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A topological space is almost irresolvable if it cannot be written as a countable union 
of subsets with empty interior. Given a cardinal κ, denote by (�κ) the statement 
“the Cantor cube 22κ has a dense subspace of size κ which is almost irresolvable 
and whose dispersion character is equal to κ.” In this paper we prove:

(1) (�κ) is equivalent to the existence of a dense subspace of 22κ which is Baire 
submaximal and whose cardinality and dispersion character are both equal 
to κ. In particular, (�κ) implies that κ is measurable in an inner model of ZFC.

(2) If the Continuum Hypothesis holds, (�κ) fails for all κ.
(3) (�κ) is equivalent to the existence of an ω1-complete ideal I on κ containing all 

sets of cardinality < κ and such that the quotient Boolean algebra P(κ)/I is 
isomorphic to the complete Boolean algebra that adjoins 2κ Cohen reals.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A space is resolvable if it contains two disjoint dense subsets. This notion was introduced by E. Hewitt 
in [8]. Later, R. Bolstein coined the term almost resolvable in [4] to designate those spaces which have a 
countable cover of subsets with empty interior. A natural generalization of this concept, which appeared 
originally in [17], is the following: call a space almost ω-resolvable if it possesses a cover {An : n < ω}, where ⋃

i<n An has empty interior for all n < ω. When a space fails to be almost resolvable, we will call it almost 
irresolvable. Similarly for almost ω-irresolvable.

* Corresponding author.
E-mail addresses: alejandro_dorantes@hotmail.com (A. Dorantes-Aldama), pmr@matematicas.unam.mx

(R. Pichardo-Mendoza), atamariz@unam.mx (Á. Tamariz-Mascarúa).
1 The first author was supported by Consejo Nacional de Ciencia y Tecnología grant No. 178425/245149.
2 The second author acknowledges support by Programa de Becas Posdoctorales en la UNAM 2011–2012.
3 The research of the third author was supported by PAPIIT IN115312.
http://dx.doi.org/10.1016/j.topol.2014.06.007
0166-8641/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2014.06.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:alejandro_dorantes@hotmail.com
mailto:pmr@matematicas.unam.mx
mailto:atamariz@unam.mx
http://dx.doi.org/10.1016/j.topol.2014.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2014.06.007&domain=pdf


16 A. Dorantes-Aldama et al. / Topology and its Applications 175 (2014) 15–28
One of the topics studied in [7] is the existence of dense subspaces of Cantor cubes (i.e., products of the 
form 2λ, where λ is a cardinal and 2 is the discrete space with two points) which are almost irresolvable 
or almost ω-irresolvable. The approach followed in that paper for this particular matter is to isolate the 
combinatorial properties that would lead to the existence of such spaces. Thus the concepts of an ai-maximal 
independent family and of a aωi-maximal independent family are introduced (see Definition 3.2). This 
translates the problem of finding topological spaces like the ones described at the beginning of the paragraph 
into the combinatorial problem of finding these kinds of families.

The goal of this paper is to study some consequences of the existence of ai-maximal independent families 
of maximum size (e.g. certain Cantor cubes have Baire submaximal dense subspaces). As a corollary we 
show that if this kind of family does exist, then there is an inner model of ZFC with a measurable cardinal 
and that under CH there are no such families.

This paper is organized as follows. Section 2 contains notation and terminology together with some 
elementary results that will be used several times. The main results of the article are contained in Sections 3
and 4. The last part is a selection of some of the questions we could not answer.

2. Preliminaries

Let S be a set. As usual, P(S) is the power set of S and c is the cardinality of P(ω).
Following [13], we denote by Fn(S, 2) the collection of all partial functions from S into 2, i.e., p ∈ Fn(S, 2)

iff p ⊆ S × 2 is a finite function. Elements of Fn(S, 2) are normally called conditions.
Let p, q ∈ Fn(S, 2) be arbitrary. We say that p ≤ q iff q ⊆ p. p and q will be called compatible (in symbols, 

p | q) if p ∪ q is a function; otherwise they are incompatible (in symbols, p ⊥ q). A subset of Fn(S, 2) in 
which any two different elements are incompatible will be called an antichain.

For a cardinal κ, [S]κ denotes the collection of all subsets of S which have cardinality κ. Similarly, [S]<κ

is the family of all subsets of S whose cardinality is less than κ. Given a cardinal λ, we denote by κ<λ the 
cardinality of the set [κ]<λ.

The logarithm of κ, log κ, is defined as the least cardinal λ for which κ ≤ 2λ.
Let I ⊆ P(S). We say that I is an ideal on S if (1) S /∈ I, (2) ∅ ∈ I, (3) I is closed under finite unions, 

and (4) I is closed under taking subsets.
Given I, an ideal on S, and κ, an infinite cardinal, I will be called κ-complete if 

⋃
A ∈ I for all A ∈ [I]<κ. 

Also, we will say that I is σ-saturated if I is ω1-complete, [S]1 ⊆ I (i.e., I contains all singletons), and P(S) \I
contains no uncountable pairwise disjoint family. Finally, if for any a ⊆ S we have that either a ∈ I or 
S \ a ∈ I, then I is called prime.

Let X be a topological space. X is crowded if it has no isolated points. X is submaximal if all its dense 
subsets are open. When all nowhere dense subsets of X are closed, X will be called nodec.

