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SPACES OF CONTINUOUS FUNCTIONS

DEFINED ON MRÓWKA SPACES

M. Hrus̆ák, P.J. Szeptycki and Á. Tamariz-Mascarúa

Abstract. We prove that for a maximal almost disjoint family A on ω, the space
Cp(Ψ(A),2ω) of continuous Cantor-valued functions with the pointwise convergence

topology defined on the Mrówka space Ψ(A) is not normal. Using CH we construct
a maximal almost disjoint family A for which the space Cp(Ψ(A),2) of continu-

ous {0,1}-valued functions defined on Ψ(A) is Lindelöf. These theorems improve
some results due to A. Dow and P. Simon in [DS]. We also prove that this space

Cp(Ψ(A),2) = X is a Michael space; that is, Xn is Lindelöf for every n ∈ N and
neither Xω nor X × ωω are normal. Moreover, we prove that for every uncountable

almost disjoint family A on ω and every compactification bΨ(A) of Ψ(A), the space
Cp(bΨ(A),2ω) is not normal.

0. Introduction

All spaces considered in this article will be Tychonoff. For spaces X and E,
Cp(X, E) denotes the space of all continuous functions defined on X and with
values in E with the topology of pointwise convergence; that is, the topology of
Cp(X, E) is inherited from the Tychonoff product EX . As usual, we write Cp(X)
instead of Cp(X, R). We are going to use the symbol L(X) for the Lindelöf number
of space X (the minimum infinite cardinal number τ such that every open cover of
X has a subcover of cardinality ≤ τ ), and e(X) is the extent of X (the supremum
of the cardinalities of all the closed and discrete subspaces of X).

Some of the most interesting topics in spaces Cp(X, E) are related with their
normality, Lindelöf degree and extent, and the relation between them. Next, we
give some fundamental results about the foregoing.

0.1. (E.A. Reznichenko [R]) If e(Cp(X)) > ℵ0, then Cp(X) is not normal.

0.2. (E.A. Reznichenko [R]) Cp(X) is normal if and only if Cp(X) is collectionwise
normal.

As every Cp(X) has cellularity ≤ ℵ0 and every paracompact space with cellular-
ity ≤ ℵ0 is Lindelöf, we have:

0.3. A space Cp(X) is paracompact iff Cp(X) is Lindelöf.

0.4. (V. Tkachuk [Tk]) If Cp(X) is normal, then Cp(X) is countably paracompact.
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Typeset by AMS-TEX

2



SPACES OF CONTINUOUS FUNCTIONS DEFINED ON MRÓWKA SPACES 3

0.5. (V. Tkachuk [Tk]) The space Cp(X) is hereditarily normal iff Cp(X) is per-
fectly normal.

0.6. (D.P. Baturov [Ba]) Let X be a Lindelöf Σ-space. Then for every subspace
Y of Cp(X), the extent e(Y ) of Y is equal to the Lindelöf number L(Y ) of Y .

As a corollary of 0.1 and 0. 6, we obtain that if X is a Lindelöf Σ-space, normality,
countable extent and Lindelöf property coincide in Cp(X). However, if X is the
one-point Lindelöfication L(ω1) = ω1 ∪ {∗} of the discrete space of cardinality ω1,
then Cp(X) is normal (then e(Cp(X)) = ℵ0), but it is not Lindelöf. It is of general
interest to specify classes of spaces for which countable extent, normality and the
Lindelöf property are well correlated.

W. Just, O. Sipacheva and P. Szeptycki proved in [JSS] that for the space X =
L(ω1)×(ω+1)\{(∗, ω)}, Cp(X) has countable extent and is not normal. This space
X is monolithic and of character ω1. They also construct, using the combinatorial
principle ♦, a separable and first-countable space Y such that Cp(Y ) is not normal
and has countable extent. This space Y is a Mrówka space Ψ(A) where A is an
almost disjoint family built along an ω1-p-ultrafilter on ω.

Most of the known results about normality or the Lindelöf number in spaces
Cp(X) are of the following type: if Cp(X) is normal or Lindelöf, then X must
satisfy certain topological properties. So, a natural problem is to find some classes
of spaces X for which Cp(X) is normal or Lindelöf. In this direction, we know
that if X is an Eberlein compact space or if X contains a countable collection of
subsets N such that every open subset of X is the union of a subcollection of N
(in particular, if X is separable and metrizable), then Cp(X) is Lindelöf.

Recently, R.D. Buzyakova [B] discovered that for every ordinal α, Cp(X) is
Lindelöf if X = α \ {β < α : cf(β) > ω}.

Motivated by [B], A. Dow and P. Simon [DS] analyzed the spaces Cp(Ψ(A))
where A is an almost disjoint family on ω and Ψ(A) is the Mrówka space related
to A, and answered several questions posed in [B]. They proved: (1) for every
maximal almost disjoint family A, Cp(Ψ(A)) is not Lindelöf; (2) assuming ♦, they
constructed a mad family A such that Cp(Ψ(A), {0, 1}) is Lindelöf. This A has
the characteristic that the Stone-Čech compactification of Ψ(A) coincides with its
one-point compactification; (3) assuming b > ω1, Cp(Ψ(A), 2) is not Lindelöf for
every mad family A.

