gnuplot

An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 3.7 organized by: David Denholm

Major contributors (alphabetic order):
Hans-Bernhard Broeker
John Campbell
Robert Cunningham
David Denholm
Gershon Elber
Roger Fearick
Carsten Grammes
Lucas Hart
Lars Hecking
Thomas Koenig
David Kotz
Ed Kubaitis
Russell Lang
Alexander Lehmann
Alexander Mai
Carsten Steger
Tom Tkacik
Jos Van der Woude
James R. Van Zandt
Alex Woo
Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley

Mailing list for comments: info-gnuplot@dartmouth.edu
Mailing list for bug reports: bug-gnuplot@dartmouth.edu

This manual was prepared by Dick Crawford.
3 December 1998

Contents

1
1 _Copyright| 1
2__Introductionl 1
|3 Seeking-assistance| 2
W1 5N . on 37 3
EI_BIdl. . . 4

[5° Batch/Interactive Operation| 5
[6 Command-line-editing| 5
7_Commentsl 6
8 Coordinates| 6
9 _Environment] 7
{10 Expressions| 8
MO TuncHond - « .« ¢ v o o e e 8

0 Operators|. e 10

0 Unaryl e 10

(0 Binary|. e 10

[10.2.3 Ternary] o 11

[10.3 User-definedl e e 12
12
13
13 Start-up 13
4 Substitution 14
15 ntax 14
[16 Time/Date datal 15
II _Commands| 16
A7 Cd 16

I8 Call 16

19 Clear] 17
20 Exitl 17
21 Fiil 17
21.1 Adjustable parameters|. e 18
1.2 Short introductionl L 19
21.3 Brror estimates]. Lo e e 20
21.3.1 Statistical overview] 20

21.3.2 Practical guidelines| oo oL 21

21.4 Fit controlling] e 21
RPI4T Control variabled 22

21.4.2 FEnvironment variables|o Lo 22

P15 Multi-branchl 22
[21.6 Starting values| L 23

1. IDS| « o o e e e e e e e e e e e e e e e 23

22 Help| 24
23 Histor 24
24 Tf 24
25 Loadl 25
26 Pausel 25
27 Plof] 26
7.1 Data-filel e 26
.. 27

27.1.2 Example datafile] o 28

R7.1.3 Indexl e 28

R7.1.4 Smoothl e 29
27.1.4.1 Acsplines|. 29

27.1.4.2 Bezierl e 29

127.1.4.3 Csplines| L o 29

27.1.44 Sbezier] e 29

127.1.4.5 Unique| o e 30

[27.1.4.6 Frequency| 30

27.1.5 Special-filenames| 30

[35.13 Data style]. e
135.14 Decimalsign|. e e e e e

37

38

38

38

38

39

39

85.18.1 Format specifiers| 52

[35.18.2 Time/date specifiers|o 52
35.19 Function style] L 53
... 53
BE2TGH . . . o ot 54
BE2Z2HIAen3dl o o 54
185.23 Historysize| o e 56
85.24 Isosamples| oL 56
.. 56
BE26Tabell o o o 58
... 60

0.28 SIN|. . oL e e e e 61
... 61
35.30 Locale] oL 61
35.31 Logscalel. 61
... 62
.. 62

5.34 M Bl 63
BESEIMOUSE .« o o v oo e e 64

6 M plot| 65
BEITOLECS . . . o o o 66
BEBBMXUCH o oo 66
.. 66
.. 67
BEATMZECH . . . - o o o 67
BEA2OMsetsd o oo 67

5.43 Origin| L Lo 67
.. 67
[B5.45 Parametrico 68
35.46 Pm3dl 68
BEATPaletfel o oo 71
BEASCOIOr BOXl - -« v v o o e 72
BEAIPOIESIZA . . .« o o o 73
BESOPOIaIl 73
... 74
35.52 Rrange| e 74
35.53 Samples| e 74
BEBASIzE o 75
... 75

B5553 Filledboxes 77
85.50.4 Hilledcurvesl 7
85.55.5 Boxxyerrorbars|o 78
B5.55.6 Candlestickd 78
BESET Dotd oo 78
35.55.8 Financebars|. L 78
35.55.9 Fsteps| o 78
85.50.10 Histeps| o o o 78
85.55. 11 Impulses|. o 79
30.50. 12 [anes 79
35.50.13 Linespoints| L 79
BESETIAPOINES - - - o v o o e e e 79
.. 79
.. 79
B5.55.17 Xerrorbarsl 79
[35.55.18 Xyerrorbars| e e e e e e e e 80
B5.55.T9 Yerrorbard 80
85.50.20 Xerrorlines| L 80
[85.55.21 Xyerrorlines|.o 80
B5.55.22 Yerrorlined 80
BESGSurface 80
BESTTErminall . . . o o oo oo e e e e e e e 81
BAATT Windows 81
35.57.1.1 Graph-menul 81
85.57.1.2 Printing] 82
350713 Text-menul 82
35.57.1.4 Wenuplot.ini]. 83
35.57.1.5 Windows3.0l 83

30.57.2 Aifml.o 84
3350 I o/ S 84
B5.5731 Fontl 84
85.57.3.2 Tinewidthl 86
3507 3.3 Rotatel o 86
35.57.34 Solidl 86
..................................... 86
BEAT36 WIdthl 86
85.07.3.°7 Nofontlistl 86

30.57.4 Corell e 87

30.07.5 Dumblo 87

BESZT Emfl o 87
D.57.8 gl e 88
30.57.9 Gifl 89
BEBTI0OHP2623al. o o 90
BESTITHP26AR] o o o 90
5.07.12 Hpd00c|« o e 90
BEBTISTDE] . - - - o oo 90

