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Abstract

For an almost disjoint family (a.d.f.) X of subsets of w, let ¥(X') be the Mréwka-Isbell space
on Y. In this article we will analyze the following problem: given an a.d.f. 37 and a function
¢: X — {0,1} (respectively ¢: X — R) is it possible to extend ¢ continuously to a big enough
subspace XU N of ¥(X) for which clg(5yN D Z? Such an extension is called essential. We will
prove that: (i) for every a.d.f. £ of cardinality 2™ we can find a function ¢: &' — {0, 1} without
essential extensions; (ii) for every m.a.d. family X’ there exists a function ¢: X — R that has no
essential extension; and (iii) there exists a Mréwka-Isbell space ¥ (X') of cardinality X; such that
every function ¢: ' — R with at least two different uncountable fibers, has no full extension. On
the other hand, under Martin’s Axiom every function ¢: X — {0, 1} (respectively ¢: X — R)
has an essential extension if || < 2. Finally, we analyze these questions under CH and by
adding new Cohen reals to a ground model 0T showing that the existence of an uncountable a.d.f.
X for which every onto function ¢: X — {0, 1} with infinite fibers has no essential extensions is
consistent with ZFC. © 1997 Elsevier Science B.V.
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1. Imtroduction

All spaces below will be Tychonoff. If X is a space and A C X, then clx A is the
closure of A in X, and P(X) is the collection of all subsets of X. For a function ¢, we
denote its domain as dom(¢) and its range as rng(¢); furthermore, if Y C dom(¢), ¢|y
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denotes the restriction of ¢ to Y. As usual, w is the set of natural numbers, w* is the set
of all free ultrafilters on w, and if A C w and X' C P(w), then

A*={Few': AcF} and X" ={S" SeX}

w is the set of all countable ordinals, ¢ is the cardinality of the continuum, and [w]* will
denote the collection of all infinite subsets of w. Finally, for a space X, Cp(X) is the
space of all continuous real-valued functions defined on X considered with the pointwise
convergence topology. Let X be a space, Y a subspace of X, and let ¢:Y — W be a
continuous function. We say that a continuous function $ :Z — W is an essential (this
term was suggested by M.G. Tkachenko) extension of ¢ if Y C Z C X, $|y = ¢ and
each y € Y is a limit point of Z. If there exists a continuous function (;5 X — W with
¢|y = ¢ we will say that ¢ 1s a full extension of ¢. If W is a subspace of some larger
space T, we can use the term “essential extension of ¢:Y — W into T considering ¢7
as a function from Z to 7.

As usual, we will call a collection X of infinite subsets of w an almost disjoint family
(a.d.f.) if for every two different elements A, B of X we have |[AM B| < Ry. A maximal
almost disjoint family (m.a.d.f.) is a collection which is maximal with respect to the
almost disjoint property. The symbols A C* B and A =* B mean that |4\ B| < Yo and
[(A\ B)U(B\ A)| < Ny, respectively.

Let X be an almost disjoint family of subsets of w, and let us consider the following
topology on ¥(X') = wU X each n € w is an isolated point, and a neighborhood of a
point A € X is any set containing A and all of the points of A but a finite number. Such
a space is called a Mrowka—1Isbell space (also known as a ¥-space [3]. These spaces
were first considered by Mréwka in [12] and by Isbell).

A Mréwka—Isbell space ¥ (X) is a first countable, locally compact and, if X' is infinite,
noncountably compact space; w is dense in ¥(X), and X is closed and discrete. Moreover,
(X} is pseudocompact iff X' is a m.a.d. family; so, in this case ¥(X') is not normal
(for a more detailed analysis on basic properties of Mréwka—Isbell spaces, see [4,3]).

In this paper we will study essential and full extensions of real-valued functions defined
on the subset of nonisolated points of Mréwka—Isbell spaces. In Section 2 we will show
some negative results obtained in ZFC; in Section 3 we prove some consistency results
by adding a collection of Cohen reals to a ground model 901; Sections 4 and 5 are devoted
to an analysis of essential extensions under CH and Martin’s Axiom.

If ¥ is an a.d.f. on w of cardinality < RNy, then it is not difficult to prove that every
function ¢: X — {0, 1} (respectively ¢: X — R) has a full extension. So, from now on,
if nothing is said to the contrary, a.d.f. will mean uncountable a.d.f.

2. Some negative results

Lemma 2.1. Let W be a space, X an adf, and let f,¢:X — W be two different
Sfunctions. If N C w and f ¢ XY UN — W are essential extensions of f and ¢,
respectively, then fln # ¢| N.



V.I. Malykhin, A. Tamariz-Mascaria / Topology and its Applications 81 (1997) 85-102 87

Proof. There is A € X such that wy = f(A) # ¢(A) = w,. Since W is Hausdorff
(every space is assumed to be even Tychonoff), there are disjoint open neighborhoods
W, W5 of wy and wy. Since f and $ are continuous, there are open neighborhoods V1,
V5 of the point A such that f(vi) c Wy, $(Vg) C Wi But NNV NVa # 0. For every
point z from this set we have flx) # g/b\(z). O

Observe that if W is a space with cardinality < 2%, then |[{f: N — W: N Cw}| =
2%, So, by Lemma 2.1 we have:

Proposition 2.2. Let W be a space and let X be an a.d.f. such that |W| < 2% < 21%1,
Then there exists a function ¢: X — W without essential extensions.

The following proposition is a corollary of Proposition 2.2; we include an alternative
constructive proof.

Proposition 2.3. If ¥ is an almost disjoint family of cardinality 2%, then there exists a
function ¢: X — {0, 1} (respectively ¢: X — R) that has no essential extension.

