ON SOME GENERALIZATIONS OF COMPACTNESS IN SPACES $C_p(X, 2)$ AND $C_p(X, \mathbb{Z})$

A. CONTRERAS-CARRETO AND A. TAMARIZ-MASCARÚA

ABSTRACT. We discuss topological properties of a space X which imply that the spaces $C_p(X, 2)$ and $C_p(X, \mathbb{Z})$ have properties similar to compactness, such as σ -compactness and σ -countable compactness. In particular, for a zerodimensional space X, we prove: (1) X is normal and $C_p(X, 2)$ is σ -compact iff X is an Eberlein-Grothendieck space and the set of non-isolated points in X is Eberlein compact, and (2) $C_p(X, \mathbb{Z})$ is σ -compact iff X is an Eberlein compact space.

1. Introduction

All spaces are assumed to be Tychonoff unless otherwise stated. Given two spaces X and Y, we denote by C(X, Y) the set of all continuous functions from X to Y, and $C_p(X, Y)$ is the set C(X, Y) equipped with the topology of pointwise convergence (that is, the topology inherited by C(X, Y) as a subspace of the space Y^X of all functions from X to Y with the Tychonoff product topology). The space $C_p(X, \mathbb{R})$ is denoted as $C_p(X)$, and $C_p^*(X)$ stands for the subset of all bounded elements in $C_p(X)$. For points x_0, \ldots, x_n in X and subsets A_1, \ldots, A_n of Y, we will denote by $[x_0, \ldots, x_n; A_0, \ldots, A_n]$ the subset of Y^X of those functions f such that $f(x_i) \in A_i$ for every $i \in \{0, \ldots, n\}$.

The symbols \mathbb{R} , I, ω , \mathbb{Z} and 2 stand for the real line, interval [0, 1], the natural numbers, the discrete group of the integer numbers and the discrete group $\{0, 1\}$, respectively. The letters *t*, *n*, *m*, *k* will denote natural numbers; and if t is a natural number, we will use the same symbol t to denote the discrete space of cardinality t. For topological spaces X and Y, the symbol $X \cong Y$ means that X and Y are homeomorphic. The space $\beta(\omega)$ is the Stone-Čech compactification of the natural numbers, and ω^* is equal to $\beta(\omega) \setminus \omega$. If \mathcal{P} is a topological property, then a space X is σ -P if X is the countable union of subspaces satisfying \mathcal{P} . A space X is a *P*-space if the intersection of a countable family of open subsets of X is still an open set. A subspace Y of X is bounded in X if for every $f \in C(X)$, $f \upharpoonright Y$ is a bounded function, or equivalently, if every sequence of open sets in X, which meets Y, has an accumulation point in X. A subspace Y of a space X is C^* -embedded in X if for every $f \in C^*(Y)$ there is $g \in C^*(X)$ such that $g \upharpoonright Y = f$. A space X is ω -discrete if every subset Y of X of cardinality $\leq \aleph_0$ is discrete; and X is *b*-discrete if every subset Y of X of cardinality $\leq \aleph_0$ is discrete and C^* -embedded in X.

²⁰⁰⁰ Mathematics Subject Classification: 54C35, 54D45; 54C50, 54A25.

Keywords and phrases: spaces of continuous functions; C_{α} -compact spaces; α -pseudocompact space; ultracompact spaces; pseudocompact spaces; sk-directed properties; Eberlein-Grothendieck space; Eberlein compact space.