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CONTINUOUS SELECTIONS ON

SPACES OF CONTINUOUS FUNCTIONS

Ángel Tamariz-Mascarúa

Abstract. For a space Z, we denote by F(Z), K(Z) and F2(Z) the hyperspaces of

non-empty closed, compact, and subsets of cardinality ≤ 2 of Z, respectively, with
their Vietoris topology. For spaces X and E, Cp(X,E) is the space of continuous

functions from X to E with its pointwise convergence topology.

We analyze in this article when F(Z), K(Z) and F2(Z) have continuous selections
for a space Z of the form Cp(X,E), where X is zero-dimensional and E is a strongly

zero-dimensionalmetrizable space. We prove that Cp(X,E) is weakly orderable if and
only if X is separable. Moreover, we obtain that the separability of X , the existence

of a continuous selection for K(Cp(X,E)), the existence of a continuous selection
for F2(Cp(X,E)) and the weak orderability of Cp(X,E) are equivalent when X is

N-compact.
Also, we decide in which cases Cp(X,2) and βCp(X,2) are linearly orderable, and

when βCp(X, 2) is a dyadic space.

0. Definitions and Notations

In order to simplify our statements and proofs, all spaces will be assumed Tychonoff and
with more than one point, unless we explicitly mention the contrary. Moreover, each cardinal
number κ, when considered as a space, will be the discrete space of cardinality κ; and, of
course, it will be greater or equal to 2.

For a topological space Z, we denote by A(Z) the collection of non-empty subsets of Z,
and F(Z) is the collection of all non-empty closed subsets of Z. For a subset G of A(Z),
we consider G with the Vietoris topology τV ; that is, the topology generated by sets of the
form <V1, .., Vn>G= {H ∈ G : H ⊆

⋃
i∈{1,...,n} Vi and H ∩ Vi 6= ∅ ∀ i}, where n ∈ N and

each Vi is an open subset of Z. A continuous selection on Z for G is a continuous function
φ : (G, τV ) → Z such that φ(F ) ∈ F for each F ∈ G. The symbol F2(Z) will denote the
collection of non-empty subsets of Z with ≤ two elements, and K(Z) is the family of non-
empty compact subsets of Z. For G ⊆ A(Z), we will denote by Sel(G) the set of continuous
selections defined for G.

Recall that a space (Z, T ) is a LOTS or a linearly orderable topological space if there is
a linear order ≤ in Z such that the topology generated by ≤, T≤, coincides with T . A
topological space is a generalized ordered space (a GO-space) (also called suborderable space)
if it can be embedded in a linearly orderable space as a subspace. Finally, a space (Z, T ) is
weakly orderable if there is a linear order ≤ in Z such that T≤ ⊂ T . Of course, every LOTS
is a GO-space, and each GO-space is weakly orderable. (The Sorgenfrey line is an example
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of a GO-space which is not a LOTS, and the space {(0, 0)}∪ {(x, sin(1/x)) : x > 0} ⊆ R2 is
a weakly orderable space which is not a GO-space.)

For two spaces X and E, Cp(X,E) will denote the space of continuous functions defined
on X and with values in E, equipped with the pointwise convergence topology which is the
topology inherited from the Tychonoff product EX . When E is the real line, we will write
Cp(X) instead of Cp(X,E).

In this article iff means if and only if and clopen means closed and open. For a fi-
nite set {x1, ..., xn} in X and a finite set {A1, .., An} of open subsets of E, we will de-
note the canonical open set {f ∈ Cp(X,E) : f(xi) ∈ Ai ∀ i ∈ {1, ..., n}} of Cp(X,E) as
[x1, ..., xn;A1, ..., An] or [x1, ..., xn;A] if every Ai is equal to A.

The concepts, terminology and notations used and not defined in this article can be found
in [E].

1. Introduction and basic facts

In this article we are going to study continuous selections defined in some classes of closed
subsets of spaces of continuous functions with their topology of pointwise-convergence.

Engelking, Hewitt and Michael proved the following facts about continuous selections
which are currently well known; the first of them was also proved, independently, by M.
Čoban:

1.1. Theorem. ( [EHM],[Č]) There is always a continuous selection for F(Z) if Z is a
strongly zero-dimensional completely metrizable space. (In particular, there is a continuous
selection for F(P).)

1.2. Theorem. ( [EHM]) The real line R does not have a continuous selection for F(R).

1.3. Theorem. ( [EHM]) The space of rational numbers Q does not have a continuous
selection for F(Q).

Afterwards, van Mill, Pelant and Pol [vMPP] completed the picture with the following
theorem:

1.4. Theorem. For a metrizable space M , if there is a continuous selection for F(M ), then
M has to be completely metrizable.

So, if we consider spaces of continuous functions with their topology of pointwise conver-
gence, we can deduce the following results:

1.5. Corollary. For a countable space X and a metrizable space E, we have:

(1) if the space Cp(X,E) has a continuous selection for F(Cp(X,E)), then X is discrete
and E is completely metrizable;

(2) if X is discrete and E is a strongly zero-dimensional completely metrizable space,
then Cp(X,E) has a continuous selection for F(Cp(X,E)).

Proof. 1. Since E has at least two distinct points, Cp(X, 2) is naturally embedded as a
closed subset of Cp(X,E); so, SelF(Cp(X, 2)) 6= ∅ provided SelF(Cp(X,E)) 6= ∅. Thus, it
suffices to show that X is discrete if Cp(X, 2) has a continuous selection for F(Cp(X, 2)).
To this end, we will procede by contradiction: assume that SelF(Cp(X, 2)) 6= ∅ and that
X is not discrete. Let x0 be a non-isolated point of X. Define a map g : X → {0, 1} by
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g(x) = 0 if x = x0 and g(x) = 1 if x 6= x0. Clearly, g is not continuous. Now, consider the
translation Φ : 2X → 2X defined by

Φ(f) = g + f (mod 2).

The map Φ : 2X → 2X is a homeomorphism. Hence, D = Φ[Cp(X, 2)] is a dense Gδ-subset of
2X because so is Cp(X, 2) being completely metrizable by hypothesis (see Theorem 1.4). But
Φ(f) 6∈ Cp(X, 2) for every f ∈ Cp(X, 2) because g is not continuous. Thus, D∩Cp(X, 2) = ∅
which is impossible because both sets D and Cp(X, 2) are dense Gδ-sets in the Cantor set
2X (X is countable). The contradiction so obtained implies that X must be discrete.

