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1. BACKGROUND

Lemma 1.1 (Lemma 1.1.1 in the book). Let X be a compact subspace of a space Y and
let % be a collection of open subsets of Y which covers X. Then there exists 6 > 0 with
the property that every A C Y with diam(A) < § and which moreover intersects X, is
contained in an element U € U .

Proof. Suppose, to the contrary, that such ¢ does not exist. Then for every n € N we can
find a subset A,, of Y such that

(1) diam(A,) < 1,
(2) A, intersects X, say =, € A, N X,
(3) A, is not contained in any element of % .

Since X is compact, every sequence in X has a convergent subsequence, so without loss
of generality we may assume that = = lim,,_, ., x,, exists and belongs to X of course. There
exists U € % such that x € U. Since U is open, there exists ¢ > 0 such that B(z,e) C U.
In addition, there exists N € N such that z,, € B(z, ¢,) for every m > N. Now choose
m > N so large that 1/, < ¢,. Since the diameter of A,, is less than 1/, < ¢/, it now
follows easily that A,, C B(x,e) C U, which is a contradiction. O

The number § in the above lemma is called a Lebesque number for % .

If X and Y are spaces then C(X,Y’) denotes the set of all continuous functions from
X to Y. It will be convenient to topologize C'(X,Y) and interesting subsets of it with a
natural topology.

Let X be compact. For all f,g € C(X,Y) put

d(f,g) = sup{d(f(z),g(x)) : ® € X}.
Observe that d(f, g) € [0, 0).

Lemma 1.2 (Lemma 1.3.1 in the book). Let X and Y be spaces with X compact. Then
d: C(X,Y) x C(X,Y) = [0,00) is a metric.

We shall endow C(X,Y’) with the topology induced by d. It can be shown easily that
C(X,Y) is seperable ([1, Proposition 1.3.3]). There is a problem because the topology on
C(X,Y) was defined with the help of the metric d. This is not really a problem, as the
next result shows.

Lemma 1.3 (Lemma 1.3.2 in the book). Let X and Y be spaces with X compact. In
addition, let di and dy be admissible metrics for Y. Then the topologies on C(X,Y)
induced by dy and dy are the same.
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Proof. For each ¢ > 0,y € Y and i € {1,2} we put
Bi(y,e) ={z €Y : di(y, 2) <e}.
Take f € C(X,Y) and € > 0, arbitrarily. Since f[X] is compact, the open cover

U ={Bi(f(x), Yae) : v € X}
has a dy-Lebesgue number, say § (Lemma 1.1). Without loss of generality, 0 < ¢/,. Now
take g € C(X,Y) such that dy(f,g) < d. For each x € X we have dy(f(z),g(z)) < 0, so
there exists p, € X such that {f(x),g(z)} C Bi(f(pz), ¢/4). Consequently, for each x € X
we have
di(f(x), 9(x)) < %,
from which it follows that d;(f, g) < ¢, < e. We conclude that

{9€ C(X,Y) 1 da(f 9) <0} C{g € C(X)Y) :di(f,9) <&}
and hence that the topology on C(X,Y) induced by dy is finer than the topology on

C(X,Y) induced by d;. By interchanging the roles of d; and ds in the above argument we
obtain the desired result. U

We now turn to completeness properties of C'(X,Y).

Proposition 1.4 (Proposition 1.3.4 in the book). Let X and (Y,d) be compact spaces.
Let (fn)n be a d-Cauchy sequence in C(X,Y). Then the function f: X — Y defined by
f(z) = limy, o0 fu(z) is continuous. Moreover, f =1lim, o f, (in C(X,Y;d)).

Proof. To begin with, let us establish the following
Claim 1. Ve > 03N € N such that for every 2 € X and m > N, d(f(x), f(x)) < €.

Take N € N such that d(f,, fn) < ¢ for all n,m > N. We claim that N is as required.
Let = € X. Since d(f.(x), fm(z)) < ¢4 for all n,m > N and since f(z) is equal to
limy,, 00 fn(z), we obtain that for every m > N, d(f(z), fm(z)) < ¢ < €.

We conclude that the sequence (f,), converges uniformly to f on X.

We shall now prove that f is continuous. Take x € X and € > 0 arbitrarily. By the
above, there exists N € N such that d(f(z), fin(z)) < ¢/ for all m > N. Since fy is
continuous at z, there exists 6 > 0 such that if d(z, z) < 0 then d(fn(z), fn(2)) < ¢5. Now
take z € X with d(z,z) < 6. Then

d(f(x), f(2)) < d(f(z), fn(@)) +d(fn(2), fn(2)) +d(fn(2), f(2))
< s+t
= €.