4 Hpljii] o e 91

Hppjl. - . . e e 91

35.57.16 Imagen| oL 91
BESTITMIE . o o oo e e 92
BEBTISPDBI -« o v vt e e e e e e 92
35.57.19 Png| 92
135.57.20 Postscript| 93
135.57.20.1 Enhanced postscript| L oL 94

135.07.20.2 Editing postscript|o Lo 95

35.57.21 Qms|o 95
30.07.22 5vgl . .o 95
.. 95
... 96
BEST25TReanvasd o o v oottt 96
[35.57.26 Epson-180dpi| 97
.. 98
135.57.28 Pslatex and pstex| L 98
35.57.29 Epslatex]. 99
35.57.30 Elepic] 100
... 101
BESTI2PSITCKE - . . o o o o 101
30.57.33 Texdraw]. 102
BESTBIME . . - o oot 102
85.57.34.1 METAFONT Instructionsl 102

BEBTB M. - - o v o e 103
185.57.35.1 Metapost Instructions| L0 0oL, 104

BESSTICH « © v o e e 105
BRSO THeslevell . . . o o oo 105
BEBOTIescald o o oo e 105
85.61 Timestamp| L e 106
BEG2TImemil o 106

64 OIN| . . v o e e e e e e e e e e 107

B5.65 TTANEE . .« o o o oo e e e e 107
.. 107
BE.07 VAariabIosl . . . o o oo e e e e 107
.. 108
BEGOVIEW! .« o o o o 108
.. 108
BEZLXOAATAL - - o v v oo e 108
BETZX2dEcH 108
BEZBX2Mabell o 109
BEZAXZMEICS . -« o o o o e 109
B5.75 XOTANZE . .« o o o oo e e e e 109
BETOXZEICH . .« o o o o o e e 109
BETTX2ZET0AXI - - - - o o o e e 109
BEZEXAALal . . - o o o e e e 109
BEZOXALCH . - - o o o oo e e e e 109
... 110
BESTXIMEICH . -« o o e 111
D.82 X Zel L e 111
BESIXECH . . .« o o 112
BESIXZETOAXTH - - - o o o e e e e 114
BESEY2datal 114
BE.86 Y2ATICH « « o o o o e e e 114
BESTY2Iahell 114
BESRYZMEICS . « .« o o o o e e e e 114
89 Y X, PSR 114
BEOUYZECH - « o o o e e e e 114
B2OT Y2zeroaxisl e e 114
BROZYdatal 114
BROZYECS . . -« o o o e o e 114
BEOAYTabell. o 115
BROSYmECH . . . o o o 115
96 Yrange| e e 115
BROTYIICH . . o . o o 115
BROSYZEIOaxisl . - - - o v o oo e e 115
... 115
BEIOWATICH - - o o v v e e e e 115
BEIOIChdatal o ot e 115
.. 115

:
:
39.107range

REMEZGI

36 Shell

38

37.1.1

[37.1.2

stem

[39 Testl

40 Update

(III Graphical User Interfaces|

117
118
118
119
120
120
120

121

121

121

121

122

122

gnuplot 3.7 1

Part 1

Gnuplot

1 Copyright

Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its documentation for any purpose with or
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute
binaries produced by compiling modified sources is granted, provided you

1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base
software.

Permission to distribute the released version of the source code along with corresponding source modifi-
cations in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by appli-
cable law.

AUTHORS

Original Software:
Thomas Williams, Colin Kelley.

Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additions:
Gershon Elber and many others.

2 Introduction

gnuplot is a command-driven interactive function and data plotting program. It is case sensitive
(commands and function names written in lowercase are not the same as those written in CAPS). All
command names may be abbreviated as long as the abbreviation is not ambiguous. Any number of
commands may appear on a line (with the exception that load or call must be the final command),
separated by semicolons (;). Strings are indicated with quotes. They may be either single or double
quotation marks, e.g.,

load "filename"
cd ’dir’

although there are some subtle differences (see syntax (p. for more details).

Any command-line arguments are assumed to be names of files containing gnuplot commands, with
the exception of standard X11 arguments, which are processed first. Each file is loaded with the load
command, in the order specified. gnuplot exits after the last file is processed. When no load files are
named, gnuplot enters into an interactive mode. The special filename "-" is used to denote standard
input. See "help batch/interactive" for more details.

Many gnuplot commands have multiple options. These options must appear in the proper order,
although unwanted ones may be omitted in most cases. Thus if the entire command is "command a b
¢", then "command a c¢" will probably work, but "command c a" will fail.

Commands may extend over several input lines by ending each line but the last with a backslash (\).
The backslash must be the last character on each line. The effect is as if the backslash and newline were
not there. That is, no white space is implied, nor is a comment terminated. Therefore, commenting out
a continued line comments out the entire command (see comments (p. @)) But note that if an error
occurs somewhere on a multi-line command, the parser may not be able to locate precisely where the
error is and in that case will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices. gnuplot keywords or help topics are indicated by backquotes or boldface (where
available). Angle brackets (<>) are used to mark replaceable tokens. In many cases, a default value of
the token will be taken for optional arguments if the token is omitted, but these cases are not always
denoted with braces around the angle brackets.

For on-line help on any topic, type help followed by the name of the topic or just help or 7 to get a
menu of available topics.

The new gnuplot user should begin by reading about plotting (if on-line, type help plotting).
http://www.nas.nasa.gov/~ woo/gnuplot/simple/simple.html

3 Seeking-assistance

There is a mailing list for gnuplot users. Note, however, that the newsgroup

comp.graphics.apps.gnuplot

is identical to the mailing list (they both carry the same set of messages). We prefer that you read the
messages through the newsgroup rather than subscribing to the mailing list. Administrative requests
should be sent to

majordomo@dartmouth.edu

Send a message with the body (not the subject) consisting of the single word "help" (without the quotes)
for more details.

