
EXERCISES

Assume all spaces are compact metric spaces (compacta). Denote the closed subsets of a

spaceX by 2X and the connected elements of 2X by C(X). A function f : X → 2Y is said to

be upper semi-continuous at the point x of X provided if V is an open set in Y containing

f(x) then there is an open set U in X containing x such that if t ∈ U then f(t) ⊆ V ;

f is upper semi-continuous provided it is upper semi-continuous at each point of X. If

f : X → 2Y is an upper semi-continuous function, let G(f) = {(x, y) ∈ X×Y | y ∈ f(x)};
G(f) is called the graph of f . If f : X → 2Y is upper semi-continuous and H ⊆ X, then

f(H) denotes {y ∈ Y | there is a point x ∈ X such that y ∈ f(x)}; we say that f is

surjective if f(X) = Y . If f : X → 2Y and g : Y → 2Z are upper semi-continuous, by g ◦ f
we mean the function from X into 2Z given by g ◦f(x) = z provided there is a point y ∈ Y

such that y ∈ f(x) and z ∈ g(y).

If X = X1, X2, X3, . . . is a sequence of compacta and fi : Xi+1 → 2Xi is an upper

semi-continuous function for each positive integer i, by the inverse limit of the pair {X,f}
of sequences is meant {x ∈

�
i>0Xi | xi ∈ fi(xi+1) for each positive integer i}; we

denote this inverse limit by lim←−f . If A is a set of positive integers, we denote by pA the

projection of
�

i>0Xi into
�

i∈AXi where pA(x) = y if and only if yi = xi for each i ∈ A;

if A ⊆ {1, 2, . . . , n}, we also use pA to denote the projection of
�n

i=1Xi onto
�

AXi. If

A = {n}, we denote pA by pn. We use πA to denote pA| lim←−f .

The first few exercises should be familiar to anyone who has looked at inverse limits with

set-valued functions in the past. If you are studying inverse limits with set-valued functions

for the first time, you should verify some of this background material most of which can be

found in the book on inverse limits with Mahavier or my Springer Brief. Later exercises

contain material not found in those sources.

Exercise 1. Suppose X and Y are compacta and M ⊆ X × Y such that p1(M) = X.
Then, M is closed if and only if there is an upper semi-continuous function f : X → 2Y

such that M = G(f).

Exercise 2. Suppose X and Y are continua and f : X → C(Y ) is upper semi-continuous.
Then, G(f) is a continuum.

Suppose X is a sequence of compacta and fi : Xi+1 → 2Xi is upper semi-continuous for

each positive integer i. If n is a positive integer, let Gn = {x ∈
�

i>0Xi | xi ∈ fi(xi+1)

for 1 ≤ i ≤ n}. We denote the similarly defined subset of the finite product
�n+1

i=1 by G
�
n

or often by G
�(f1, f2, . . . , fn).
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Exercise 3. Suppose X is a sequence of compacta, fi : Xi+1 → 2Xi is upper semi-
continuous for each positive integer i, and n is a positive integer. Then, Gn is closed
and Gn+1 ⊆ Gn. Moreover, lim←−f =

�
i>0Gi so lim←−f is a nonempty compactum.

Exercise 4. Suppose X is a sequence of continua, fi : Xi+1 → C(Xi) is upper semi-
continuous for each positive integer i, and n is a positive integer. Then, Gn is connected.
Thus, lim←−f is a continuum.

One of the best ways to begin to understand inverse limits is to study examples.

Exercise 5. Following this list of exercises is a list of set-valued functions on the interval
[0, 1]. Choose some of those functions and prove that their inverse limits have the stated
properties.

Exercise 6. Suppose X and Y are continua, f : X → C(Y ) is upper semi-continuous, and
H is a connected subset of X. Then, {(x, y) ∈ G(f) | x ∈ H} is connected; thus, f(H) is
connected.

Exercise 7. If f : X → 2Y and g : Y → 2Z are upper semi-continuous, then g ◦ f is upper
semi-continuous.

