
PROBLEMS

Unless it is otherwise specified, all spaces mentioned here are assumed to be metric.
Solutions to most of the exercises listed below can be found in the literature. In
particular, solutions to 2, 6, 7 and 15 may be found in papers by David Bellamy.

1. Suppose L is an arc and ϵ > 0. Then there is a positive integer N(L, ϵ) such that,
for each collection C of N(L, ϵ) subarcs of L whose interiors are mutually disjoint,
at least one element of C has diameter less than ϵ.

2. Let X be a continuum. Show that there is a compactification of [0,∞) with the
remainder homeomorphic to X.

3. Let Y be a compactification of [0,∞) with a continuum X as the remainder,
and let Z be a compactification of [0,∞) with a continuum P as the remainder. Is
it true that each continuous surjection f : X → P can be extended to a continuous
surjection f∗ : Y → Z?

4. Let f be a continuous surjection of a continuum X onto a continuum P . Show
that, for each a compactification Y of [0,∞) with X as the remainder, there is a
compactification Z of [0,∞) with P as the remainder such that f : X → P can be
extended to a continuous surjection f∗ : Y → Z.

5. Let S1 denote the unit circle in the complex plane C.
Let R =

{
(1 + 2−t) eit ∈ C | t ∈ [0,∞)

}
where i =

√
−1.

Set Y = S1 ∪R.
Show that any orientation preserving homeomorphism h
of S1 onto itself can be extended to a homeomorphism h∗

of Y onto itself.
Would the same be possible without the assumption that
h is orientation preserving on S1? Y = S1 ∪R

S1

R

6. Let X be a continuum with an arc component dense. Show that there is a
compactification Z of [0,∞) with X as the remainder such that there is a retraction
of Z onto X.

7. Let X be a Peano continuum. Let Z be a compactification of [0,∞) with X as
the remainder. Prove that there is a retraction of Z onto X.

All bonding maps in all inverse sequences mentioned here are continuous.

8. Let X = lim←−{Xi, fi}∞i=0 where fi : Xi+1 → Xi for each i. Let πi denote the

projection of X into Xi. Suppose A ⊂ X and x ∈ X \ cl (A). Show that there is
an integer n ≥ 0 such that πn (x) /∈ cl (πn (A)).

9. Suppose f is continuous map of a continuum X into itself. Then, by lim←−{X, f},
denoted by Xf , we understand the inverse limit of the inverse sequence {Xi, fi}∞i=0

where Xi = X and fi = f for each i. By the shift on Xf we understand the map
s : Xf → Xf defined by s((x0, x1, . . . )) = (f(x0), f(x1), . . . ). Prove that s is a
homeomorphism of Xf onto itself.

10. Suppose f is a mapping of a Peano continuum X into itself, Xf = lim←−{X, f}
and s is the shift map of Xf . Then, there is a compactification Z of the half-line
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[0,∞) with Xf as the remainder such that the shift map s extends to a homeomor-
phism of Z onto itself.
Hint. Consider Y = X∪A where A is an arc such that X∩A is one of the endpoints
of A. Define g : Y → Y so that Z = Yg = lim←−{Y, g} has the required properties.

11. Suppose X = lim←−{Xi, fi}∞i=0 where Xi = [0, 1] for each i. Let Y be a com-

pactification of [0,∞) with X as the remainder. Show that Y may be expressed as
lim←−{Yi, gi}∞i=0 where, for each i, Yi = [0, 2] and gi restricted to [0, 1] is equal to fi.

12. Let {U0, U1, . . . , Un} be a finite open cover of a normal space X. Show that
X can be covered by open sets V0, V1, . . . , Vn such that cl (Vi) ⊂ Ui for each i =
0, . . . , n.
Remark. It follows from the above that if X is connected and {U0, U1, . . . , Un} is
a chain, then V0, V1, . . . , Vn is a taut chain.

13. Suppose X is a chainable continuum. Then, for each integer i ≥ 0, there is a

2−i-chain V(i) =
(
V

(i)
0 , V

(i)
1 , . . . , V

(i)
ni

)
covering X in such way that V

(i+1)
0 ⊂ V

(i)
ni .

14. Prove that any nondegenerate arcwise connected chainable continuum is an arc.

15. Let X0 be a compactification of [0,∞) with an arbitrary remainder. Using
Problem 6 construct an inverse sequence {Xi, ri}∞i=0 such that, for each nonneg-
ative integer i, Xi+1 a compactification of [0,∞) with Xi as the remainder, and
ri : Xi+1 → Xi is a retraction. Show that the inverse limit lim←−{Xi, ri}∞i=0 is
indecomposable.

The following definition is illustrated by the figure on the
right. The figure shows an example of a function crooked
about the quadruple (a, b, u, v). The definition may be
summarized in the following way. When traveling on the
graph of the function from level a to level b, we first have
to reach level v, then return to level u, and only after that
we may reach level b.

b
v

u
a

Definition: Suppose 0 ≤ a < u < v < b ≤ 1. We say that a continuous function
f : [0, 1]→ [0, 1] is crooked about the quadruple (a, b, u, v) if each component Ca of
[0, 1] \ f−1 (v) such that a ∈ f (Ca) and each component Cb of [0, 1] \ f−1 (u) such
that b ∈ f (Cb) are disjoint.

16. Consider an inverse sequence {Xi, fi}∞i=0 where Xi = [0, 1] and fi : Xi+1 → Xi

for each i. For all integers 0 ≤ i < j let fij : Xj → Xi be defined defined by
fij = fi ◦fi+1 ◦ · · · ◦fj−1. Prove that lim←−{Xi, fi}∞i=0 is hereditarily indecomposable
if and only if for all numbers a, b, u and v such that 0 ≤ a < u < v < b ≤ 1, and for
each nonnegative integer i there is an integer j > i such that fij is crooked about
the quadruple (a, b, u, v).

