Continuos débilmente unicoherentes

Mayer Y. Palacios Arenas

Universidad Industrial de Santander Escuela de Matemáticas Facultad de Ciencias

Continuos

Un continuo es un espacio métrico, compacto y conexo diferente del vacío.

Continuo unicoherente

Un continuo X es *unicoherente*, si para cualesquier par de subcontinuos A y B de X tales que $X = A \cup B$, se tiene que $A \cap B$ es conexo.

Continuos

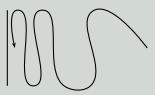
Un continuo es un espacio métrico, compacto y conexo diferente del vacío.

Continuo unicoherente

Un continuo X es *unicoherente*, si para cualesquier par de subcontinuos A y B de X tales que $X = A \cup B$, se tiene que $A \cap B$ es conexo.

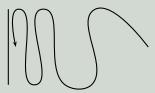
[0,1]

[0, 1]

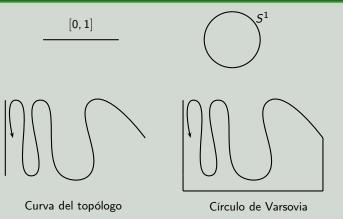


Curva del topólogo

[0, 1]



Curva del topólogo



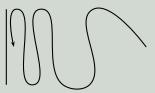
Ejemplos de continuos unicoherentes y no unicoherentes [0, 1]В Curva del topólogo Círculo de Varsovia

Continuos débilmente unicoherentes

Un continuo X es *débilmente unicoherente*, si para cualesquier par de subcontinuos A y B de X tales que $X = A \cup B$ e $\mathrm{Int}(A \cap B) \neq \emptyset$, se tiene que $A \cap B$ es conexo.

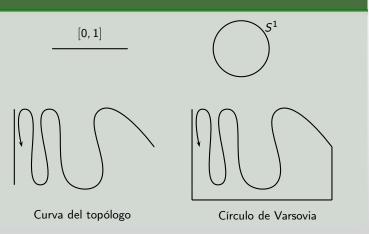
Ejemplos

[0, 1]

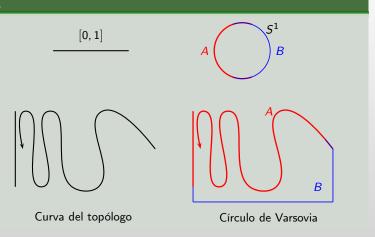


Curva del topólogo

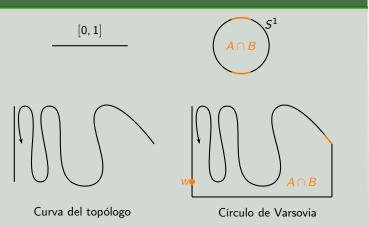
Ejemplos



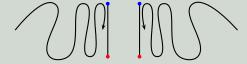
Éjemplos



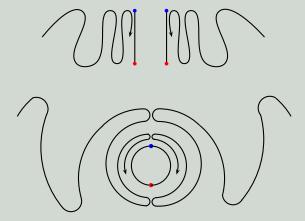
Ejemplos



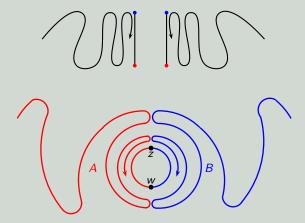
Ejemplo de un continuo débilmente unicoherente que no es unicoherente



Ejemplo de un continuo débilmente unicoherente que no es unicoherente



Ejemplo de un continuo débilmente unicoherente que no es unicoherente



Teorema [J. Camargo y H. Villanueva]

Si X es un continuo débilmente unicoherente y localmente conexo entonces X es unicoherente.

Pregunta

i Si X es débilmente unicoherente y arcoconexo, entonces X es unicoherente?

Teorema [J. Camargo y H. Villanueva]

Si X es un continuo débilmente unicoherente y localmente conexo entonces Xes unicoherente.

Pregunta

i Si X es débilmente unicoherente y arcoconexo, entonces X es unicoherente?

Pregunta

¿Si X es débilmente unicoherente y aposindético, entonces X es unicoherente?

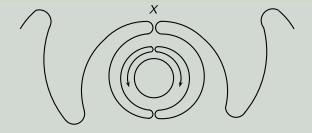
Pregunta

 ξ Si X es un continuo débilmente unicoherente y mutuamente aposindético, entonces X es unicoherente?