We conclude that f is continuous at .

It remains to prove that f = lim, , f, (in C(X,Y)). However, this follows easily from
the claim. 0

Corollary 1.5 (Corollary 1.3.5 in the book). Let X and (Y,d) be compact spaces. Then
the metric d on C(X,Y) is complete.



Now let X and Y be spaces and define
L(X,Y)={f e C(X,Y): f is surjective}.
There are spaces X and Y for which .#(X,Y) is empty, see Exercise 1.

Proposition 1.6 (Proposition 1.3.7 in the book). Let X and Y be compact spaces. Then
L (X,Y) is closed in C(X,Y).

Proof. Assume that f ¢ . (X,Y), i.e., there exists a point y € Y\ f[X]. By compactness,
e =d(y, f[X]) > 0. It is a triviality to verify that B(f,e) N .(X,Y) = 0. We conclude
that C'(X,Y) \ Z(X,Y) is open in C(X,Y). O

Let X and Y be spaces with X compact, and let ¢ > 0. A function f € C(X,Y) is
called an e-map if for every y € Y,

diam(f~'(y)) < e.

Put C.(X,Y) = {f € C(X,Y) : fisane-map} and .7 (X,Y) = C.(X,Y) N FL(X,Y),
respectively. In addition, let 4.(X,Y) = L (X,Y) \ Z(X,Y).

Lemma 1.7 (Lemma 1.3.8 in the book). Let X and Y be spaces with X compact and let
e > 0. Then C.(X,Y) is an open subspace of C(X,Y). Consequently, 4.(X,Y) is closed
in C(X,Y).

Proof. Take f € C.(X,Y). Since X is compact, f: X — f[X] is a closed map (Exercise
2). Consequently there exists for every y € f[X] an open neighborhood U, (in f[X]) such
that
diam(f~*(U,)) < ¢

(Exercise 3). Let § > 0 be a Lebesgue number for the open covering {U, : y € f[X]}
of f[X] (Lemma 1.1). Let ¢ € C(X,Y) be such that d(g, f) < 9. We claim that
g € C.(X,Y). To this end, take an arbitrary y € Y. Since d(f,g) < 9, it follows
easily that diam(fg='(y)) < §. Consequently there exists a point z € f[X] such that
fg~Y(y) C U, which implies that diam(f~'fg~'(y)) < e. Since ¢7'(y) C f~1fg7 (y), we
conclude that diam(g~'(y)) < ¢, i.e., g is an e-map. O

Let X and Y be spaces and let 7 (X,Y") denote the set of all homeomorphisms from X

onto Y considered as a subspace of C(X,Y). If X =Y then for (X, X) we shall simply
write 7 (X). As usual, (X)) is called the autohomeomorphism group of X.

Lemma 1.8 (Lemma 1.3.9 in the book). Let X andY be compact spaces. Then 7 (X,Y) =
N2, yl/n(X’ Y). As a consequence, 7(X,Y) is a Gs-subset of . (X,Y) and hence of
C(X,Y).

Proof. That J#(X,Y) € ;2,7 (X,Y) is a triviality. Pick f € (1., (X,Y). Then
fis a 1, -map for every n, hence f is one-to-one. Since f is onto, the compactness of X
implies that f is a homeomorphism (Exercise 4). O

Let X be a compact space. The above lemma implies that J#(X) is a Gs-subset of
C(X, X).



EXERCISES

(1) Give an example of two compact spaces X and Y such that . (X,Y") = ().

(2) Let X and Y be compact spaces and let f: X — Y be continuous. Prove that f is
a closed map, i.e., that f[A] is closed in Y for every closed subset A of X.

(3) Let f: X — Y be a closed map, let A C Y and let U be an open neighborhood
of f7!'[A] in X. Prove that there is an open neighborhood V of A in Y such that
v Ccu.

(4) Let X be compact and let f: X — Y be one-to-one. Prove that if f[X] is dense in
Y then f is a homeomorphism.

(5) Let X be a compact space. Prove that the function £: (X)) x (X)) — (X)
defined by £(f,g) = f o g ! is continuous (i.e., (X)) is a topological group).

(6) Prove that the function f: I — I defined by

2z (0 <z < ),
fle)y=9 " (Vy <z <3y,
20—-1 (Bh<a <)

belongs to the closure of 7 (I) in C(I,I).

(7) Prove that #(I) has exactly two components.

(8) Let X, Y and Z be compact spaces, let f € C(Z,X) and let g,h € C(X,Y).
Prove that d(go f,ho f) < d(g,h). In addition, prove that if f is surjective then

d(go f,ho f)=d(g,h).
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