2. If X is discrete and E is strongly zero-dimensional completely metrizable space, then
Cp(X,E) = Eω is also a strongly zero-dimensional completely metrizable space. So, we
have only to apply Theorem 1.1. �

Nevertheless, if we consider the hyperspace of compact subsets of Cp(X,κ) the situation
changes. Observe that when X is a subset of a topological space Z, then, of course, K(X) ⊆
K(Z) and F2(X) ⊆ F2(Z), and if X is closed in Z, F(X) ⊆ F(Z). Moreover, the Vietoris
topology τV in F(X), K(X), F2(X) coincides with its topology inherited from the Vietoris
topology in F(Z), K(Z), F2(Z), respectively.

1.6. Corollary. For every countable space X and every strongly zero-dimensional com-
pletely metrizable space E, Cp(X,E) has a continuous selection for K(Cp(X,E)).

Proof. The space EX has a continuos selection φ for (K(EX), τV ) (Theorem 1.1). So,
φ restricted to K(Cp(X,E)) is a continuous selection when we consider the topology in
K(Cp(X,E)) inherited by the Vietoris topology of K(EX). But this is the Vietoris topology
in K(Cp(X,E)). �

Moreover, every space E is homeomorphic to a closed subset of Cp(X,E). So, if E does
not have any continuous selection for F(E), then Cp(X,E) does not have any continuous
selection for F(Cp(X,E)). This is the case, for example, when E = R (or E = Q). Next,
we put this comment in a more explicit form.

1.7. Proposition. For every space X, Sel(F(Cp(X)) = ∅.

Some other well known facts about continuos selections are the following results. Observe
that the existence of continuous selections is related to the existence of some kind of linear
order relations.

1.8. Theorem. ( [M]) In a connected space (Z, T ), there is a continuous selection for F(Z)
if and only if there is a lineal order ≤ for Z such that the topology generated by ≤, T≤, is
contained in T and every T -closed subset of Z has a ≤-first element.

1.9. Theorem. ( [vMW]) A compact space Z possesses a continuous selection for F(Z) if
and only if there exists a continuous selection for F2(Z), if and only if Z is linearly orderable,
if and only if Z is weakly orderable.

1.10. Theorem. ( [GS]) A pseudocompact space Z possesses a continuous selection for
F2(Z) if and only if Z is weakly orderable, if and only if βZ is linearly orderable.

1.11. Remarks. (1) If a space Z is weakly orderable, then there is a continuous selection
for F2(Z). In fact, let ≤ be a linear order relation on Z which testifies the weak orderability
of Z. The function φ : F2(Z) → Z defined as φ({a, b}) = min{a, b} is continuous, where
the minimum is taken with respect to ≤.
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(2) For a space (Z, T ), if we have a continuous selection φ : F2(Z) → Z, we obtain
a relation <φ in Z defined by a <φ b iff φ({a, b}) = a. This relation is not necessarily
transitive. Nevertheless, for each a ∈ Z the sets (a,→) = {x ∈ Z : a <φ x} and (←, a) =
{x ∈ Z : x <φ a} are open (see [M, Lemma 7.2.1]).

(3) If κ > ℵ0 and τ ≥ 2, then there is no continuous selection in τκ for F2(τκ). Indeed,
every linearly ordered space is hereditarily normal and 2ω1 contains a subspace homeomor-
phic to Nω1 . But this space is not normal; so, 2κ does not have a selection for F2(2κ),
because if it had, since it is compact, it would be linearly orderable.

All these results and remarks presented up to here lead us to ask about the existence of
continuous selections for G ⊂ F(Z) where Z is a space of the form Cp(X,E). So, this article
is devoted indeed to analyzing continuous selections for G ⊂ F(Z) and some other related
linearly order type properties in the class of spaces of continuous functions Cp(X,E). In
Section 2 we study the case when E is either R or the unit interval [0, 1]. In Section 3 we
prove that continuous selections for the hyperspace of closed subsets of Cp(X,E) exist if
and only if X is countable and discrete, when X is zero-dimensional and E is strongly zero-
dimensional and completely metrizable. In Section 4 we obtain our main results (Theorems
4.5 and 4.10): (1) For a zero-dimensional space X and a strongly zero-dimensional and
metrizable space E, Cp(X,E) is weakly orderable iff X is separable; and (2) if, in addition,
X is N-compact, X is separable iff there is a continuous selection for K(Cp(X,E)), iff there
is a continuous selection for F2(Cp(X,E)), iff Cp(X,E) is weakly orderable. In Section 5 we
obtain a result which is similar to the proposition in (2) whenever E is compact, metrizable
and zero-dimensional, by deciding in what situations βCp(X,E) coincides with EX which
will lead us to determine when βCp(X,E) is a dyadic space. The last section is devoted to
prove some results about linear order type properties on Cp(X,E).

2. Selections for F2(Cp(X)) and F2(Cp(X, I))

We have already mentioned in Section 1 that Sel(F(Cp(X))) = ∅ for all X because
Sel(R) = ∅ and R is contained as a closed subset of Cp(X). Now we are going to decide
when Cp(X) has a continuous selection for K(Cp(X)) and for F2(Cp(X)).

Assume that x0, x1 are two different elements in X. Let Y be the subspace {f ∈ Cp(X) :
f(x0) = 0} of Cp(X). The map ψ : Cp(X) → Y × R given by: ψ(g) = (g − g(x0), g(x0)) is
a homeomorphism. Moreover, if h ∈ Y is such that h(x1) 6= 0, then φ : R → Y defined by
φ(t) = t · h is an embedding. So, for a space X with more than one point, Cp(X) contains
a copy of R2 which does not have a continuous selection for its F2(R2). So, we obtain:

2.1. Proposition. Let G be a subcollection of K(Cp(X)) containing F2(Cp(X)). The
following statements are equivalent:

(1) the space Cp(X) has a continuous selection for G;
(2) the space Cp(X) is weakly orderable;
(3) the space Cp(X) is a GO-space;
(4) the space Cp(X) is a LOTS;
(5) X contains only one point.

Since Cp(X, I) is a subset of Cp(X), and Cp(X, (0, 1)) ∼= Cp(X) is a subspace of Cp(X, I),
we have a similar result of Proposition 2.1 for Cp(X, I).

Another concept applicable to topological spaces and related with the concept of order-
ability is that of butterflying local base (see for example [W]):
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A point x in a space X has a butterflying local base if there are two collections U1 and
U2, of open sets, subject to:

(1) U(x) = {U0 ∪ U1 ∪ {x} : Ui ∈ Ui, i ∈ {1, 2}} is a local base at x,
(2) (Ui,⊃) is linearly ordered for each i ∈ {1, 2}, and
(3) for each pair (U0, U1) ∈ U1 × U2, U0 ∩ U1 = ∅.
A space X is a butterfly space when each of its points has a butterflying local base.