The address for mailing to list members is:
info-gnuplot@dartmouth.edu

Bug reports and code contributions should be mailed to:

bug-gnuplot@dartmouth.edu

The list of those interested in beta-test versions is:
info-gnuplot-beta@dartmouth.edu

There is also a World Wide Web page with up-to-date information, including known bugs:
http://www.gnuplot.info
Before seeking help, please check the

http://www.nas.nasa.gov/~woo/gnuplot/simple/simple.html
http://www.gnuplot.info

FAQ (Frequently Asked Questions)list.

When posting a question, please include full details of the version of gnuplot, the machine, and operating
system you are using. A small script demonstrating the problem may be useful. Function plots are
preferable to datafile plots. If email-ing to info-gnuplot, please state whether or not you are subscribed
to the list, so that users who use news will know to email a reply to you. There is a form for such
postings on the WWW site.

4 What is New in version 3.7

Gnuplot version 3.7 contains many new features. This section gives a partial list and links to the new
items in no particular order.

1. fit f(x) ’file’ via uses the Marquardt-Levenberg method to fit data. (This is only slightly different
from the gnufit patch available for 3.5.)

2. Greatly expanded using command. See plot using (p. .

3. set timefmt allows for the use of dates as input and output for time series plots. See Time/Date
data (p. and timedat.dem.

4. Multiline labels and font selection in some drivers.
5. Minor (unlabeled) tics. See set mxtics (p. [66)).

6. key options for moving the key box in the page (and even outside of the plot), putting a title on it
and a box around it, and more. See set key (p. [56]).

7. Multiplots on a single logical page with set multiplot.

8. Enhanced postscript driver with super/subscripts and font changes. (This was a separate driver
(enhpost) that was available as a patch for 3.5.)

9. Second axes: use the top and right axes independently of the bottom and left, both for plotting and
labels. See plot (p. [26]).

10. Special datafile names ’-’ and "". See plot special-filenames (p. .

11. Additional coordinate systems for labels and arrows. See coordinates (p. @

12. set size can try to plot with a specified aspect ratio.

13. set missing now treats missing data correctly.

14. The call command: load with arguments.

15. More flexible range commands with reverse, writeback, and restore keywords.
16. set encoding for multi-lingual encoding.

17. New x11 driver with persistent and multiple windows.

18. New plotting styles: xerrorbars, errorlines, yerrorlines, xerrorlines, xyerrorlines, histeps,
financebars and more. See set style (p. .

19. New tic label formats, including "%l %L" which uses the mantissa and exponents to a given base
for labels. See set format (p. [51)).

20. New drivers, including cgm for inclusion into MS-Office applications and gif for serving plots to the
WEB.

21. Smoothing and spline-fitting options for plot. See plot smooth (p. .
22. set margin and set origin give much better control over where a graph appears on the page.
23. set border now controls each border individually.

24. The new commands if and reread allow command loops.

http://www.gnuplot.info/faq/
http://www.nas.nasa.gov/~woo/gnuplot/timefmt/timefmt.html

25. Point styles and sizes, line types and widths can be specified on the plot command. Line types and
widths can also be specified for grids, borders, tics and arrows. See plot with (p. . Furthermore
these types may be combined and stored for further use. See set style line (p. .

26. Text (labels, tic labels, and the time stamp) can be written vertically by those terminals capable of
doing so.

4.1 Bind

The bind command allows to (re-)define a hotkey, i.e. a sequence of gnuplot commands which will
be executed when a certain key or key sequence is pressed while the driver’s window has the input
focus. Note that bind is only available if gnuplot was compiled with mouse support and it is used by
all mouse-capable terminals. Bindings overwrite the builtin bindings (like in every real editor), except
<space> and ’q’ which cannot be rebound. Mouse buttons cannot be rebound.

Note that multikey-bindings with modifiers have to be quoted.

Syntax:

bind [<key-sequence>] ["<gnuplot commands>"]
bind!

Examples:
- set bindings:

bind a "replot"

bind "ctrl-a" "plot x*x"

bind "ctrl-alt-a" ’print "great"’
bind Home "set view 60,30; replot"

- show bindings:

bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings

- remove bindings:

bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a
(note that builtins cannot be removed)
bind! # installs default (builtin) bindings

- bind a key to toggle something;:
v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", IlHomell’ "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",

"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",

llKP_lll - "KP_9" , IIFlII —_ I|F12l|

See also help mouse (p. and help if (p. 77).

5 Batch/Interactive Operation

gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together
on many systems.

Any command-line arguments are assumed to be names of files containing gnuplot commands (with
the exception of standard X11 arguments, which are processed first). Each file is loaded with the load
command, in the order specified. gnuplot exits after the last file is processed. When no load files are
named, gnuplot enters into an interactive mode. The special filename "-" is used to denote standard
input.

Both the exit and quit commands terminate the current command file and load the next one, until all
have been processed.

Examples:

To launch an interactive session:

gnuplot

To launch a batch session using two command files "input1" and "input2":
gnuplot inputl input2
To launch an interactive session after an initialization file "header" and followed by another command

file "trailer":

gnuplot header - trailer

6 Command-line-editing

Command-line editing is supported by the Unix, Atari, VMS, MS-DOS and OS/2 versions of gnuplot.
Also, a history mechanism allows previous commands to be edited and re-executed. After the command
line has been edited, a newline or carriage return will enter the entire line without regard to where the
cursor is positioned.