Given a cardinal number κ we say that X is κ-resolvable if it can be expressed as a disjoint union of κ
dense subsets. Otherwise, X will be called κ-irresolvable. X is resolvable (respectively irresolvable) if it is 
2-resolvable (respectively, 2-irresolvable). Equivalently, X is resolvable if it can be expressed as the union 
of finitely many subsets with empty interior.

Spaces for which all non-empty open subspaces are irresolvable are called OHI (an acronym for open 
hereditarily irresolvable). It is a well-known fact that a space is submaximal if and only if it is nodec and 
OHI.

We say that a topological space is ccc if any family of pairwise disjoint open subsets of it is countable.
The dispersion character of X, Δ(X), is the least cardinality of a non-empty open subset of X.
All set-theoretic notions whose definition is not given here explicitly should be understood as in [9].

Definition 2.1. Let S be a set and let C = {(C0
α, C

1
α) : α < λ} be a non-empty family of pairs of subsets of 

S such that each unordered pair {C0
α, C

1
α} is a partition of S.
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(1) For each non-empty p ∈ Fn(λ, 2) we define

C(p) :=
⋂{

Cp(α)
α : α ∈ dom p

}
,

and C(∅) = S.
(2) We say that C is independent if C(p) �= ∅ for each p ∈ Fn(λ, 2).
(3) C will be called uniform if for all p ∈ Fn(λ, 2) we have |C(p)| = |S|.
(4) C is separating if for each pair of distinct points x, y ∈ S there exist α < λ and i < 2 such that x ∈ Ci

α

and y ∈ C1−i
α .

Remark 2.2. To avoid trivialities we will consider only infinite independent families on infinite sets.

The proof of the following result is routine, so we omit it.

Lemma 2.3. Let C be an independent family of size λ. For all p, q ∈ Fn(λ, 2) the following holds:

(1) C(p) ⊆ C(q) iff p ≤ q.
(2) C(p) ∩ C(q) �= ∅ iff p and q are compatible.

As far as we know, the constructions outlined in the following three paragraphs appeared originally in 
[11, Observation 3.1]. They will be used constantly in this paper.

Given an independent family C = {(C0
α, C

1
α) : α < λ} on a set S, there is a topology for S which has 

{C(p) : p ∈ Fn(λ, 2)} as a base. The topological space which results of endowing S with this topology will 
be denoted by XC. Thus, C is uniform iff Δ(XC) = |XC |.

Another space that can be naturally associated to C is the following: for each x ∈ S let dx : λ → 2
be defined by dx(ξ) = 0 iff x ∈ C0

ξ . Then DC will denote the subspace {dx : x ∈ S} of the topological 
product 2λ.

In order to establish a connection between the spaces introduced in the previous paragraphs, define 
[p] := {f ∈ 2λ : p ⊆ f} for each p ∈ Fn(λ, 2). Hence {[p] : p ∈ Fn(λ, 2)} is the canonical base for 2λ. 
Moreover, for all x ∈ X, dx ∈ [p] is equivalent to x ∈ C(p). This remark has three immediate consequences: 
first, DC is dense in 2λ; second, the map h : XC → DC given by h(x) = dx is continuous and open, and 
third, the following conditions are all equivalent, (1) C is separating, (2) h is one-to-one, and (3) h is a 
homeomorphism.

Remark 2.4. If C is a separating independent family, then XC is Tychonoff, crowded, and ccc (because any 
dense subset of a product of the form 2λ is ccc).

Recall that the density of a topological space X is the least cardinality of a dense subset of X.

Lemma 2.5. Let C be an independent family on a cardinal κ. If λ is the cardinality of C, then |C(p)| ≥ log λ
for each p ∈ Fn(λ, 2). In particular, if |C| = 2κ and log(2κ) = κ, then C is uniform independent.

Proof. Let p ∈ Fn(λ, 2) be arbitrary. Since λ ≥ ω, we have that [p] is an open subset of 2λ which is 
homeomorphic to 2λ. It is proved in [10, 7.9 on p. 150] that the density of the Cantor cube 2λ is equal to 
log λ and so the inequality |DC ∩ [p]| ≥ log λ follows from the fact that DC is dense in 2λ. Finally, note that 
for all α < κ, dα ∈ DC ∩ [p] implies α ∈ C(p). �
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3. Ai-maximal independent families

Let X be a topological space. We say that X is almost resolvable if X has a countable cover of subsets 
with empty interior. Otherwise, we will say that X is almost irresolvable. Clearly, all resolvable spaces are 
almost resolvable. Equivalently, almost irresolvable implies irresolvable.

X will be called almost ω-resolvable if there exists {Yn : n < ω}, a cover of X, such that 
⋃

i<n Yi has 
empty interior for each n < ω. All spaces which lack this kind of cover will be called almost ω-irresolvable. 
Thus any space which is almost ω-resolvable is almost resolvable.

Proposition 3.1. If X is almost irresolvable and Δ(X) = |X|, then |X| has uncountable cofinality.

Proof. Without loss of generality, let us assume that the underlying set of X is the cardinal κ. Our argument 
will be by contrapositive so assume that {αn : n ∈ ω} is an increasing sequence of ordinals whose supremum 
is κ and such that α0 = 0. Define, for each integer n, Yn := [αn, αn+1) to obtain a countable cover of X. 
Since X is almost irresolvable, int Ym �= ∅, for some m, and therefore Δ(X) < |X|. �
Definition 3.2. Let C be an independent family of size λ on a set S.