Pregunta

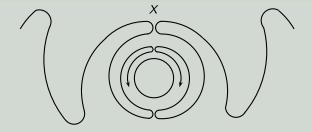
Pregunta

Observación



El continuo $X \times [0,1]$ es aposindético y no unicoherente

Observación



El continuo $X \times [0,1]$ es aposindético y no unicoherente.

Continuos irreducibles

Un continuo X se dice *irreducible* si existen dos puntos $p, q \in X$ tales que para cualquier subcontinuo K de X, donde $\{p, q\} \subset K$, se tiene que K = X.

Teorema [J. Camargo y H. Villanueva]

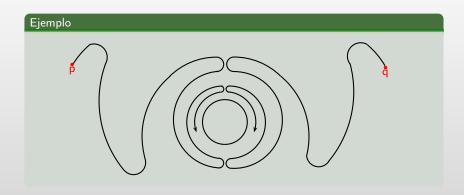
Si X es un continuo irreducible entonces X es débilmente unicoherente.

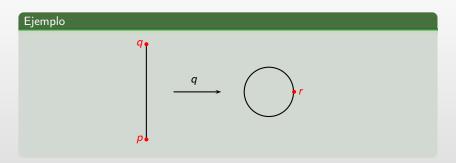
Continuos irreducibles

Un continuo X se dice *irreducible* si existen dos puntos $p, q \in X$ tales que para cualquier subcontinuo K de X, donde $\{p, q\} \subset K$, se tiene que K = X.

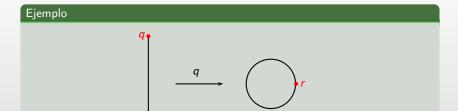
Teorema [J. Camargo y H. Villanueva]

Si X es un continuo irreducible entonces X es débilmente unicoherente.





Sea X un continuo débilmente unicoherente. ¿ Qué condición o condiciones debe satisfacer una función continua y sobreyectiva entre continuos $f: X \to Y$, para obtener que Y sea débilmente unicoherente?



Pregunta

Sea X un continuo débilmente unicoherente. ¿Qué condición o condiciones debe satisfacer una función continua y sobreyectiva entre continuos $f: X \to Y$, para obtener que Y sea débilmente unicoherente?

Definición

Sea $f: X \to Y$ una función continua y sobreyectiva, donde X y Y son continuos. Diremos que f es:

Q Casimonótona, si para cualquier subcontinuo con interior no vacío K de Y, $f^{-1}(K)$ es un continuo.

Definición

Sea $f: X \to Y$ una función continua y sobreyectiva, donde X y Y son continuos. Diremos que f es:

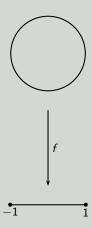
- **Q** Casimonótona, si para cualquier subcontinuo con interior no vacío K de Y, $f^{-1}(K)$ es un continuo.
- **Q** Fuertemente libremente descomponible, siempre que $Y = A \cup B$, donde A y B son subcontinuos propios de Y, entonces $f^{-1}(A)$ y $f^{-1}(B)$ son subcontinuos de X

Definición

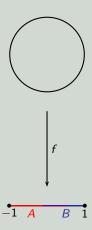
Sea $f: X \to Y$ una función continua y sobreyectiva, donde X y Y son continuos. Diremos que f es:

- Casimonótona, si para cualquier subcontinuo con interior no vacío K de Y, $f^{-1}(K)$ es un continuo.
- **Q** Fuertemente libremente descomponible, siempre que $Y = A \cup B$, donde A y B son subcontinuos propios de Y, entonces $f^{-1}(A)$ y $f^{-1}(B)$ son subcontinuos de X.

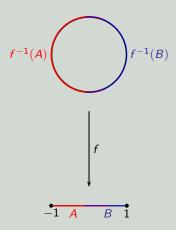
Sea $f \colon S^1 \to [-1,1]$ la función definida por f((x,y)) = x.



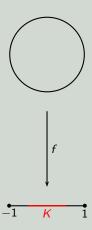
Sea $f: S^1 \to [-1,1]$ la función definida por f((x,y)) = x.



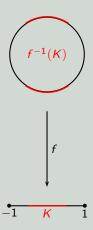
Sea $f: S^1 \to [-1, 1]$ la función definida por f((x, y)) = x.



Sea $f: S^1 \to [-1,1]$ la función definida por f((x,y)) = x.