Proof. Let X = {A,: o < c}. Let {fo: a < ¢} be an enumeration of all {0, 1}-valued
(respectively real-valued) functions f with the domain contained in w and such that X' C
clg(sy(dom(f)). Let a < ¢ if limy, o fo(an) does not exist for a sequence (an )n<.
in A, Ndom(f,), then we define ¢(A,) = 0. Otherwise, we define ¢(A,) to be an
r € {0,1} (respectively » € R) which is not equal to any of these limits. Such an r
exists, because the set

L={ nango falan): (an)n<w is a sequence in A, Ndom(f,)}

has cardinality equal to 1 (respectively L is bounded). ¢ is the required function. O

The following result relates essential extensions of real-valued functions to those of
{0, 1}-valued functions.

Lemma 2.4. Let X be an a.d.f. Then

(1) If : X — {0,1} has an essential extension @:E UN — R, then ¢ has an
essential extension ¢: X UN — {0,1}.

(2) Ifevery functiony: X — R has an essential extension, then every function ¢: 3 —
{0, 1} has an essential extension into {0, 1}.

(3) If |X| < 2% and each onto function ¢:5 — {0,1} with infinite fibers has no
essential extensions into {0,1} then each ¢: X — R with at least two infinite
fibers has no essential extension.

Proof. (2) is a consequence of (1), and the proof of this is similar to the one we are
going to give for (3). Let ¥ : X — R be a function with at least two infinite fibers, and
suppose that ¢: ¥ U N — R is an essential extension of . Fix a < b such that ¢! (@)
and ¥~!(b) are infinite. Since |Z| < 2%, there is ¢ € (a,b) \ 12)\(2 U N). Then, the
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function ¢: ZUN — {0, 1} defined by o(z) =0if QZ(JJ) <c and (z) = 1 if (z) > c
is an essential extension of ¢|x: X — {0,1}; a contradiction. O

When X' is an m.a.d. family we also obtain some negative results:

Proposition 2.5. For every infinite m.a.d. family ¥ on w there exists a function ¢: X —
{0,1}* (= The Cantor set) that has no essential extension.

Proof. There exists 7 C {0, 1}* such that

(1) |7} =[2] and

(2) for every n < w, |{f € F: f(n) =1i}| =|X| fori € {0,1}.
Thus, we can index 3. in a one-to-one and onto fashion with F:

2= {Af: feF }

Consider the function ¢: X — {0, 1}* defined by ¢(As) = f. Let N be a subset of
w such that cly(syN D X. Foreach n < w and i € {0, 1}, put £, ; = {As: f(n) =i}

It is not difficult to prove the following assertion and we do not include its proof (see
the proof of the Theorem in [15]).

Clajm. There exist nyo < w and X C N such that
DX)={XNA Ae Zand|XNAl =R}

is an infinite m.a.d. family, and for every Y C X, if
Enu,i(y) = {Y NA: Ae Zno,l and |Y N A! = No}

is a m.a.d. family for some i € {0, 1}, then Xy, ;(Y') is finite.

Now suppose that $ : ZUN — {0, 1} is an essential extension of ¢. Define ¢,, : & —
{0, 1} as ¢, :Aﬂ'n0¢) where T, is the projection to the nth factor, and ¢, : JUN — {0,1}
by ¢n(z) = ¢(z)(n). If A € X, ; is such that |A N X| = R, then, because of the
continuity of ¢y,, we have |(¢n,|x) 7' (¢) N A| = Ro. Hence, since X = Xy, o U T, 1,
either

-~ —1

So={(bnolx) (0)NA: Ae Xy 0} or
-~ -1

S1={(¢nelx)” (NNA: A€ Ty, 1}

is an infinite m.a.d. family; but this contradicts the claim. O

Corollary 2.6. For every infinite m.a.d. family X there exists a function ¢: X — R that
has no essential extension.

Proof. Let v: X — {0,1}* be a function without an essential extension (Proposi-
tion 2.5). Suppose that there exists a continuous function 12)\ : 2 UN — R that extends
. Since |[N| < 2%, there exists a continuous function h:zZ(E UN) — {0,1}* such
that for every A € X, h(zZ(A)) = J(A) = 1(A); hence ho¢: ZUN — {0,1}¢ is an
essential extension of i, which is impossible. O
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Corollary 2.7. For every infinite m.a.d. family X there exists a function ¢: X — {0, 1}
without full extension.

Proof. Assume that for every ¢: ¥ — {0, 1} there exists a continuous extension é: XU
w — {0,1} of ¢. Let : X — {0.1}* be a function such that ) has no essential
extensions. By our assumption, for every n < w, ¥, = m, o ¢: X — {0,1} hals a full
extension ¢, : & Uw — {0,1}. So ¥: ¥ Uw — {0.1}* defined by D(2)(n) = o () is
a continuous extension of ¢. This is a contradiction. O

Corollary 2.8. Let X C w and let X be an a.df. If
PX)={AnX: AcX and |[ANnX :No}

is an infinite m.a.d. family, then there exists a function ¢: X — R (respectively v: X —
{0, 1}) without any essential (respectively full) extension.

Problem 2.9. Is there, for each m.a.d. family X, a function ¢: X — {0,1} without
essential extension?

Let Xy and X be two families of infinite subsets of w. We say that )y and X are
separated if there exists a set S C w such that A C* S foreach A € Xy and BNS =*
for each B € Xy; in this case, we say that S separates Xy from Xy. A pair (X, X))
forms a Luzin gap if for every uncountable subsets %) and 2| of Xy and X, X and
X'l are not separated.

Remark 2.10. N.N. Luzin constructed an almost disjoint family >’ of cardinality ¥,
such that every two disjoint uncountable subfamilies are not separated (see, e.g., [9] or
[3, p. 124]).

