EXAMPLE OF A T_1 TOPOLOGICAL SPACE WITHOUT A NOETHERIAN BASE

ANGEL TAMARIZ-MASCARÚA AND RICHARD G. WILSON

(Communicated by Doug W. Curtis)

Abstract. A Noetherian base \mathcal{B} of a topological space X is a base for the topology of X which has the following property: If $B_1 \subseteq B_2 \subseteq \cdots$ is a nondecreasing sequence of elements of \mathcal{B}, then $\{B_n\}_{n \in \mathbb{N}}$ is finite. In this article we give an example of a T_1 topological space without a Noetherian base.

I. Introduction.

Definition 1.1. A collection \mathcal{C} of subsets of a set X is Noetherian if \mathcal{C} does not contain a strictly increasing infinite chain.

There are large classes of topological spaces which have a Noetherian base (see [3]), for example if X is a normed linear space, the collection of open balls of radius $1/n$ ($n \in \mathbb{N}$) constitutes a Noetherian base of X. On the other hand, \mathbb{R} with the topology $\tau = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}$ is a non T_1-space with no Noetherian base.

An important unsolved problem is the following:

Does Con(ZFC) imply that Con ($\text{ZFC} + \text{there exists a } T_2\text{-space without a Noetherian base}$)?

However, the following is known:

Theorem 1.2[1 and 4]. Let α be an ordinal. The space α has a Noetherian base if and only if $\alpha + 1$ does not contain a strongly inaccessible cardinal.

In the section that follows we give an example, in ZFC, of a T_1-space that has no Noetherian base.

II. A T_1 topological space with no Noetherian base.

Definition 2.1. A topological space X is Noetherianly refinable or in abbreviated notation, N-refinable, if each open covering has a Noetherian open refinement.

It is easy to see that if X has a Noetherian base then it is N-refinable and that X is N-refinable if and only if each open cover has a refinement which is an antichain of open sets.

Lemma 2.2 [2]. Let α be an uncountable regular cardinal. Let $E \subseteq \alpha$ be a stationary subset of α and let $\phi : E \rightarrow \alpha$ be a regressive function. Then, there is $\xi < \alpha$ such that $|\phi^{-1}(\xi)| = \alpha$.

Received by the editors April 20, 1987 and, in revised form, August 18, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 54G20; Secondary 54D20.

Key words and phrases. Noetherian base, N-refinable space.

The work formed a part of the doctoral thesis of the first author, written at the Universidad Autónoma Metropolitana-Iztapalapa under the direction of the second author and Adalberto García-Máñez.
For each \(\lambda \leq \omega_1 \), let \(\mathcal{B}_\lambda = \{ A \subset \lambda : |\lambda - A| < \aleph_0 \} \). If \(B_1, B_2 \in \mathcal{B} = \bigcup_{\lambda \leq \omega_1} \mathcal{B}_\lambda \), then \(B_1 \cap B_2 \in \mathcal{B} \). Therefore \(\mathcal{B} \) is a base for a topology \(\tau \) in \(\omega_1 \).

Remark 2.3. \(A \in \tau - \mathcal{B} \) if and only if \(A = \lambda - C \), where \(\lambda < \omega_1 \) and \(C \) is a cofinal subset in \(\lambda \) of order type \(\omega \) (o.t. \(C = \omega \)).

Theorem 2.4. \((\omega_1, \tau) \) is a \(T_1 \)-space which is not \(N \)-refinable (and therefore, \((\omega_1, \tau) \) does not have a Noetherian base).

Proof. Let us suppose that \(\mathcal{A} \subset \tau \) is a refinement of \(\mathcal{E} = \{ \lambda + 1 : \lambda \in \omega_1 \} \). Let \(\lambda_0 = 0 \) and let \(A_0 \in \mathcal{A} \) be such that \(\lambda_0 \in A_0 \). Then, there is \(\lambda_1 \in \omega_1 \) such that \(A_0 = \lambda_1 - C_1 \), where \(C_1 \) is either finite or is an infinite cofinal subset of \(\lambda_1 \) of order type \(\omega \) (see 2.3). Let \(A_0' = A_0 \cup \{ \eta \in C_1 : \eta > \lambda_0 \} \). Let \(A_1 \in \mathcal{A} \) be such that \(\lambda_1 \in A_1 \). There is \(\lambda_2 \in \omega_1 \) such that \(A_1 = \lambda_2 - C_2 \), where \(C_2 \) is finite or is an infinite cofinal subset of \(\lambda_2 \) of order type \(\omega \). Let \(A_1' = A_1 \cup \{ \eta \in C_2 : \eta > \lambda_1 \} \).

Let us suppose that for some \(\gamma < \omega_1 \), we have chosen the collections: \(\{ A_\beta \}_\beta \subset \mathcal{A} \) and \(\{ A'_\beta \}_\beta \subset \mathcal{A} \), such that \(\lambda_\beta \in A_\beta = \lambda_{\beta + 1} - C_{\beta + 1} \), where \(C_{\beta + 1} \) is either finite or is an infinite cofinal subset of \(\lambda_{\beta + 1} \) of order type \(\omega \). Moreover, for each \(\beta < \gamma \), \(A'_\beta = A_\beta \cup \{ \eta \in C_{\beta + 1} : \eta > \lambda_\beta \} \).

