Infinite-dimensional topology

Prerequisites and introduction North-Holland, Amsterdam, 1988 by J. van Mill

1. BACKGROUND

Lemma 1.1 (Lemma 1.1.1 in the book). Let X be a compact subspace of a space Y and let \mathscr{U} be a collection of open subsets of Y which covers X. Then there exists $\delta > 0$ with the property that every $A \subseteq Y$ with diam $(A) < \delta$ and which moreover intersects X, is contained in an element $U \in \mathscr{U}$.

Proof. Suppose, to the contrary, that such δ does not exist. Then for every $n \in \mathbb{N}$ we can find a subset A_n of Y such that

- (1) diam $(A_n) < 1/_n$,
- (2) A_n intersects X, say $x_n \in A_n \cap X$,
- (3) A_n is not contained in any element of \mathscr{U} .

Since X is compact, every sequence in X has a convergent subsequence, so without loss of generality we may assume that $x = \lim_{n\to\infty} x_n$ exists and belongs to X of course. There exists $U \in \mathscr{U}$ such that $x \in U$. Since U is open, there exists $\varepsilon > 0$ such that $B(x,\varepsilon) \subseteq U$. In addition, there exists $N \in \mathbb{N}$ such that $x_m \in B(x, \varepsilon/2)$ for every $m \ge N$. Now choose $m \ge N$ so large that $1/m \le \varepsilon/2$. Since the diameter of A_m is less than $1/m \le \varepsilon/2$, it now follows easily that $A_m \subseteq B(x,\varepsilon) \subseteq U$, which is a contradiction.

The number δ in the above lemma is called a *Lebesgue number* for \mathscr{U} .

If X and Y are spaces then C(X, Y) denotes the set of all continuous functions from X to Y. It will be convenient to topologize C(X, Y) and interesting subsets of it with a natural topology.

Let X be compact. For all $f, g \in C(X, Y)$ put

$$d(f,g) = \sup\{d(f(x),g(x)) : x \in X\}.$$

Observe that $d(f,g) \in [0,\infty)$.

Lemma 1.2 (Lemma 1.3.1 in the book). Let X and Y be spaces with X compact. Then $d: C(X,Y) \times C(X,Y) \rightarrow [0,\infty)$ is a metric.

We shall endow C(X, Y) with the topology induced by d. It can be shown easily that C(X, Y) is separable ([1, Proposition 1.3.3]). There is a problem because the topology on C(X, Y) was defined with the help of the metric d. This is not really a problem, as the next result shows.

Lemma 1.3 (Lemma 1.3.2 in the book). Let X and Y be spaces with X compact. In addition, let d_1 and d_2 be admissible metrics for Y. Then the topologies on C(X,Y) induced by d_1 and d_2 are the same.

Proof. For each $\varepsilon > 0, y \in Y$ and $i \in \{1, 2\}$ we put

$$B_i(y,\varepsilon) = \{ z \in Y : d_i(y,z) < \varepsilon \}.$$

Take $f \in C(X, Y)$ and $\varepsilon > 0$, arbitrarily. Since f[X] is compact, the open cover

$$\mathscr{U} = \{ B_1(f(x), \frac{1}{4}\varepsilon) : x \in X \}$$

has a d_2 -Lebesgue number, say δ (Lemma 1.1). Without loss of generality, $\delta < \varepsilon/_4$. Now take $g \in C(X, Y)$ such that $d_2(f, g) < \delta$. For each $x \in X$ we have $d_2(f(x), g(x)) < \delta$, so there exists $p_x \in X$ such that $\{f(x), g(x)\} \subseteq B_1(f(p_x), \varepsilon/_4)$. Consequently, for each $x \in X$ we have

$$d_1(f(x), g(x)) < \varepsilon/_2,$$

from which it follows that $d_1(f,g) \leq \varepsilon/2 < \varepsilon$. We conclude that

$$\{g \in C(X,Y) : d_2(f,g) < \delta\} \subseteq \{g \in C(X,Y) : d_1(f,g) < \varepsilon\}$$

and hence that the topology on C(X, Y) induced by d_2 is finer than the topology on C(X, Y) induced by d_1 . By interchanging the roles of d_1 and d_2 in the above argument we obtain the desired result.

We now turn to completeness properties of C(X, Y).