The concept of essential extension of real-valued functions defined on the subset of all
nonisolated points of Mréwka-Isbell spaces is related with that’of Luzin gaps as follows:

Lemma 2.11. Let 2 be an almost disjoint family and N C w such that clg(syN D X.
Let ¢: X — {0,1} be a function, Xy = ¢~'(0) and X = ¢~'(1). Then the following
statements are equivalent
(a) ¢ has an essential extension on > U N.
(b) Zy={ANN: Ac Xy} and X] = {ANN: A€ X} are separated.
(c) There exist two disjoint sets P,Q) C N such that clgsyP D Xy and clg(5,Q O
2, but CIW(E)PO Y= 0 and Clg,(g)Q NXo= 0.
(d) There exist two disjoint sets P,(Q C N such that, for every A € 3y and B € Xy,
AN P and BN Q are infinite, bur AN Q and B N P are finite.

l:roof. (a) = (b) Let gg: Y UN — {0,1} be an essential extension of ¢, and let S =
¢ ~'(0) Nw. Then, S separates X}, from X|.
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(b) = (c) If S separates X from 2|, then the sets P = SN N and Q = N \ S satisfy
the requirement.

()= (a) The function ¢: U N — {0,1} defined by $(4) =i if A € Z;, p(n) =0
ifn€ Pand ¢(n) =1if n € N\ P is an essential extension of ¢.

(c) < (d) This is trivial. O

Observe that for an a.d.f. 3, a function ¢: X — R trivially has a full extension over
(L) if there exists an r € R such that [{A € X ¢(A4) # r}| < No.

Corollary 2.12. Let X be an almost disjoint family, and let (Xy, 21) be a partition of
2. The pair (Xo, X\ ) is a Luzin gap iff every function ¢ from X’ C X — R with at least
two uncountable fibers, one contained in Xy and the other in |, has no full extension.

Proof. (=) Let ¢: X’ — R be a function such that Iy = ¢~ !(rg) C Xy and I} =
¢~ '(r1) C Xy are uncountable where o # ;. Let I = IoU T, and let ¢ : I — {ro, 1}
be a function defined as ¥(A) = ¢(A) for A € I'. If ¢ has a full extension ¢A>: Y Uw—
R, then $| I'uw:{ Uw — Ris a full extension of 1. By Lemma 2.4, there exists a
full extension 9: 1" U w — {rg,m} of . By Lemma 2.11, I, and I are separated.
Therefore (X, 21) is not a Luzin gap.

(<) If (X, X)) is not a Luzin gap, then there exists two uncountable sets X C %
and X C X which are separated. Let 2/ = X U X| and let ¢: 2" — {0, 1} defined
by ¢(A) =0if A € X} and ¢(A) = 1 if A € X]. Because of Lemma 2.11, ¢ has a full
extension. O

The following proposition is a consequence of Remark 2.10 and Corollary 2.12.

Proposition 2.13. There exists a Mrowka-Isbell space ¥(X) of cardinality N, such that
every function ¢:X — R with at least two different uncountable fibers has no full
extension.

Definition 2.14 [6]. Let F be an ultrafilter on w. We say that F is an w-p-ultrafilter if
there exists a sequence (p¢)¢<., of infinite subsets of w such that for all £ < 7 < wy,
(1) prp C* pes
(2) Ip¢ \ Pyl = Ro and
(3)VB e FIE&<w (pe C* B).

The existence of an w;-p-ultrafilter is a consequence of CH, and is also consistent
with the negation of CH, but it is not a theorem of ZFC; in fact:

Proposition 2.15. Let F € w*. F is an w;-p-ultrafilter if and only if F is a P-point
with character equal to .

Proof. (=) Let (p¢: £ < wy) be a sequence of infinite subsets of w witnessing that 7
is an w;-p-ultrafilter. Hence, V = {pzz & < wi} is a w-local base for F; so V is a local
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base for F because each p; is clopen and V is a decreasing chain. These facts also imply
that F is a P-point.

(<) Let {We: € < wi} be alocal base of F in w”. Since F is a P-point and w™ is
zero-dimensional, we can assume that each W is clopen and for { < n < w;, W; C W¢
with W, # We. Then, for each £ < w there is p¢ C w such that p; = We. Thus, the
sequence (pe: € < wi) witnesses that F is an wi-p-ultrafilter. O

Recall that the existence of a free ultrafilter on w which has the character equal to X,
and is a P-point, is consistent with any admissible cardinal arithmetics (see [7]).

Let F be an w-p-ultrafilter and let (p¢)¢<., be a sequence satisfying (1)-(3) in
Definition 2.14. For each &, fix an infinite set A¢ C pe \ peq1. Note that the family
Z(F) = {A¢: £ <wi} is almost disjoint. An argument similar to the proof of claim 3.5
in [6] shows that if N C w is such that X(F) C clg(s(r)) N, then every continuous
function ¢: X(F) U N — R is eventually constant, i.e., there is an r € R such that
[{A € X(F): ¢(A) #r}| <|EZ(F)|. So, we obtain

Propeosition 2.16. Let F be an wi-p-ultrafilter on w. If ¢: X(F) — R is not eventually
constant, then ¢ has no essential extension.

From Proposition 4.2 in [6], Proposition 2.16 and Corollary 2.12 we conclude that
every wi-p-ultrafilter provides an example of a Luzin gap (Xp, X1} such that every
function ¢: Xy U X — R with two uncountable fibers has no essential extension.

Definition 2.17. Let A be a family of subsets of a space X. We say that A is an arrow
in X if there exists an element - € X such that for each neighborhood V of x we have
{A e A A¢ V}| < |A| If this is the case, we say that the arrow A converges fo x,
and we write A — .