Obviously every GO-space is a butterfly space. In [W], proofs of the following assertions can
be found: every GO-space contains a dense orderable subspace, and for every topological
group G, G has a dense orderable subspace if and only if it contains a dense butterfly
subspace.

Some other definitions: For a space X, the collection R(X) of all regular-open subsets of
X, is a complete Boolean algebra, and thus its Stone space S(R(X)) is a compact extremely
disconnected space. The subspace of S(R(X)) consisting of ultrafilters in R(X) converging
inX is denoted by E(X) and is called the absolute ofX. We say that a space X is co-absolute
with a space Y when E(X) and E(Y ) are homeomorphic. A space X is non-Arquimedean
if it has a base in which every two elements are either disjoint or related by inclusion. A
space X is proto-metrizable if it is paracompact and has an ortho-base.

2.2. Theorem. ( [W, Theorem 4.2]) Suppose X =
∏

α∈κXα is an infinite product of infinite
spaces. If X has a dense orderable subspace, then |κ| = ω and X has a dense metrizable
subspace.

By applying this and other results contained in [W] to our continuous function spaces,
we obtain:

2.3. Theorem. For a topological space X, the following statements are equivalent:

(1) Cp(X) has a dense orderable subspace;
(2) Cp(X) has a dense butterfly subspace;
(3) Cp(X) has a dense butterfly subspace and βCp(X) is co-absolute with a LOTS;
(4) Cp(X) has countable character and βCp(X) is co-absolute with a LOTS;
(5) Cp(X) has a dense non-Archimedean orderable subspace;
(6) Cp(X) contains a dense proto-metrizable subspace;
(7) Cp(X) has a dense metrizable subspace;
(8) Cp(X) is metrizable;
(9) the space X is countable.

Proof. A topological group has a dense orderable subspace iff it has a dense butterfly sub-
space ([W, Theorem 2.3]; thus, (1) ⇔ (2) holds. The equality (1) ⇔ (3) is Proposition 1.3
in [W]. (4) ⇒ (5) is Proposition 2.2 in [W]. If Cp(X) is first countable, then X must be
countable; so, (4) ⇒ (9) holds. (9) ⇒ (8) ⇒ (7) ⇒ (6) and (5) ⇒ (1) are trivial (observe
that (7) ⇔ (8) is true even for topological groups). (5) ⇔ (6) is Theorem 2.1 in [W]. And
the implication (1)⇒ (9) is a consequence of Theorem 2.2. Finally, (9) plus (3) implies (4).
We have finished the proof. �

In a similar form, we can obtain an analogous result to Theorem 2.3 for Cp(X, [0, 1]),
excluding the statement in (2).

3. Continuous selections for F(Cp(X,E)) when X is zero-dimensional

For a topological space X, G ⊆ P(X) is a cellular collection of subsets of X if every
G ∈ G is not empty and every two different elements in G have an empty intersection. The
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number c(X) is the supremum of the cardinalities of every cellular family of open subsets
of X. The one-point compactification of a discrete space of cardinality τ will be denoted by
Aτ .

3.1. Proposition. Let E be a topological space. If a zero-dimensional space X has a
cellular family of open subsets with cardinality ≥ τ ≥ ℵ0, then Cp(X,E) has a subspace
homeomorphic to Aτ .

Proof. Let a, b be two different elements in E and take two disjoint open subsets A, B of
E such that a ∈ A and b ∈ B. Let G = {Uλ : λ < τ} be a cellular family of open subsets of
X. Since X is zero-dimensional and each U ∈ G is not empty, then we can assume, without
loss of generality, that each Uλ is clopen. For each λ < τ , let fλ be the function defined by

fλ(x) =
{
a if x 6∈ Uλ

b if x ∈ Uλ.

Since Uλ is clopen, fλ is continuous. Now, observe that the set D = {fλ : λ < τ} is
relatively discrete. In fact, if xλ ∈ Uλ, then [xλ;B] ∩ D = {fλ}. Now, take the constant
function equal to a which we will denote by ca. Consider an arbitrary open set W =
[x1, ..., xk;V ] containing ca. It happens thatW contains all but a finite collection of elements
fλ. Therefore, D ∪ {ca} is homeomorphic to Aτ . �
3.2. Remark. Observe that, for every τ > ω, Aτ is not a GO-space because the tightness of
Aτ , t(Aτ ), is equal to ℵ0, its character χ(Aτ ) is equal to τ , and these two cardinal functions
coincide in GO-spaces.

3.3. Corollary. If X is a zero-dimensional space with c(X) ≥ ω1 and E is a topological
space, then the set Sel(F2(Cp(X,E))) is empty.

Proof. Because of Proposition 3.1, Cp(X,E) contains a subspace Y homeomorphic to Aω1 .
If Sel(F2(Cp(X,E))) 6= ∅, then Sel(F2(Y )) 6= ∅. But, since Y is compact, Y is orderable
(Theorem 1.9), which is not possible (Remark 3.2). �

We have already assigned the symbolAτ for the one-point compactification of the discrete
space of cardinality τ . We write Lτ in order to designate the one-point Lindelöfication of the
discrete space of cardinality τ . The Σ-product Σ02τ = {f ∈ 2τ : |{λ < τ : f(λ) = 1}| ≤ ℵ0}
is homeomorphic to Cp(Lτ , 2) and the σ-product σ02τ = {f ∈ 2τ : |{λ < τ : f(λ) =
1}| < ℵ0} is homeomorphic to Cp(Aτ , 2). So, since c(Aτ ) and c(Lτ ) are equal to τ , the sets
Sel(F2(Σ02τ )) and Sel(F2(σ02τ )) are empty if (and only if) τ is uncountable (Corollary
3.3).

Recall that a topological space X is a P -space if every Gδ-set in X is open.

3.4. Lemma. A zero-dimensional space X contains a cellular family {Bn : n < ω} of clopen
sets such that

⋃
n<ω Bn is not closed if and only if X is not a P -space.

Proof. Assume that X contains a cellular family {Bn : n < ω} of clopen sets such that⋃
n<ωBn is not closed. Take An = X \Bn. We have that each An is clopen and

⋂
n<ωAn =

X \
⋃

n<ω Bn is not open because
⋃

n<ωBn is not closed.
Now, suppose that X is not a P -space. So, there is a sequence {An : n < ω} of clopen

sets, such that
⋂

n<ωAn is not open. Without loss of generality, we can assume that A0 = X
and An+1 ⊆ An with An+1 6= An for each n. Let Bn = An \ An+1 for each n < ω. Thus,
{Bn : n < ω} is a cellular family of clopen sets and

⋃
n<ωBn = X \

⋂
n<ωAn is not

closed. �
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3.5. Lemma. For a zero-dimensional space X, there exists a countable non discrete space
Z and a (surjective) quotient q : X → Z if and only if X is not a P -space.