(The readline function in gnuplot is not the same as the readline used in GNU Bash and GNU Emacs.
If the GNU version is desired, it may be selected instead of the gnuplot version at compile time.)

The editing commands are as follows:

’ Command-line Editing Commands

Character Function
’ Line Editing
°B move back a single character.
°F move forward a single character.
“A move to the beginning of the line.
“E move to the end of the line.
“H, DEL delete the previous character.
D delete the current character.
“K delete from current position to the end of line.
"L, "R redraw line in case it gets trashed.
~U delete the entire line.
W delete from the current word to the end of line.
] History
“P move back through history.
°N move forward through history.

On the IBM PC, the use of a TSR program such as DOSEDIT or CED may be desired for line editing.
The default makefile assumes that this is the case; by default gnuplot will be compiled with no line-
editing capability. If you want to use gnuplot’s line editing, set READLINE in the makefile and add
readline.obj to the link file. The following arrow keys may be used on the IBM PC and Atari versions
if readline is used:

Arrow key Function
Left same as "B.
Right same as “F.

Ctrl Left same as ~A.

Ctrl Right same as “E.

Up same as “P.
Down same as “N.

The Atari version of readline defines some additional key aliases:

Arrow key Function
Undo same as "L.
Home same as "A.
Ctrl Home same as “E.
Esc same as "U.
Help ‘help‘ plus return.
Ctrl Help ‘help‘.

7 Comments

Comments are supported as follows: a # may appear in most places in a line and gnuplot will ignore the
rest of the line. It will not have this effect inside quotes, inside numbers (including complex numbers),
inside command substitutions, etc. In short, it works anywhere it makes sense to work.

8 Coordinates

The commands set arrow, set key, and set label allow you to draw something at an arbitrary position
on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, graph or screen.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places
it in the system defined by the second axes (top and right); graph specifies the area within the axes —
0,0 is bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to
get to the base — see set ticslevel (p.[105))); and screen specifies the screen area (the entire area —
not just the portion selected by set size), with 0,0 at bottom left and 1,1 at top right.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one
used for x is adopted.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p.[109]) and set timefmt (p.[106]). gnuplot
will also accept an integer expression, which will be interpreted as seconds from 1 January 2000.

9 Environment

A number of shell environment variables are understood by gnuplot. None of these are required, but
may be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be used. This overrides any
terminal type sensed by gnuplot on start-up, but is itself overridden by the .gnuplot (or equivalent)
start-up file (see start-up (p.[13])) and, of course, by later explicit changes.

On Unix, AmigaOS, AtariTOS, MS-DOS and OS/2, GNUHELP may be defined to be the pathname of
the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name of the help library for
gnuplot. The gnuplot help can be put inside any system help library, allowing access to help from
both within and outside gnuplot if desired.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in the
current directory. On AmigaOS, AtariTOS, MS-DOS and OS/2, gnuplot is used. On VMS, SYS$LOGIN:
is used. Type help start-up.

On Unix, PAGER is used as an output filter for help messages.

On Unix, AtariTOS and AmigaOS, SHELL is used for the shell command. On MS-DOS and OS/2,
COMSPEC is used for the shell command.

On MS-DOS, if the BGI or Watcom interface is used, PCTRM is used to tell the maximum resolution
supported by your monitor by setting it to S<max. horizontal resolution>. E.g. if your monitor’s
maximum resolution is 800x600, then use:

set PCTRM=S800

If PCTRM is not set, standard VGA is used.

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted —
see fit (p. . FIT_LOG specifies the filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The
variable may contain a single directory name, or a list of directories separated by a platform-specific
path separator, eg. ' on Unix, or ’;’ on DOS/Windows/OS/2/Amiga platforms. The contents of
GNUPLOT_LIB are appended to the loadpath variable, but not saved with the save and save set
commands.

10 Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The
precedence of these operators is determined by the specifications of the C programming language. White
space (spaces and tabs) is ignored inside expressions.

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical
constants. For example, {3,2} represents 3 + 2i; {0,1} represents i’ itself. The curly braces are explicitly
required here.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered
as "1" "-10", etc; reals as "1.0", "-10.0", "lel", 3.5e-1, etc. The most important difference between
the two forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 =
2.5. In mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result
of division of a negative integer by a positive one may vary among compilers. Try a test like "print -5/2"
to determine if your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point to
ignored; the ternary operator gives an example.

The real and imaginary parts of complex expressions are always real, whatever the form in which they
are entered: in {3,2} the "3" and "2" are reals, not integers.

10.1 Functions

The functions in gnuplot are the same as the corresponding functions in the Unix math library, except
that all functions accept integer, real, and complex arguments, unless otherwise noted.

For those functions that accept or return angles that may be given in either degrees or radians (sin(x),
cos(x), tan(x), asin(x), acos(x), atan(x), atan2(x) and arg(z)), the unit may be selected by set angles,
which defaults to radians.