17. Suppose that g0 and g1 are two maps of a continuum Y into a solenoid Σ such
that

(1) π0 ◦ g0 (y) and π0 ◦ g1 (y) are not antipodal for each y ∈ Y , and
(2) there exists y0 ∈ Y such that g0 (y0) = g1 (y0).

Show that g0 and g1 are homotopic in Σ. Would the same be true without assuming
(2)?
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ASSORTED DEFINITIONS AND THEOREMS

All spaces mentioned here are metric. A continuum is a connected compact
space. A space is separable if it contains a countable dense subset. Every compact
metric space is separable. Every separable metric space is homeomorphic to a
subset of the Hilbert cube [0, 1]

∞
.

A space X is locally connected at a point p if for every neighborhood U of p in X,
the component of p in U contains p in its interior. A space X is locally connected
if it is locally connected at each point. A Peano continuum is a continuum that is
locally connected.

An arc is a continuum homeomorphic to [0, 1]. A space X is arcwise connected
if any two of its points can be joined by an arc contained in X. X is locally
arcwise connected at its point p if for every neighborhood U of p in X, there is
a neighborhood V of p in X such that for every v ∈ V \ {p} there is an arc in
U containing both p and v. X is locally arcwise connected if it is locally arcwise
connected at each point.

Theorem (Mazurkiewicz–Moore–Menger). Every locally connected complete space
is locally arcwise connected.

Theorem (Hahn–Mazurkiewicz-Sierpiński). Suppose X is a nonempty continuum.
Then the following three conditions are equivalent.

(1) X is a continuous image of [0, 1].
(2) For every ϵ > 0, X can be expressed as the union of finitely many subcon-

tinua with diameter < ϵ.
(3) X is locally connected.

We say that Z is a compactification of the half-line [0,∞) with X as the remain-
der provided that Z and X are continua, X ⊂ Z, R = Z \ X is dense in Z and
homeomorphic to [0,∞). For brevity, we also say that Z is a compactification of
[0,∞) with the remainder X in the case where Z is a compactification of [0,∞)
with the remainder homeomorphic to X.

All bonding maps in all inverse sequences mentioned here are continuous. By
an inverse sequence we understand a sequence {Xi, fi}∞i=0 where fi : Xi+1 → Xi is
a continuous for each i = 0, 1, . . . . The mappings fi are called bonding maps, and
the spaces Xi are called factor spaces (or component spaces or coordinate spaces).
The inverse limit of {Xi, fi}∞i=0, denoted by lim←−{Xi, fi}∞i=0, is defined by

lim←−{Xi, fi}∞i=0 =

{
(x0, x1, . . . ) ∈

∞∏
i=0

Xi | fi (xi+1) = xi for all i = 0, 1, . . .

}
where the topology on lim←−{Xi, fi}∞i=0 is inherited from the product

∏∞
i=0 Xi. Let

πi denote the projection of lim←−{Xi, fi}∞i=0 into Xi.

Solenoids. Recall that S1 denote the unit circle in the complex plane. For any
positive integer n, let φn : S1 → S1 be defined by the formula φn (z) = zn. Clearly,
φn is an n-fold covering map of S1 onto itself. Let σ = (n0, n1, . . . ) be an arbitrary
sequence of positive integers. For each nonnegative integer i, let Si be a copy of
S1, and let fi : Si+1 → Si be defined by fi = φni

. Let Σ denote the inverse limit
lim←−{Si, fi}∞i=0 and let πi denote the projection of Σ to Si. We say that Σ is the
solenoid associated with the sequence σ. When σ is not specified we simply say that
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Σ is a solenoid. The dyadic solenoid is the solenoid associated with the sequence
(2, 2, 2, . . . ).

Theorem (Lebesgue’s number lemma). For each open cover of a compact space X
there exists a number λ > 0 such that every subset of X having diameter less than
λ is contained in some member of the cover. Such a number λ is called a Lebesgue
number of this cover.

Let C = {U0, U1, . . . , Un} be a finite nonempty sequence of open subsets of a
space S. We say that C is a chain in S provided that Ui ∩ Uj ̸= ∅ if and only
if |i− j| ≤ 1. Ui is called the i-th link of C. By mesh (C) we understand the
maximum diameter of its links. We say that a chain C is an ϵ-chain if mesh (C) < ϵ.
A continuum P is chainable if, for each ϵ > 0, it can be covered by an ϵ-chain.

We say that a chain C = {U0, U1, . . . , Un} is taut provided that cl (Ui)∩cl (Uj) ̸= ∅
if and only if |i− j| ≤ 1.

Suppose f : X → Y is continuous and ϵ > 0. Then f is called an ϵ-map if
diam

(
f−1 (y)

)
< ϵ for each y ∈ Y .

Theorem. Suppose X is a nonempty continuum. Then the following three condi-
tions are equivalent.

(1) X is chainable.
(2) For every ϵ > 0, there is an ϵ-map fϵ : X → [0, 1].
(3) X may be expressed as lim←−{Xi, fi}∞i=0 where, for each i, Xi = [0, 1].

A continuum is decomposable if it is not the union of two of its proper subcon-
tinua, it is indecomposable otherwise. A continuum is hereditarily indecomposable
if it does not contain a decomposable subcontinuum.

Theorem (Bing). All hereditarily indecomposable nondegenerate chainable con-
tinua are homeomorphic.

The pseudo-arc is a hereditarily indecomposable nondegenerate chainable con-
tinuum.