Proof. If X is not a P -space, there exists a cellular family {Bn : n < ω} of clopen sets such
that B =

⋃
n<ωBn is not closed (Lemma 3.4). Let Z be the quotient of X obtained from

the partition {X \B} ∪ {Bn : n < ω}. Let p represent X \B and xn represent Bn in Z. So
p is the only point in Z which is not isolated. Then, Z is countable and not discrete.

Now, assume that there exists a countable non discrete space Z and a surjective quotient
q : X → Z. Since Z is not discrete, there is a point p ∈ Z which is not isolated. Since Z is
countable and zero-dimensional, there is a sequence {Bn : n < ω} of clopen sets in Z such
that {p} =

⋂
n<ωBn. We can take (Bn)n<ω in such a way that B0 = Z and Bn+1 ⊆ Bn

with Bn+1 6= Bn for all n. Let us denote by An the set Bn \ Bn+1 and by Cn the set
q−1[An]. Since q is a continuous function, each Cn is clopen. Moreover, Cn ∩ Cm = ∅ if
n 6= m. Furthermore,

⋃
n<ωCn is not closed. Indeed, q−1(p) is not open because p is not

isolated, and X = q−1(p) ∪
⋃

n<ω Cn. Now, we only have to apply Lemma 3.4. �

3.6. Theorem. Let X be a zero-dimensional space which is not a P -space, and let E be
a completely metrizable space. Then Cp(X,E) does not have a continuous selection for
F(Cp(X,E)).

Proof. Because of Lemma 3.5, there is a countable non discrete space Z and a surjective
quotient q : X → Z. It is possible to prove that the function q# : Cp(Z,E) → Cp(X,E)
defined by q#(f) = f ◦ q is an embedding onto a closed subset of Cp(X,E). Therefore,
Cp(X,E) does not have a continuous selection for F(Cp(X,E)) because Cp(Z,E) does not
have a continuous selection for F(Cp(Z,E)) (see Corollary 1.5). �

It is proved in [Ark2, Corollary I.3.3] that Cp(X) is Čech-complete iff X is countable
and discrete. The proof uses the facts: (1) every Čech-complete space is a space of point
countable type, (2) R is a topological group, and (3) if a dense subset of a Tychonoff product
Zτ has a proper non-empty compact subspace K with χ(K,Y ) ≤ ℵ0, then τ ≤ ℵ0. So, in a
similar way, the following can be proved :

3.7. Lemma. For a zero-dimensional space X, the space Cp(X, 2) is Čech complete if and
only if X is discrete and countable.

3.8. Theorem. Let X be a zero-dimensional space and κ ≥ 2. Then, the following asser-
tions are equivalent.

(1) Cp(X,κ) has a continuous selection for F(Cp(X,κ));
(2) Cp(X,κ) is completely metrizable;
(3) X is countable and discrete.

Proof. Of course (3) ⇒ (2) holds, and (2) ⇒ (3) is a consequence of Lemma 3.7 because
Cp(X, 2) is a closed subset of Cp(X,κ). Moreover, Theorem 1.1 guarantees that implication
(3) ⇒ (1) is also true.

(1) ⇒ (3): If Cp(X,κ) has a continuous selection for F(Cp(X,κ)), then X must be a
P -space and c(X) ≤ ω (Theorem 3.6 and Corollary 3.3). This means, because X is zero-
dimensional, thatX has countable character. But X is a P -space, so it is discrete. Moreover,
κω1 does not have a continuous selection (see Remarks 1.11). Thus, |X| ≤ ℵ0. �

3.9. Corollary. Let X be a zero-dimensional space and let E be a strongly zero-dimensio-
nal metrizable space. Then, the following assertions are equivalent.

(1) Cp(X,E) has a continuous selection for F(Cp(X,E));
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(2) Cp(X,E) is completely metrizable;
(3) X is countable and discrete, and E is completely metrizable.

Proof. Using similar arguments to those given in the proof of Theorem 3.8, we have that
implications (2) ⇔ (3) and (3) ⇒ (1) hold.

Now, if Cp(X,E) has a continuous selection for F(Cp(X,E)), then Cp(X, 2) must admit
a continuous selection for F(Cp(X, 2)). But this means that X is countable and discrete
(Theorem 3.8). Hence, the metric space Eω has a continuous selection for F(Eω). By
Theorem 1.4, Eω is completely metrizable; so is E. �

3.10. Remark. Observe that the equivalence (2) ⇔ (3) in Corollary 3.9 holds for an
arbitrary metric space E without requiring any dimensional hypothesis refering to E. It
can be proved, using Lemma 3.7, that for a zero-dimensional space X and a Tychonoff space
E, Cp(X,E) is Čech-complete iff X is countable and discrete and E is Čech-complete.

4. Continuous selections on K(Cp(X,κ))

4.1. Theorem. Let X be a separable space and κ a cardinal number. Then, Cp(X,κ) is
weakly orderable.

Proof. Let D be a countable dense subset of X. The function π : Cp(X,κ) → κD defined
by f 7→ f |D is continuous, while π is injective because D ⊆ X is dense. The Baire space
B(κ) = κD is orderable (see, for instance, [H]), say by the order relation ≤. Hence, the
topology T� in C(X,κ) defined by the order relation � determined by ≤ and π (f ≺ g iff
π(f) < π(g)), is contained in the pointwise convergence topology in C(X,κ). Therefore,
Cp(X,κ) is weakly orderable. �

4.2. Corollary. If X is separable and E is a strongly zero-dimensional metrizable space,
then Cp(X,E) is weakly orderable.

Proof. The space E is a subset of the Baire space B(κ) = κω where κ is equal to the weight
of E. So, Cp(X,E) is a subspace of Cp(X,κω). Since weak orderability is a hereditary
property, Cp(X,E) is weakly orderable if Cp(X,κω) is weakly orderable. But Cp(X,κω) is
homeomorphic to Cp(

⊕
n∈NXn, κ) where

⊕
n∈NXn is the free topological sum of spaces Xn

and each Xn is homeomorphic to X for every n ∈ N. Since X is separable, so is
⊕

n∈NXn.
Therefore, Theorem 4.1 implies that Cp(

⊕
n∈N Xn, κ) is weakly orderable, and the proof is

finished. �

Now, we are going to prove, in Theorem 4.5 below, that the converse of Corollary 4.2
is also true when X is zero-dimensional. It is well known that for every space X, d(X) =
iw(Cp(X)) = ψ(Cp(X)) and d(Cp(X)) = iw(X) (see [Ark2]). (Recall that the i-weight of
a space Z, iw(Z), is the minimum of the cardinal numbers κ such that there is a bijective
and continuous function from Z onto a space of weight κ). In [C], Propositions 4.12–4.20,
something equivalent for zero-dimensional spaces was proved (iw2(Z) is the minimum of the
cardinal numbers κ such that there is a bijective and continuous function from Z onto a
zero-dimensional space of weight κ):

4.3. Lemma. If X and E are zero-dimensional and E is second countable, then

d(X) = iw2(Cp(X,E)) = ψ(Cp(X,E)).

