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THE a-BOUNDIFICATION OF a

SALVADOR GARClA-FERREIRA AND ANGEL TAMARIZ-MASCARUA

(Communicated by Franklin D. Tall)

Abstract. A space X is < a-bounded if for all A C X with |^|<a, dx A

is compact. Let B(a) be the smallest < a-bounded subspace of /?(a) contain-

ing a . It is shown that the following properties are equivalent: (a) a is a sin-

gular cardinal; (b) B(a) is not locally compact; (c) B(a) is a-pseudocompact;

(d) B(a) is initially a-compact. Define B°(a) = a and B"(a) = {clB(a)A :

A C Bn-l(a), \A\ < a) for 0 < n < co . We also prove that B2(a) ± 53(a)

when co = cf(a) < a . Finally, we calculate the cardinality of B(a) and prove

that, for every singular cardinal a, \B(a)\ = \B(a)\a = \N(a)\c{^ where

N(a) = {p£ 0(a): there is A e p with |^| < a} .

0. Introduction

In [15] O'Callaghan proved the following properties of the a-boundification

B(a) of the discrete space of cardinality a (for definitions see 1.3 and 1.4).

0.1. (a) If a is a regular cardinal, then B(a) is the set of nonuniform ultrafilters

on a.

(b) a is a singular cardinal if and only if B(a) contains a uniform ultrafilter.

(c) If we assume one of the following statements:

(i) GCH,
(ii) a is a strong limit cardinal,

(iii) a is a regular cardinal,

then B(a) ^ p(a). Moreover, if (i) or (ii) holds, then \B(a)\ < 2a .

From 0.1 it follows that if a is regular, then B(a) = N(a) = B^(a) for each

0 < £ < a+ . Hence, B(a) is known when a is a regular cardinal. Thus, the

following question, due to Comfort, appears natural.

0.2. Is B2(a) 7^ B3(a) whenever a is a singular cardinal?

In this paper we are principally concerned with singular cardinals. It is shown,

in §2, that 5(a) ^ P(a)  for every cardinal a  (Corollary 2.4), and we will
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1302 S. GARCIA-FERREIRA AND A. TAMARIZ-MASCARUA

also obtain some topological properties of B(a). In §3 we answer Comfort's

question 0.2 in the affirmative when co = cf(a) < a. In these two sections

Kunen's a-good ultrafilters will play an important role. In the last section, the

cardinality of B(a) is calculated and we will prove that \B(a)\ = \B(a)\a =

|A(a)|cf(a> for every singular cardinal.

1. Preliminaries

Throughout this paper, all spaces are assumed to be completely regular and

Hausdorff. If A is a space and B C X, &x B denotes the closure of B in

X. For x £ X, JV(x) is the set of neighborhoods of x in X. £P(X) is
the set of all subsets of a set X . The Greek letters stand for ordinal numbers;

in particular, a, k , 6 denote infinite cardinal numbers; y, v, p denote

arbitrary cardinals; and 8, £, X, n denote ordinal numbers. For a cardinal

a, we let a+ stand for the smallest cardinal greater than a. For k , y cardinals

we set [K]y = {M C k : \M\ = y} and [k]<7 = {M C k : \M\ < y}.

We do not distinguish notationally between a cardinal number a and the dis-

crete space whose underlying set is that cardinal. For a space X , px stands

for the Stone-Cech compactification of X . If /: X —> Y is a continuous func-

tion, we let /: PX —> PY stand for the Stone extension of /. The remainder

of PX is X* = pX\X; in particular, a* = P(a)\a. For A C a we have that

(see [2, Chapter 2])

A = {p £ P(a) : A £ p} = clB{n]A   and   A* = A\A .

We shall use the terminology and notation of Comfort and Negrepontis [2].

The notion of a-bounded space was introduced in [7] and modified by Com-

fort as follows.

1.1. Definition. A space X is < a-bounded if for every ACX of cardinality

less than a, dx A is a compact set.

It is evident that every space is < cobounded, and if X is < a-bounded.

then X is < y-bounded for every y < a. The basic properties of < a-bounded

spaces are summarized in the following proposition (see, e.g., [7, 8]).