Proposition 1.4 (Proposition 1.3.4 in the book). Let X and (Y,d) be compact spaces. Let $(f_n)_n$ be a d-Cauchy sequence in C(X,Y). Then the function $f: X \to Y$ defined by $f(x) = \lim_{n\to\infty} f_n(x)$ is continuous. Moreover, $f = \lim_{n\to\infty} f_n$ (in C(X,Y;d)).

Proof. To begin with, let us establish the following

Claim 1. $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that for every $x \in X$ and $m \geq N$, $d(f(x), f_m(x)) < \varepsilon$.

Take $N \in \mathbb{N}$ such that $d(f_n, f_m) < \varepsilon_2$ for all $n, m \ge N$. We claim that N is as required. Let $x \in X$. Since $d(f_n(x), f_m(x)) < \varepsilon_2$ for all $n, m \ge N$ and since f(x) is equal to $\lim_{n\to\infty} f_n(x)$, we obtain that for every $m \ge N$, $d(f(x), f_m(x)) \le \varepsilon_2 < \varepsilon$.

We conclude that the sequence $(f_n)_n$ converges uniformly to f on X.

We shall now prove that f is continuous. Take $x \in X$ and $\varepsilon > 0$ arbitrarily. By the above, there exists $N \in \mathbb{N}$ such that $d(f(x), f_m(x)) < \varepsilon_3$ for all $m \ge N$. Since f_N is continuous at x, there exists $\delta > 0$ such that if $d(x, z) < \delta$ then $d(f_N(x), f_N(z)) < \varepsilon_3$. Now take $z \in X$ with $d(x, z) < \delta$. Then

$$d(f(x), f(z)) \leq d(f(x), f_N(x)) + d(f_N(x), f_N(z)) + d(f_N(z), f(z))$$

$$< \varepsilon_3 + \varepsilon_3 + \varepsilon_3$$

$$= \varepsilon.$$

We conclude that f is continuous at x.

It remains to prove that $f = \lim_{n \to \infty} f_n$ (in C(X, Y)). However, this follows easily from the claim.

Corollary 1.5 (Corollary 1.3.5 in the book). Let X and (Y,d) be compact spaces. Then the metric d on C(X,Y) is complete. Now let X and Y be spaces and define

 $\mathscr{S}(X,Y) = \{ f \in C(X,Y) : f \text{ is surjective} \}.$

There are spaces X and Y for which $\mathscr{S}(X,Y)$ is empty, see Exercise 1.

Proposition 1.6 (Proposition 1.3.7 in the book). Let X and Y be compact spaces. Then $\mathscr{S}(X,Y)$ is closed in C(X,Y).

Proof. Assume that $f \notin \mathscr{S}(X,Y)$, i.e., there exists a point $y \in Y \setminus f[X]$. By compactness, $\varepsilon = d(y, f[X]) > 0$. It is a triviality to verify that $B(f, \varepsilon) \cap \mathscr{S}(X,Y) = \emptyset$. We conclude that $C(X,Y) \setminus \mathscr{S}(X,Y)$ is open in C(X,Y).

Let X and Y be spaces with X compact, and let $\varepsilon > 0$. A function $f \in C(X, Y)$ is called an ε -map if for every $y \in Y$,

$$\operatorname{diam}(f^{-1}(y)) < \varepsilon.$$

Put $C_{\varepsilon}(X,Y) = \{f \in C(X,Y) : f \text{ is an } \varepsilon\text{-map}\}$ and $\mathscr{S}_{\varepsilon}(X,Y) = C_{\varepsilon}(X,Y) \cap \mathscr{S}(X,Y)$, respectively. In addition, let $\mathscr{G}_{\varepsilon}(X,Y) = \mathscr{S}(X,Y) \setminus \mathscr{S}_{\varepsilon}(X,Y)$.

Lemma 1.7 (Lemma 1.3.8 in the book). Let X and Y be spaces with X compact and let $\varepsilon > 0$. Then $C_{\varepsilon}(X,Y)$ is an open subspace of C(X,Y). Consequently, $\mathscr{G}_{\varepsilon}(X,Y)$ is closed in C(X,Y).