Observe that if A = {A,: n < w} is an arrow of X, r, € A, foreachn < w
and A — z, then the sequence (,)n<, converges to x. Since there is no convergent
sequences in w™, every arrow in w* is uncountable.

Proposition 2.18. Let X be an a.d.f. of regular cardinality o of infinite subsets of w. If
2x={A* A€ X} isanarrow in w* and ¢: X — R is not eventually constant, then
¢ has no essential extension.

Proof. Let X' = {A¢: £ < a} be a faithful enumeration of X'. Let N be a subset of w
such that clg(x)N 2 X, and suppose that gg : 2 UN — R is a continuous function. We
are going to prove that $ is eventually constant. Since 2™ is an arrow in w*, there exists
U € w* such that X* — U.

We now proceed as in [6, pp. 5, 6]: for every basic open interval (a,b) C R, let
D(a.b) = {n € N: ¢(n) € (a,b)} and E(a,b) = {€ € o= A¢ € cly(xyD(a,b)}.
Because Ny < |3, the following will complete the proof.
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Claim. If a < b < ¢ < d are real numbers, then at most one of the sets F(a,b) and
E(c,d) has cardinality .

Proof. In fact, since D(a,b) N D(c¢,d) = ), at most one of them is an element of /.
Without loss of generality, suppose that D(a,b) ¢ Y. Then there exists U/ € I such that
D(a,b)NU = (. Since X* converges to U and cof(a) = «, there exists & € « such
that A; C* U V€ > &, hence £ ¢ E(a,b) for £ > &. Thatis, |E(a,b)] < a. O

Proposition 2.19. If U € w* has a base of cardinality N,, then there exists a disjoint
clopen arrow A converging to U.

Proof. If U is not a P-point, then there exists a countable family of clopen subsets of
w*, T,suchthatif ¢ T =|J7T,but¥ € cl«(T). Let B = {Vx: A < w} be alocal base
of U in w*. We will construct 4 by transfinite induction. Let Ay be a nonempty clopen
subset of w* such that Ay C Vp and U ¢ Ag. Suppose that we have already defined two
a-sequences {Ax: A < a} and {nx: A < o} (@ < w) such that

(a) A, is a nonempty clopen subset of w* with Ay N T = (:

(b) AxNAe =0if A #¢&;

(c) every 7, is a countable ordinal, 0 = 79, and nx < 7, if A < v <

(d) A C (Negyy Vo) N (w*\ V) for every A <y < c.

Let us make the following a-step. The sets M, = | J{Ax: A < a} and T are two
disjoint open F, subsets of w*. Since w* is a normal F-space, cl,~ My Ncl,~T = B;
but U € ¢l T, so U ¢ cl,+ M. Then there exists 1, < w; such that n, > 7, for every
A< a, and Vp, Ncly~M, = §. Besides,

UeW, =( N V,\>ﬂ(w*\clw*Ma)ﬂ(w*\T),

AL Na

and W, is a nonempty G5 subset of w*. Then W, contains an infinite interior. Let V # U
and V € intW,. Since w* is zero-dimensional, there exists a clopen set A, such that
VeA, CintW, and U ¢ A,.

In this manner we can obtain a family 4 = {A5: A < w,} that satisfies conditions
(a)~(d). It can be proved that A is a disjoint clopen arrow converging to 4.

If U is a P-point in w*, we can construct A4 in a similar and easier way than before
without the need of any auxiliary family 7. O

The following result is a consequence of the two previous propositions.

Corollary 2.20. [CH] Let X' be an almost disjoint family on w, and let ¢: X — R be a
noneventually constant function. If X* is an arrow, then ¢ has no essential extension.
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3. Adding new Cohen reals

In what follows, by a model we shall mean one that is standard and transitive for the
axiom system ZFC of set theory (see [7]).

Lemma 3.1. Ler A be a countable a.d.f. on w in a model M. If N is a model obtained
by adding a new Cohen real to M, then there exists B € [w]” in N such that
(1) AU{B} is an a.df, and
2y BN {Uy(A))| = | BN (U¥(A1)) = Ro for every disjoint infinite partition
A= Ay U A, with Ay, A € M and every function Y € M, : A — [w]|* with
P(A) CAVAe A

Proof. Let PP be the set of all pairs of finite functions {f, F) such that
(a) dom(f) C w and mg(f) < {0,1};
(b) dom(F) C A and mg(F) C w;
(© f(k) =0if k € U gcgom(r)[(A Ndom(f)) \ F(A)].
We define in PP the following relation: (f, F) < (g,G) iff
(i) f2g9, F DG, and
(i) f(k) =0 forevery k € | J{[ANndom(f)]\ G(A): A€ dom(G)}.
Since P is countable, there exists an 9M-generic G C P. Let 91 = MG,

F=\J{f: 3F e Axuw((f.F) € @)}

and B = F~!(1). Now we will prove that B satisfies the requirements.

It is easy to prove that for each a € w, the set D, = {{f,F) € P: a € dom(f)}
is dense in P. Besides, for each A € A, the set Dy = {(f,F) € P: A € dom(F)
and [dom(f) N A] \ F(A) # 0} is also dense. In fact, let (g,G) € P\ Ds. We take
ai,az € A such that a; > a; > max(dom(g)). If additionally A € dom(G), we have
to be careful to choose a, bigger than G(A). We define F: dom(G) U {4} — w and
f:dom(g) U {a} — {0,1} as follows: F(G) = G(G) if G € dom(G) and F(A) = a,
if A ¢ dom(G); and f(n) = g(n) if n € dom(g) and f(a,) = 0. Then {f, F) € D4 and
(f.F) < {9.9).