1.2. Proposition. Let a be a cardinal number. Then

(a) every compact space is < a-bounded;

(b) every closed subset of a < a-bounded space is < a-bounded;

(c) the product of a set of < a-bounded spaces is < a-bounded;

(d) the intersection of a set of < a-bounded spaces is < a-bounded;

(e) the continuous image of a < a-bounded space is < a-bounded.

Notice that (d) is a particular case of Lemma 2 of [8], and it is a consequence

of (b) and (c).

1.3. For a < a-bounded space Z and X c Z , we set

Bn(X, Z) = f]{Y : X C Y c Z and Y is < a-bounded}.

It follows from 1.2(d) that Bn(X, Z) is the smallest < a-bounded space con-

taining X and is contained in Z . If Z = px , then B„(X, Z) will be denoted

by Ba(X). In this case B„(X) has the following extension property: For each
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THE cr-BOUNDIFICATION OF a 1303

< a-bounded space Y and each continuous function f:X—*Y, there exists a

continuous function /: Ba(X) -> Y such that f\x = f [5, 8]. Ba(X) is called

the a-boundification of X.

1.4.   Notation. For a space A, we define

B°a(X) = X;
Bi+x(X) = lJ{cV^l : A C Bi(X)  and  |4| < a}  for each ordinal
£ < a+ ; and

*£W = [Jx<(Bi(x) if <f is a limit ordinal.

Notice that Ba(X) = \Ji<a+ B&X).

Let p £ P(a). The norm of p is \\p\\ = min{|/l| : A £ p}, and p is k-
uniform if ||/?|| > k . If p is a-uniform, then p is said to be uniform. We

set C/(a) = {p £ P(a) : \\p\\ = a}; N(a) = {p £ p(a) : \\p\\ < a}; and

WK(a) = {p £ P(a) : \\p\\ = k} (k < a). We write B(a) and B^(a) instead of

Ba(a) and B^(a), for £ < a+ , respectively. Note that N(a) = Bx(a).

2. Some topological properties of B(a)

In this section, we observe that B(a) ^ P(a) for every cardinal a (Corollary

2.4), and we prove that some topological conditions are equivalent to the singu-

larity of a (Theorem 2.10). We will first give some definitions and preliminary

results.

2.1. Definition. Let A be a space, B C X, and p £clx B .

(a) a(p, B) = min{\M\ : M c B and p£clxM},
(b) p is said to be a weak Pa-point of X if a(p, X\{p}) > a.  A weak

P-point is a weak 7^,-point.

2.2. Definition, (a) Let y be a cardinal. A function h: [y]<0J —► ^(X) is

called monotone if h(A) C h(B) for A, B £ [y]<(0 and B C A , and / is said
to be multiplicative if /z(yf U Ti) = h(A) u ft(fi) for ,4 , B € [y]<w .

(b) p £ X is a-good if for each /c < a and each monotone function
/: [k]<(0 —► y^"(p) there is a multiplicative function g: [k]<0) -^ ^(p) which

refines / (i.e., g(A) c f(A) for all /I e [k]«°) .

2.3. Proposition. Le^r X be a space.

(a) If X is < a-bounded and p is a weak Pa-point of X, then X\{p} is

< a-bounded.
(b) (Kunen) If X is a compact O-dimensional space and p £ X is a++-good,

then p is a weak Pa+-point (for a proof see [4, 4.8]).

(c) [14] There are 22"  countably incomplete uniform ultrafilters in  P(a)

which are a+-good.

As an immediate consequence of Proposition 2.3 we have:

2.4. Corollary, (a) For every limit cardinal a, there are 22" countably incom-

plete weak Pa-points in U(a).

(b) \P(a)\B(a)\ = 22" for every a. In particular, we have that B(a) ^ P(a)

for every cardinal a (see 0.1 (c)).

In the next theorem, we are going to give some topological properties of B(a)

when a is a singular cardinal. The concepts and results that follow are needed.
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1304 S. GARCIA-FERREIRA AND A. TAMARIZ-MASCARUA

2.5. Definition (Saks-Woods). Let M C P(a). A space X is said to be A7-

compact if for every function /: a -» X we have that f(p) £ X for each

p £ M.

The definition of p-compactness for a point p £ P(a) was given initially by

Bernstein [1]. For other results on spaces required to be p-compact simultane-

ously for various p, see Woods [18] and Saks [17].