Math library functions

Function Arguments Returns
abs(x) any absolute value of z, |z|; same type
abs(x) complex length of z, \/real(x)? + imag(x)2
acos(x) any cos™ !z (inverse cosine)
acosh(x) any cosh™ z (inverse hyperbolic cosine) in radians
arg(x) complex the phase of x
asin(x) any sin~! z (inverse sin)
asinh(x) any sinh ™' z (inverse hyperbolic sin) in radians
atan(x) any tan~! z (inverse tangent)
atan2(y,x) int or real tan~!(y/x) (inverse tangent)
atanh(x) any tanh ™' 2 (inverse hyperbolic tangent) in radians
besj0(x) int or real jy Bessel function of z, in radians
besjl(x) int or real j; Bessel function of z, in radians
besy0(x) int or real gy Bessel function of x, in radians
besy1(x) int or real y; Bessel function of z, in radians
ceil(x) any [x], smallest integer not less than x (real part)
cos(x) any cosx, cosine of x
cosh(x) any cosh z, hyperbolic cosine of x in radians
erf(x) any erf(real(x)), error function of real(z)
erfe(x) any erfc(real(z)), 1.0 - error function of real(x)
exp(x) any e”, exponential function of z
floor(x) any |x], largest integer not greater than x (real part)
gamma(x) any gamma(real(z)), gamma function of real(x)
ibeta(p,q,x) any ibeta(real(p, ¢, x)), ibeta function of real(p,q,z)
inverf(x) any inverse error function of real(z)
igamma(a,x) any igamma(real(a, x)), igamma function of real(a,z)
imag(x) complex imaginary part of x as a real number
invnorm(x) any inverse normal distribution function of real(z)
int(x) real integer part of z, truncated toward zero
lambertw(x) real Lambert W function
lgamma(x) any lgamma(real(x)), lgamma function of real(x)
log(x) any log, x, natural logarithm (base e) of x
log10(x) any logo x, logarithm (base 10) of
norm(x) any normal distribution (Gaussian) function of real(x)
rand(x) any rand(real(z)), pseudo random number generator
real(x) any real part of z
sgn(x) any lifz>0,-1if 2 <0,0if 2 =0. imag(x) ignored
sin(x) any sinz, sine of x
sinh(x) any sinh x, hyperbolic sine z in radians
sqri(x) any \/x, square root of x
tan(x) any tan z, tangent of x
tanh(x) any tanh z, hyperbolic tangent of in radians

A few additional functions are also available.

10

’ other gnuplot functions

Function Arguments Returns

column(x) int column x during datafile manipulation.
tm_hour(x) int the hour
tm_mday(x) int the day of the month

tm_min(x) int the minute

tm_mon(x) int the month

tm_sec(x) int the second
tm_wday (x) int the day of the week
tm_yday(x) int the day of the year

tm_year(x) int the year

valid(x) int test validity of column(z) during datafile manip.

Use of functions and complex variables for airfoils

10.2 Operators

The operators in gnuplot are the same as the corresponding operators in the C programming language,
except that all operators accept integer, real, and complex arguments, unless otherwise noted. The **
operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

10.2.1 Unary

The following is a list of all the unary operators and their usages:

’ Unary Operators

Symbol Example Explanation
- -a unary minus
+a unary plus (no-operation)
- “a * one’s complement
! la * logical negation
! al * factorial
$ $3 * call arg/column during ‘using’ manipulation

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used
to change the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater range.

10.2.2 Binary

The following is a list of all the binary operators and their usages:

http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html

11

] Binary Operators

Symbol Example FExplanation
*% ax*b exponentiation
* axb multiplication
/ a/b division
% a’%b * modulo
+ a+b addition
- a-b subtraction
== a== equality
I= al=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
& a&b * bitwise AND
- a"b * bitwise exclusive OR
| alb * bitwise inclusive OR
&& a&&b * logical AND
|l allb * logical OR

(*) Starred explanations indicate that the operator requires integer arguments.

Logical AND (&&) and OR (]|) short-circuit the way they do in C. That is, the second && operand is
not evaluated if the first is false; the second || operand is not evaluated if the first is true.

10.2.3 Ternary

There is a single ternary operator:

’ Ternary Operator

Symbol Example Explanation
?: a%b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is
evaluated. If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the
third argument (c) is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only
when certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <=x < 1, 1/x for 1 <= x < 2, and undefined elsewhere:

f(x) = 0<=x && x<1 7 sin(x) : 1<=x && x<2 7 1/x : 1/0
plot f(x)

Note that gnuplot quietly ignores undefined values, so the final branch of the function (1/0) will produce
no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity
if a line style is used. To plot it discontinuously, create separate functions for the two pieces. (Parametric
functions are also useful for this purpose.)

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but
only if the datum in column 4 is non-negative:

plot ’file’ using 1:($4<0 7 1/0 : ($2+$3)/2)

Please see plot datafile using (p. for an explanation of the using (p. syntax.

12

10.3 User-defined

New user-defined variables and functions of one through five variables may be declared and used any-
where, including on the plot command itself.

User-defined function syntax:
<func-name>(<dummy1> {,<dummy2>} ... {,<dummy5>}) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy5>.

User-defined variable syntax:
<variable-name> = <constant-expression>

Examples:
w =2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (£t >0) 27t : 0
min(a,b) = (a<b) ?7a:b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,2z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)

Note that the variable pi is already defined. But it is in no way magic; you may redefine it to be
whatever you like.

Valid names are the same as in most programming languages: they must begin with a letter, but
subsequent characters may be letters, digits, "$", or "_". Note, however, that the fit mechanism uses
several variables with names that begin "FIT_". It is safest to avoid using such names. "FIT_LIMIT",
however, is one that you may wish to redefine. See the documentation on fit (p. for details.

See show functions (p. [53)), show variables (p. [107), and fit (p. [17).

11 Glossary

Throughout this document an attempt has been made to maintain consistency of nomenclature. This
cannot be wholly successful because as gnuplot has evolved over time, certain command and keyword
names have been adopted that preclude such perfection. This section contains explanations of the way
some of these terms are used.

A "page" or "screen" is the entire area addressable by gnuplot. On a monitor, it is the full screen; on
a plotter, it is a single sheet of paper.

A screen may contain one or more "plots". A plot is defined by an abscissa and an ordinate, although
these need not actually appear on it, as well as the margins and any text written therein.