In this article, we also analyze Lindelöf property and normality in spaces of
continuous functions over a Mrówka space. We prove that if A is a quasi-maximal
almost disjoint family (in particular, if A is a mad family), Cp(Ψ(A)) is not normal
(Section 3). Moreover, we construct in Section 4, using CH, a Mrówka mad family
A such that, for X = Cp(Ψ(A), {0, 1}), Xn is Lindelöf and Xω and X × ωω are
not normal. We also construct from CH a Luzin gap A such that Cp(Ψ(A)) has
countable extent. In Section 2 we prove that for every compactification bΨ(A) of
an uncountable almost disjoint family A, Cp(bΨ(A)) is not normal. Section 1 is
devoted to some basic definitions and basic results about normality of spaces Ψ(A).

The concepts, terminology and notations used and not defined in this article can
be found in [Ark], [E] and [K].
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1. Preliminaries

The set of all natural numbers is denoted by ω, N is the set of positive integers,
and R, Q and P (or ωω) are the spaces of real, rational and irrational numbers with
the natural topology. By I we denote the unit closed interval [0, 1] ⊂ R.

We have already mentioned, in the Introduction, what the Lindelöf degree and
the extent of a space X mean. Another topological cardinal invariant that we are
going to deal with is the cellularity of a space X, which is denoted by c(X). This
is the supremum of the cardinalities of all collections of open and pairwise disjoint
subsets of X.

Recall that a collection A of subsets of the natural numbers ω is an almost
disjoint family if each A in A is infinite, and for two different elements A, B ∈ A,
|A∩B| < ℵ0. A maximal almost disjoint family (mad family) is a maximal element
in the family of all the almost disjoint families with the containment order.

A topological space X is a Mrówka space (a Mrówka-Isbell space or a Ψ-space,
see [GJ], Problem 5I) if it has the form ω∪A, where A is an almost disjoint family,
and its topology is generated by the following base: each {n} is open for every
n ∈ ω, and an open canonical neighborhood of A ∈ A is of the form {A}∪B where
B ⊂ ω and A \B is finite. In this case, we denote X by Ψ(A). This kind of spaces
was introduced by Mrówka in [Mr1]. For every almost disjoint family A, Ψ(A) is a
0-dimensional locally compact first countable space, A is a closed discrete subspace
of Ψ(A) and ω is dense. Moreover, Ψ(A) is pseudocompact if and only if A is
maximal. So, Ψ(A) is not normal if A is an infinite mad family.

The following result is obvious.

1.1. Proposition. Let A be an almost disjoint family on ω. Then, Ψ(A) is col-
lectionwise normal if and only if |A| ≤ ℵ0.

The normality of Ψ(A) can be expressed in several ways:

1.2. Proposition. For an almost disjoint family A the following statements are
equivalent.

(1) Ψ(A) is normal.
(2) Every function φ : A → {0, 1} has a full extension; that is, there exist a

continuous function φ̃ : Ψ(A) → {0, 1} which extends φ.
(3) For every B ⊂ A, there is a partitioner C ⊆ ω of B; that is, A ⊂∗ C for all

A ∈ B, and |A ∩ C| =∗ ∅ for all A ∈ A \ B.

So, if 2ω < 2ω1 , the space Ψ(A) is not normal for every uncountable A. Moreover,
Martin Axiom plus ¬CH implies that there are spaces Ψ(A) which are normal.
Indeed, for each subset X of the Cantor set 2ω, we take the collection AX = {Af :
f ∈ X} where Af = {f � n : n ∈ ω}. AX is an almost disjoint family of subsets of
the countable set 2<ω = {f � n : f ∈ 2ω, n ∈ ω}, and Ψ(AX ) is normal if and only
if X is a Q-set in 2ω.

We will call an almost disjoint family A Mrówka if the one-point compactification
αΨ(A) of Ψ(A) coincides with its Stone-Čech compactification βΨ(A). This kind
of almost disjoint families are maximal and exist in ZFC (see [Mr2]). An almost
disjoint family A is Mrówka iff βΨ(A) is 0-dimensional and one of the sets f−1(0)∩
A, f−1(1) ∩A is finite for each f ∈ C(Ψ(A), 2).
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We are going to frequently use the following well known facts.

1.3. Lemma.
(1) If the extent of a normal space X is countable, then X is collectionwise

normal.
(2) If X is a collectionwise Hausdorff space and c(X) ≤ ℵ0, then the extent of

X is countable.
(3) If Z is dense in a Tychonoff product EX and E is separable, then c(Z) ≤ ℵ0.

2. Cp(bΨ(A), 2ω) is not normal for
every compactification bΨ(A) of Ψ(A)

The following is a generalization of a result due to H.H. Corson [Co].

2.1. Theorem. Let X =
∏
{Xα : α ∈ A} be the product of separable metric

spaces, Y ⊂ X, Y everywhere dense in X, and let the space Z be a continuous
image of Y . If Z × Z is normal, then Z is collectionwise normal.

As a consequence of Theorem 2.1, we have:

2.2. Corollary. Let X be a 0-dimensional space. If Cp(X, 2ω) is normal, then it
is collectionwise normal.

Proof. Cp(X, 2ω) is a dense subset of the product of |X| copies of the separable
metric space 2ω. We have that Cp(X, 2ω) ∼= Cp(X, 2)ω ∼= Cp(X, 2)ω × Cp(X, 2)ω ∼=
Cp(X, 2ω) × Cp(X, 2ω). So, if Cp(X, 2ω) is normal, then Cp(X, 2ω) × Cp(X, 2ω) is
normal. Therefore, by Theorem 2.1, Cp(X, 2ω) is collectionwise normal. �

A well known problem which has not been solved asks if normality of Cp(X, 2)
(resp., Cp(X, ω)) implies that Cp(X, 2) (resp., Cp(X, ω)) is collectionwise normal
for every topological space X. In our context we can modify this question as follows:

2.3. Problems. Is it true that for every almost disjoint family A, Cp(Ψ(A), 2)
(resp., Cp(Ψ(A), ω)) is normal implies that Cp(Ψ(A), 2) (resp., Cp(Ψ(A), ω)) is
collectionwise normal?

