⊂ 2ω is a co-analytic subset of 2ω, then d = Č(Cp(ΣS)) =
Č(Cp(ΣS , I)).

Proof. Since S is co-analytic in 2ω, then Cp(ΣS , I) is co-analytic in IΣS ([LMP],
Theorem 3.1); so, IΣS \ Cp(ΣS , I) is analytic. This means that

kcov(IΣS \ Cp(ΣS , I) ≤ d.

Therefore, Č(Cp(ΣS , I)) ≤ d. By Proposition 7.8, we must have Č(Cp(ΣS , I)) =
d. �

For each filter F on ω, we define the space XF = ω ∪ {F} with the following
topology: each point in ω is isolated and a basic system of neighborhoods for F are
the sets of the form {F} ∪ F where F ∈ F .

In [C], Jean Calbrix considers, in addition to spaces of type ΣS , countable spaces
constructed as follows: Let X be a non-discrete metrizable separable space which
contains a countable dense set ω where each of its points is isolated. Let A = X \ω.
We identify A to a point p and we obtain the quotient space XF = ω ∪ {p}, where
F is the filter in ω generated by the trace in ω of the basic system of neighborhoods
of p in XF . Calbrix called this kind of filters as filters of type A. He proved also
that every countable k-space with only a non-isolated point is Fréchet-Urysohn ([C],
Lemma 2.1), and he mentions that for every filter F of type A, XF is a sequential
space. Thus for this kind of spaces, we have:

7.10. Corollary. For an A-filter F , d ≤ Č(Cp(XF , I)) ≤ |X| · d. In particular, if

|X| ≤ d, Č(Cp(XF , I)) = d.

Proof. This is a consequence of Corollary 5.8. �
The final remarks of this section are due to a colleague. We truly thank him for

his comments.
It is consistent with ZFC that there is a countable space X such that d <

Č(Cp(X, I)). Indeed, let S be a Bernstein set in the Cantor set 2ω (that is, both S
and 2ω \S do not contain perfect subsets of 2ω). Since all compact subsets of S and
2ω \ S are countable and |S| = |2ω \ S| = 2ω, we have that kcov(S) = Č(S) = 2ω.
Now, consider the corresponding space ΣS defined in some paragraphs above. Since
ΣS is countable, kcov(ω|ΣS |) = d. From the fact that C(ΣS) contains a closed copy
of S ([LMP]), it follows that kcov(Cp(ΣS)) = Č(Cp(ΣS)) = 2ω.

This example also shows that the strict inequality in Corollary 2.7 and the rela-
tion Č(Cp(X, I)) > kcov(ec(X)tR ) (see Theorem 3.2) can consistently happen.

Since for every metrizable and separable space X, |X| ≤ 2ω, if d = 2ω, then
equalities in Corollary 7.10 hold. On the other hand, assume that d < 2ω and let
X be an uncountable compact metrizable space containing a countable dense set ω
consisting of isolated points. Then XF is homeomorphic to a convergent sequence.
Hence, Č(Cp(XF , I)) = d < 2ω = |X|.

8. Relations between Č(Cp(X)) and
other cardinal topological functions

For each space X we define nov(X) = min{|C| : C is a cover of X constituted by
nowhere dense subsets of X}, and, if X is realcompact, Exp(X) = min{κ : X can
be embedded as a closed subset of Rκ}. We also consider N = min{τ : nov(Iτ ) = τ}
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8.1. Lemma. ( [vD], Lemma 8.19) Let X be a separable metrizable space (or more
generally, a space that has a perfectly normal compactification) that is not locally
compact. Then Exp(X) = kcov(bX \ X) for each compactification bX of X.

8.2. Corollary. Let X be a non-discrete countable space. Then, Č(Cp(X, I)) =
Exp(Cp(X, I)).

We always have that ω1 ≤ N ≤ nov(R) ≤ d ([M]), and Martin’s Axiom implies
N = c. The following result can be proved similarly to Theorem 5.3 in [OT].

8.3. Proposition. If X is a non-discrete countable space, then Č(Cp(X, I)) ≥
nov(R).

8.4. Lemma. For every cardinal number τ ≥ ω, nov({0, 1}τ ) = nov([0, 1]τ).

Proof. It is well known that there is an onto continuous irreducible map G :
{0, 1}τ → [0, 1]τ . If S ⊂ {0, 1}τ is closed and nowhere dense, then G[S] is closed
and nowhere dense. And for each closed and nowhere dense subset S ⊂ [0, 1]τ ,
G−1[S] is nowhere dense. Therefore, nov({0, 1}τ ) = nov([0, 1]τ ). �

In [OT] it is asked if nov(R) is equal to N = min{τ : nov(Iτ ) = τ} ([OT],
Question 5.2). It was proved in [M] that it is consistent with ZFC that nov(R) = ℵ2

and nov({0, 1}ω1) = ω1. This proves, using Lemma 8.4, that the answer to Question
5.2 in [OT] is consistently negative.

It is easy to prove that Č(Cp(X, I)) ≥ Č(Cp(X, {0, 1})) ≥ nov(Iτ ) for every
non-discrete 0-dimensional space X, where τ = ec(X).