Let A € A and take (f,F) € D4 N G. Then there is a; € [dom(f) N A] \ F(A4).
For each @ > a; we can find (¢9,G) € D, N G. If (h,’H) € G is a stronger condition
than (f,F) and (g,G), then h(a) = 0. This means that |A N B| < Ro. So, B satisfies
condition (1).

On the other hand, if C C A is infinite and ¢ :C — [w]* is a function such that
() C C for every C € C, then the set

D) = {1£.7) B 3me | w(©) (1(m) = 1)

cec

is also dense in . Let us verify this: let {9,G) € P\ D(C,v). Since C is infinite,
there is Cy € C \ dom(G). So, we can take m € ¥(Cp) \ [dom(g) U mg(G)]. Let
f:dom(g) U {m} — {0,1} be the function that coincides with g in dom(g) and has the
value 1 at m. Then (f.G) € D(C,¢) and (f,G) < {g,G).
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Now, using the density of D(C, 1)), we can prove that B also satisfies condition (2). O

Proposition 3.2. Let I be a model. If one adds ¥, new Cohen reals to I, then in a
resulting model there is a Mrowka-Isbell space ¥(X) of cardinality R, for which every
onto function ¢: X — {0, 1} with infinite fibers has no essential extension.

Proof. Let K(w x «,2) be the partially ordered set of all finite functions from w x «a
to {0, 1} with the relation f < g iff f D g. Let 9, be the generic extension of 9 by
means of an 9M-generic subset G of K(w x wy,2). In M, there is a transfinite sequence
of models MM = My, ..., M,,...,M,,, where M, = M[G N K(w x a,2)]. For every
a € w; we can consider M, as a model which is obtained from M, by adding one
new Cohen real; so, let ' = {A,: & < wi} be an ad.f. in M, obtained by using
Lemma 3.1 in each step of a transfinite induction.

Now, let ¢: 7 — {0, 1} be any function satisfying min{|¢~!(0)[, [p=1(1)|} = No. We
will prove that ¢ has no essential extension. Indeed, let My and A; be disjoint subsets
of w such that clg(syMo O ¢7'(0) and cly(syM; D ¢~'(1). There is an & < w; such
that ¢ N W, € My, My N M, € M, and M; N IN, € IM,. Because of the way we
defined A,y by using Lemma 3.1, we have that [Aq+1 N Mp| = |Aa+1 N M| = Ro.
But this means that we cannot extend ¢ essentially. O

Lemma 3.3. Let M be a countable model and 9 be obtained from M by adding one
new Cohen real v. Let ¥ = {A,: n € w} be an a.df in M. Let us define, in I, the
Sunction ¢(A,)} = r(n) for every n € w, and let ¢ be an essential extension of ¢. Let

Ey = ¢~ (0)Nw and By = ¢ (1) Nw. If E is an infinite subset of w, E € MM and
|(clg(5)E) \ E| = Ro then E \ E; is infinite for i = 0, 1.

Proof. Let us assume the contrary; say E \ Ep is finite. By the assumption of the
lemma, @ = {n € w: |[EN Ay,| > No} is an infinite element of M. It is known that
|rN K| =R = |K \ | for each infinite set K C w, K € M. So, there is an n € w such
thaE\ ¢(An) = 1 and A, N Ej is infinite; but this is in contradiction with the continuity
of . O

Proposition 3.4. By adding N, new Cohen reals to a model I, we obtain a model N
in which for each uncountable a.d.f. X there exists a function ¢: X — {0, 1} without an
essential extension in N.

Proof. Let 3. = {A,: o € wy} be an uncountable a.d.f. in M. There exists a transfinite
sequence of models M = My C - T M, C -+ T M, = N, where M, is the
smallest model containing all preceding models if « is a limit ordinal, and M, is
obtained from 9, by adding one new Cohen real 7.

Changing enumeration of models if necessary, we can assume that

{Ap: B<w-a+w}eM,

for each a0 € wy.
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Now let us describe a desired function ¢: X — {0, 1}. We put ¢(Ay.arn) = ra(n).
This function has no essential extensions in 1. Indeed, suppose ¢? € M is an essential
extension of ¢. Then Eo = ¢~'(0) Nw and F; = ¢~ (1) Nw belong to M. On the other
hand, Pyx(w) = U{Pualw): @ € wi}, where Py(w) = P(w) N M,. So, there exists
a < w such that Ey, By € M,. Let o = dlia . new} and

b : {Av.ain: n€EwW}HU (dom(a) Nw) — {0.1}

be defined by (;Aba(AwAaJrn) = gba/(\Au,AM_n) = rq(n) for every n < w, and $Q(E) = (E(n)
for every n € dom(¢)Nw. Then ¢, is an essential extension of ¢, and Ey = ¢ ' (0)Nw
and F; = ¢;'(1) Nw. But this is impossible because of Lemma 3.3. O

Corollary 3.5. It is consistent with any admissible cardinal arithmetics that for every
uncountable a.d.f. X there exists a function ¢: X — {0. 1} having no essential extension.

Proposition 3.6. If one adds X, new Cohen reals to a model M in which GCH is
true, then in a resulting model R, for each uncountable a.d.f. X there exists a function
¢: X — R having no essential extension.

The following lemma plays a crucial role.

Lemma 3.7. Let X be an a.d.f. of cardinality ¢ in a model 9. If N is a model obtained
by adding one new Cohen real to N, then there exists a function ¢: 3 — R such that
¢ has no essential extension in .

Proof. Let ¥ = {A,: a < ¢}, and let K be a partially ordered set for adding one Cohen
real, |K| = Ng. We construct ¢ by transfinite induction. We may enumerate all the names
for functions from w to R by using ordinals less than ¢: { fa: a < c}. Suppose that our
function ¢ is already defined on all Ag with 3 < a. We are now going to define ¢( A, ).