The following result was proved in [CT] (Theorem 3.2).

2.4. Proposition. Let X be a 0-dimensional space. Then, the space Cp(X, 2) is
countably compact if and only if X is a P -space.

2.5. Proposition. If X is a 0-dimensional space which is not a P -space, and
if Cp(X, 2) × ωω contains a closed, discrete subspace of cardinality > ℵ0, then
Cp(X, 2ω) is not normal.

Proof. Cp(X, 2ω) is homeomorphic to Cp(X, 2) × Cp(X, 2)ω. Since X is not a P -
space, Cp(X, 2) has a closed copy of ω (Proposition 2.4), then Cp(X, 2)ω contains a
closed copy of the irrationals ωω. Since e(Cp(X, 2) × ωω) > ℵ0, then the extent of
Cp(X, 2) × Cp(X, 2)ω is also an uncountable cardinal number. But the cellularity
of Cp(X, 2ω) is countable, so Cp(X, 2ω) cannot be collectionwise normal (Lemma
1.3.(2)), and so Cp(X, 2ω) is not normal (Corollary 2.2). �

The following result is a consequence of a theorem of R. Pol and D.P. Baturov.
A proof can be found in [Ark], pp. 166.
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2.6. Theorem. Let X be an uncountable separable scattered compactum whose
ω1th derived set is empty. Then Cp(X, 2) × ωω contains an uncountable closed
discrete subspace.

As a consequence of this result, we obtain the main result of this section.

2.7. Theorem. Let E ∈ {I, R, P, 2ω}. For every uncountable almost disjoint fam-
ily A and every compactification bΨ(A) of Ψ(A), the space Cp(bΨ(A), E) is not
normal.

Proof. It is sufficient to prove this theorem when E = 2ω. The function f :
bΨ(A) → αΨ(A) defined by f � Ψ(A) is the identity function, and f(x) = p
for all x ∈ bΨ(A) \ Ψ(A) where p is the point which compactifies Ψ(A), is an onto
closed continuous function. Let f# : Cp(αΨ(A), 2ω) → Cp(bΨ(A), 2ω) defined by
f#(g) = g◦f . Then, f#[Cp(αΨ(A), 2ω)] is homeomorphic to Cp(αΨ(A), 2ω) and it
is a closed subset of Cp(bΨ(A), 2ω). But αΨ(A) is a space that satisfies the condi-
tions in Theorem 2.6; so, Cp(αΨ(A), 2ω) is not normal because of Proposition 2.5.
Therefore, since Cp(αΨ(A), 2ω) can be consider as a closed subset of Cp(bΨ(A), 2ω),
this last one is not normal. �

Observe that the previous result is true for E equal to P or 2ω even if bΨ(A) is
not 0-dimensional. On the other hand, R. Pol gave in [P], using CH, an example
of an almost disjoint family A such that Cp(αΨ(A), 2) is Lindelöf.

For k < ω, we will denote by Cp,k(X, E) the space Cp(Cp,k−1(X, E), E) where
Cp,0(X, E) = X. For an uncountable almost disjoint family A, the space Ψ(A)
is a closed subset of Cp,2n(Ψ(A), 2ω). If the space Cp,2n(Ψ(A), 2ω) were normal,
it would be collectionwise normal (Corollaries 2.2); then, Ψ(A) would be collec-
tionwise normal as well. But this would mean that |A| ≤ ℵ0 (Proposition 1.1); a
contradiction. Therefore, for E ∈ {I, R, P, 2ω}, Cp,2n(Ψ(A), E) is not normal for
every n ∈ N.

Moreover, it is known that if X and Cp(X, I) are normal, then each closed
discrete subset of X has to be countable. So, for an uncountable almost disjoint
family A such that Ψ(A) is normal, Cp,n(Ψ(A), E) is not normal for every n ∈ N,
where E ∈ {I, R}. This is the case for a canonical almost disjoint family Ψ(AX )
defined by a Q-set X.

3. Cp(Ψ(A)) is not normal when A is a mad family.

From now on we are going to use the following standard notations. For spaces
X and E, n ∈ N, points x1, x2, ..., xn of X and subsets A1, ..., An of E, the
symbol [x1, ..., xn; A1, ..., An] will represent the set {f ∈ EX : f(xi) ∈ Ai ∀ i ∈
{1, ..., n}}. If Ai = A ⊂ E for all i ∈ {1, ..., n}, we will write [x1, ..., xn; A] instead
of [x1, ..., xn; A, ..., A].

Let A be a mad family. For each A ∈ A, we take the characteristic function
of {A} ∪ A in Ψ(A), χ̃A : Ψ(A) → {0, 1} (χ̃A(x) = 1 iff x = A or x ∈ A), and
the characteristic function of A in ω, χA : ω → {0, 1} (χA(x) = 1 iff x ∈ A).
Now, we consider the set D = {(χ̃A, χA) : A ∈ A} as a subspace of the product
Z = Cp(Ψ(A), 2) × T , where T is equal to {f ∈ 2ω : |f−1(1)| = ℵ0} and has the
topology inherited by the Tychonoff product 2ω.
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3.1. Claim. The set D is a closed and discrete subset of Z = Cp(Ψ(A), 2) × T of
cardinality |A|.

