
Infinite-dimensional topology
Prerequisites and introduction

North-Holland, Amsterdam, 1988
by J. van Mill

1. Background

Lemma 1.1 (Lemma 1.1.1 in the book). Let X be a compact subspace of a space Y and
let U be a collection of open subsets of Y which covers X. Then there exists δ > 0 with
the property that every A ⊆ Y with diam(A) < δ and which moreover intersects X, is
contained in an element U ∈ U .

Proof. Suppose, to the contrary, that such δ does not exist. Then for every n ∈ N we can
find a subset An of Y such that

(1) diam(An) < 1/n,
(2) An intersects X, say xn ∈ An ∩X,
(3) An is not contained in any element of U .

Since X is compact, every sequence in X has a convergent subsequence, so without loss
of generality we may assume that x = limn→∞ xn exists and belongs to X of course. There
exists U ∈ U such that x ∈ U . Since U is open, there exists ε > 0 such that B(x, ε) ⊆ U .
In addition, there exists N ∈ N such that xm ∈ B(x, ε/2) for every m ≥ N . Now choose
m ≥ N so large that 1/m ≤ ε/2. Since the diameter of Am is less than 1/m ≤ ε/2, it now
follows easily that Am ⊆ B(x, ε) ⊆ U , which is a contradiction. �

The number δ in the above lemma is called a Lebesgue number for U .
If X and Y are spaces then C(X, Y ) denotes the set of all continuous functions from

X to Y . It will be convenient to topologize C(X, Y ) and interesting subsets of it with a
natural topology.

Let X be compact. For all f, g ∈ C(X, Y ) put

d(f, g) = sup{d(f(x), g(x)) : x ∈ X}.

Observe that d(f, g) ∈ [0,∞).

Lemma 1.2 (Lemma 1.3.1 in the book). Let X and Y be spaces with X compact. Then
d : C(X, Y )× C(X, Y )→ [0,∞) is a metric.

We shall endow C(X, Y ) with the topology induced by d. It can be shown easily that
C(X, Y ) is seperable ([1, Proposition 1.3.3]). There is a problem because the topology on
C(X, Y ) was defined with the help of the metric d. This is not really a problem, as the
next result shows.

Lemma 1.3 (Lemma 1.3.2 in the book). Let X and Y be spaces with X compact. In
addition, let d1 and d2 be admissible metrics for Y . Then the topologies on C(X, Y )
induced by d1 and d2 are the same.
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Proof. For each ε > 0, y ∈ Y and i ∈ {1, 2} we put

Bi(y, ε) = {z ∈ Y : di(y, z) < ε}.
Take f ∈ C(X, Y ) and ε > 0, arbitrarily. Since f [X] is compact, the open cover

U = {B1(f(x), 1/4ε) : x ∈ X}
has a d2-Lebesgue number, say δ (Lemma 1.1). Without loss of generality, δ < ε/4. Now
take g ∈ C(X, Y ) such that d2(f, g) < δ. For each x ∈ X we have d2(f(x), g(x)) < δ, so
there exists px ∈ X such that {f(x), g(x)} ⊆ B1(f(px), ε/4). Consequently, for each x ∈ X
we have

d1(f(x), g(x)) < ε/2,

from which it follows that d1(f, g) ≤ ε/2 < ε. We conclude that

{g ∈ C(X, Y ) : d2(f, g) < δ} ⊆ {g ∈ C(X, Y ) : d1(f, g) < ε}
and hence that the topology on C(X, Y ) induced by d2 is finer than the topology on
C(X, Y ) induced by d1. By interchanging the roles of d1 and d2 in the above argument we
obtain the desired result. �

We now turn to completeness properties of C(X, Y ).

Proposition 1.4 (Proposition 1.3.4 in the book). Let X and (Y, d) be compact spaces.
Let (fn)n be a d-Cauchy sequence in C(X, Y ). Then the function f : X → Y defined by
f(x) = limn→∞ fn(x) is continuous. Moreover, f = limn→∞ fn (in C(X, Y ; d)).

Proof. To begin with, let us establish the following

Claim 1. ∀ε > 0 ∃N ∈ N such that for every x ∈ X and m ≥ N , d(f(x), fm(x)) < ε.

Take N ∈ N such that d(fn, fm) < ε/2 for all n,m ≥ N . We claim that N is as required.
Let x ∈ X. Since d(fn(x), fm(x)) < ε/2 for all n,m ≥ N and since f(x) is equal to
limn→∞ fn(x), we obtain that for every m ≥ N , d(f(x), fm(x)) ≤ ε/2 < ε.

We conclude that the sequence (fn)n converges uniformly to f on X.
We shall now prove that f is continuous. Take x ∈ X and ε > 0 arbitrarily. By the

above, there exists N ∈ N such that d(f(x), fm(x)) < ε/3 for all m ≥ N . Since fN is
continuous at x, there exists δ > 0 such that if d(x, z) < δ then d(fN(x), fN(z)) < ε/3. Now
take z ∈ X with d(x, z) < δ. Then

d(f(x), f(z)) ≤ d(f(x), fN(x)) + d(fN(x), fN(z)) + d(fN(z), f(z))

< ε/3 + ε/3 + ε/3

= ε.

