Sobre Abanicos $\frac{1}{3}$ -homogéneos y $\frac{1}{4}$ -homogéneos XIII Taller de continuos, hiperespacios y sistemas dinámicos

Alonso Eloy Ávila Dévora

Facultad de Ciencias Exactas UJED

27 de septiembre de 2018

Grado de homogeneidad

Sea X un espacio, denotamos por $\mathcal{H}(X)$ al grupo de homeomorfismos de X en X.

Órbita

La órbita de x en X es el conjunto

$$Orb_X(x) = \{h(x) \mid h \in \mathcal{H}(X)\}.$$

Entonces $y \in \mathrm{Orb}_X(x)$ si y solo si existe un homeomorfismo $h \colon X \to X$ tal que h(x) = y.

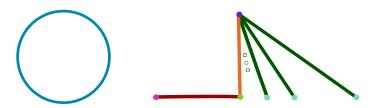
Grado de homogeneidad

Grado de homogeneidad

El grado de homogeneidad de un espacio X es la cardinalidad de la familia de las órbitas de X.

Dado $n \in \mathbb{N}$ un espacio es $\frac{1}{n}$ -homogéneo si tiene exactamente n órbitas bajo la acción del grupo de homeomorfismos $\mathcal{H}(X)$, es decir, si su grado de homogeneidad es n.

Grado de homogeneidad

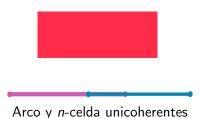


Curva cerrada simple homogénea y un espacio $\frac{1}{7}$ -homogéneo

Hereditariamente unicoherente

Unicoherencia

Sea X un continuo, se dice que X unicoherente si para cada para de subcontinuos cuya unión es X, su intersección es conexa.



Hereditariamente unicoherente

Las curvas cerradas simples no son unicoherentes

Hereditariamente unicoherente

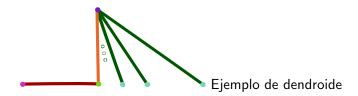
Hereditariamente unicoherente

Sea X un continuo, se dice que X hereditariamente unicoherente si cada vez que tomamos dos subcontinuos de X, su intersección es conexa.

Arco hereditariamente unicoherente

Dendroide

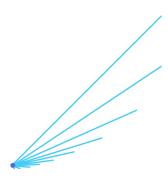
Un dendroide X es un continuo arcoconexo hereditariamente unicoherente.



Orden

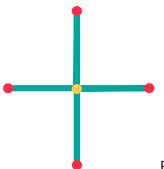
Sean x un punto en un dendroide X. Decimos que x tiene orden ω , y escribimos $\operatorname{ord}_X(x) = \omega$, si $X \setminus \{x\}$ tiene una cantidad numerable de arco componentes y estas forman una sucesión cuyos diámetros convergen a 0.

Sea $\beta \in \{1, 2, ..., \aleph_0, 2^{\aleph_0}\}$. Decimos que x tiene orden β , y escribimos $\operatorname{ord}_X(x) = \beta$, si x no tiene orden ω y existen exactamente β arcos en X tales que x es un punto extremo de cada uno estos y, además, es el único punto en común de cada dos de ellos.



Conjuntos de puntos en un dendroide X

- $R(X) = \{x \in X \mid \operatorname{ord}_X(x) > 2\}$ Es llamado el conjunto de puntos de ramificación de X.
- ② $O(X) = \{x \in X \mid \operatorname{ord}_X(x) = 2\}$ Es llamado el conjunto de puntos ordinarios de X.
- **3** $E(X) = \{x \in X \mid \operatorname{ord}_X(x) = 1\}$ Es llamado el conjunto de puntos extremos de X.



Puntos notables en un dendroide

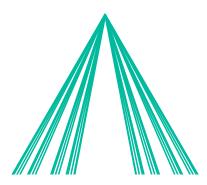
Teorema

Sean X un dendroide y $f: X \rightarrow Y$ un homeomorfismo, se cumple lo siguiente:

- ① Cada dos puntos de X están unidos por un único arco.

Abanico

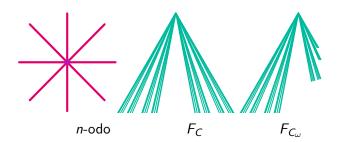
Un abanico es un dendroide con un único punto de ramificación, el cuál es llamado vértice.

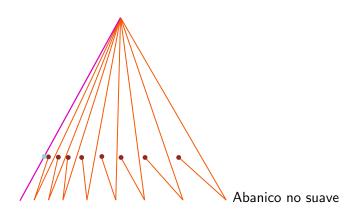


Abanico de Cantor F_C

Teorema

Un abanico es suave si y solo si es encajable en el abanico de Cantor F_C .