Proof. For each A ∈ A, V = [A; {1}]× T = {(f, g) ∈ Z : f(A) = 1} is an open set
containing (χ̃A, χA), and V ∩ D = {(χ̃A, χA)}. So, D is discrete.

Assume now that (f, g) ∈ clY D where Y = Cp(Ψ(A), 2)× 2ω. If for some n ∈ ω,
f(n) 6= g(n), then W = [n; {f(n)}]× [n; {g(n)}] is an open subset of Y , (f, g) ∈ W
and W ∩ D = ∅. This is not possible; hence, f � ω = g.

If (f, g) ∈ clY D \ D, then f � A ≡ 0. In fact, if A, B ∈ A with A 6= B and
f(A) = 1 = f(B), then [A, B; {1}]×2ω is an open subset of Y which contains (f, g)
and which does not intersect D. Now, if f takes the value 1 only in one element
of A, say A, then, since f � ω = g and (f, g) 6∈ D, either there is n 6∈ A such that
f(n) = 1 or there is n ∈ A for which f(n) = 0. So, W = [A, n; {1}]× 2ω in the first
case, or W = [A, n; {1}, {0}] in the second case, is an open set in Y , (f, g) ∈ W and
W ∩ D = ∅, which is not possible. We conclude that f � A ≡ 0. But this means
(since A is a mad family) that (f � ω)−1(1) is finite. Therefore (f, g) 6∈ Z. �

3.2. Claim. The space T is homeomorphic to ωω .

Proof. In fact, T is dense in 2ω, its complement 2ω \ T is equal to F =
⋃

n<ω Fn

where Fn = {f ∈ 2ω : |{s < ω : f(s) = 1}| ≤ n}. So, F is dense and Fσ in 2ω. We
conclude that T is homeomorphic to the irrational numbers (see [E], pp. 370). �

So, the space Cp(Ψ(A), 2)×ωω contains a closed and discrete subspace of cardi-
nality |A|. Since Ψ(A) is not a P -space, Cp(Ψ(A), 2) has a closed copy of ω (Propo-
sition 2.4). (The set {χn : n < ω} where χn is the characteristic function of {0, ..., n}
in Ψ(A), is a closed and discrete subspace of Cp(Ψ(A), 2).) Thus, Cp(Ψ(A), 2)×ωω

is a closed subspace of Cp(Ψ(A), 2ω), Cp(Ψ(A), I) and Cp(Ψ(A)). So, we have
|A| ≤ e(Cp(Ψ(A), 2ω) ≤ e(Cp(Ψ(A), I)) ≤ e(Cp(Ψ(A))) ≤ w(Cp(Ψ(A))) = |A| ≤
L(Cp(Ψ(A), 2ω)) ≤ L((Cp(Ψ(A), I)) ≤ L(Cp(Ψ(A))) ≤ w(Cp(Ψ(A))) = |A|, where
w(Cp(Ψ(A))) is the weight of space Cp(Ψ(A)). That is:

3.3. Claim. Let A be a mad family. Then, e(Cp(Ψ(A), 2ω) = e(Cp(Ψ(A), I)) =
e(Cp(Ψ(A))) = L(Cp(Ψ(A), 2ω)) = L((Cp(Ψ(A), I)) = L(Cp(Ψ(A))) = |A|.

Besides, if X is collectionwise normal and c(X) ≤ ℵ0, then the extent of X is
countable. Therefore, we conclude:

3.4. Theorem. Let A be an infinite maximal almost disjoint family on ω. Then,
the spaces Cp(Ψ(A), 2ω), Cp(Ψ(A), ωω), Cp(Ψ(A), I), Cp(Ψ(A)) are not normal,
and their extent and Lindelöf number are all equal to |A|.

Proof. In fact, the cellularity of Cp(Ψ(A), 2ω) is equal to ℵ0. If Cp(Ψ(A), 2ω) were
normal, it would be collectionwise normal (Corollary 2.2), and, by Lemma 1.3, its
extent must be countable, contrary to Claim 3.3. The last assertion of this Theorem
is Claim 3.3. �

It is easy to prove from Theorem 3.4 that for every almost disjoint family A
such that there is a mad family B ⊃ A with |B \A| < ℵ0, the spaces Cp(Ψ(A), 2ω),
Cp(Ψ(A), ωω), Cp(Ψ(A), I) and Cp(Ψ(A)) are not normal, and their extents coin-
cide with their Lindelöf degrees and they are all equal to |A|. In the case A has
a countable infinite difference with a mad family, we cannot further use the same
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techniques, but they have the same properties as we are going to prove next. In
order to obtain our purpose we are going to use general results. We decided to
present Theorem 3.4 and Theorem 3.9 below and their proofs separately because
for mad families we were able to give a more constructive proof, which shows the
nature of space Cp(Ψ(A)) more clearly.

Given a topological space X and a subspace Y of X, we denote by χ(Y, X) the
character of Y in X; that is, χ(Y, X) = min{|B| : B is a base of Y in X}, where B
is a base of Y in X means that each element in B is open in X, and for each open
set A of X containing Y , there is B ∈ B such that Y ⊆ B ⊆ A.