In [10] the topological properties which are productive, closed hereditary,

and surjective are characterized in terms of ultrafilters as follows.

2.6. Proposition. Let P be a topological property which is productive, closed

hereditary, and surjective. A space X of cardinality a has P if and only if X

is P(a)-compact, where P(a) is the maximal P-reflection of a. In particular,

a space X is < a-bounded iff X is B(a)-compact.

2.7. Definition. Let A be a space and co < a .

(a) X is said to be a a-pseudocompact if every continuous image of X in

Ra is compact.

(b) X is initially a-compact if every open cover % of X, with \%\ < a,

has a finite subcover.

The following lemma is due to Retta [16].

2.8. Lemma. Let X be a space. Then X is a-pseudocompact if and only if

every cozero cover of X of cardinality <a has a finite subcover.

2.9. Lemma [6]. If a is singular, then every < a-bounded space is initially

a-compact.

Now we will prove the main result of this section.

2.10. Theorem. The following conditions are equivalent.

(a) a is a singular cardinal.

(b) B(a) is not locally compact.

(c) B(a) is a-pseudocompact.

(d) Every < a-bounded space is a-pseudocompact.

(e) B(a) is initially a-compact.

(f) Every < a-bounded space is initially a-compact.

Proof, (d) => (c) and (f) => (e) are trivial, and (a) => (f), (a) =>■ (d), and

(e) => (c) are direct consequences of Lemmas 2.8 and 2.9. In order to complete

the proof we will show (a) ■& (b) and (c) => (a).

(a) => (b) Suppose that a is singular and B(a) is locally compact. Then

B(a) n U(a) is a nonempty open subset of U(a). Fix an arbitrary p £ U(a).

We will show that p £ B(a). Indeed, since the type T(p) = {q £ P(a): there

is a permutation ft of a such that h(p) = q} of p is a dense subset of U(a)

(see [2] for a proof), there is a £ T(p) n B(a) n U(a). Choose a permutation /

of a such that f(q) = p . According to Proposition 2.6, we have that B(a) is

7?(a)-compact and so f(q) = p £ B(a); thus, p £ B(a). But this implies that

P(a) = B(a), a contradiction to Corollary 2.4(b).

(b) => (a) Suppose that a is a regular cardinal. From 0.1 (a) it follows that

B(a) = N(a). Since N(a) is open in P(a), we have that B(a) is locally

compact.
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THE c-BOUNDIFICATION OF a 1305

(c) => (a) If a is a regular cardinal and £P = {cl^(Q) k : k < a} , then f is a

cozero cover of N(a) = B(a) of cardinality a without a finite subcover. Now

Retta's result (Lemma 2.8) implies that B(a) is not a-pseudocompact.

3. The sets B2(a) and 7?3(a)

Our main goal here is to give an answer to Comfort's question 0.2 in the

affirmative when co = cf(a) < a (see 3.5, 3.7, and 3.8). Because of 0.1, we

will only be concerned with singular cardinals. Thus, throughout this section,

a will denote a singular cardinal.

3.1. Definition (Keisler [11]). For p £ X, let

G(p) = minjy : y is a cardinal number and p is not y+-good}.

G(p) is called the degree of goodness of p .

3.2. We point out that B2(a)\Bx(a) is dense in U(a). Indeed, let {k4 : £ <

cf(a)} be a strictly increasing sequence of cardinals converging to a (k^ / a),

and let A £ [a]a . Choose #* € WK((a)nA for each £ < cf(a). If p £ P(a) is a

complete accumulation point of {p^:£ < cf(a)} , then p £ (B2(a)\Bx(a))nA .

We will prove in 3.5 that, for each k < a, the subset of B2(a)\Bx(a) of

all ultrafilters of degree of goodness equal to k+ is dense in U(a). For our

purpose we need the following two lemmas (they are Theorems 10.5 and 10.6

of [2], respectively).

3.3. Lemma (Keisler [12]). Let co < y < k , let r be a function from k onto

y, and let e: P(y) -» P(k) be a continuous function such that Toe is the identity

function on P(y). If q £ P(y) is countably incomplete and p = e(q) £ P(k) ,

then p and q have the same degree of goodness.