Let P = {pcK: prlimyea, nooofa(n) = 7p}. For each p € P we can find some
q < p and some segment [a,, b,] with rational ends whose length ¢, is as small as we
wish so that ¢ - 7, € [a,.bp]. As [P| = Ro, we can find 24 € R\ J{[ap.b,]: p € P}.
Put (D(Aa) = Iq. U

It is not difficult to prove that

Lemma 3.8. The function ¢ constructed in Lemma 3.3 has no essential extension after
adding any Cohen reals.

Proof of Proposition 3.6. Let 91 be a ground model, and 91 a resulting model obtained
after adding N, new Cohen reals. It is possible to prove that ¢ = N, in N (see, for
example, Lemma 5.14 in [7]). If X € M is an a.d.f. and | 2| = R, = ¢, then, according
to Proposition 2.3, on this X’ there exists a function ¢ without essential extensions. Let
Y € M and |X| = R,. Then there exists an intermediate model € with > € € and
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|X| = 2™ in & Now we may apply Lemmas 3.7 and 3.8 and define a function ¢ which
has no essential extension in 9%t. O

Corollary 3.9. It is impossible to construct in ZFC or just in ZFC + —CH an uncount-
able a.d.f. X such that every function ¢: X — R has an essential extension.

In [6] it was noted that Cy, (¥ (X)) is not a normal space if X' is an a.d.f. of cardinality
Ny such that
(1) for each countable subset X’ of X, every function f: %’ — R can be extended to
a continuous function g: ¥ (X) — R such that for an r € R, |{z € #(X): g(z) #
r}H < No (that is, g is eventually constant); and
(2) every g € Cp(¥(X)) is eventually constant.
This is the case when X' = X'(F) where F is an w;-p-ultrafilter, and also when X
satisfies the conditions
(%) every partition of X' is a Luzin gap, and
(%) every countable subset of X' can be separated from its complement.
In [6] it was proved that there exists an a.d.f. X satisfying () and (**), and van
Douwen [3] proved that it is consistent with ZFC that every a.d.f. with (*) also satis-
fies (*x).

Remark 3.10. The Mréwka-Isbell space ¥ (%) constructed in Proposition 3.2 has very
interesting properties, namely:
(1) For each f € Cp(¥(X),{0,1}), either £71(0) or f~!(1) is finite; and only func-
tions ¢: X' — {0, 1} with a finite fiber can be continuously extended to all u(X).
2) It ¢> ¥(X) — R is continuous and ¢ = ¢S| 5, then there exists r € R such that,
either
@ |Z\ ¢~ (r)] < N, or
() |Z\ ¢~ '(r)| = Ro, mg(¢) = {r} U {r, € R: n € N}, (rp)nen converges to
r and |¢p~1(r,)| < R for each n € N. Besides,
(3) If ¢: X — R is such that there is r € R satisfying (a) or (b), then ¢ has a full
extension ¢ () — R

Problem 3.11. Let ¥(X') be the Mréwka—Isbell space constructed in Proposition 3.2. Is
Cp(¥(X)) a normal space?
4. Essential extensions under CH

In this section we will prove that under CH we can also obtain an example of an a.d.f.
X such that none of its onto {0, 1}-valued functions with infinite fibers have an essential
extension.

Proposition 4.1. [CH] There exists an uncountable a.d.f. X on w such that no function
¢: X — {0,1} for which |¢~'(0)| > Ro and |¢~!(1)| = No, has an essential extension.
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Proof. We will construct ¥ = {Ag: 3 < w;} by transfinite induction. Let {Jo: o < w;}
be a collection of subsets of w; such that J,, = @ for all n < w and {J: w < & <w}
is a partition of w; consisting of uncountable disjoint subsets. Let {A{,.... A, ...} be
a countable a.d.f. on w. We are going to define the following sets for every 8 < wy:
(1) A/; C w,
(2} acollection T, each of its elements being a two-element set consisting of disjoint
subsets of w,
(3) two infinite and disjoint subsets P3 and Qg of w,
(4) an ordinal w € ag < w;i, and
(5) two infinite and disjoint subsets aoﬁ and a? of 3,
such that
(1) foreveryn<w, A, =4, 0, =0and T, = P, =Q, =af =a} =
(ii) the collection {Az: B < w;} is an a.d.f.;
and for every w € § < wy:
(i) Ts = {{P.Q}: P.QCw,PNQ =0 and

min{[{A < g: P04 =Ro}]. [{A < 8 1Q N Ax] = Ro}|} = No:

(iv) ‘{)\ < B3 |Pﬁ ﬁA)\‘ = No}| = 1{/\ < 3 |Q‘g ﬂA)\‘ = N0}| = N
(v) either ag € [w,wi) \ {ax: A < B}if B€ Uy 5 Ja, or ap is such that 8 € J,,
if 8 ¢ U)\<ﬂ J“A;

(vi) af = {A< B |Psn Ay =Ro}, af = {\ <3 Q3N Ay =No}; and

(vii) lAg n U/\Eag (PB N A)\)[ = Ny and [Ag N U/\Eaf’ (QB N Ax)| = Ng.

Suppose we have already carried out everything we want to for every § < Kk < w;
with w < «. Now, we are going to define all we need for the x-step: Let o, be an ordinal
< wi such that either x € Jo, if £ ¢ Jg,; Ja,, OF ax is an ordinal different from any
ag (B < k) if k€ Use, Ja,- Let

TK:{{P,Q}: PQcCw, PNQ=0, |{A<x: |PN A=} =R and

|{/\ < K IQQA)\] = No}l = No}

Observe that |T;| = ¢ = X;. So, we can make an enumeration of the elements of
T, by using a one-to-one and onto correspondence with the elements of J,, : T, =
{{Pr.Qx} A€ Ja b 50, {Pu. @i} € Usg, Ta Wesetag = {A < w1 [P.NAy| = No}
and af = {A < k: |Q« N Ax| = Ro}: these are infinite subsets of k. and we enumerate
them as af = {A\: n <w}, af ={&,: n <w}.