3.5. Definition. An almost disjoint family A of subsets of ω is quasi-maximal if
there is a maximal almost disjoint familyB containing A and such that |B\A| ≤ ℵ0.

Obviously, every maximal almost disjoint family is quasi-maximal and, since ev-
ery almost disjoint family with cardinality ℵ0 is not maximal, every quasi-maximal
almost disjoint family has cardinality not equal to ℵ0.

3.6. Proposition. Let A be an almost disjoint family on ω. Then, χ(A, Ψ(A)) =
ℵ0 if and only if A is quasi-maximal.

Proof. Assume that χ(A, Ψ(A)) = ℵ0 and |A| ≥ ℵ0. Let M = {Mn : n ∈ ω} ⊆
P(ω) be a countable collection of subsets of ω which are closed in Ψ(A) and such
that B = {Ψ(A) \ M : M ∈ M} is a base of A in Ψ(A). Let D = {M ∈ M :
|M | = ℵ0}. Let {Ln : n ∈ ω} be an enumeration of D in such a way that if
D is finite, then L0, ..., Ln0 are all different, D = {L0, ..., Ln0} and Ln = Ln0 for
all n ≥ n0, and if D is infinite, Ln 6= Lm if n 6= m. Now we take S0 = L0,
S1 = L1 \ L0,...,Sn+1 = Ln+1 \

⋃
i≤n Li,..., and S = {Sn : n < ω}. It happens that

the new collection A ∪ {S ∈ S : |S| = ℵ0} is a maximal almost disjoint family.
For the converse implication assume that A is an almost disjoint family and

B is a mad family such that A ⊂ B and |B \ A| ≤ ℵ0. Let C = B \ A and
H = {Ψ(A) \

⋃
K : K ⊂ [ω]<ω ∪ C and |K| < ℵ0}. Of course, H is countable.

Without loss of generality, we can assume that the elements in C are pairwise
disjoint. It is not difficult now to verify that H is a base for A in Ψ(A). �

The following result is a generalization of Proposition IV.7.4 in [Ark] and its
proof requires a slight modification to that given for it in [Ark].

3.7. Theorem. Let X be a 0-dimensional space with an open, countable and dense
subset M such that the set A of isolated points in F = X \M is not countable and
is dense in F . If moreover χ(F, X) ≤ ℵ0, then Cp(X, 2) × ωω contains a closed,
discrete subspace of cardinality |A|.

3.8. Theorem. Let A be an infinite quasi-maximal almost disjoint family on ω.
Then, the spaces Cp(Ψ(A), 2ω), Cp(Ψ(A), ωω), Cp(Ψ(A), I), Cp(Ψ(A)) are not nor-
mal.

Proof. Because of Proposition 3.7 and Theorem 3.8, Cp(Ψ(A), 2) × ωω contains a
closed and discrete subset of cardinality |A| > ℵ0. Now, we use Proposition 2.5 in
order to conclude that Cp(Ψ(A), 2ω) is not normal. Since Cp(Ψ(A), 2ω) is a closed
subset of Cp(Ψ(A), ωω), Cp(Ψ(A), I) and Cp(Ψ(A)), they are also not normal. �
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3.9. Theorem. Let A be a quasi-maximal almost disjoint family on ω. Then,
the extent of spaces Cp(Ψ(A), 2ω), Cp(Ψ(A), ωω), Cp(Ψ(A), I), Cp(Ψ(A)) coincide
with their Lindelöf degree and they are all equal to |A|.

Proof. This is a consequence of Theorem 3.8 and some similar arguments to those
given before Claim 3.3. �

Proposition 0.3 and Theorem 3.8 induce us to ask if there is a maximal almost
disjoint family A for which Cp(Ψ(A), 2ω) is countably paracompact. Following
some argumentations in [W] it is possible to prove that V = L implies that every
countably paracompact space of character ≤ 2ℵ0 is collectionwise Hausdorff. So,
since χ(Cp(Ψ(A), 2ω)) ≤ 2ℵ0 and c(Cp(Ψ(A), 2ω)) ≤ ℵ0, we obtain the following
result (see Lemma 1.3.(2) and Theorem 3.9).

3.10. Theorem. (V=L) For every quasi-maximal almost disjoint family A, the
space Cp(Ψ(A), 2ω) is not countably paracompact.

3.11. Problem. Can Theorem 3.10 be proved in ZFC without any additional set
theoretical axiom?

4. A Lindelof Cp(Ψ(A), 2) from CH.

In this section we present the construction of a maximal almost disjoint family
A ⊆ [ω]ω such that Cp(Ψ(A), 2) is Lindelöf. We assume CH.

For an almost disjoint family A and i ∈ {0, 1}, we denote by σi
n(A) the closed

subspace {f ∈ Cp(Ψ(A), 2) : |f−1(i) ∩ A| ≤ n} of Cp(Ψ(A), 2). If A is Mrówka
(that is, if the one-point compactification of Ψ(A) coincides with its Stone-Čech
compactification), then Cp(Ψ(A), 2) =

⋃
n∈ω,i∈{0,1} σi

n(A). For every n < ω, σ0
n(A)

is homeomorphic to σ1
n(A). We are going to write σn(A) instead of σ1

n(A). Thus,

4.1. Theorem. If A is a Mrówka mad family, then Cp(Ψ(A), 2) is Lindelöf if, and
only if, σn(A) is Lindelöf for each n ∈ ω.