A plot contains one "graph". A graph is defined by an abscissa and an ordinate, although these need
not actually appear on it.

A graph may contain one or more "lines". A line is a single function or data set. "Line" is also a plotting
style. The word will also be used in sense "a line of text". Presumably the context will remove any
ambiguity.

The lines on a graph may have individual names. These may be listed together with a sample of the
plotting style used to represent them in the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in gnuplot. In this document, it will always be preceded
by the adjective "plot", "line", or "key" to differentiate among them.

13

A 2-d graph may have up to four labelled axes. The names of the four axes for these usages are "x" for
the axis along the bottom border of the plot, "y" for the left border, "x2" for the top border, and "y2"
for the right border.

A 3-d graph may have up to three labelled axes — "x", "y" and "z". It is not possible to say where on
the graph any particular axis will fall because you can change the direction from which the graph is seen
with set view.

When discussing data files, the term "record" will be resurrected and used to denote a single line of text
in the file, that is, the characters between newline or end-of-record characters. A "point" is the datum
extracted from a single record. A "datablock" is a set of points from consecutive records, delimited by
blank records. A line, when referred to in the context of a data file, is a subset of a datablock.

12 Plotting

There are three gnuplot commands which actually create a plot: plot, splot and replot. plot gen-
erates 2-d plots, splot generates 3-d plots (actually 2-d projections, of course), and replot appends its
arguments to the previous plot or splot and executes the modified command.

Much of the general information about plotting can be found in the discussion of plot; information
specific to 3-d can be found in the splot section.

plot operates in either rectangular or polar coordinates — see set polar (p. for details of the latter.
splot operates only in rectangular coordinates, but the set mapping command allows for a few other
coordinate systems to be treated. In addition, the using option allows both plot and splot to treat
almost any coordinate system you’d care to define.

plot also lets you use each of the four borders — x (bottom), x2 (top), y (left) and y2 (right) — as an
independent axis. The axes option lets you choose which pair of axes a given function or data set is
plotted against. A full complement of set commands exists to give you complete control over the scales
and labelling of each axis. Some commands have the name of an axis built into their names, such as set
xlabel. Other commands have one or more axis names as options, such as set logscale xy. Commands
and options controlling the z axis have no effect on 2-d graphs.

splot can plot surfaces and contours in addition to points and/or lines. In addition to splot, see set
isosamples (p. for information about defining the grid for a 3-d function; splot datafile (p. [118))
for information about the requisite file structure for 3-d data values; and set contour (p. and set
cntrparam (p. for information about contours.

In splot, control over the scales and labels of the axes are the same as with plot, except that commands
and options controlling the x2 and y2 axes have no effect whereas of course those controlling the z axis
do take effect.

splot allows plotting of binary and matrix data, but only for specific data formats. See splot (p. [117])
for details.

13 Start-up

When gnuplot is run, it looks for an initialization file to load. This file is called .gnuplot on Unix
and AmigaOS systems, and GNUPLOT.INI on other systems. If this file is not found in the current
directory, the program will look for it in the home directory (under AmigaOS, Atari(single)TOS, MS-
DOS and 0S/2, the environment variable gnuplot should contain the name of this directory). Note: if
NOCWDRUC is defined during the installation, gnuplot will not read from the current directory.

If the initialization file is found, gnuplot executes the commands in it. These may be any legal gnuplot
commands, but typically they are limited to setting the terminal and defining frequently-used functions
or variables.

14

14 Substitution

Command-line substitution is specified by a system command enclosed in backquotes. This command
is spawned and the output it produces replaces the name of the command (and backquotes) on the
command line. Some implementations also support pipes; see plot datafile special-filenames (p. .

Command-line substitution can be used anywhere on the gnuplot command line, except inside strings
delimited by single quotes.
Example:
This will run the program leastsq and replace leastsq (including backquotes) on the command line
with its output:

f(x) = ‘leastsq’

or, in VMS
f(x) = ‘run leastsq‘

These will generate labels with the current time and userid:

set label "generated on ‘date +%Y-Ym-%d‘by ‘whoami‘" at 1,1
set timestamp "generated on %Y-Ym-%d by ‘whoami‘"

15 Syntax

The general rules of syntax and punctuation in gnuplot are that keywords and options are order-
dependent. Options and any accompanying parameters are separated by spaces whereas lists and coor-
dinates are separated by commas. Ranges are separated by colons and enclosed in brackets [], text and
file names are enclosed in quotes, and a few miscellaneous things are enclosed in parentheses. Braces {}
are used for a few special purposes.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of
variables being fitted (the list after the via keyword on the fit command); lists of discrete contours or
the loop parameters which specify them on the set cntrparam command; the arguments of the set
commands dgrid3d, dummy, isosamples, offsets, origin, samples, size, time, and view; lists of
tics or the loop parameters which specify them; the offsets for titles and axis labels; parametric functions
to be used to calculate the x, y, and z coordinates on the plot, replot and splot commands; and the
complete sets of keywords specifying individual plots (data sets or functions) on the plot, replot and
splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate
computations in the using filter of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)
Brackets are used to delimit ranges, whether they are given on set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or
splot commands) and to separate entries in the using filter of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Braces are used in text to be specially processed by some terminals, like postscript. They are also used
to denote complex numbers: {3,2} = 3 + 2i.

Text may be enclosed in single- or double-quotes. Backslash processing of sequences like \n (newline)
and \345 (octal character code) is performed for double-quoted strings, but not for single-quoted strings.

The justification is the same for each line of a multi-line string. Thus the center-justified string
"This is the first line of text.\nThis is the second line."

will produce

15

This is the first line of text.
This is the second line.

but

’This is the first line of text.\nThis is the second line.’

will produce

This is the first line of text.\nThis is the second line.