We are going to construct the set A, by induction. Take

xo € PN Ay, Yo € (Qr M Ag) \ Ay,

and if we have already taken different elements xy, . .., x, and yg. . . . , yn, we can choose,
since {Ax: A <k} isanadf and P, N Ay, . . QxN Ag,., are infinite sets,

Inyl € (Pn ﬁ14)\n+1)\ < U A)w U U ‘451) and

1<n+1 1<n+1
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Yn+1 € (QKOA§n+1)\< U A)\IU U AE,)

i<n+l i<n+l
Let A, = {rn: n <w}U{yn: n<w}.
It happens that {A,: A < &} is an a.d.f,

A U (Pan Ay Acn [ (@en 4y

YIS Acar

= N() and = N().

In this way, we can obtain all the sets listed in (1)—(5) with properties (i)—(vii).

Now we are going to prove that X' = {Ax: A < w} satisfies the requirement. Let
¢:% — {0,1} be a function where ¢~'(0) and ¢~'(1) are infinite subsets of X. Let
N C w be such that cly(x)N D X, and let $:XUN — {0.1} be a function that
extends ¢. We will prove that ¢ is not a continuous function. Take My = 6! 0NN
and M, = ¢~ '(1)NN. If foran i € {0, 1} there exists Ay € ¢~ (i) with [M;NA| < Ry,
then & is not continuous at the point A,. Now assume the contrary: |M; N Ax| = No
for all Ay € ¢71(i) and i € {0,1}. Let Z; = {X < wi: A\ € ¢~ '(4)} and let Z]
be a countable and infinite subset of Z; for i € {0,1}. If ko = sup(Z{ U Z|), then
{ Moy, M} belongs to Ti,; so there exists 19 € Jo,, such that {Mo, M1} = { Py, Qx, }-
Thus |A,, N Mo| = Rg = |A,, N M;| because of property (vii). But this means that & is
not continuous at the point A,,. O

5. Essential extensions and Martin’s Axiom

In contrast with the previous sections we will now see that the scenery changes when
Martin’s Axiom is assumed.

The following assertion, which is called Booth’s Lemma (BL), is a consequence of
Martin’s Axiom (MA) and was first proved by D. Booth in [2]:

BL. If X is a family of subsets of w with |X| < 2% and | X'| = Ry for every finite
subfamily X' of X, then there exists an infinite subset B of w such that |B\ A| < Ng for
every A€ X

This combinatorial principle (also denoted by P(c) or p = ¢) is equivalent to a strict
weakening of MA, the so-called Martin’s Axiom for o-centered partially ordered sets
(see [1,8]).

BL has significant and interesting consequences (see for example [1,10]); among them
is the following statement: every m.a.d. family on w has cardinality c.

It is very possible that the following result belongs to the set-theoretical folklore (see,

e.g., [11]).

Lemma 5.1. BL is equivalent to the following statement:
(*) If A, B C P(w) are families of cardinality less than 2%, and for all finite C C A
and B € B, |B\|JC| = R, then there is an M C w such that |B\ M| = X, for
all Be Band |A\ M| <R forall Ac A
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Proof. Theorem 7 of [13] guarantees that MA implies (*). In order to obtain BL = (x),
we can use the same argument in proof of the cited theorem because the partial order P
used there is o-centered (see [1]).

The statement () = BL is Corollary 8 in [13]. O

Propeosition 5.2. (BL] Let X be an a.d.f. of cardinality < ¢. Then, every function ¢: X —
{0, 1} has an essential extension.

Proof. Let ¢: X — {0,1} be a function and set X; = ¢~ !(i) (: = 0,1). Because of
Lemma 5.1, there are two sets My, M| C w such that |A\ M| = X and |A\ M| < R
forall A € Xy and |B\ M| < R and | B\ M| = ¥, for all B € X|. Define S" = w\ M
and 77 = w\ M. Then, for A € Xy, ANS' = A\ (w\S") = A\ My, is infinite. Similarly,
for all A € Xy, and for all B € X}, T’ N B is infinite and S’ N B, T’ N A are finite. The
sets S = S’\T" and T = 7" are disjoint and, for each A € 20 and each Be X, AnS,
BNT are infinite and ANT, BN S are finite. We define ¢>|>; = ¢. qb(s) = 0 for every
s € S and d)( ) = 1 for every t € T. The function qb is an essential extension of ¢. 0

The following definition and theorem appear in [14, p. 55]: we include their formula-
tions for the sake of completeness.

Definition 5.3. An a.d.f. (A))x<, is called a tree if for each 3 < a and every 7. £ < a,
either Ag N AW C Ag N Ag or Ag N Ag C AN AW'

Proposition 5.4. [MA] If ¥ is an a.d.f of cardinality < 2% which is a tree, then every
function ¢: £ — {0, 1} has a full extension.

For arbitrary a.d.f. of cardinality < 2™, MA also implies the real-valued essential
version of Proposition 5.2:

Proposition 5.5. [MA] Let X be an a.d.f of cardinality < 2%°. Then every function
¢: X — R has an essential extension.