We conclude that f is continuous at x.
It remains to prove that f = limn→∞ fn (in C(X, Y )). However, this follows easily from

the claim. �

Corollary 1.5 (Corollary 1.3.5 in the book). Let X and (Y, d) be compact spaces. Then
the metric d on C(X, Y ) is complete.
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Now let X and Y be spaces and define

S (X, Y ) = {f ∈ C(X, Y ) : f is surjective}.
There are spaces X and Y for which S (X, Y ) is empty, see Exercise 1.

Proposition 1.6 (Proposition 1.3.7 in the book). Let X and Y be compact spaces. Then
S (X, Y ) is closed in C(X, Y ).

Proof. Assume that f 6∈ S (X, Y ), i.e., there exists a point y ∈ Y \ f [X]. By compactness,
ε = d(y, f [X]) > 0. It is a triviality to verify that B(f, ε) ∩S (X, Y ) = ∅. We conclude
that C(X, Y ) \S (X, Y ) is open in C(X, Y ). �

Let X and Y be spaces with X compact, and let ε > 0. A function f ∈ C(X, Y ) is
called an ε-map if for every y ∈ Y ,

diam(f−1(y)) < ε.

Put Cε(X, Y ) = {f ∈ C(X, Y ) : f is an ε-map} and Sε(X, Y ) = Cε(X, Y ) ∩ S (X, Y ),
respectively. In addition, let Gε(X, Y ) = S (X, Y ) \Sε(X, Y ).

Lemma 1.7 (Lemma 1.3.8 in the book). Let X and Y be spaces with X compact and let
ε > 0. Then Cε(X, Y ) is an open subspace of C(X, Y ). Consequently, Gε(X, Y ) is closed
in C(X, Y ).

Proof. Take f ∈ Cε(X, Y ). Since X is compact, f : X → f [X] is a closed map (Exercise
2). Consequently there exists for every y ∈ f [X] an open neighborhood Uy (in f [X]) such
that

diam(f−1(Uy)) < ε

(Exercise 3). Let δ > 0 be a Lebesgue number for the open covering {Uy : y ∈ f [X]}
of f [X] (Lemma 1.1). Let g ∈ C(X, Y ) be such that d(g, f) < δ/2. We claim that
g ∈ Cε(X, Y ). To this end, take an arbitrary y ∈ Y . Since d(f, g) < δ/2 it follows
easily that diam(fg−1(y)) < δ. Consequently there exists a point z ∈ f [X] such that
fg−1(y) ⊆ Uz which implies that diam(f−1fg−1(y)) < ε. Since g−1(y) ⊆ f−1fg−1(y), we
conclude that diam(g−1(y)) < ε, i.e., g is an ε-map. �

Let X and Y be spaces and let H (X, Y ) denote the set of all homeomorphisms from X
onto Y considered as a subspace of C(X, Y ). If X = Y then for H (X,X) we shall simply
write H (X). As usual, H (X) is called the autohomeomorphism group of X.

Lemma 1.8 (Lemma 1.3.9 in the book). Let X and Y be compact spaces. Then H (X, Y ) =⋂∞
n=1 S1/n

(X, Y ). As a consequence, H (X, Y ) is a Gδ-subset of S (X, Y ) and hence of

C(X, Y ).

Proof. That H (X, Y ) ⊆
⋂∞
n=1 S1/n

(X, Y ) is a triviality. Pick f ∈
⋂

S1/n
(X, Y ). Then

f is a 1/n-map for every n, hence f is one-to-one. Since f is onto, the compactness of X
implies that f is a homeomorphism (Exercise 4). �

Let X be a compact space. The above lemma implies that H (X) is a Gδ-subset of
C(X,X).
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Exercises

(1) Give an example of two compact spaces X and Y such that S (X, Y ) = ∅.
(2) Let X and Y be compact spaces and let f : X → Y be continuous. Prove that f is

a closed map, i.e., that f [A] is closed in Y for every closed subset A of X.
(3) Let f : X → Y be a closed map, let A ⊆ Y and let U be an open neighborhood

of f−1[A] in X. Prove that there is an open neighborhood V of A in Y such that
f−1[V ] ⊆ U .

(4) Let X be compact and let f : X → Y be one-to-one. Prove that if f [X] is dense in
Y then f is a homeomorphism.

(5) Let X be a compact space. Prove that the function ξ : H (X)×H (X)→H (X)
defined by ξ(f, g) = f ◦ g−1 is continuous (i.e., H (X) is a topological group).

(6) Prove that the function f : I → I defined by

f(x) =

 2x (0 ≤ x ≤ 1/4),
1/2 (1/4 ≤ x ≤ 3/4),
2x− 1 (3/4 ≤ x ≤ 1).

belongs to the closure of H (I) in C(I, I).
(7) Prove that H (I) has exactly two components.
(8) Let X, Y and Z be compact spaces, let f ∈ C(Z,X) and let g, h ∈ C(X, Y ).

Prove that d(g ◦ f, h ◦ f) ≤ d(g, h). In addition, prove that if f is surjective then
d(g ◦ f, h ◦ f) = d(g, h).
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