To characterize when σn(A) is Lindelöf, we need certain terminology and nota-
tion. For an almost disjoint family A, A⊥ is the ideal {b ⊂ ω : |b∩a| < ℵ0 ∀ a ∈ A};
and for a, b ∈ P(ω), a∆b will denote their symmetric difference; that is a∆b =
(a ∪ b) \ (a ∩ b). For a subset a of ω, we will distinguish between the characteristic
function of a in 2ω and the characteristic function of a in 2Ψ(A) by denoting as χa

the former and χ̂a the latter. Given an almost disjoint family A and Y ⊆ P(ω), we
will say that An is concentrated on Y, if for each open subset U of the Cantor set
2ω containing χY = {χy : y ∈ Y}, there is a countable B ⊆ A such that χ∪x ∈ U

for all x ∈ [A \ B]n. And we will say that An + A⊥ is concentrated on Y, if for
each open set U ⊇ Y, there is a countable B ⊆ A such that χ(∪x)∆b ∈ U for all
x ∈ [A \ B]n and all b ∈ A⊥. We now state a theorem which characterizes when
σn(A) is Lindelöf, for an almost disjoint family A.

4.2. Theorem. Suppose that A is an almost disjoint family and n > 0. Then
σn(A) is Lindelöf if and only if Ak + A⊥ is concentrated on A⊥ for each k ≤ n.

Before we prove this theorem, we note one corollary:
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4.3. Corollary. Suppose that A = {aα : α < ω1} is mad. Then σn(A) is Lindelöf
if, and only if, Ak is concentrated on [ω]<ω for all k ≤ n.

Proof of the Corollary. Here A⊥ is precisely [ω]<ω, so by the Theorem it suffices
to show that Ak is concentrated on [ω]<ω if and only if Ak + [ω]<ω is concentrated
on [ω]<ω. One direction is trivial, for the other direction, assume that Ak is con-
centrated on [ω]<ω. Fix an open neighborhood U of χ[ω]<ω = {χs : s ∈ [ω]<ω}.
For each s ∈ [ω]<ω, let Us = {f + χs : f ∈ U} be the translate of U by χs. We
have that, χa ∈ Us if and only if χa∆s ∈ U . Each Us is an open neighborhood of
χ[ω]<ω , and there are only countably many such translates. It follows that there is
a countable subset B of A such that for all x ∈ [A\B]k and all s ∈ [ω]<ω, χ∪x ∈ Us.
That is, χ(∪x)∆s ∈ U . �

Proof of the Theorem. By induction on n. Note first that σ0(A) = {χ̂b : b ∈ A⊥}
is homeomorphic to the subset {χb : b ∈ A⊥} of 2ω, so σ0(A) is Lindelöf. Suppose
n ≥ 1 and that for all k ≤ n, Ak +A⊥ is concentrated on A⊥. By induction assume
that σn−1(A) is Lindelöf. Fix a cover U of σn(A) constituted by canonical open
subsets of Cp(Ψ(A), 2). By the inductive hypothesis, there is a countable V ⊆ U
such that σn−1(A) ⊆

⋃
V. For each x ∈ [A]n, let Fx = {f ∈ σn(A) : f−1(1) ∩A =

x}. Each Fx is homeomorphic to a subset of 2ω; so it is covered by a countable
subset Ux of U . Thus it suffices to prove the following lemma:

4.4. Lemma. D = {x ∈ [A]n : Fx is not covered by V} is countable.

Proof of the Lemma. If D is not countable, choose an uncountable set {xα : α ∈
ω1} ⊆ [A]n and fα ∈ Fxα such that fα 6∈

⋃
V. By going to a subset we may assume

that the xα’s form a ∆-system with root r. So, for each α, there is a member bα of
A⊥ such that fα � ω is the characteristic function of (

⋃
xα)∆bα.

Consider Fr. It is covered by V. Let

W =
⋃

{V ∩ 2ω : V ∈ V and V ∩ Fr 6= ∅}.

Let Wr be the translate of W by
⋃

r: Wr = {f + χ∪r : f ∈ W}. That is, for
a ⊂ ω, χa ∈ Wr if and only if χa∆(

⋃
r) ∈ W . First, note that Wr is a neighborhood

of A⊥. To see this, fix x ∈ A⊥. Thus the characteristic function of x∆(
⋃

r) extends
to a continuous function f ∈ Fr. And since V covers Fr, there is a V ∈ V with
f ∈ V . So, χx∆(

⋃
r) ∈ V ∩ 2ω. Therefore, χx ∈ Wr as required.

By changing the sets bα on a finite set, we may assume that fα � ω is the
characteristic function of

⋃
r∆(

⋃
(xα\r)∪bα). By our assumption of concentration,

we may fix β so that (
⋃

xα \ r) ∪ bα ∈ Wr for all α > β. Thus fα � ω ∈ W for
all α > β. If we choose α > β large enough so that the supports of all V ∈ V lie
below α we get that fα is covered by V. Contradiction. This finishes the proof of
the Lemma; hence, we have demostrated the necessity of 4.2.