Filenames may be entered with either single- or double-quotes. In this manual the command examples
generally single-quote filenames and double-quote other string tokens for clarity.

At present you should not embed \n inside {} when using the enhanced postscript terminal.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be specified by \\ in a
single-quoted string or \\\\ in a double-quoted string.

Back-quotes are used to enclose system commands for substitution.

16 Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by
the commands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 2000. The command
set timefmt defines the format for all inputs: data files, ranges, tics, label positions — in short, anything
that accepts a data value must receive it in this format. Since only one input format can be in force
at a given time, all time/date quantities being input at the same time must be presented in the same
format. Thus if both x and y data in a file are time/date, they must be in the same format.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard
Time). There is no provision for changing the time zone or for daylight savings. If all your data refer to
the same time zone (and are all either daylight or standard) you don’t need to worry about these things.
But if the absolute time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change
timefmt, and then show the quantity again, it will be displayed in the new timefmt. For that matter,
if you give the deactivation command (like set xdata), the quantity will be shown in its numerical form.

The command set format defines the format that will be used for tic labels, whether or not the specified
axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot or
splot command. These commands simply use white space to separate columns, but white space may
be embedded within the time/date string. If you use tabs as a separator, some trial-and-error may be
necessary to discover how your system treats them.

The following example demonstrates time/date plotting.
Suppose the file "data" contains records like

03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time

set timefmt "Y%m/%d/%y"

set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"

set timefmt "Ym/%d/%y %H:%M"

plot "data" using 1:3

16

which will produce xtic labels that look like "03/21".

See the descriptions of each command for more details.

Part 11

Commands

This section lists the commands acceptable to gnuplot in alphabetical order. Printed versions of this
document contain all commands; on-line versions may not be complete. Indeed, on some systems there
may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are permis-
sible, i.e., "p f(x) w 1" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (|) separates mu-
tually exclusive choices.

17 Cd

The ¢d command changes the working directory.

Syntax:
cd ’<directory-name>’

The directory name must be enclosed in quotes.

Examples:
cd ’subdir’
Cd n .. n

DOS users must use single-quotes — backslash [\] has special significance inside double-quotes. For
example,

cd "c:\newdata"

fails, but
cd ’c:\newdata’

works as expected.

18 Call

The call command is identical to the load command with one exception: you can have up to ten
additional parameters to the command (delimited according to the standard parser rules) which can
be substituted into the lines read from the file. As each line is read from the called input file, it is
scanned for the sequence $ (dollar-sign) followed by a digit (0-9). If found, the sequence is replaced by
the corresponding parameter from the call command line. If the parameter was specified as a string in
the call line, it is substituted without its enclosing quotes. $ followed by any character other than a
digit will be that character. E.g. use 8 to get a single $. Providing more than ten parameters on the
call command line will cause an error. A parameter that was not provided substitutes as nothing. Files
being called may themselves contain call or load commands.

The call command must be the last command on a multi-command line.

Syntax:

17

call "<input-file>" <parameter-0> <parm-1> ... <parm-9>

The name of the input file must be enclosed in quotes, and it is recommended that parameters are
similarly enclosed in quotes (future versions of gnuplot may treat quoted and unquoted arguments
differently).
Example:
If the file ’calltest.gp’ contains the line:

print "p0=$0 p1=$1 p2=$2 p3=%$3 p4=$4 p5=$5 p6=%$6 p7=x$7x"

entering the command:
call ’calltest.gp’ "abcd" 1.2 + "’quoted’" -- "$2"

will display:
pO=abcd pl=1.2 p2=+ p3=’quoted’ p4=- pb=- p6=$2 p7=xx

NOTE: there is a clash in syntax with the datafile using callback operator. Use $$n or column(n) to
access column n from a datafile inside a called datafile plot.

19 Clear

The clear command erases the current screen or output device as specified by set output. This usually
generates a formfeed on hardcopy devices. Use set terminal to set the device type.

For some terminals clear erases only the portion of the plotting surface defined by set size, so for these
it can be used in conjunction with set multiplot to create an inset.
Example:
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot

Please see set multiplot (p. , set size (p. , and set origin (p. for details of these
commands.

20 Exit

The commands exit and quit and the END-OF-FILE character will exit the current gnuplot command
file and load the next one. See "help batch/interactive" for more details.

Each of these commands will clear the output device (as does the clear command) before exiting.

21 Fit

The fit command can fit a user-defined function to a set of data points (x,y) or (x,y,z), using an im-
plementation of the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. Any user-defined
variable occurring in the function body may serve as a fit parameter, but the return type of the function
must be real.

Syntax:

18

fit {[xrange] {[yrangel}} <function> ’<datafile>’
{datafile-modifiers}
via ’<parameter file>’ | <varl>{,<var2>,...}

Ranges may be specified to temporarily limit the data which is to be fitted; any out-of-range data points
are ignored. The syntax is
[{dummy_variable=}{<min>}{:<max>}],

analogous to plot; see plot ranges (p. [34)).

<function> is any valid gnuplot expression, although it is usual to use a previously user-defined function
of the form f(x) or f(x,y).

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...) except
smooth are applicable to fit. See plot datafile (p. [26)).

The default data formats for fitting functions with a single independent variable, y=f(x), are {x:}y or
x:y:s; those formats can be changed with the datafile using qualifier. The third item, (a column number
or an expression), if present, is interpreted as the standard deviation of the corresponding y value and is
used to compute a weight for the datum, 1/s**2. Otherwise, all data points are weighted equally, with
a weight of one.