We are going to use these equalities in that which follows.
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4.4. Lemma. Let X be a zero-dimensional space and let E be a zero-dimensional second
countable space. Then, the following assertions are equivalent:

(1) X is separable;
(2) the space Cp(X,E) is weakly orderable;
(3) the topology of Cp(X,E) contains a topology T for C(X,E) which is T2, second

countable and zero-dimensional.

Proof. We have already proved in Corollary 4.2 that if X has a countable dense subset, then
Cp(X,E) is weakly orderable.

Now, assume that Cp(X,E) is weakly orderable. So, there is a linear order ≤ in C(X,E)
such that the topology generated by ≤, T≤, is contained in the pointwise convergence topol-
ogy Tp. Since the cellularity of Cp(X,E) is equal to ℵ0, c(C≤(X,E)) ≤ ℵ0. Since C≤(X,E)
is a LOTS, ψ(C≤(X,E)) ≤ c(C≤(X,E)) ≤ ℵ0. But T≤ ⊂ Tp, so ψ(Cp(X,E)) ≤ ℵ0. By
Lemma 4.3, X is separable.

Finally, (1) ⇔ (3) is a consequence of Lemma 4.3. �

4.5. Theorem. LetX be a zero-dimensional space and let E be a strongly zero-dimensional
metrizable space. Then, X is separable if and only if Cp(X,E) is weakly orderable.

Proof. By Corollary 4.2, if X is separable then Cp(X,E) is weakly orderable. On the other
hand, we are assuming that |E| ≥ 2, so Cp(X, 2) can be considered a subspace of Cp(X,E).
If this last space is weakly orderable, so is Cp(X, 2). By Lemma 4.4, X is separable. �

So, it happens that spaces as Cp(Ψ(A), 2ω), Cp(βω,Q) and Cp(2c, 2) are weakly orderable.
Lemma 7.5.1 in [M] and Corollary 4.2 establish that if X is separable and E is a strongly

zero-dimensional metrizable space, then Sel(K(Cp(X,E))) 6= ∅. If X is a Corson compact
space (that is, a compact subpace of a Σ-product of real lines), then d(X) = c(X). Therefore,
if X is a zero-dimensional Corson compact space and E is a strongly zero-dimensional
metrizable space, then Sel(K(Cp(X,E))) 6= ∅ iff Sel(F2(Cp(X,E))) 6= ∅, iff X is separable
(Corollary 3.3 and Theorem 4.1). In general, for compact zero-dimensional spaces X, this
last result is also true, as we are going to see next:

4.6. Definitions.
(1) A space X is an N-compact space if it is homeomorphic to a closed subset of a

product of copies of N.
(2) For a zero-dimensional space X and a cardinal number τ , a function f : X → 2 is a

strictly τ -continuous function if for every subset F of X of cardinality ≤ τ , there is
a g ∈ C(X, 2) such that g � F = f � F .

(3) For a zero-dimensional space X, the number t2(X) will be the minimum cardinal τ
such that every strictly τ -continuous function f : X → 2 is continuous.

A. Contreras proved in [C] the following result.

4.7. Lemma. For an N-compact space X, t2(Cp(X, 2)) ≤ ℵ0.

4.8. Lemma. Let Z be a zero-dimensional space. If Sel(F2(Z)) 6= ∅, then ψ(Z) ≤ t2(Z).

Proof. Let φ : F2(Z)→ Z be a continuous selection, and let < be the relation in Z defined
by a < b iff φ({a, b}) = a, for two different elements a, b. As we have said in Remark 1.11,
for each a ∈ Z the sets (a,→) = {x ∈ Z : a < x} and (←, a) = {x ∈ Z : x < a} are open.
Furthermore, Z = (←, a)∪{a}∪ (a,→), (←, a)∩ (a,→) = ∅ and a is the only possible point
belonging to the boundary of each set (a,→) and (←, a).
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Denote by τ the cardinal number t2(Z). If a ∈ cl(a,→), then there is F ⊂ (a,→) of
cardinality ≤ τ such that a ∈ clF . Indeed, assume that this is not true. Define f : Z → 2
as follows: f(x) = 0 if x ∈ (←, a) ∪ {a} and f(x) = 1 if x ∈ (a,→). Let H be a subset of
Z of cardinality ≤ τ . Since a 6∈ cl(H ∩ (a,→)), there is a clopen subset V with a ∈ V and
V ∩ (H ∩ (a,→)) = ∅. The function g : Z → 2 defined by g(x) = 0 if x ∈ (←, a) ∪ V and
g(x) = 1 otherwise, is a continuous function and g � H = f � H. But f is not continuous,
contrary to our hypothesis t2(Z) = τ .

Similarly, if a ∈ cl(←, a), there is G ⊂ (←, a) of cardinality ≤ τ such that a ∈ clG.
Observe that if a 6∈ cl(a,→), then (←, a) ∪ {a} is open, and if a 6∈ cl(←, a), then the set

{a} ∪ (a,→) is open.
Therefore, if a ∈ cl(←, a) ∩ cl(a,→), {a} =

⋂
x∈F (←, x) ∩

⋂
x∈G(x,→). If a ∈ cl(←, a)

and a 6∈ cl(a,→), then {a} =
⋂

x∈G(x,→) ∩ [(←, a) ∪ {a}]. We have a similar situation if
a 6∈ cl(←, a) and a ∈ cl(a,→). That is, {a} is a Gτ -set in any case including, of course,
when a is an isolated point. �

4.9. Lemma. For an N-compact space X, X is separable if there is a continuous selection
φ : F2(Cp(X, 2))→ Cp(X, 2).

Proof. Since X is an N-compact space, t2(Cp(X, 2)) ≤ ℵ0 (Lemma 4.7). Now we have to
apply Lemma 4.8 and obtain that ψ(Cp(X, 2)) ≤ ℵ0. But this implies that X is separable
(Lemma 4.3). �

4.10. Theorem. For an N-compact space X and a strongly zero-dimensional metrizable
space E, the following assertions are equivalent.

(1) X is separable;
(2) the space Cp(X,E) is weakly orderable;
(3) there is a continuous selection φ : K(Cp(X,E))→ Cp(X,E);
(4) there is a continuous selection φ : F2(Cp(X,E))→ Cp(X,E).