Now we give the proof of the sufficiency of Theorem 4.2. Suppose that Ak +A⊥

is not concentrated on A⊥ for some k ≤ n. So, we may fix an open U ⊆ 2ω, a
disjoint family {yα : α < ω1} ⊆ [A]k, and bα ∈ A⊥ such that

(1) χA⊥ = {χb : b ∈ A⊥} ⊂ U , and
(2) gα = χ(∪yα)∆bα

6∈ U for each α < ω1.
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Each gα extends naturally to a continuous fα : Ψ(A) → 2 such that fα(a) = 1
if and only if a ∈ yα. Since {yα : α < ω1} is a disjoint family, any complete
accumulation point of the fα’s must be in σ0(A). Moreover, since U contains
χA⊥ = σ0(A), there is a neighborhood V of σ0(A) such that f � ω ∈ U for each
f ∈ V . Thus, fα 6∈ V for all α < ω1. This means that {fα : α < ω1} has no
complete accumulation point in σn(A). �

4.5. Theorem. Assume CH. There is a Mrówka maximal almost disjoint family
A such that Cp(Ψ(A), 2) is Lindelöf.

Proof. Let {Uα : ω ≤ α ∈ ω1} enumerate all open sets in 2ω that contain [ω]<ω. For
each β, let Uβ be a family of canonical basic open sets in 2ω such that

⋃
Uβ = Uβ .

Let {xα : ω ≤ α < ω1} enumerate all infinite co-infinite subsets of ω. We will
construct {aα : α < ω1} recursively, so that it is a Mrówka mad family A satisfying
An is concentrated on [ω]<ω for each n. To begin the construction, let {an : n ∈ ω}
be any partition of ω into infinite sets.

Assume that {aβ : β < α} has been chosen so that:
(a) For each β ∈ [ω, α) and for each x ∈ [aγ : β ≤ γ < α]<ω, χ(∪x)∆s ∈ Uβ for

every s ∈ [ω]<ω.
(b) {aβ : β < α} is an almost disjoint family.
(c) For each β ∈ [ω, α), aβ has infinite intersection with xβ and with ω \ xβ

(unless one of these sets is covered by a finite union of aξ’s with ξ < β).
If xα or ω \ xα is covered by a finite set from {aβ : β < α}, we do nothing at

stage α (or just choose aα almost disjoint from previous aβ arbitrary). Otherwise,
to construct aα, enumerate as (Vn, yn) all pairs (U ′

β , y) where β ∈ [ω, α), y ∈
[aγ : β ≤ γ < α]<ω and U ′

β is a finite translate of Uβ (U ′
β = {U + χs : U ∈ Uβ} for

a s ∈ [ω]<ω where U + χs = {f + χs : f ∈ U}). Note that (a) can be equivalently
formulated as for each such x, χx is in every finite translate of Uβ . Thus, by (a),
we have that χs∆∪yn is in

⋃
Vn for every s ∈ [ω]<ω. Also enumerate {aβ : β < α}

as {bn : n ∈ ω}. We will construct aα as the union of finite sets sn by recursion
on n as follows: Having chosen sm and integers km for m < n so that sm ⊆ km

and sm ∩ ki = si for each i < m < n, we consider the pair (Vn, yn). Note that the
characteristic function of sn−1∪

⋃
yn is of the form χs∆∪yn for a s ∈ [ω]<ω. Thus by

(a), we have that χsn−1∪
⋃

yn
∈

⋃
Vn. So, there is Vn = [t0, ..., tk; {ε0}, ..., {εk}] ∈ Vn

(εi ∈ {0, 1}) such that χsn−1∪
⋃

yn
∈ Vn. Take k′

n > max{t0, ..., tk, kn−1}. Now
choose j0 ∈ xα and j1 6∈ xα such that ji > k′

n and such that ji 6∈
⋃
{bi : i ≤ n}.

Let sn = sn−1 ∪ {j0, j1}, and let kn > max{j0, j1}. This completes the recursive
construction of aα. Clearly, by construction, (b) and (c) are preserved. To see
that (a) is preserved, suppose that β ∈ [ω, α) and x ∈ [aγ : β ≤ γ ≤ α]<ω, and fix
a finite set C. Consider the translate χ⋃

x + χC of χ⋃
x. If aα 6∈ x then there is

nothing to show. So, suppose that aα ∈ x. Then, (Uβ +χC , x\{aα}) is enumerated
as (Vn, yn) in the construction of aα, where Uβ + χC = {U + χC : U ∈ Uβ}. Recall
that χsn−1∪

⋃
yn

is an element of the basic open set [t0, ..., tk; {ε0}, ..., {εk}]. By the
construction we have that χaα∪

⋃
yn

(ti) = χsn−1∪
⋃

yn
(ti) = εi. Thus χ⋃

x ∈
⋃

Vn.
Hence, by definition of Vn, we have that χ⋃

x + χC ∈ Uβ as required.
This completes the construction of the almost disjoint family A = {aα : α ∈ ω1}.

By (b) and (c) A is a Mrówka mad family. And by (a) Ak is concentrated on [ω]<ω

for each k as required. �
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4.6. Corollary. For the mad family A constructed in Theorem 4.5, the space
Cp(βΨ(A), 2) is Lindelöf.

Proof. It is sufficient to observe that the function φn : σn → {f ∈ Cp(βΨ(A), 2) :
|f−1(1)| ≤ n} defined by φn(f) equal to the continuous extension f̃ of f to βΨ(A),
is a continuous function for all n ∈ N. �

The space Cp(Ψ(A), 2) where A is the Mrówka mad family constructed in Theo-
rem 4.5, provides us, in CH, with a nice example of a Michael space (see [M1],[M2]).
Indeed,

4.7. Theorem. Let A be the Mrówka almost disjoint family constructed in The-
orem 4.5, and let X be the space Cp(Ψ(A), 2). Then we have:

(1) Xn is Lindelöf for every n ∈ N and Xω is not normal.
(2) X × ωω is not normal.