Let k be a cardinal number. A family &~ of subsets of k is said to have

the uniform finite intersection property if & # 0 and | f\k<n Ak\ = k whenever

n < to and Ak £ 9~ for every k < n .

3.4. Lemma. Let co <y < k . Every family of subsets of k with the uniform

finite intersection property and of cardinality at most k is contained in 22"

distinct uniform ultrafilters each of which is countably incomplete and has degree

of goodness equal to y+ .

By an a-partition of a we mean a collection & of subsets of a such that:

(a) a = U^~; (b) |^| = a for every A £ 5F; and (c) A n B = 0 whenever A

and B are distinct elements of SF .

3.5. Theorem. For every k < a, the set

{p £ P(a) : p £ B2(a) n U(a) and G(p) = k+}

is dense in U(a).

Proof. Let A £ [a]a, {A$ : £ < k} be an a-partition of A, and {a„ : n <

cf(a)} be a strictly increasing sequence of cardinals converging to a . For every

(£, n) £ k x cf(a), pick p(£, n) £ A$ n Wa^(a). For every £ < k we choose a

complete accumulation point p% of {p(£, n) : n < cf(a)}. It is not difficult to
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1306 S. GARCIA-FERREIRA AND A. TAMARIZ-MASCARUA

see that p$£ A^n U(a) n 7i2(a) for each £ < k . Let /: k -> P(a) be defined
by f(£) = Pz for £ < k . According to Lemma 3.4, we can take a countably

incomplete ultrafilter q £_P(k) with G(q) = k+ . Then J (a) £ B2(a)nU(a)nA

and, by Lemma 3.3, G(f(q)) = k+ .

The following theorem answers question 0.2 in the affirmative when co =

cf(a) < a (see Corollary 3.8). We need the following lemma; its proof is

standard in showing that regular Lindelof spaces are normal.

3.6. Lemma. Let X be a normal space. Let E = (Jn<w En and D = \Jn<w D„

be subsets of X such that clx(En) n clx(D) = c\x(Dn) D clx(E) = 0 for every

n < co. Then there are two disjoint cozero sets S, T C X satisfying ECS and

DCT.

3.7. Theorem. Assume that cf(a) = co. For each n < co, let p„ £ U(a) with

G(pn) = k+ where k„ / a. Ifp is an accumulation point of D = {p„ : n < co},

then a(p, N(a)) = a.

Proof. Let A C N(a) be of cardinality y < a, and let An = {x £ A : k„ <

\\x\\ < k„+x} for n < co. By 2.3(b), there is N < co such that p„ $. clB(a)A

for every n > N. Hence, without loss of generality, we may suppose that

D n cLj^) A = 0. If p £ U(a), M C WK(a) with k < a, and p £ cl^(a)M,

then |A7| = a; hence, cLj(a) DnclB(a) An = 0 for all n < co. By Lemma 3.6, we

can find two disjoint cozero sets 5 and T of P(a) such that ACS, D c T.

Since a* is an F-space [2, 14.9], clp{a) D n clB{a) A = 0 .

The next corollary is an immediate consequence of 3.5 and 3.7.

3.8. Corollary. If cf(a) = co, then B3(a) - B2(a) / 0 .

4. The cardinality of B(a)

We have mentioned (0.1(c)) that |7?(a)| < 2Q when a satisfies some addi-

tional properties. In this section we improve this result by calculating \B(a)\

for every a (Theorems 4.9, 4.13, and 4.18). We will also establish the relations

among \B(a)\, |£(a)|,and |A(a)|.
The following concept is basic in this section. For other properties of ultra-

products not considered here and historical notes see [2, Chapter 12].

4.1. Definition. Let p £ P(a), and let k be a cardinal. We define the binary

relation = on k" by

f=g   if{£<a:f(£) = g(£)}£P.

It is easy to see that = is an equivalence relation on «:" . We let k" jp be the

set of =-equivalence classes. Kn jp is called the ullraproduct of k" modulo p .

The next theorem follows from Lemma 2 of [13] (see [2, 12.22]).