Teorema

En un abanico se cumple que

- \bullet E(X) es no vacío.
- O(X) es denso en X.
- $|\{ \operatorname{Orb}_X(x) \mid x \in E(X) \}| \le |\{ \operatorname{Orb}_X(x) \mid x \in O(X) \}|.$

Teorema

Los únicos abanicos localmente conexos son el *n-odo* simple y la dendrita F_{ω} .

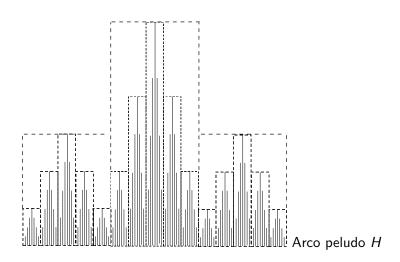
En 2017, los investigadores G. Acosta, L. Hoehn y Y. Pacheco, publicaron algunos resultados sobre abanicos $\frac{1}{3}$ -homogéneos y abanicos $\frac{1}{4}$ -homogéneos.

Teorema

Sea X un abanico suave que no es localmente conexo, tal que E(X) es una orbita de X. Entonces

- **1** X es homeomorfo a F_C si y solo si E(X) es cerrado en X.
- ② X es homeomorfo a $F_{C_{\omega}}$ si y solo si $\operatorname{Cl}_X(E(X)) = E(X) \cup \{t\}$.

En 1993 Jam M. Aarts y Lex G. Oversteegen construyeron el arco peludo H. Este es un dendroide construido como la intersección de una secuencia de subconjuntos de $[0,1]^2$ cuya base B está en $[0,1] \times \{0\}$. La cerradura de cada componente de $H \setminus B$ es un arco y el conjunto de puntos extremos E(H) es denso en H.



A. Lelek construyó en 1961 un abanico suave que está caracterizado como sigue.

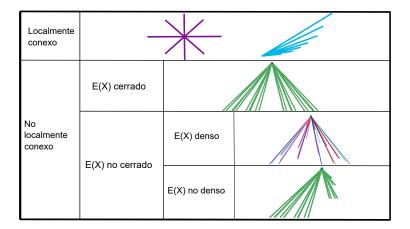
Abanico de Lelek

El abanico de Lelek es el único abanico cuyo conjunto de puntos extremos es denso.

Teorema

Un abanico suave es $\frac{1}{3}$ -homogéneo si y solo si es homeomorfo a uno de los siguientes abanicos.

- 1) Un *n-odo* simple, para alguna $n \in \mathbb{N} \setminus \{1, 2\}$.
- 2) La dendrita F_{ω} .
- 3) El abanico de Cantor F_C .
- 4) El abanico de Lelek.
- 5) El abanico $F_{C_{\omega}}$.

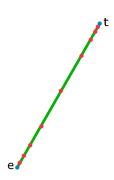


Lema

Sea X un abanico $\frac{1}{4}$ -homogéneo con vértice t. Entonces,

$$O(X) = \mathcal{O}_1 \cup \mathcal{O}_2$$

donde \mathcal{O}_1 y \mathcal{O}_2 son dos órbitas de X y para cada $e \in E(X)$, los puntos t y e pertenecen a los conjuntos $\operatorname{Cl}_X(\mathcal{O}_1 \cap (te))$ y $\operatorname{Cl}_X(\mathcal{O}_2 \cap (te))$.

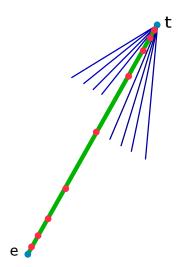


Lema

Si X es un abanico $\frac{1}{4}$ -homogéneo, entonces

$$O(X) \cap \operatorname{Cl}_X(E(X)) = \emptyset$$
 o bien

$$O(X) \subset \operatorname{Cl}_X(E(X)).$$



Teorema

No existen abanicos suaves $\frac{1}{4}$ -homogéneos.

- ACOSTA, G., HOEHN, L. y PACHECO, Y., "Homogeneity degree of fans", *Topology and its Applications*, **231**, p. 320–328, 2017.
- ILLANES, A., *Hiperespacio de Continuos*, Sociedad Matemática Mexicana, México, DF, 2004.
- LELEK, A., "On plane dendroids and their end points in the classical sense", *Fundamenta Mathematicae*, **49**, p. 301–319, 1961.
- ightharpoonup Nadler, Jr., S., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, New York, 1992.