Proof. By Claim 3.1 and Theorem 3.4, X × ωω = Cp(Ψ(A), 2) × ωω and Xω ∼=
Cp(Ψ(A), 2ω) are not normal.

Furthermore, Cp(Ψ(A), 2)k ∼= Cp(Ψ(A), 2k), and

Cp(Ψ(A), 2k) =
⋃

n<ω

⋃

i∈{0,1,...,2k−1}

σi
n(A).

But, each σi
n(A) is Lindelöf (Theorem 4.5), so Cp(Ψ(A), 2)k is Lindelöf. �

We could ask about the possibility of constructing an almost disjoint family
A for which Cp(Ψ(A), 2) is σ-compact. But this is in vain; in fact, C. Paniagua
proved in [Pa] that for every uncountable almost disjoint family A, Cp(Ψ(A), 2) is
not σ-compact.

A classical problem in Cp-theory questions whether Lindelöfness of Cp(X) implies
that Cp(X) × Cp(X) is Lindelöf. We do not know the answer even for a Mrówka
space X yet.

4.8. Problem. Let A be an almost disjoint family, and assume that Cp(Ψ(A)) is
Lindelöf. Then, is Cp(Ψ(A))2 Lindelöf?

An almost disjoint family A is separable, if for each countable B ⊆ A, B can be
separated from A \ B. That is, there is X ⊆ ω such that A ⊆∗ X for each A ∈ B
and A ∩ X =∗ ∅ for each A ∈ A \ B. An almost disjoint family A is a Luzin gap
if no disjoint uncountable B, C ⊆ A can be separated in this way. If an almost
disjoint family A = {Aα : α < ω1} has the property that for each α and for each n,
{β < α : Aβ ∩ Aα ⊆ n} is finite, then A is a Luzin gap. Any such A will be called
a standard Luzin gap.

In the paper [JSS], a separable Luzin gap A such that Cp(Ψ(A)) is not normal
but has countable extent, was constructed using ♦ . In the same paper the authors
asked whether Cp(Ψ(A)) has countable extent for every separable Luzin gap. Here
we construct a standard Luzin gap using CH such that σ1(A) has uncountable
extent. We do not know if it can be made separable.
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4.9. Example. Assuming CH there is a standard Luzin gap A such that σ1(A)
has uncountable extent. Moreover, it has the property that A is not concentrated
on A⊥.

Proof. We first construct a perfect tree T ⊆ 2<ω as follows. Let X ⊆ ω consist of
all elements kn of the form

kn = (Σn
i=02

i) + n

Suppose that n ∈ ω and T ∩ 2≤kn+1 has been defined so that T ∩ 2kn+1 has exactly
2n+1 elements {sj : j < 2n+1}. For each j < 2n+1, let tj be the unique extension
of sj such that dom(tj) = kn + 1 + 2n+1, tj(kn + j + 1) = 1 and tj has value 0 at
all other new coordinates. Let T ∩ 2kn+1 = {tj : j < 2n+1} and let

T ∩ 2kn+1+1 = {t_j i : j < 2n+1, i ∈ 2}.

This completes the recursive definition of T . If f is a maximal branch through T ,
we denote by af = f−1(1). let [T ] denote the set of all such af . Note that this is a
perfect subset of 2ω. Note also that T has the following key properties

(a) For any a ∈ [T ], a \ X is infinite.
(b) For any subset Y ⊆ X, there is a ∈ [T ] such that a ∩X = Y .
(c) If a and b are distinct elements of [T ], then a ∩ b ∩ (ω \ X) is finite.

We now construct an almost disjoint family A by recursion. The point of the
construction is (a) to make A a Luzin gap, (b) to make sure that the open set
2ω \ [T ] contains all elements of A⊥, and finally, (c) to make sure that [T ] ∩ A is
uncountable. If we do this, it will follow that A will not be concentrated on A⊥,
thus completing the proof.

To do all this we fix an enumeration {yα : α ∈ ω1} of [T ]. Having defined an
almost disjoint family Aα = {ai

β : β < α, i ∈ 2} for some α < ω1, so that

(1) for each β < α, if yβ ∈ A⊥
β then a0

β ∩ yβ is infinite. Moreover, in this case,
a0

β = yβ or a0
β = yβ ∪ zβ for some other zβ ∈ [T ].

(2) for β < α, a1
β ∈ [T ].

If yα ∈ A⊥, enumerate Aα as {bn : n ∈ ω}. Construct by recursion Y ⊆ X so
that Y is almost disjoint from each bn and so that Y ∩ bn 6⊆ n. Let a ∈ [T ] be such
that a ∩ X = Y . This is possible by property (b) of T . The branch f of T that
determines a is distinct from all the branches that determine the sets in Aα, thus,
by property (c), a is almost disjoint from all elements of Aα. Let a0

α = a ∪ yα. In
the case that yα 6∈ A⊥, proceed as above, and let a0

α = a. To define a1
α repeat the

construction using Aα ∪ {a0
α} in place of Aα. This completes the construction of

A. It follows by construction that A is a standard Luzin gap. Also, by choice of
the A1

α, A∩ [T ] is uncountable. Finally, it also follows by our choice of a0
α, that no

yα 6∈ A⊥ so that A⊥ ⊆ 2ω \ [T ] as required. �
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Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autó-
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