Proof. The implication (1) ⇒ (2) is consequence of Corollary 4.2. Moreover, Lemma 7.5.1
in [M] guarantees that (2) ⇒ (3) holds. The implication (3) ⇒ (4) is trivial, and if there
is a continuous selection φ : F2(Cp(X,E)) → Cp(X,E), the restriction φ � F2(Cp(X, 2)) :
F2(Cp(X, 2))→ Cp(X, 2) is continuous too. By Lemma 4.9, X must be separable. �

Lemma 4.9 produces the following questions:

4.11. Problem.
(1) For a zero-dimensional realcompact space X, does Sel(F2(Cp(X, 2)) 6= ∅ imply the

separability of X?
(2) For a zero-dimensional space X, is X separable if Sel(F2(Cp(X, 2)) 6= ∅ ?

If problem 4.11.(2) had a positive answer, then we would have a good class of spaces (the
spaces Cp(X,E) with X separable zero-dimensional and E strongly zero-dimensional and
metrizable) where the Question in [vMW] can be answered in the affirmative. The question
posed was: Let X be a space; is X a weakly orderable space if and only if Sel(F2(X) 6=
∅? So, a positive answer for 4.11.(2) would imply: For a zero-dimensional space X,
Sel(K(Cp(X,κ)) 6= ∅ ⇔ Sel(F2(Cp(X,κ)) 6= ∅ ⇔ Cp(X,κ) is weakly orderable ⇔ X is
separable.

In relation to this problem, we have that the space X = Cp(Aω1 , 2) is a space with
density equal to ω1. Furthermore, X has countable cellularity. But Sel(F2(Cp(X, 2))) = ∅
because Cp(Cp(Aω1 , 2), 2) contains a copy of Aω1 . This means that, as we have already
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seen, countable cellularity in X is a necessary condition to have continuous selections for
F2(Cp(X, 2)), but it is not a sufficient condition.

5. βCp(X,K) vs KX

Because of Problem 4.11 and Theorem 1.10, we want to know when a space Cp(X,E) is
pseudocompact and when βCp(X,E) is linearly orderable. We determine this in Corollary
5.5 and in Proposition 6.4 below. So, in this section we are going to deal with pseudo-
compactness of spaces Cp(X,E), and decide when βCp(X,E) is a dyadic space, when E is
compact. All this will allow us to obtain an affirmative answer to Problem 4.11 for some
kind of spaces X which are not necessarily N-compact, in terms of topological properties
for X.

For a subset D of a topological space X and a cardinal number γ, we will say, as usual,
that D is a Gγ-set in X if it is the intersection of a family of ≤ γ open subsets of X. The
γ-closure of D is the set of all points in X such that each Gγ-set containing one of these
points has a non empty intersection with D. We denote this γ-closure of D by the symbol
Dγ . D is Gγ-dense in X if each Gγ-set in X has a non-empty intersection with D. As
usual, if X is the Tychonoff product of a family {Xs : s ∈ S} and N ⊂ S, the function
πN : X →

∏
s∈N Xs is the canonical projection.

5.1. Proposition. Let {Xs : s ∈ S} be a collection of spaces of pseudocharacter ≤ γ. Let
X =

∏
s∈S Xs be the Tychonoff product, and let D be a subset of X. Then Dγ is the

greatest subset of X which contains D and has the following property: for each N ⊂ S of
cardinality ≤ γ, the relation πN (D) = πN (Dγ ) holds.

Proof. Let N be a subset of S of cardinality ≤ γ, and assume that πN (D) is a proper
subset of πN (Dγ ). Take (ys)s∈S = y ∈ Dγ such that πN (y) 6∈ πN (D). For each s ∈ N ,
let N (ys) be a pseudobase of neighborhoods of ys in Xs of cardinality ≤ γ. The collection
V = {[s;V ] : s ∈ N, V ∈ N (ys)} also has cardinality ≤ γ and y ∈

⋂
V = G. Thus, G is a

Gγ-subset of X, y ∈ G and G ∩D = ∅, which contradict the definition of Dγ . Therefore,
πN (D) = πN (Dγ ).

Now, let y be an element of X \Dγ . Then, there exists a family {Vλ : λ < γ} of canonical
open subsets of X such that y ∈

⋂
λ<γ Vλ = G and G ∩D = ∅. Each Vλ can be written as

[sλ
1 , ..., s

λ
kλ

;Aλ
1 , ..., A

λ
kλ

]. Consider the set N = {sλ
i : λ < γ, 1 ≤ i ≤ kλ}. It happens that for

each x ∈ D, πN (x) 6= πN (y). �

5.2. Proposition. Let {Xs : s ∈ S} be a collection of second countable spaces. Let X be
the product

∏
s∈S Xs, and let D be a subset of X. Then Dω is a realcompact space.

Proof. The space X is realcompact because it is the product of realcompact spaces. For
each countable N ⊂ S, πN (D) is realcompact (it is even Lindelöf). So, π−1

N πN (D) is a
realcompact subspace of X for each countable N ⊂ S [E, Corollary 3.11.8, p. 215]. This
implies that R =

⋂
{π−1

N πN (D) : N ⊂ S, |N | ≤ ℵ0} is a realcompact space [E, Corollary
3.11.7, p. 215]. It is enough now to show that Dω = R.

We know that πN (Dω) = πN (D) for every countable N ⊂ S. Thus, Dω ⊂ R. Now, for
y ∈ X \ Dω, there is N0 ⊂ S, which is countable, such that πN0 (D) is a proper subset of
πN0(D ∪ {y}). This means that y 6∈ π−1

N0
πN0(D). Therefore, Dω = R. �

5.3. Proposition. Let {Xs : s ∈ S} be a collection of second countable spaces. Let
X =

∏
s∈S Xs and let D be a dense subset of X. Then:

(1) D is C-embedded in Dω.
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(2) If for each finite subset F of S, the equality πF (D) =
∏

s∈F Xs holds, then Dω is
the greatest subspace of X where D is C-embedded.

(3) The space Dω is the Hewitt realcompactification υD of D.

Proof. (1) Let f : D → R be a continuous function. By the Arkhangel’skii factorization the-
orem (see [Ark1]), there exists a countable N ⊂ S and a continuous function φ0 : πN (D)→ R
such that f = (φ0◦πN )|D. Because of Proposition 5.1, it make sense to consider the function
f̃ = (φ0 ◦ πN )|Dω . Furthermore, f̃ is continuous and extends f .