(1) C is ai-maximal independent if for every partition {Yn : n < ω} of S there exist p ∈ Fn(λ, 2) and m < ω

such that C(p) ⊆ Ym.
(2) We say that C is aωi-maximal independent if for every partition {Yn : n < ω} of S there exist p ∈ Fn(λ, 2)

and m < ω satisfying C(p) ⊆
⋃

i≤m Yi.

Let C be an independent family of size λ on a cardinal κ. It is proved in [7, Proposition 2.6] that C is 
ai-maximal independent iff DC is an almost irresolvable subspace of 2λ. Similarly, [7, Proposition 2.7] states 
that C is aωi-maximal independent iff DC is an almost ω-irresolvable subspace of 2λ.

A complementary construction is as follows. Let Y = {yα : α < κ} be a dense subset of 2λ (we are 
assuming that α �= β implies yα �= yβ). For each ξ < λ and i < 2 define Bi

ξ := {α < κ : yα(ξ) = i}. 
A simple argument shows that B := {(B0

ξ , B
1
ξ ) : ξ < λ} is a separating independent family such that 

DB = Y . Moreover, if Y is almost irresolvable (respectively, almost ω-irresolvable), then B is an ai-maximal 
independent (respectively, aωi-maximal independent) family of size λ on κ. In particular, we have the 
following.

Remark 3.3. For each dense almost ω-irresolvable subspace of 2λ of size κ there exists an aωi-maximal 
independent family on κ of size λ.

Definition 3.4. Let C be an independent family of size 2κ on a set S, where κ := |S|. We say that C is a nice 
independent family on S if the following conditions hold:

(1) C is separating,
(2) each element of [XC]<κ is closed discrete in XC ,
(3) if A ∈ [XC ]κ, then either A is closed discrete in XC or C(p) ⊆ A for some p ∈ Fn(2κ, 2).

A nice independent family on S which is, at the same time, ai-maximal independent will be called a nice 
ai-maximal independent family. Similarly, a nice aωi-maximal independent family is a nice independent 
family which is aωi-maximal independent.



A. Dorantes-Aldama et al. / Topology and its Applications 175 (2014) 15–28 19
Remark 3.5. Suppose that C is an independent family on a set S which satisfies condition (2) above. If (3) 
holds, then any subset of XC with empty interior is closed discrete, so XC is submaximal. And vice versa, 
submaximality of XC implies condition (3).

Nice independent families produce spaces with interesting properties:

Proposition 3.6. If C is a nice independent family, then

(1) every subset of XC is a Gδ, i.e., XC is a Q-set space and
(2) XC is not pseudocompact.

Proof. It is proved in [3, Theorem 7.3] that every regular ccc submaximal space is a Q-set space. As we 
noted above, XC is submaximal and since C is separating, XC is Tychonoff and ccc (Remark 2.4). This 
proves (1).

Since XC is regular, crowded, nodec, and non-empty, [3, Theorem 7.7] applies and therefore XC is not 
pseudocompact. �

The following result states that we can always modify a suitable independent family to obtain a uniform 
nice independent family.

Theorem 3.7. Let B be a uniform independent family on κ of size 2κ. There is a uniform nice independent 
family C on κ such that if p ∈ Fn(2κ, 2) and Y ⊆ κ satisfy B(p) ⊆ Y , then there exists q ∈ Fn(2κ, 2) with 
C(q) ⊆ Y .

Proof. We will sketch the construction given in the proof of [11, Main Theorem 3.3] and argue that this 
construction provides us with the family C we need.

The first step is to enumerate B = {(B0
ξ , B

1
ξ ) : ξ < 2κ} and [κ]κ = {Fξ : ξ < 2κ}. Now partition 2κ into two 

pieces, I0 and I ′, such that |I0| = κ<κ and |I ′| = 2κ. Also fix a partition {Jb,α : b ∈ [κ]<κ∧α ∈ κ \b} ⊆ [I0]ω
of I0 into countable pieces. For all b ∈ [κ]<κ, α ∈ κ \ b, and ξ ∈ Jb,α define

C0
ξ :=

(
B0

ξ ∪ b
)
\ {α} and C1

ξ := κ \ C0
ξ =

(
B1

ξ \ b
)
∪ {α}.

Let P := Fn(2κ, 2) and assume that for some α < 2κ we have constructed

(i) a sequence {pβ : β < α} ⊆ P,
(ii) a collection {Kβ : β < α} of subsets of I ′ such that |Kβ| ∈ {0, κ} for each β < α,
(iii) a bijection fβ : Kβ → κ for each β < α with |Kβ | = κ, and
(iv) a family {{C0

ξ , C
1
ξ } : ξ ∈ Kβ} of partitions of κ for each β < α

in such a way that the following holds for each β < α:

(1β) If we let Iβ := I0 ∪
⋃

ξ<β Kξ and

Bβ :=
{(

C0
ξ , C

1
ξ

)
: ξ ∈ Iβ

}
∪
{(

B0
ξ , B

1
ξ

)
: ξ ∈ 2κ \ Iβ

}
,

then Bβ is a separating independent family of size 2κ.
(2β) If Bβ(q) ⊆ Fβ for some q ∈ P, then Kβ = ∅ and Bβ(pβ) ⊆ Fβ .
(3β) When Bβ(q) � Fβ for all q ∈ P, then
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(a) pβ = ∅,
(b) Kβ is a subset of I ′ \

⋃
ξ<β(Kξ ∪ dom pξ) with |Kβ | = κ, and

(c) for each ξ ∈ Kβ :

C0
ξ :=

(
B0

ξ ∪ Fβ

)
\
{
fβ(ξ)

}
and C1

ξ := κ \ C0
ξ =

(
B1

ξ \ Fβ

)
∪
{
fβ(ξ)

}
.