In [OT] it is asked what the Čech number of the Σ-product of ω1 copies of [0, 1]
is; and it is remarked that the relation ω1 ≤ Č(ΣIω1 ) ≤ d holds. Observe that
ΣIω1 and Iω1 \ ΣIω1 are dense subsets of Iω1 , so nov(Iω1 ) ≤ Č(ΣIω1 ). On the
other hand, Σ(0, 1)ω1 ∼= Cp(Y ), where Y is the one point Lindelöfication of the
discrete space of cardinality ω1. Moreover, Σ(0, 1)ω1 =

⋂
λ<ω1

Aλ where Aλ = {f ∈
ΣIω1 : f(λ) ∈ (0, 1)}. Since Aλ is an open subset of ΣIω1 , Σ(0, 1)ω1 is a Gω1-set of
ΣIω1 . This means that Č(Σ(0, 1)ω1) ≤ ω1 · Č(ΣIω1) (see Proposition 1.12 in [OT]).
On the other hand, ΣIω1 is a closed subset of ΣRω1 . So, we have:

8.5. Proposition. ω1 ≤ nov(Iω1 ) ≤ Č(ΣIω1 ) = Č(ΣRω1) ≤ kcov((ω1)ω) = d.

By the way, ec(ΣIω1 ) = c, then, using Corollary 4.8 in [OT] we know that
Č(Cp(ΣIω1 , I)) ≥ c. Moreover, Kombarov proved in [Ko] that the tightness of
ΣIω1 is ℵ0, so, by Theorem 3.2, c ≥ Č(Cp(ΣIω1 , I)). In summary:

8.6. Proposition. Č(Cp(ΣIω1 , I)) = c.

9. The Cech number of Cp(X) and
additional axioms consistent with ZFC

Let X be a nondiscrete space. We know that Č(Cp(X)) ≥ ω1; so, CH implies
that Č(Cp(X)) ≥ c. We get the same conclusion if we assume MA: Let ω ≤ κ < c.
MA(κ) implies that if (Ωα)α<κ is a family of open dense subsets of RX , then⋂

α<κ Ωα is dense in RX .
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9.1. Proposition. If we assume MA(κ) and X is not discrete, then Č(Cp(X)) > κ.

Proof. Assume that Č(Cp(X)) ≤ κ. We may assume that ec(X) = |X|. Then, |X|
must be ≤ κ. We have Cp(X) =

⋂
α<κ Ωα and Ωα is an open subset of RX

Fix f0 : X → R non continuous (it exists because X is not discrete). f0 +Cp(X)
and Cp(X) are dense in RX , Wα = f0 + Ωα is open and dense in RX for each
α < κ; hence (f0 + Cp(X)) ∩ Cp(X) is not empty, which implies that f0 would be
continuous; a contradiction. �

9.2. Corollary. MA(κ) implies κ < d.

Proof. If MA(κ) and κ = d, then for every non-discrete space X, Č(Cp(X)) > d

(Proposition 9.1). But this is not the case, for example, Č(Cp([0, ω])) = d. �

Martin Axiom is equivalent to MA(κ) for every κ < c. (Also MA implies d = c,
see Theorem 5.1 in [vD]) Then, by Proposition 9.1, we get:

9.3. Corollary. If we assume MA and X is not discrete, then Č(Cp(X, I)) ≥ c =
d.

Proof. Let Y be a clopen subset of X such that |Y | = ec(X) and X \Y is discrete.
We have that Č(Cp(X, I)) = Č(Cp(Y, I)) = Č(Cp(Y )). Since Y is not discrete,
Proposition 9.1 guaranties that Č(Cp(Y )) ≥ d = c. �

We will finish this section proving that it is consistent with ZFC the existence
of a countable space X for which ω1 = Č(Cp(X, I)) < d.

9.4. Proposition. Let q ∈ ω∗ and consider the set X = ω ∪ {q} as a subspace of
βω. Then, Č(Cp(X, I)) ≤ χ(q, β(ω)).

Proof. Let g : X → I non continuous; then it is not continuous at q and there is
ω > m ≥ 1 such that

g−1[(g(q) − 1/m, g(q) + 1/m)] 6∈ q.

Since q is an ultrafilter, then U = X \ g−1[(g(q)− 1/m, g(q) + 1/m)] ∈ q. So, t ∈ U
implies |g(t) − g(q)| ≥ 1/m.

Let B be a local base of q in βω of cardinality χ(q, β(ω)). We have that

IX \ Cp(X, I) =
⋃

1≤m

⋃

U∈B
{f ∈ IX : |f(t) − f(q)| ≥ 1/m ∀ t ∈ U}.

Claim. FU,m = {f ∈ IX : |f(t) − f(q)| ≥ 1/m ∀ t ∈ U} is closed in IX .
Indeed, assume h ∈ cl(FU,m) \ FU.m; then, there is b ∈ U such that |h(b) −

h(q)| < 1/m. Choose r1, r2 > 0 such that r1 + r2 + |h(b) − h(q)| < 1/m, and
consider V =

∏
x∈X Vx the open neighborhood of h where Vx = I if x 6∈ {q, b},

Vb = (h(b) − r1, h(b) + r1) and Vq = (h(q) − r2, h(q) + r2). Choose f ∈ FU,m ∩ V ;
it follows that |f(b) − h(b)| < r1 and |f(q) − h(q)| < r2. Thus, we have

1/m > |h(b) − h(q)| + r1 + r2 > |f(b) − f(q)| ≥ 1/m,

which is a contradiction. �

The following example answers question 5.1 in [OT] in the affirmative.
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9.5. Example. There is a model M of ZFC containing a countable space X with
the property Č(Cp(X, I)) = ω1 < d. (We thank Professor Frank Tall for his concern
to this problem and for leading us to [BS]).

Proof. In [BS] it was proved that there is a model M of ZFC in which there is a
free ultrafilter q with χ(q, β(ω)) = ℵ1 and d = ℵ2. So, in M , Č(Cp(ω ∪ {q}, I)) =
ℵ1 < d. �
Acknowledgment. The authors are grateful to Professor Oleg Okunev for his
comments to a previous version of this article. Also, the authors thank the referee
for his detailed revision and his useful suggestions to this work.
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