(2) Let Y be a subset of X such that D ⊂ Y and such that there exists y ∈ Y \ Dω.
Since Y is not equal to Dω , there is a countable subset N ⊂ S for which πN (Y ) properly
contains πN (D). Let z be the element πN (y) of πN (Y ) \πN (D). Since πN (Y ) is metric and
πN (D) is dense in πN (Y ), there is a sequence (zn)n<ω in πN (D) which converges to z. We
can assume that zi 6= zj if i 6= j.

Let f : {zn : n < ω} → R be defined by f(zn) = n. f is a continuous function defined on
a closed subset of a normal space; so there is a continuous extension f̃ : πN (D)→ R of f .

Consider the function g = (f̃ ◦ πN )|D : D → R. This function is continuous. We are now
going to prove that g cannot be continuously extended to Y . In particular, it cannot be
continuously extended to D ∪ {y}.

For each n, take An = [sn
0 , ..., s

n
kn

;Bn
0 , ..., B

n
kn

]∩πN (D) ⊂ f̃−1(n−1/3, n+1/3) ⊂ πN (D)
with zn ∈ An. The set An is open in πN (D) for each n < ω and An ∩Am = ∅ if n 6= m. Of
course, we can assume that sn

i ∈ N for each n < ω and for each i ∈ {0, ..., kn}.

Claim: For each neighborhood U of y in D∪{y}, there exists k < ω such that if m ≥ k,
then U ∩ π−1

N (Am) 6= ∅.

Indeed, let W = [t0, ..., tl;M0, ...,Ml] be a canonical open subset of X containing y. The
set πN (W ) is open in

∏
s∈N Xs and contains z. Thus, there exists k < ω such that if m ≥ k,

then zm ∈ πN (W ). By hypothesis,

zm ∈ Am = [sm
0 , ..., s

m
km

;Bm
0 , ..., B

m
km

] ∩ πN (D).

We define J = {s ≤ l : ts ∈ {sm
0 , ..., s

m
km
}}. Take a bj ∈Mj for each j ∈ {0, ..., l}\ J . By

hypothesis there is dm ∈ D such that dm(ti) = zm(ti) if i ∈ J , dm(ti) = bi if i ∈ {0, ..., l}\J
and dm(sm

j ) = zm(sm
j ) for all j ∈ {0, ..., km}. Now it happens that dm ∈ D∩W ∩π−1

N (Am).
Therefore, it is not possible to continuously extend g to D ∪ {y}.
(3) This is a consequence of Proposition 5.2 and of the statement in (1) of this proposi-

tion. �

Recall that a space K is a dyadic space if it is the continuous image of 2κ for a κ.
Engelking and Pelczyński proved in [EP] that if the Stone-Čech compactification βX of a
space X is dyadic, then X is pseudocompact.

5.4. Theorem. Let {Xs : s ∈ S} be a family of non-trivial compact second countable
spaces. If D is a dense subset of X =

∏
s∈S Xs, then the following assertions are equivalent:

(1) D is pseudocompact.
(2) D is Gδ-dense in X.
(3) For every countable subset N of S, the function πN : D →

∏
s∈N Xs is surjective.

(4) For every continuous function φ : D → R there is a countable subset N of S and a
continuous function φ0 :

∏
s∈N Xs → R such that φ = φ0 ◦ (πN )|D.



14 Á. TAMARIZ-MASCARÚA

(5) For every continuous function φ : D → [0, 1] there is a countable subset N of S and
a continuous function φ0 :

∏
s∈N Xs → [0, 1] such that φ = φ0 ◦ (πN )|D.

(6) βD = X.
(7) υD = X.

Proof. The equivalence (1) ⇔ (2) is well known. The equivalence (1) ⇔ (3) is Lemma 4 in
[EE].

(3) ⇒ (4): We have only to apply the Arkhangel’skii factorization theorem and the
surjectivity of each πN for all countable subsets N of S.

The implication (4) ⇒ (5) is trivial.
The implication (5) ⇒ (6) can be proved as follows: Let φ : D → [0, 1] be continuous.

By hypothesis, there is a countable N ⊂ S and a continuous function φ0 :
∏

s∈N Xs → [0, 1]
such that φ = φ0 ◦ (πN )|D. It happens then that the function φ0 ◦ πN is a continuous
extension of φ to all X. Therefore, βD = X.

The implication (6) ⇒ (1) is a consequence of the Engelking-Pelczyński’ Theorem cited
above.

Moreover, (2) ⇒ (7) is a consequence of Proposition 5.3, and it is easy to prove (7) ⇒
(6). �

Let K be a topological space. A subspace Y of a space X is CK-embedded in X if every
continuous function f : Y → K can be continuously extended to all of X. A topological
space X is bK-discrete if every countable subset of X is discrete and CK-embedded in X.

5.5. Corollary. Let X be a zero-dimensional space and let K be a zero-dimensional com-
pact metrizable space. Then, the following statements are equivalent.

(1) βCp(X,K) is equal to KX .
(2) βCp(X,K) is a compact dyadic space.
(3) Cp(X,K) is pseudocompact.
(4) X is a bK-discrete space.

Proof. (1) ⇒ (2): Since K is a compact metrizable space, it is a dyadic space. Then the
space KX = βCp(X,K) is a dyadic space too.

(2) ⇒ (3): This is a consequence of Engelking-Pelczyński’s result.
Since Cp(X,K) is dense in KX (see [C, Proposicion 2.23]), the equivalence (3)⇔ (4) can

be proved using Theorem 5.4 and similar techniques to those used to prove Corollary 3.9 in
[CT].

(3) ⇒ (1): This is a consequence of Theorem 5.4 because Cp(X,K) is dense in KX . �

By Theorems 1.10 and 4.5, for zero-dimensional spaces X and K where K is compact
and metrizable, if Cp(X,K) is pseudocompact (that is, if X is a bK-discrete space), then
Sel(F2(Cp(X,K)) 6= ∅ if and only if Cp(X,K) is weakly orderable, if and only if X is
separable (iff X is countable and discrete).

It was proved in [CT] that, for a zero-dimensional space X, Cp(X,Z) is σ-compact if and
only if X is an Eberlein Compact space; so, also in this case, Sel(F2(Cp(X,κ)) 6= ∅ if and
only if Cp(X,κ) is weakly orderable, if and only if X is separable, for every κ ≥ ω.

5.6. Problem. Let X be a zero-dimensional space for which Cp(X,Z) is σ-pseudocompact.
Does Sel(F2(Cp(X,Z)) 6= ∅ imply the separability of X?
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6. Ordered type properties on Cp(X,E)

The existence of continuous selections for F2(X) is related with the existence of linear
orders on X. When is a space Cp(X, 2) a GO-space or a LOTS? In [VRS] it is proved that
a topological group G, which is not totally disconnected, is orderable iff G contains an open
subgroup topologically isomorphic to the additive real line; and a locally compact totally
disconnected nondiscrete group is orderable if it contains an open subgroup homeomorphic
to the Cantor set. Our space Cp(X, 2) does not satisfy any of the hypotheses just mentioned
unless X is countable and discrete, and in this case it trivially contains an open subgroup
homeomorphic to the Cantor set. So, it is of interest to know when such a space is a LOTS.
We have:

6.1. Proposition. Let X be a zero-dimensional space and E be a zero-dimensional sepa-
rable space with χ(E) = w(E). Then, the following statements are equivalent.