4.2. Theorem. Let p £ P(a) be countably incomplete with G(p) = a+ . If k

is an infinite cardinal, then |«:"//?I = k" ■

The proof of the following lemma is straightforward.
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4.3. Lemma [6]. Let co <k < a be cardinals, p £ U(k) , and {A% : £ < k} be

a partition of a. If f, g: k —> a* are functions such that f(£), g(£) £ A$ for

every £<k, then J(p) = g(p) if and only if {£<k: f(£) = g(£)} £ p .

In the following two results we calculate the cardinality of WK(a) and N(a)

that will allow us to estimate \B(a)\.

4.4. Lemma. For co < k < a we have that \WK(a)\ = aK • 22".

Proof. It is evident that 22" < \WK(a)\ < 22" -aK , so we only need to show the

inequality aK < \WK(a)\. Let {A^ : £ < k} be an a-partition of a. For each

£ < k , let {p^,r : £ < a} be a strongly discrete subset of ultrafilters contained

in WK(a) n A^. Fix q £ U(k) countably incomplete K+-good and, for each

/ £ aK , we define </>/: k -> a* by </>/(£) = P^j^) for £ <k . Let pf = 4>f(q).

Clearly, for every f £ aK , pf £ WK(a). Since {£ < k : cpj(£) = tf>j(£)} = {£ <

k : f(£) = g(£)}, and by Lemma 4.3, we have that Pf = cf>j(p) = cf>g(p) = pg if

and only if / = g. Using Theorem 4.2, we have that a* = \aK/q\ < \WK(a)\.

The next result appears in [3] without proof.

4.5. Corollary. For every a, the following equality holds:

|A(a)| = a«*.£22\

Proof. We have that N(a) = [){Wy(a) : y < a}. By virtue of 4.4, it follows

that \N(a)\ = Zy<a 22' • ay = a<a ■ Er<. 22'.

4.6. Observe that |A(a)| = a<a if a is a strong limit cardinal; otherwise,

\N(a)\ = Ey<a22y = supy<a227.

The following two lemmas are needed in order to calculate the cardinality of

B(a). For a proof of Lemma 4.7 see [9, Lemma 6.5 and exercise 6.14].

4.7. Lemma. If a is a strong limit singular original, then

a<a = Qcf(a) = 2" .

4.8. Lemma. Let a be a nonstrong limit cardinal such that, for some cardinal

0<a, Ey<„22?=22°. Then

(a) cf(|A(a)|)>a+, and

(b) |A(a)| = |N(a)\y for every y < a .

Proof. Set 6 < a such that \N(a)\ = 22" and 2e > a.

(a) cf(|A(a)|) = cf(22")>2e>a.

(b) If y is a cardinal less than a, then

|A(a)|>' = 2(2'V;' = 22" = |A(a)|.

4.9. Theorem. Let co < a. Then \B(a)\ = \N(a)\ whenever a satisfies one of

the following properties:

(a) a is a regular cardinal.

(b) a is a singular cardinal which is not a strong limit and sup,/<(, 22' = 22

for some 9 < a . In this case,  \B(a)\ = 22 .

(c) a is a singular strong limit. In this case we have \B(a)\ = 2" .
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Proof. When a is regular, the conclusion is a consequence of 0.1(a). Let a be

a singular cardinal. Suppose that |7if (a)| = |7V(a)| for every £ < n < a+ . If n

is a limit ordinal, then

\N(a)\<\B»(a)\=   \J&(a)  < £ \B*(a)\ = \n\ • |A(a)| = \N(a)\.

If n = £+ 1, then

\B"(a)\ < Y,i\Bi(<*W -2V :y<a} = £{| N(a)\y •2v:y<a}.

Hence, if a satisfies (b) (resp. (c)), then we obtain the equality \Bi(a)\ =

\N(a)\ because of Lemma 4.8 (resp. Lemma 4.7). Therefore, in these two

cases, \N(a)\ < \B(a)\ < a+ ■ \N(a)\ = \N(a)\.

Note that if a is a strong limit cardinal, then \B(a)\ = \N(a)\ = a<a .

In 4.13 we shall have |7?(a)| for those cardinals not considered in the previ-

ous theorem. We need the following definition and lemma.

4.10. Definition. Let co < k < a. A collection 2? of subsets of a is K-almost

disjoint if |G| > k for G £ 2? and |C0nC7i | < k for G0, Gx £ 2? and G0 ̂  Gx.

A proof of the following lemma can be found in [2, 12.2].