We construct, inductively, \(\lambda_\gamma \in \omega_1 \), \(A_\gamma \in \mathcal{A} \) and \(A'_\gamma \):

If \(\gamma \) is a nonlimit ordinal and \(\gamma - 1 \) is the immediate predecessor of \(\gamma \), then there exist \(\lambda_\gamma < \omega_1 \) such that \(A_{\gamma - 1} = \lambda_\gamma - C_\gamma \). If \(\gamma \) is a limit ordinal, let \(\lambda_\gamma = \sup \{ \lambda_\beta : \beta < \gamma \} \). In both cases, let \(A_\gamma \in \mathcal{A} \) such that \(\lambda_\gamma \in A_\gamma \). There is \(\lambda_{\gamma + 1} \in \omega_1 \) such that \(A_\gamma = \lambda_{\gamma + 1} - C_{\gamma + 1} \), where \(C_{\gamma + 1} \) is either finite or is an infinite cofinal subset of \(\lambda_{\gamma + 1} \) of order type \(\omega \) (see 2.3). Let \(A'_\gamma = A_\gamma \cup \{ \eta \in C_{\gamma + 1} : \eta > \lambda_\gamma \} \).

By the inductive construction, \(\{ \lambda_\beta \}_\beta \subset \omega_1 \) is cofinal in \(\omega_1 \).

Let \(\mathcal{A}' = \{ A'_\beta : \beta < \omega_1 \} \). It is easy to see that each \(A'_\beta \) is an open set. In fact, \(A'_\beta \in \mathcal{B} \) for each \(\beta < \omega_1 \).

We claim that:

1. If \(\mathcal{A} \) is an antichain, then \(\mathcal{A}' \) is also an antichain.

In fact, let \(A'_\gamma, A'_\beta \in \mathcal{A}' \) where \(\gamma < \beta \). \(A'_\gamma = A_\gamma \cup \{ \eta \in C_{\gamma + 1} : \eta > \lambda_\gamma \} \) and \(A'_\beta = A_\beta \cup \{ \eta \in C_{\beta + 1} : \eta > \lambda_\beta \} \). \(A'_\gamma \) does not contain \(A'_\beta \) since \(\lambda_\beta \in A'_\beta - A'_\gamma \). On the other hand, if \(\eta_0 \in A'_\gamma - A'_\beta \), then \(\eta_0 \in A'_\beta - A'_\gamma \). Therefore \(\mathcal{A}' \) is an antichain.

2. Let \(E' = \bigcup_{\gamma \in \omega_1} A'_\gamma \) and let \(G = \omega_1 - E' \). Then, the set \(G \) is empty or has order type \(\leq \omega \). Furthermore \(E = \{ \alpha \in E' : \alpha \) is a limit ordinal \(\} \) is a stationary subset of \(\omega_1 \).

In fact, let us suppose that \(G \) is a subset of \(\omega_1 \) such that o.t. \(G > \omega \). Let \(\eta_0 \in G \) be such that o.t. \(\{ \eta \in G : \eta < \eta_0 \} > \omega \). Since \(\{ \lambda_\gamma \}_\gamma \subset \omega_1 \) is a cofinal subset in \(\omega_1 \), then, there is \(\lambda_\xi \) such that \(\eta_0 < \lambda_\xi \). But \(\lambda_\xi \in A'_\xi = \lambda_{\xi + 1} - C'_{\xi + 1} \), where \(C'_{\xi + 1} = \{ \eta \in C_{\xi + 1} : \eta < \lambda_\xi \} \) and o.t. \(C'_{\xi + 1} \leq \omega \). Therefore \(A'_\xi \cap G \neq \emptyset \). This contradiction proves that o.t. \(G \leq \omega \). As an immediate consequence the set \(E = \{ \alpha \in E' : \alpha \) is a limit ordinal \(\} \) is a stationary subset of \(\omega_1 \).

For each \(\eta \in E \), let \(g(\eta) \) be the smallest \(\gamma \) such that \(\gamma \in A'_\gamma = \lambda_{\gamma + 1} - C'_{\gamma + 1} \). If \(T_\eta = \{ \xi < \omega_1 : \lambda_\xi \leq \eta \} \), then \(g(\eta) \) is the supremum of \(T_\eta \) and therefore \(\lambda_{g(\eta)} \leq \eta \). Since \(\eta \) is a limit ordinal, \(\lambda_{g(\eta)} \leq \eta \) and \(\eta \in A'_{g(\eta)} = A_\gamma(\eta) - C'_{g(\eta) + 1} \) (where \(C'_{g(\eta) + 1} \subset \lambda_{g(\eta)} \) is a finite set) there is \(a_\eta < \eta \) such that \(C'_{g(\eta) + 1} \subset a_\eta \). The function \(\phi(\eta) = a_\eta \) is a regressive function. Since \(E \) is a stationary subset in \(\omega_1 \), there is \(\xi < \omega_1 \) such that \(|\phi^{-1}(\eta)| = \omega_1 \) (Lemma 2.2). Let \(M = \phi^{-1}(\xi) \). Since \(|M| = \omega_1 \) and
If $|\xi| = \omega$, there exist an infinite subset K of M and a finite subset $C \subseteq \xi$, such that $A'_{\xi(k)} = \lambda_{\xi(k)} + 1 - C$ for each $k \in K$. Therefore $\{A'_{\xi(k)} : k \in K\}$ is an infinite strictly increasing chain of elements of \mathcal{A}'. It follows from (1) that \mathcal{A} is not an antichain, that is, (ω_1, τ) is not \mathcal{N}-refinable.

Bibliography

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, 04510 MÉXICO D.F. (Current address of Angel Tamariz-Mascarúa)

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA METROPOLITANA, UNIDAD IZTAPALAPA, 09340 MÉXICO D.F.

Current address (R. G. Wilson): Department of Mathematics, Lehman College, CUNY, Bronx, New York 10468