(1) Cp(X,E) is a LOTS.
(2) Cp(X,E) is a GO-space.
(3) |X| ≤ ℵ0 and E is second countable.

Proof. (2) ⇒ (3): If Cp(X,E) is a GO-space, then the inequalities

χ(Cp(X,E)) ≤ c(Cp(X,E)) ≤ w(Cp(X,E))

hold (see [MH]). But c(Cp(X,E)) is always countable because Cp(X,E) is a dense sub-
space of a product of copies of the separable space E. Moreover, we always have that
χ(Cp(X,E)) = |X|·χ(E) (see [C, Prop. 4.5, p. 90]). Since χ(E) = w(E) and χ(Cp(X,E)) =
ℵ0, then |X| ≤ ℵ0 and E is second countable.

(3)⇒ (1): If |X| ·w(E) ≤ ℵ0, then Cp(X,E) is a metrizable and zero-dimensional space.
Even more, it is second countable. Thus, Cp(X,E) is strongly zero-dimensional. But every
strongly zero-dimensional metrizable space is a LOTS [E, 6.3.2.(f), p. 373]. �

A variation of the previous result is:

6.2. Proposition. Let X be a zero-dimensional space and E be a strongly zero-dimensional
metrizable space. Then, the following statements are equivalent.

(1) Cp(X,E) is a LOTS.
(2) Cp(X,E) is a GO-space.
(3) |X| ≤ ℵ0.

Proof. (2)⇒ (3): As a consequence of Theorem 1.3 in [W], every GO-space contains a dense
orderable space; so, if Cp(X,E) is a GO-space, it contains a dense orderable space. This
means that EX contains a dense orderable subspace. Now, Theorem 2.2 implies |X| ≤ ℵ0.

(3) ⇒ (1): If X is countable, then EX is a subspace of κω where κ = w(E). The Baire
space κω has a σ-locally finite base consisting of clopen subsets. So, the same property
satisfies every subspace of κω. In particular, Cp(X,E) has a σ-locally finite base consisting
of clopen subsets. But this means that Cp(X,E) is a strongly zero-dimensional space [E,
Lemma 7.3.6]. Thus Cp(X,E) is a LOTS [E, 6.3.2.(f), p. 373]. �

When we consider, in Propositions 6.1 and 6.2, a topological group E we can say even
more:
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6.3. Theorem. For a zero-dimensional space X and a separable zero-dimensional topolog-
ical group E, the following statements are equivalent.

(1) Cp(X,E) is a LOTS.
(2) Cp(X,E) is a GO-space.
(3) Cp(X,E) contains an orderable dense subspace.
(4) Cp(X,E) contains a butterfly dense subspace.
(5) Cp(X,E) contains a butterfly dense subspace and βCp(X,E) is co-absolute with a

LOTS.
(6) Cp(X,E) is first countable and βCp(X,E) is co-absolute with a LOTS.
(7) Cp(X,E) contains an orderable non-Archimedean dense subspace.
(8) Cp(X,E) contains a dense proto-metrizable subspace.
(9) Cp(X,E) contains a dense metrizable subspace.

(10) Cp(X,E) is a metrizable space.
(11) |X| ≤ ℵ0 and E is second countable.

Proof. The equivalences (1) ⇔ (2) ⇔ (11) can be proved in a similar way to Proposition
6.1 using the fact that for every topological group E, w(E) = χ(E) · d(E). Since every
GO-space contains a dense orderable subspace, we obtain (2) ⇒ (3). On the other hand,
a topological group has a dense orderable subspace iff it has a dense butterfly space ([W,
Theorem 2.3]; thus, (3) ⇔ (4) holds. The equality (3) ⇔ (5) is Proposition 1.3 in [W]. (6)
⇒ (7) is Proposition 2.2 in [W]. If Cp(X,E) is first countable, then X must be countable
and E first countable (see [C, Pro. 4.5, p. 90]). But E is separable and a topological group;
so, E must have countable weight and (6) ⇒ (11) holds. And (5) ⇒ (4), (7)⇒ (3) and (11)
⇒ (10) ⇒ (9) ⇒ (8) are trivial.

Assume now that the statement (3) holds. So, by Theorem 4.2 in [W], |X| = ℵ0 and
EX contains a dense metrizable subspace. Since EX is a topological group, it must be
metrizable. But our hypothesis says that E is separable; so E is second countable.

So we have that (1), (2), (3), (4), (5) and (11) are equivalent. Then (5) plus (11) produces
(6). Finally, (7) ⇔ (8) is Theorem 2.1 in [W]. We have finished the proof. �

Corollary 4.2 and Proposition 6.3 give us examples of spaces weakly orderable which
are not GO-spaces. Indeed, for every non-countable zero-dimensional separable space X,
Cp(X, 2) is an example of this.

In [VRS] it was proved that for a space X, if βX is orderable thenX is countably compact.
In [CT] it was proved that, for a zero-dimensional space X, Cp(X, 2) is countably compact
if X is a P -space. It is also proved in [VRS] that if a Tychonoff non-compact space Z is
either metrizable or paracompact or Lindelöf or separable, then βZ is not orderable. So, if
X is countable and non-discrete, then Cp(X, 2) is orderable but βCp(X, 2) is not orderable.

6.4. Proposition. For a zero-dimensional space X, βCp(X,κ) is orderable if and only if
X is countable and discrete and κ < ω.

Proof. If βCp(X,κ) is orderable, then Cp(X,κ) is a GO-space. This means that X is
countable. So Cp(X,κ) is metrizable. Since βCp(X,κ) is orderable, Cp(X,κ) must be
compact [VRS]; that is, X is discrete and κ is finite.

The other implication is trivial. �

By Propositions 6.2 and 6.4, we have:
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6.5. Proposition. For a zero-dimensional space X and a strongly zero-dimensional metriz-
able space E, βCp(X,E) is orderable if and only if X is countable and discrete and E is
compact.

Addendum (July, 2006). At the moment this article was in process to be accepted for
publication, Professor Valentin Gutev communicated to the author that he has proven the
affirmative answer to problem 4.11.2.

I would like to express my thanks to the referee who detected and so patiently pointed
out my blunders and several wrong formulations in the original version of this article.
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