It is shown in the proof of [11, Main Theorem 3.3] that C := B2κ is a uniform independent family on κ
of cardinality 2κ which satisfies conditions (1)–(3) of Definition 3.4 and such that XC is nodec.

The fact that XC is submaximal is a consequence of [11, Lemma 2.7]. Another way of proving this is as 
follows: assume that D is a dense subset of XC and let F = XC \ D. Observe that F has empty interior 
because D is dense. Therefore (Remark 3.5) F is closed.

Finally, suppose that Y ⊆ κ and p ∈ P satisfy B(p) ⊆ Y . Then Y = Fβ for some β < 2κ, because 
B is uniform. It suffices to show the existence of a condition r ∈ P with Bβ(r) ⊆ B(p). Indeed, if this is 
the case, then at stage β the assumptions in (2β) hold and therefore Bβ(pβ) ⊆ Y . One easily verifies that 
Bβ(pβ) = Bγ(pβ) whenever β ≤ γ ≤ 2κ. In particular, C(pβ) ⊆ Y .

In order to find the condition r that we mentioned in the previous paragraph, we need the following 
claim.

Claim. For each δ ∈ Iβ ∩ dom p and any finite set H ⊆ 2κ with dom p ⊆ H there exist δ′, δ′′ ∈ Iβ \H such 
that δ′ �= δ′′ and

C
p(δ)
δ ∩ C0

δ′ ∩ C1
δ′′ ⊆ B

p(δ)
δ .

To prove the claim we will consider two cases. If δ ∈ I0, then δ ∈ Jb,α for some b ∈ [κ]<κ and α ∈ κ \ b. 
Thus any pair of different points δ′, δ′′ ∈ Jb,α \ H will work. On the other hand, when δ ∈ Iβ \ I0, there 
exists ξ < β with δ ∈ Kξ. Set α := fξ(δ) and notice that we only need to take δ′ ∈ Kξ \H and δ′′ ∈ J∅,α \H.

Using finite recursion we define, for each δ ∈ Iβ ∩ dom p, a pair of ordinals δ′, δ′′ ∈ Iβ satisfying the 
conclusion of the Claim and such that

r := p ∪
{(

ξ′, 0
)

: ξ ∈ Iβ ∩ dom p
}
∪
{(

ξ′′, 1
)

: ξ ∈ Iβ ∩ dom p
}

is a function. Therefore Bβ(r) ⊆ B(p). �
Corollary 3.8. For any cardinal κ, the existence of a uniform ai-maximal (respectively, aωi-maximal) inde-
pendent family on κ of size 2κ implies the existence of a uniform nice ai-maximal (respectively, aωi-maximal) 
independent family on κ.

Proof. Suppose that B is a uniform ai-maximal independent family on κ with |B| = 2κ and let C be the 
uniform nice independent family given by the previous theorem. Assume that {Yn : n < ω} is a partition 
of κ and fix p ∈ Fn(2κ, 2) and m < ω in such a way that B(p) ⊆ Ym. Hence there is q ∈ Fn(2κ, 2) such that 
C(q) ⊆ Ym.

Similar arguments apply in the case where B is a uniform aωi-maximal independent family. �
Note that if X is a submaximal space and A ⊆ X has void interior, then all its subsets are closed in X. 

Hence A is closed discrete.
A topological space X is σ-discrete if it can be expressed as a countable union of discrete subspaces. 

When X is the union of countably many closed discrete subspaces, we say that X is strongly σ-discrete.
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Proposition 3.9. If X is crowded submaximal, the following are equivalent.

(1) X is almost resolvable.
(2) X is almost ω-resolvable.
(3) X is σ-discrete.
(4) X is strongly σ-discrete.

Proof. Start by noting that (4) → (3) and (2) → (1) are immediate. Now, since X is crowded, (2) is a 
consequence of (3). Finally, as we pointed out before, in a submaximal space all subsets with void interior 
are closed discrete; thus (4) follows from (1). �
Definition 3.10. Let C = {(C0

ξ , C
1
ξ ) : ξ < λ} be an independent family on a set S.

(1) For each p ∈ Fn(λ, 2) we define

C � p :=
{(

C0
ξ ∩ C(p), C1

ξ ∩ C(p)
)

: ξ ∈ λ \ dom p
}
.

(2) We say that C is globally ai-maximal independent on S if C � p is ai-maximal independent on C(p) for 
all p ∈ Fn(λ, 2).

Remark 3.11. Let C, S, and λ be as in the definition. For each r ∈ Fn(λ, 2), C(r) is an open subspace of XC
which has {C(r) ∩ C(p) : p ∈ Fn(λ \ dom r, 2)} as a base for its topology. Therefore, XC�r = C(r).

It is routine to verify that if C is a nice independent family on κ, then C � r is a nice independent family 
on C(r), for all r ∈ Fn(2κ, 2).

Now we are interested in a topological translation of globally ai-maximal independent families so we need 
to introduce a class of spaces: a topological space will be called open hereditarily almost irresolvable (OHAI, 
for short) if every non-empty open subspace of it is almost irresolvable.

Lemma 3.12. Every almost irresolvable space has a non-empty open subspace which is OHAI.