Proof. Take $f \in C_{\varepsilon}(X, Y)$. Since X is compact, $f: X \to f[X]$ is a closed map (Exercise 2). Consequently there exists for every $y \in f[X]$ an open neighborhood U_y (in f[X]) such that

diam
$$(f^{-1}(U_y)) < \varepsilon$$

(Exercise 3). Let $\delta > 0$ be a Lebesgue number for the open covering $\{U_y : y \in f[X]\}$ of f[X] (Lemma 1.1). Let $g \in C(X, Y)$ be such that $d(g, f) < \delta/_2$. We claim that $g \in C_{\varepsilon}(X, Y)$. To this end, take an arbitrary $y \in Y$. Since $d(f, g) < \delta/_2$ it follows easily that diam $(fg^{-1}(y)) < \delta$. Consequently there exists a point $z \in f[X]$ such that $fg^{-1}(y) \subseteq U_z$ which implies that diam $(f^{-1}fg^{-1}(y)) < \varepsilon$. Since $g^{-1}(y) \subseteq f^{-1}fg^{-1}(y)$, we conclude that diam $(g^{-1}(y)) < \varepsilon$, i.e., g is an ε -map.

Let X and Y be spaces and let $\mathscr{H}(X, Y)$ denote the set of all homeomorphisms from X onto Y considered as a subspace of C(X, Y). If X = Y then for $\mathscr{H}(X, X)$ we shall simply write $\mathscr{H}(X)$. As usual, $\mathscr{H}(X)$ is called the autohomeomorphism group of X.

Lemma 1.8 (Lemma 1.3.9 in the book). Let X and Y be compact spaces. Then $\mathscr{H}(X,Y) = \bigcap_{n=1}^{\infty} \mathscr{S}_{1_{n}}(X,Y)$. As a consequence, $\mathscr{H}(X,Y)$ is a G_{δ} -subset of $\mathscr{S}(X,Y)$ and hence of C(X,Y).

Proof. That $\mathscr{H}(X,Y) \subseteq \bigcap_{n=1}^{\infty} \mathscr{S}_{1_{n}}(X,Y)$ is a triviality. Pick $f \in \bigcap \mathscr{S}_{1_{n}}(X,Y)$. Then f is a 1_{n} -map for every n, hence f is one-to-one. Since f is onto, the compactness of X implies that f is a homeomorphism (Exercise 4).

Let X be a compact space. The above lemma implies that $\mathscr{H}(X)$ is a G_{δ} -subset of C(X, X).

EXERCISES

- (1) Give an example of two compact spaces X and Y such that $\mathscr{S}(X,Y) = \emptyset$.
- (2) Let X and Y be compact spaces and let $f: X \to Y$ be continuous. Prove that f is a *closed* map, i.e., that f[A] is closed in Y for every closed subset A of X.
- (3) Let $f: X \to Y$ be a closed map, let $A \subseteq Y$ and let U be an open neighborhood of $f^{-1}[A]$ in X. Prove that there is an open neighborhood V of A in Y such that $f^{-1}[V] \subseteq U$.
- (4) Let X be compact and let $f: X \to Y$ be one-to-one. Prove that if f[X] is dense in Y then f is a homeomorphism.
- (5) Let X be a compact space. Prove that the function $\xi \colon \mathscr{H}(X) \times \mathscr{H}(X) \to \mathscr{H}(X)$ defined by $\xi(f,g) = f \circ g^{-1}$ is continuous (i.e., $\mathscr{H}(X)$ is a topological group).
- (6) Prove that the function $f: I \to I$ defined by

$$f(x) = \begin{cases} 2x & (0 \le x \le \frac{1}{4}), \\ \frac{1}{2} & (\frac{1}{4} \le x \le \frac{3}{4}), \\ 2x - 1 & (\frac{3}{4} \le x \le 1). \end{cases}$$

belongs to the closure of $\mathscr{H}(I)$ in C(I, I).

- (7) Prove that $\mathscr{H}(I)$ has exactly two components.
- (8) Let X, Y and Z be compact spaces, let $f \in C(Z, X)$ and let $g, h \in C(X, Y)$. Prove that $d(g \circ f, h \circ f) \leq d(g, h)$. In addition, prove that if f is surjective then $d(g \circ f, h \circ f) = d(g, h)$.

References

 J. van Mill, Infinite-dimensional topology: prerequisites and introduction, North-Holland Publishing Co., Amsterdam, 1989.