Exercise 8. Suppose f : X → C(Y ) and g : Y → C(Z) are upper semi-continuous. Then,
g ◦ f is an upper semi-continuous function from X into C(Z).

Exercise 9. Suppose X is a sequence of compacta, n is a positive integer, and H is a
closed subset of Πn+1 where Πj =

�j
i=1Xi. If pn+1(H) = Xn+1 then there is an upper

semi-continuous function F : Xn+1 → 2Πn such that H is homeomorphic to G(F−1).

Exercise 10. Suppose X is a sequence of continua and fi : Xi+1 → C(Xi) is a surjective
upper semi-continuous function for each positive integer i. If n is a positive integer and
F : Xn+1 → 2Πn is the upper semi-continuous function such that G(F−1) is homeomorphic
to G

�(f1, f2, . . . , fn), then F is continuum-valued, i.e., F : Xn+1 → C(G�(f1, f2, . . . , fn)).

Exercise 11. Suppose X is a sequence of continua, fi : Xi+1 → C(Xi) is upper semi-
continuous for each positive integer i, H is a closed proper subset of G�(f1, f2, . . . , fn) such
that pn+1(H) = Xn+1, and F : Xn+1 → 2Πn is the upper semi-continuous function such
that H is homeomorphic to G(F−1). Let Y1 = G

�(f1, f2, . . . , fn−1) and Yj = Xn+j−1 for
j > 1; let g1 = F and gj = fn+j−1 for j > 1. If F is continuum-valued, lim←− g is a proper
subcontinuum of lim←−f .

Exercise 12. Suppose X is a sequence of compacta and, for each positive integer i, fi :
Xi+1 → 2Xi is upper an semi-continuous function whose graph contains the graph of an
upper semi-continuous function gi such that g−1

i : Xi → Xi+1 is a mapping. Then, lim←−f
contains a copy of G�(f1, f2, . . . , fn) for each positive integer n.
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SOME SAMPLE FUNCTIONS

(1) Let f : [0, 1] → 2[0,1] be given by f(t) = {0, 1} for each t ∈ [0, 1]. Then lim←−f is a

Cantor set.

(2) Let f : [0, 1] → 2[0,1] be given by f(t) = {t, 1− t} for each t ∈ [0, 1]. Then, lim←−f is

a cone over the Cantor set.

(3) Let f : [0, 1] → 2[0,1] be given by f(t) = t for 0 ≤ t < 1 and f(1) = {0, 1}. Then,

lim←−f is the union of an arc and a simple covergent sequence.

(4) Let f : [0, 1] → C([0, 1]) be given by f(t) = t for 0 ≤ t < 1 and f(1) = [0, 1]. Then,

lim←−f is a fan.

(5) Let f : [0, 1] → C([0, 1]) be given by f(t) = 0 for 0 ≤ t < 1 and f(1) = [0, 1]. Then,

lim←−f is an arc.

(6) Let f : [0, 1] → C([0, 1]) be given by f(0) = [0, 1] and f(t) = 0 for 0 < t ≤ 1. Then,

lim←−f is infinite dimensional.

(7) Let f : [0, 1] → 2[0,1] be given by f(t) = {1/2 + t, 1/2 − t} for 0 ≤ t ≤ 1/2 and

f(t) = {3/2 − t, t − 1/2} for 1/2 < t ≤ 1. Then, lim←−f contains a simple closed

curve.

(8) Let f : [0, 1] → 2[0,1] be given by f(t) = t/2 for 0 ≤ t < 1/2 and f(t) = {t/2, 2t−1}
for 1/2 ≤ t ≤ 1. Then, lim←−f is not connected even though G(f) is connected.

(9) Let f : [0, 1] → C([0, 1]) be given by f(t) = 0 for 0 ≤ t < 1/2, f(1/2) = [0, 1/2],

f(t) = 1/2 for 1/2 < t < 1 and f(1) = [1/2, 1]. Then, lim←−f contains a 2-cell.