Sea $f: S^1 \to [-1,1]$ la función definida por f((x,y)) = x.



Teorema [J. Camargo y H. Villanueva]

Sea $f: X \to Y$ un función fuertemente libremente descomponible entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Corolario

Sea $f: X \to Y$ un función casimonótona entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Sea $f: X \to Y$ un función fuertemente libremente descomponible entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Corolario

Sea $f: X \to Y$ un función casimonótona entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Corolario

Sea $f: X \to Y$ un función monótona entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Sea $f: X \to Y$ un función fuertemente libremente descomponible entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Corolario

Sea $f: X \to Y$ un función casimonótona entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Corolario

Sea $f: X \to Y$ un función monótona entre continuos. Si X es débilmente unicoherente, entonces Y es débilmente unicoherente.

Sea \mathcal{F} una familia de continuos definida:

$$\mathcal{F} = \{X \mid \forall Y \text{ y } \forall f : X \rightarrow Y \text{ F.L.D.}, \text{ se tiene que } f \text{ es casimonótona}\}.$$

Teorema [J. Camargo y H. Villanueva]

Sea $f: X \to Y$ una función fuertemente libremente descomponible. Si X es débilmente unicoherente, entonces f es casimonótona.

Corolario

Sea $f: X \to Y$ una función fuertemente libremente descomponible. Si X es unicoherente o irreducible, entonces f es casimonótona.

Sea \mathcal{F} una familia de continuos definida:

$$\mathcal{F} = \{X \mid \forall Y \text{ y } \forall f : X \rightarrow Y \text{ F.L.D.}, \text{ se tiene que } f \text{ es casimonótona}\}.$$

Teorema [J. Camargo y H. Villanueva]

Sea $f: X \to Y$ una función fuertemente libremente descomponible. Si X es débilmente unicoherente, entonces f es casimonótona.

Corolario

Sea $f: X \to Y$ una función fuertemente libremente descomponible. Si X es unicoherente o irreducible, entonces f es casimonótona.

Definición

Un abanico armónico es un espacio homeomorfo a

$$F_H = \{t(1, 1/n) \in \mathbb{R}^2 : t \in [0, 1] \text{ y } n \in \mathbb{N}\} \cup ([0, 1] \times \{0\}).$$

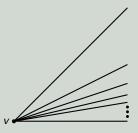
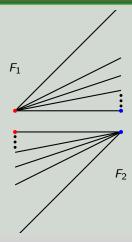


Figura: Abanico armónico



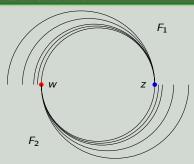


Figura: $X = F_1 \bigcup_g F_2$

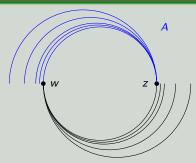


Figura: $X = F_1 \bigcup_g F_2$

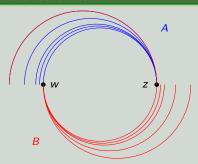


Figura: $X = F_1 \bigcup_g F_2$

Sea $X=F_1 \cup_g F_2$ el continuo definido en el ejemplo anterior. Toda función $f:X\to Y$ fuertemente libremente descomponible es casimonótona.

Pregunta

¿Qué condición o condiciones debe cumplir un continuo X para que toda función fuertemente libremente descomponible $f: X \to Y$ sea casimonótona?; es decir, para que este en \mathcal{F} ?

Sea $X=F_1\bigcup_g F_2$ el continuo definido en el ejemplo anterior. Toda función $f:X\to Y$ fuertemente libremente descomponible es casimonótona.

Pregunta

¿Qué condición o condiciones debe cumplir un continuo X para que toda función fuertemente libremente descomponible $f: X \to Y$ sea casimonótona?; es decir, para que este en \mathcal{F} ?

Bibliografía

Camargo J. and Macías S., it On freely decomposable maps, Topology Appl. 159 (2012), 891-899.

Camargo J. and Villanueva H., On weakly unicoherence on continua, preprint.

García A. and Illanes A., A survey on unicoherence and related properties, An. Inst. Mat. Univ. Nac. Autónoma México, 29 (1989), 17-67.

Gordh G.R. Jr and Hughes C.B., On freely decomposable mappings of continua, Glas. Mat. Ser. III, 14 (34) (1979), 137-146.

Gracias por su atención