Proof. Let X be an almost irresolvable space and denote by Y be the union of all open subspaces of X
which are almost resolvable. According to [17, Theorem 3.8], Y is almost resolvable. The same argument 
used to prove [17, Proposition 3.2] shows that Y , the closure of Y in X, is almost resolvable. Thus the 
subspace X \ Y is open, non-empty, and OHAI. �

We are ready to establish the topological translation we were looking for.

Proposition 3.13. Let C be an independent family on a set S. Then C is globally ai-maximal independent iff 
XC is OHAI.

Proof. Let λ := |C|. When XC is OHAI and p ∈ Fn(λ, 2), C(p) is almost irresolvable; hence Remark 3.11
implies that C � p is ai-maximal independent.

For the other implication assume that XC is not OHAI and fix a family, {Yn : n ∈ ω}, of pairwise disjoint 
subsets of XC whose union, Y , is a non-empty open subset of X, but each Yn has empty interior. Then there 
is p ∈ Fn(λ, 2) with C(p) ⊆ Y and therefore {C(p) ∩Yn : n ∈ ω} witnesses that C(p) is almost resolvable. �
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As a consequence of the work done we obtain:

Proposition 3.14. If C is an ai-maximal independent family on κ of size λ, then C � r is globally ai-maximal 
independent on C(r), for some r ∈ Fn(λ, 2).

Proof. Since XC is almost irresolvable, Lemma 3.12 implies the existence of a condition r ∈ Fn(λ, 2) for 
which C(r) is OHAI. Hence, according to Remark 3.11, XC�r is OHAI, i.e., C � r is globally ai-maximal 
independent (Proposition 3.13). �

Recall that a topological space is Baire if the intersection of any countable family of dense open subsets 
of it is dense.

Theorem 3.15. If X is crowded submaximal, the following statements are equivalent.

(1) X is OHAI.
(2) X is Baire.
(3) If I is the collection of all subsets of X with empty interior, then I is an ω1-complete ideal on X.
(4) X has no non-empty open σ-discrete subspaces.

Proof. Let D be a countable family of dense open subsets of X. If U := X \
⋂

D were non-empty, then 
{U \D : D ∈ D} would witness that U is almost resolvable. Hence, (1) → (2).

Note that in a crowded submaximal space all discrete subspaces are closed and nowhere dense. Thus, 
(4) follows from (2).

To prove that (4) implies (1) observe that any non-empty open subspace of X is crowded and submaximal 
so Proposition 3.9 applies.

To conclude our argument, let us argue that (1) and (3) are equivalent. Given that X is submaximal and 
crowded, I coincides with the ideal of nowhere dense subsets of X and [X]1 ⊆ I. On the other hand, if I is 
not ω1-complete, there is A ∈ [I]ω with U := int

⋃
A �= ∅; therefore X is not OHAI because {U ∩A : A ∈ A}

witnesses that U is almost resolvable. And vice versa, if V is a non-empty open subspace of X which is almost 
resolvable, there exists a countable family F ⊆ I with V =

⋃
F , thus proving that I is not ω1-complete. �

For a cardinal κ, we will say that a topological space X satisfies (†κ) if X is a dense subspace of 22κ with 
Δ(X) = |X| = κ.

Theorem 3.16. The following statements are equivalent for any cardinal κ.

(1) There is an almost irresolvable space which satisfies (†κ).
(2) There is a Baire submaximal space which satisfies (†κ).
(3) There is a Baire OHI space which satisfies (†κ).
(4) There is a Baire irresolvable space which satisfies (†κ).
(5) There is a Baire almost irresolvable space which satisfies (†κ).
(6) There is a Baire almost ω-irresolvable space which satisfies (†κ).
(7) There is an almost ω-irresolvable space which satisfies (†κ).

Moreover, when log(2κ) = κ, the previous statements are equivalent to

(8) There is a Baire ω-irresolvable space which satisfies (†κ).
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Proof. Let us prove that (2) follows from (1). If (1) holds, Corollary 3.8 guarantees the existence of a 
uniform nice ai-maximal independent family C on κ. According to Proposition 3.14, there is a condition r
for which C � r is globally ai-maximal independent on κ. Since |C(r)| = κ and C � r is a nice independent 
family on C(r), we will assume, without loss of generality, that C is globally ai-maximal independent on κ. 
Thus XC is Baire submaximal (Proposition 3.13 and Theorem 3.15) and Δ(XC) = κ. Using the fact that 
C is separating, we have that XC is homeomorphic to DC (see the discussion following Lemma 2.3) and 
therefore DC is the space needed in (2).

Implications (2) → (3) → (4) and (5) → (6) → (7) are straightforward.
An immediate consequence of [6, Theorem 3] is that any Baire irresolvable space is almost irresolvable. 

In particular, (4) implies (5).
Now, if (7) is true, Corollary 3.8 gives the existence of C, a uniform nice aωi-maximal independent family 

on κ. By Proposition 3.9, XC is the space whose existence is claimed in (1).
Since all almost irresolvable spaces are ω-irresolvable, (8) is a consequence of (5). On the other hand, the 

space described in (8) is Baire, crowded, and ω-irresolvable, so it possesses (according to [2, Theorem 5.9]) 
a dense subspace, Y , which is almost ω-irresolvable. In particular, |Y | ≤ κ. Also, for each p ∈ Fn(2κ, 2), 
the canonical basic open set [p] is homeomorphic to 22κ and thus |Y ∩ [p]| ≥ log(2κ) (see the proof of 
Lemma 2.5). Hence, under the assumption log(2κ) = κ, we conclude that κ ≤ Δ(Y ) ≤ |Y |. Thus, Y is the 
space described in (7). �

As a consequence of Theorem 3.16 we obtain that the consistency strength of the existence of a space 
like the one described in part (7) is greater than the existence of a measurable cardinal:

Corollary 3.17. If κ carries a uniform aωi-maximal independent family of size 2κ, then κ is measurable in 
an inner model of ZFC.