4.11. Lemma. Let k , y be two cardinal numbers with co < k and 2 < y.

Then there is a K-almost disjoint family 2? c 3°(y<K) on y<K of cardinality

yK

4.12. We will denote by L the set of cardinals that do not satisfy any properties

considered in 4.9; that is, L = {a: a is a singular nonstrong limit cardinal such

that supy<a 22' > 22" for every v < a}. Observe that (see 4.6) if a is not a

strong limit and {2r}y<a is not eventually constant (in particular, if a £ L),

then cf(a) = cf(|A(a)|).

4.13. Theorem. If a £ L, then \B(a)\ = |A(a)|cf<a> = 2K where k = 2<a.

Moreover, if co<y < cf(a), then \N(a)\ = \ N(a)\y < \B(a)\.

Proof. Let p be a cardinal less than |A(a)|. We choose y < a such that

2y > a and p < 2V . If v < a, then pv < (2V)V = 2^'v = 2V < \N(a)\;

therefore (see Theorem 19 in [9]),

(*)   for every cf(a) < v < a we obtain |A(a)|" = |A/(a)|cf(a), and
(**)   |A(a)|<cf(a> = |A(a)|.

By using inductively the equality in (*) we obtain that |7?^(a)| < |A(a)|cf(a)

for every £ < a+ . Hence,

\B(a)\ < | A(a)|cf(a> • a+ = | A(a)|cf(Q>.

We are now going to prove that |A(a)|cf(a) < \B2(a)\Bx(a)\. Let 2? = {Gf :

f £ |A(a)|cf(a)} be a cf(a)-almost disjoint family on |A(a)| of cardinality

|A/(Q)|cf(a) (see Lemma 4.11 and (**)); let Gf = {Xf^ : £ < cf(a)} be a

faithful indexing of Gf for each / £ \N(a)f^ ; and let V = {As : 8 < cf(a)}
be an a-partition of a and as / a.

Since l^nT?1^)! = |A(a)| for each 8 < cf(a), we can take B$ = {ps,^ '■ £ <

|A(a)|} C AsnBx(a) such that ||As,{|| = as for £ < cf(a) and p3^ ¥=■ Ps,r for
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THE a-BOUNDIFICATION OF a 1309

£ < £ < cf(a). For each f £ |A(a)|cf(Q>, we consider the function $$: cf(a) -»

Bl(a) defined by cj>f(£) = piJ/( for £ < cf(a). Fix q £ U(cf(a)). Then

4>f(q) £ cl^(Q) cj)f(cf(a)) C B2(a). It suffices to prove that the relation f —>

~4>f(q) from |A(a)|cf(a) to B2(a) is one-to-one. Indeed, let f,g£ |A(a)|cf(a>

such that f ^ g. It is evident that 4>f(£) = (j>g(£) iff Xf $ = Xg ̂  and so

\{£ < cf(a) : cpf(£) = J>g(£)}\ = \{£ < cf(a) : XfA = kg<i}\ < \Gf n Gg\ < cf(a).
Hence, {£ < cf(a) : tj>f(£) = 4>g(£)} <£ q. From Lemma 4.3, it follows that

<t>f(d) ¥" <Pgia) ■ Reasoning as in 3.2, we can prove that cf>f(q) £ B2(a)\Bx(a)

for each /e |A(a)|cf<a»; therefore, |A(a)|cf(Q> < \B2(a)\Bx(a)\ < \B(a)\. Thus,

we have that \B(a)\ = |A(a)|cf(a>.

It remains to show that \B(a)\ = 2K . Let 6 = supj,<Q22' = |A(a)|. Since

a £ L, k is a limit cardinal, cf(a) = cf(0) = cf(K), and 6 = sup^<K 2^ =

2<K ; therefore, \B(a)\ = 0cfW = (2<K)cfW . Because of Lemma 6.5 in [9], we

conclude that \B(a)\ = 2K .
The last assertion of Theorem 4.13 is implied from the following inequality

which is a consequence of (**):

\N(a)\y = \N(a)\ < \N(a)\cf^a)\] = |A(a)|cf(a) = \B(a)\.

We have finished the proof of Theorem 4.13.   □

The following result was already shown in [6]. Here we give an alternative

proof (see the definition of L in 4.12).

