Włodzimierz J. Charatonik Continuum theory workshop Villahermosa, Tabasco, Mexico October 2016

Definition. Let $f: X \to \mathbb{R}$ be a continuous function from a metric space X into reals, and let $p \in X$. We say that f is *upper semi-open* at p if for every open set U containing p there is $\varepsilon > 0$ such that $[f(p), f(p) + \varepsilon) \cap f(X) \subseteq f(U)$.

Definition. Let $f: X \to \mathbb{R}$ be a continuous function from a metric space X into reals, and let $p \in X$. We say that f is *lower semi-open* at p if for every open set U containing p there is $\varepsilon > 0$ such that $(f(p) - \varepsilon, f(p)] \cap f(X) \subseteq f(U)$.

Definition. Let $f: X \to \mathbb{R}$ be a continuous function from a metric space X into reals, and let $p \in X$. We say that f is *open* at p if it is both upper and lower semi-open at p. We say that f is *open (upper semi-open, lower semi-open, respectively)* if it is such at every point.

Problem 1. Give an example of a function $f : [0,1] \rightarrow [0,1]$ that is:

- a) open, but not a homeomorphism;
- b) upper semi-open, but not open;
- c) lower semi-open, but not open;
- d) neither upper nor lower semi-open.

Problem 2. Let $f, g:[0,1] \rightarrow [0,1]$. Which of the following statements are true? Prove or find a counterexample.

- a) If f and g are open, then $g \circ f$ is open.
- b) If f and g are upper semi-open, then $g \circ f$ is upper semi-open.
- c) If f is upper semi-open and g is open, then $g \circ f$ is upper semi-open.
- d) If f is open and g is upper semi-open, then $g \circ f$ is upper semi-open.

Problem 3. (Some hyperspace knowledge required). Prove that any Whitney map $\omega: 2^X \to [0, \omega(X)]$ is upper semi-open.

Problem 4. (Some hyperspace knowledge required). Prove that any Whitney map $\omega : C(X) \rightarrow [0, \omega(X)]$ is open.

Definition. For a metric continuum *X* and a closed subset *A* of *X*, define diam $(A) = \sup\{d(x, y) : x, y \in A\}$. Thus diam is a function from 2^X to [0, diam(X)].

Problem 5. Construct a metric on a continuum such that diam is an open fuction.

Problem 6. Construct a metric on a continuum such that diam is upper semi-open, but not open.

Problem 7. Construct a metric on a continuum such that diam is lower semi-open, but not open.

Problem 8. Construct a metric on a continuum such that diam is neither lower nor upper semiopen.

Problem 9. Prove that for every nondegenerate continuum there is a metric such that the diameter function is not upper semi-open.

Problem 10. Prove that for every nondegenerate continuum there is a metric such that the diameter function is not lower semi-open.

Problem 11. Is there a metric on the simple closed curve such that the diameter is an open function?

For the following problems I do not know answers.

Problem 12. Is it true that for any locally connected continuum *X* there is a metric on *X* for which the diameter is open?

Problem 13. Is it true that for any dendrite *X* there is a metric on *X* for which the diameter is open?