Proof. For such a κ we obtain the existence of a dense subspace Y of 22κ which is Baire and satisfies 
Δ(Y ) = |Y | = κ. It is proved in [14,15], and [9, Theorem 22.33] that the existence of a space with these 
characteristics implies the conclusion of the corollary. �

It is natural to ask about the existence of a Tychonoff crowded almost resolvable (or almost ω-resolvable) 
space. Regarding this question, we get:

Proposition 3.18. The following are equivalent in the class of all Tychonoff crowded topological spaces.

(1) All Baire spaces are resolvable.
(2) All spaces are almost ω-resolvable.
(3) All spaces are almost resolvable.

Proof. Since implication (2) → (3) is immediate and [17, Corollary 4.9] is precisely (3) → (1), we only need 
to argue that (2) follows from (1).

Assume (1) and let (X, τ) be crowded and Tychonoff. A standard argument involving Zorn’s Lemma 
gives σ, a ⊆-maximal element of the family of all crowded Tychonoff topologies which are finer that τ
(i.e., (X, σ) is a maximal Tychonoff space and τ ⊆ σ). The argument used to prove [17, Theorem 4.14]
shows that the existence of a Tychonoff crowded irresolvable Baire space is equivalent to the existence of a 
maximal Tychonoff space which is almost ω-irresolvable. Given that we are assuming (1), (X, σ) is almost 
ω-irresolvable and since σ ⊆ τ , we conclude that (X, τ) is almost ω-irresolvable too. This proves that (2) 
holds. �
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Hence, the consistency strength of the existence of a Tychonoff crowded almost irresolvable (respectively, 
almost ω-irresolvable) space is greater than the existence of a measurable cardinal.

Theorem 3.19. If an infinite cardinal κ carries a uniform aωi-maximal independent family of size 2κ, then 
the following holds:

(1) κ has uncountable cofinality,
(2) κ �= ω1, and
(3) CH fails, i.e., c > ω1.

Proof. (1) is a corollary of Proposition 3.1.
To prove (2) and (3) assume that κ is as described in the hypothesis. By Theorem 3.16, κ carries a uniform 

ai-maximal independent family of size 2κ so we proceed as in the proof of (1) → (2) in Theorem 3.16 to get 
a uniform nice independent family C on κ which is globally ai-maximal independent. Theorem 3.15 implies 
that I, the family of all subsets of XC with empty interior, is an ω1-complete ideal on κ which contains 
all singletons. Moreover, if A ⊆ P(κ) \ I is pairwise disjoint, then {intA : A ∈ A} is a cellular family of 
size |A|. Since XC is ccc (Remark 2.4), we conclude that I is σ-saturated.

According to [9, Lemma 10.13], there is no ω1-complete σ-saturated ideal on ω1. This proves (2).
Now we shall prove (3). Apply [9, Lemma 10.9] to obtain that either there is a set Y ⊆ κ such that 

I � Y := {A ∈ I : A ⊆ Y } is a prime ideal or there exists an ω1-complete σ-saturated ideal on some cardinal 
λ ≤ c.

Let Y ⊆ κ be an arbitrary subset. We will argue that I � Y is not a prime ideal. If Y ∈ I, then I � Y is 
not an ideal because Y ∈ I � Y . When Y /∈ I, there is p ∈ Fn(2κ, 2) such that C(p) ⊆ Y . Let α ∈ 2κ \ dom p

and define A := C(p ∪ {(α, 0)}). Then A /∈ I and C(p ∪ {(α, 1)}) ⊆ Y \ A, i.e., Y \ A /∈ I. In other words, 
I is not prime.

The two previous paragraphs imply that there is a cardinal λ ≤ c which carries an ω1-complete σ-saturated 
ideal. Clearly λ �= ω and [9, Lemma 10.13] guarantees that λ �= ω1. Thus ω1 < λ ≤ c. �

Note that a corollary of the previous result is that if CH holds, then no cardinal κ carries a uniform aωi-
maximal independent family of size 2κ. The same conclusion is consistent with ¬CH. Indeed, [5, Theorem 4.1]
states that if there are no Souslin trees, then every ccc crowded Hausdorff space is almost ω-resolvable (see 
the discussion following Definition 3.2).

In [12, p. 79] and [14, Theorem 3.3] it is shown that if κ is measurable and the ground model satisfies CH, 
then the generic extension yield by Fn(κ, 2, ω1) contains a Baire OHI space X with Δ(X) = |X| (compare 
with part (3) of Theorem 3.16). But in the generic extension no cardinal κ carries a uniform aωi-maximal 
independent family of size 2κ because CH holds in it.

At this stage we do not know if the existence of uniform aωi-maximal independent families is consistent 
with ZFC, but if this were the case, we would be able to answer the following two questions in the negative.

(1) [17, Questions 5.8] Is the topology generated by the union of a chain of almost ω-resolvable topologies 
for a set X always almost ω-resolvable?