4.14. Corollary. If co < a, then

(\ cf(a)

E22?     •

y<a       )

Proof. If a is a strong limit, then (see 4.5, 4.7, and 4.9)

(\  cf(r»)

E 22j
y<a       /

If a is not a strong limit and either a is a regular cardinal or Y,y<n 22 = 22"

for some 8 < a , then

a<«. £22> = £22> = |jB(Q)| < f^jA (see 4.9).
y<a y<a \y<n        /

Finally, when a £ L, we have

(\ cf(«)

£22:'J (see 4.13).
y<n      I

The next corollary improves Theorem 3.5 in [6].

4.15. Corollary. For every singular cardinal a, we have

(#) \B(a)\ = |A(a)|cf("> = \N(a)\" = |7i(a)|cf«"» = \B(a)\".
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Proof. If a $ L, then the result follows from 4.9. Suppose that a £ L. In this

case we have cf(|A(a)|) = cf(a) < a < \N(a)\ and ycf(a) < |A(a)| for every

y < \N(a)\ = supy<a22y. Then |A(a)|Q = |A/(a)|cf(a). Now all the equalities in

(#) follow from Theorem 4.13.

4.16. Corollary. Let co<a. Then \N(a)\ = \B(a)\ if and only if a $. L.

It is possible to construct a model M of ZFC in which |A(Nm)| < 15(^)1
(see [6]). In this model, H^eL.

4.17. Corollary. Let co < a.   Then, for every  1  < £ < a+, we have that

\B<(a)\ = \B(a)\.

Proof. We have that \N(a)\ < |7^(a)| < \B(a)\. If a £ L, then \N(a)\ =
\B(a)\ (Corollary 4.16). We have proved in 4.13 that \B(a)\ = |A(a)|cf(Q) <

|7?2(a)| whenever a £ L . This completes the proof.

In the following theorem we summarize the results regarding all the possible

values of \B(a)\.

4.18. Theorem. Let co < a, k = 2<a , and 0 = supy<Q 22' .

(a) If a is a strong limit, then

(i)  \B(a)\ = a If and only if a is regular;

(ii)  \B(a)\ = 2a if and only if a is singular.

(b) If a is not a strong limit, then

(i)    \B(a)\ = 22" for some p < a  if and only if either a  is a successor

cardinal or {22'}y<Q is eventually constant;

(ii) \B(a)\ = 2K whenever a £ L;

(iii) 22" < |7?(a)| = 6 = 2<K < 2K < 22" for every p < a whenever a is a

regular limit and {22'}y<Q is not eventually constant.

Proof. We obtain (a) as a consequence of 4.6 and 4.9(c) and 1.27 in [2]. The

necessity in (b)(i) is trivial (see 4.9), and (b)(ii) is proved in 4.13. We only have

to prove (b)(i)(=^) and (b)(iii).

(b)(i)(=>) In this case, a does not belong to L because 0cf(e) > 6 > 22'

for every y < a (if a £ L, then cf(a) = cf(0) and \B(a)\ = 0cf(0); see 4.13).

Thus, \B(a)\ = \N(a)\ = 6. So, if \B(a)\ = 22" for some p < a and {22;'}7<„
is not eventually constant, then p+ = a .

(b)(iii) Since a is a regular nonstrong limit and {22/}j,<a is not eventually

constant, 22" < 6 = \B(a)\ for every p < a. It is also clear that {2y}y<n

is not eventually constant, hence, neither is {2"}P<K and so sup„</c 2" < 2K .

The inequality 2K < 22" always holds, and 6 = sup„<K 2V follows from the

properties of a.

As immediate consequences of the previous theorem we have the following

corollaries (in the first one we determine the conditions under which B(a) has

the same cardinality as p(a)).

4.19. Corollary, (a) If a £ L, then \B(a)\ = 22" if and only if 22" = 2K where
K = 2<a.

(b) If a £ L, then \B(a)\ = 22" if and only if 22" = 22" for some p < a.
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4.20. Corollary. If GCH holds, then for every infinite cardinal a we have that

\N(a)\ = \B(a)\<\P(a)\.

4.21. Corollary. 7/a is a singular cardinal, then \B(a)\ = 2^ for some cardinal
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