Proof. Let P be the set of all pairs p = (fp, Fp), where f, and F, are functions
satisfying the following conditions:
(1) dom(f,) C w and mg(f,) C Q;
(2) |dom(f,) Udom(F,)| < Ro:
(3) dom(F,) C X, and F,(A) = (uf,.rh) € w x Q7 for each A € dom(F,); and
(4) if A € dom(F,) and k € (A \ %)) Ndom(f,), then

| Fo(k) — &(A)] <7l
(Q and Q7 denote the sets of rational numbers and of positive rational numbers, respec-
tively.)
We define in P the following partial order: p < ¢ iff the following conditions hold:
@ fp > fg



100 V.I. Malykhin, A. Tamariz-Mascariia / Topology and its Applications 81 (1997) 85-102

(iiy dom(F,) D dom(F,);
and for each A € dom(F,),

(i) vfy > ud, rh <

(iv) [dom(f;) \ dom(fg)] N A C A\ u¥;

(v) for each k € (A \ u%) Ndom(f,), |fp(k) — ¢(A)] < Y.

The pair (P, <) is a partially ordered set. Indeed, let us verify that the relation < is
transitive. Suppose that p,q,s € P are such that p < s and s < ¢g. We are going to
prove that p < g. It is easy to see that the conditions {i)—(111) hold. We now prove the
statement (iv). Let us suppose that A € dom(F,) and ny € [dom(f,) \ dom(fy)] N A.
We need to prove ng > u%. But

dom(f,)} \ dom(f,) = [dom(fp) \dom(fS)] U [dom(fS) \dom(fq)]'

If ng € dom(f,) \ dom(fs), then ng > u$ > u%, and if np € dom(f;) \ dom(f,), then
ng > uf too.

It remains to prove that p and g satisfy (v). Let A € dom(F;) and k € (A \ u%) N
dom(f,). Since s < g, if k € dom(f,) then

| (k) = 9(A)| = | fp(k) — $(A)] < 7

If k ¢ dom(fs), then k € [dom(f,) \ dom(fs)]NA C A\ u¥y, so | fp(k) — d(A)] <78 <
r%. It is easy to verify that < is reflexive and antisymmetric.

Now let us check that ¢(P) < Rg. Let £ be a subset of P of cardinality X,. We can find
an uncountable subset £; C £ such that f, = f, for every p,q € £;. Moreover, we can
find a finite subset A C X' and an uncountable & C &; such that dom(F,) Ndom(F,) =
A for all different p, g € & [5, p. 87]. As the range of all possible values of every F(A)
is countable, there exists an uncountable &3 C &, such that F,,(A) = F,(A) for each
A€ Aandallp,q € &.If p, q € &, then they are compatible: in fact, (f,U fq, FpUFy)
extends p and q.

Now we will define a convenient system ® of dense subsets of P.

Claim 1. For each (A,n,7) € ¥ x w x Q% the set
D(A,n,ry={p={f,F) eP: Acdom({F), F(A)=(m,t)andm >n, t < r}
is dense.

Indeed, let (g,G) € P\ D(4,n,r), and let F:dom(G) U {A} — w x Q* defined by
the conditions:
- F(G) = G(G) if G € dom(G) \ {A},
- F(A) = (ug, o), where ug = max{dom(g) U {m,n}} + 1 and rg = min{¢t,r}, if
A € dom(G) and G(A) = {(m,t), and
— F(A) = (max{dom(g) U {n}} + 1,7) if A ¢ dom(G).
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It is easy to see that (g, F) satisfies conditions (1)-(3) above; and since (g,G) € P
and (A \ ug) Ndom(g) = 0, (g, F) satisfies (4) too; so (g, F) € P. Besides. it can be
proved without difficulty that (g, F) € P(A,n.r) and (g. F) < (9.G).

Claim 2. For each (A,m) € X x w, the set
H(A,m) = {p=(f.F): Aecdom(F)and dom(f)N(A\m)# 0}

is dense.

Indeed, let ¢ = (g9,G) € P\ H(A4,m). Since X is an a.d.f. of infinite subsets of w, we
can take f € A\ |J{G: G € dom(G) \ {A}} such that

t > max {m.max {u&: G € dom(G)}}.
Let f:dom(g) U {t} — Q defined by f(n) = g(n) if n € dom(g) and f(t) = ¢(A). On
the other hand, if A € dom(G), let F = G, and, if A ¢ dom(G), let F:dom(G)U{A} —
Qt be defined by F(G) = G(G) for all G € dom(G) and F(A) = (ufy,r%) where
uf, > max{dom(g)} and v € Q7. It can be proved that (f.F) € H(A,m) and
(f.F) <{9.9)-
So, the collection

D={DAnr): AcX ncw. reQt}U{HAmM): Ac X meuw}

is a system of dense subsets of P. Since |D| < 2%, and using MA, there exists a
D-generic G C P. Let

v=\J{f: peGlp={(fF)} and
AI:U {dom(f): Ipe G(p= (f.F))}.
Since G is D-generic, we have

Claim 3. For each (A, k,e) € X x w x QF there exist m(A.k,e) € (M N A)\ k and
(f,F) =p € G such that m(A,k.e) € dom(f) and |f(m(A, k.€)) — ¢(A)| <e.

Indeed, let ¢ = (fq, Fq) € G N D(A, k,e). Hence, A € dom(F,) and Fy(A) =
{mo,to) with mg > k and tp < e. Let s = (f5,Fs) € GNH(A,mp) and let p =
(f.F) € G such that p < ¢ and p < s. By the assumption, E = dom(fs) N (A \ mg) i
not empty. An element m(A, k, <) in E satisfies the above requirements.

For each A € X' let n(A4,0) = 0 and n(A.i+ 1) = m(A,n(A.7),1/(i+ 1)), and take

w

N = {n(A.,i): A€ X, i€ w}. The function ¢: XU N — R defined by ¢|x = ¢ and
#(n) = ¥(n) for each n € N is an essential extension of ¢. O
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