Assume that κ carries a uniform ai-maximal independent family of size 2κ. Corollary 3.8 provides us with 
a nice ai-maximal independent family C = {(C0

α, C
1
α) : α < 2κ}. For each integer n let Cn := C \ {(C0

α, C
1
α) :

n ≤ α < ω}. Denote by τn the topology which has {Cn(p) : p ∈ Fn(2κ \n, 2)} as a base. Then {τn : n < ω} is 
an increasing sequence of topologies. Moreover, {C0

n, C
1
n} is a partition of (κ, τn) into two disjoint dense sets 

for all n < ω and therefore τn is resolvable. On the other hand, the topology generated by 
⋃

n τn coincides 
with the topology of XC and so it is almost ω-irresolvable (see the discussion at the beginning of Section 3).
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(2) [3, Problem 7.4] Is every regular ccc submaximal space strongly σ-discrete?

Let C be a nice ai-maximal independent family. Thus XC is crowded and submaximal. Also, Proposi-
tion 3.9 implies that this space is not σ-discrete. Since XC is homeomorphic to DC , a dense subspace of the 
product 22κ , we have that XC is Tychonoff and ccc.

We do have a ZFC answer for [16, Problem 3.8]: Does any submaximal space contain a dense maximal 
space? According to [11, Theorem 4.1], 22κ has a dense subspace Y which is submaximal. On the other 
hand, an immediate consequence of [1, Corollary 2.2] is that no dense subspace of 22κ is maximal. Therefore 
Y is a submaximal space which contains no dense maximal space.

4. Some combinatorics

The following result suggests that if one adds enough random reals, the generic extension may contain 
an ai-maximal independent family.

Theorem 4.1. Let B be a uniform independent family of size 2κ on a cardinal κ and let C be the family 
which was constructed in the proof of Theorem 3.7. If m : P(κ) → [0, 1] is a σ-additive measure such that 
m(C(p)) = 2−|p|, for each p ∈ Fn(2κ, 2), then C is globally ai-maximal independent.

Proof. Denote by I the ideal of null sets, i.e., x ∈ I iff m(x) = 0. Since m is σ-additive, I is ω1-complete 
so, according to Theorem 3.15, we only need to show that I coincides with the collection of all subsets of 
XC with void interior. Set P := Fn(2κ, 2).

Observe that if A ⊆ XC and p ∈ P satisfy C(p) ⊆ A, then m(A) > 0. Hence all null sets have empty 
interior.

Now let A be a subset of XC with empty interior. If A = ∅, m(A) = 0 so let us assume that A �= ∅. Since 
all finite subsets of XC are closed, we have that κ \ A is infinite. Our plan is to show that m(A) ≤ 2−i for 
all i < ω.

For the rest of the argument we will follow the notation introduced in the proof of Theorem 3.7. Let 
n < ω be arbitrary.

Suppose first that |A| < κ. Fix a set H ⊆ κ \ A with |H| = n and for each α ∈ H let α ∈ JA,α be 
arbitrary. Thus, if we let p := {(α, 0) : α ∈ H}, then A ⊆ C(p) and |p| = n. Clearly, m(A) ≤ 2−n.

When |A| = κ, there exists β < 2κ with A = Fβ . Let H ⊆ Kβ be such that |H| = n and fβ[H] ⊆ κ \ A. 
Thus q := H × {0} ∈ P and A ⊆ C(q). �

We finish this section with a combinatorial characterization of the existence of uniform ai-maximal 
independent families.

Given a poset P, we will denote by B(P) its Boolean completion, i.e., B(P) is a complete Boolean algebra 
which contains P as a dense subset. As usual, given a set S ⊆ B(P), 

∨
S and 

∧
S represent the supremum 

and the infimum of S in B(P), respectively.

Remark 4.2. If b ∈ B(P), then b =
∨
{p ∈ P : p ≤ b} and therefore B(P) = {

∨
S : S ⊆ P}.

The following fact (see, for example, [13, II Exercise 19]) will be used later.

Remark 4.3. If S, T ⊆ P, then 
∨
S ≤

∨
T iff for all p ∈ S and for each q ≤ p there exists r ∈ T with r | q.
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Theorem 4.4. The following are equivalent for any infinite cardinal κ.

(1) There exists a uniform ai-maximal independent family on κ of size 2κ.
(2) κ carries an ω1-complete ideal I for which the quotient Boolean algebra P(κ)/I is isomorphic to 

B(Fn(2κ, 2)) and [κ]<κ ⊆ I.

Proof. We will show first that (2) implies (1). Set P := Fn(2κ, 2) and suppose that f : B(P) → P(κ)/I is 
an isomorphism.

Let {Aξ : ξ < 2κ} be an enumeration of I where each Aξ is listed infinitely many times.
Let ξ < 2κ be arbitrary. Fix B0

ξ ⊆ κ such that f({(ξ, 0)}) = [B0
ξ ], where [B0

ξ ] denotes the equivalence 
class of B0

ξ modulo I, and let B1
ξ := κ \ B0

ξ . Since {(ξ, 1)} is the Boolean complement of {(ξ, 0)} in B(P), 
we have that f({(ξ, 1)}) = [B1

ξ ]. Define C0
ξ := B0

ξ \Aξ and C1
ξ := B1

ξ ∪Aξ.
We will argue that C := {(C0

ξ , C
1
ξ ) : ξ < 2κ} is uniform ai-maximal independent.

In order to prove that C is uniform independent let p ∈ P be arbitrary. Observe that if ξ < 2κ and i < 2, 
then [Ci

ξ] = [Bi
ξ]. Therefore the equality f(p) = [C(p)] follows from the fact p =

∧
{{(α, p(α))} : α ∈ dom p}. 

In particular, C(p) /∈ I and so |C(p)| = κ.
Let {Yn : n ∈ ω} be a partition of κ. Since I is an ω1-complete ideal on κ, there is m < ω with Ym /∈ I. 

Let b ∈ B(P) and p ∈ P be so that f(b) = [Ym] and p ≤ b. Thus [C(p)] = f(p) ≤ [Ym], i.e., C(p) \ Ym ∈ I. 
For some ξ ∈ 2κ \ dom p we get Aξ = C(p) \ Ym and so q := p ∪ {(ξ, 0)} satisfies C(q) ⊆ Ym.

Assume (1). Proceeding as in the proof of (1) → (2) in Theorem 3.16, there is a nice independent family 
C on κ for which XC is Baire submaximal and Δ(XC) = κ. Thus I, the ideal of nowhere dense subsets of 
XC , is an ω1-complete ideal on κ and coincides with the collection of all subsets of XC with empty interior. 
Moreover, each element of I is closed in XC and [κ]<κ = [XC ]<κ ⊆ I.

For each x ⊆ κ let x∗ := {p ∈ P : C(p) ⊆ x}. Define h : P(κ) → B(P) by h(x) :=
∨
x∗. We will show that 

the following holds:

(a) for all x, y ∈ P(κ), x \ y ∈ I iff h(x) ≤ h(y); and
(b) h is onto.

Notice that if (a) and (b) are true, then h induces an isomorphism from P(κ)/I onto B(P).
Observe that if p ∈ x∗ and q ≤ p, then q ∈ x∗. Therefore we apply Remark 4.3 to obtain that h(x) ≤ h(y)

iff for each p ∈ x∗ there is q ∈ y∗ with p | q.
Let us prove (a). Suppose that x \ y ∈ I and let p ∈ x∗ be arbitrary. Then x \ y is closed, C(p) � x \ y, 

and C(p) ⊆ x. Hence C(p) \ x = ∅ and C(p) \ (x \ y) = (C(p) \ x) ∪ (C(p) ∩ y) = C(p) ∩ y is a non-empty open 
set. There is q ∈ P so that C(q) ⊆ C(p) ∩ y. Clearly q ∈ y∗ and q | p (Lemma 2.3). By the observation made 
in the previous paragraph: h(x) ≤ h(y).

Now suppose that x \ y /∈ I. Then C(p) ⊆ x \ y for some p ∈ P. In particular, p ∈ x∗. Notice that for all 
q ∈ y∗ we have C(q) ⊆ y and thus C(p) ∩ C(q) = ∅, i.e., p ⊥ q (Lemma 2.3). This shows that h(x) � h(y)
and so (a) is proved.

According to Remark 4.2, h is onto if for each S ⊆ P there is x ⊆ κ such that h(x) =
∨
S. So let S ⊆ P be 

arbitrary and define x :=
⋃
{C(p) : p ∈ S}. Clearly, S ⊆ x∗ and hence 

∨
S ≤ h(x). We will use Remark 4.3

to show that h(x) ≤
∨

S. If p ∈ x∗, then C(p) ⊆ x and hence C(p) ∩ C(q) �= ∅ for some q ∈ S. Thus p | q
according to Lemma 2.3. �

It is worth noticing that the argument given for (2) → (1) in the previous theorem shows that the 
existence of an ω1-complete ideal, I, on κ for which the quotient P(κ)/I is isomorphic to B(Fn(2κ, 2))
implies the existence of an ai-maximal independent family on κ of size 2κ.



A. Dorantes-Aldama et al. / Topology and its Applications 175 (2014) 15–28 27
5. Questions

This section is dedicated to some problems we consider interesting.

Problem 5.1. Are the following statements consistent with ZFC?

(1) There is a cardinal κ which carries a uniform aωi-independent family of size 2κ.
(2) There is a cardinal κ which carries a uniform aωi-independent family of size λ with λ < 2κ.
(3) For some cardinal λ, 2λ contains a dense almost ω-irresolvable subspace but no dense almost irresolvable 

subspace?

Problem 5.2. Is it always the case that the existence of an ai-maximal (respectively, aωi-maximal) indepen-
dent family implies the existence of a uniform one?

If B is an arbitrary uniform independent family on a cardinal κ of size 2κ, the construction described in 
the proof of Theorem 3.7 shows how to modify B to obtain a uniform nice independent family C on κ. One 
may wonder if this process preserves algebraic structures.

Problem 5.3. Is it true that if DB is a topological subgroup of the product 22κ , then so is DC?

We have two remarks regarding this question.
First, it is proved in [3, Corollary 8.16] that the cardinality of a ccc nodec topological group is not greater 

than c. Therefore DC is not a topological subgroup of 22κ when κ > c, independently of the properties that 
B has.

Second, [1, Corollary 3.8] states that if Y is a homogeneous submaximal space with |Y | = Δ(Y ) and 
|Y | is a non-measurable cardinal, then Y is strongly σ-discrete. Thus XC is not homogeneous when B is 
ai-maximal independent and κ is non-measurable (see the proof of Corollary 3.8 and Proposition 3.9).
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