To fit a function with two independent variables, z=f(x,y), the required format is using with four items,
x:y:z:8. The complete format must be given — no default columns are assumed for a missing token.
Weights for each data point are evaluated from ’s’ as above. If error estimates are not available, a
constant value can be specified as a constant expression (see plot datafile using (p.), e.g., using
1:2:3:(1).

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a
‘pseudo-variable’; e.g., the dataline number, and fitting as two independent variables. See fit multi-

branch (p. [22).

The via qualifier specifies which parameters are to be adjusted, either directly, or by referencing a
parameter file.

Examples:
f(x) = a*x*x*2 + b*x + C
g(x,y) = akxx*k2 + bkyxk2 + ckxxy
FIT_LIMIT = 1le-6
fit f(x) ’measured.dat’ via ’start.par’
fit f(x) ’measured.dat’ using 3:($7-5) via ’start.par’
fit £f(x) ’./data/trash.dat’ using 1:2:3 via a, b, ¢
fit g(x,y) ’surface.dat’ using 1:2:3:(1) via a, b, ¢

After each iteration step, detailed information about the current state of the fit is written to the display.
The same information about the initial and final states is written to a log file, "fit.log". This file is always
appended to, so as to not lose any previous fit history; it should be deleted or renamed as desired.

The fit may be interrupted by pressing Ctrl-C (any key but Ctrl-C under MSDOS and Atari Multitasking
Systems). After the current iteration completes, you have the option to (1) stop the fit and accept the
current parameter values, (2) continue the fit, (3) execute a gnuplot command as specified by the
environment variable FIT_SCRIPT. The default for FIT_SCRIPT is replot, so if you had previously
plotted both the data and the fitting function in one graph, you can display the current state of the fit.

Once fit has finished, the update command may be used to store final values in a file for subsequent
use as a parameter file. See update (p. [121]) for details.

21.1 Adjustable parameters

There are two ways that via can specify the parameters to be adjusted, either directly on the command
line or indirectly, by referencing a parameter file. The two use different means to set initial values.

19

Adjustable parameters can be specified by a comma-separated list of variable names after the via
keyword. Any variable that is not already defined is is created with an initial value of 1.0. However, the
fit is more likely to converge rapidly if the variables have been previously declared with more appropriate
starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per
line, in the form

varname = value

Comments, marked by ’#’, and blank lines are permissible. The special form

varname = value # FIXED

means that the variable is treated as a ’fixed parameter’, initialized by the parameter file, but not
adjusted by fit. For clarity, it may be useful to designate variables as fixed parameters so that their
values are reported by fit. The keyword # FIXED has to appear in exactly this form.

21.2 Short introduction

fit is used to find a set of parameters that 'best’ fits your data to your user-defined function. The fit is
judged on the basis of the sum of the squared differences or ’residuals’ (SSR) between the input data
points and the function values, evaluated at the same places. This quantity is often called ’chisquare’
(i.e., the Greek letter chi, to the power of 2). The algorithm attempts to minimize SSR, or more precisely,
WSSR, as the residuals are 'weighted’ by the input data errors (or 1.0) before being squared; see fit
error_estimates (p. for details.

That’s why it is called "least-squares fitting’. Let’s look at an example to see what is meant by 'non-linear’,
but first we had better go over some terms. Here it is convenient to use z as the dependent variable
for user-defined functions of either one independent variable, z=f(x), or two independent variables,
z=f{(x,y). A parameter is a user-defined variable that fit will adjust, i.e., an unknown quantity in the
function declaration. Linearity /non-linearity refers to the relationship of the dependent variable, z, to
the parameters which fit is adjusting, not of z to the independent variables, x and/or y. (To be technical,
the second {and higher} derivatives of the fitting function with respect to the parameters are zero for a
linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions, not involving
any parameters, each multiplied by one parameter. NLLS handles more complicated functions in which
parameters can be used in a large number of ways. An example that illustrates the difference between
linear and nonlinear least-squares is the Fourier series. One member may be written as

z=axsin(c*x) + b*xcos(c*x).

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a
linear least-squares problem. However, if ¢ is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one
direct step. However LLS is a special case which is also solved along with more general NLLS problems by
the iterative procedure that gnuplot uses. fit attempts to find the minimum by doing a search. Each step
(iteration) calculates WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm
selects the parameter values for the next iteration. The process continues until a preset criterium is
met, either (1) the fit has "converged" (the relative change in WSSR is less than FIT_LIMIT), or (2)
it reaches a preset iteration count limit, FIT_-MAXITER (see fit control variables (p.) The fit
may also be interrupted and subsequently halted from the keyboard (see fit (p.)

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict
the behaviour of the data. Then fit can be used to find values for the free parameters of the model, to
determine how well the data fits the model, and to estimate an error range for each parameter. See fit

error_estimates (p. [20).

20

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience
as to which are likely to describe the trend of the data with the desired resolution and a minimum number
of parameters*functions.) The fit solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth option to plot
may be what you’'ve been looking for rather than fit.

21.3 Error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter error
estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the
weighted sum of squared residuals, WSSR or chisquare. They can affect the parameter estimates, since
they determine how much influence the deviation of each data point from the fitted function has on
the final values. Some of the fit output information, including the parameter error estimates, is more
meaningful if accurate data error estimates have been provided.

The ’statistical overview’ describes some of the fit output and gives some background for the practical
guidelines’.

21.3.1 Statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a normal distribution
of errors, that is, the input data is assumed to be a sample from a population having a given mean
and a Gaussian (normal) distribution about the mean with a given standard deviation. For a sample of
sufficiently large size, and knowing the population standard deviation, one can use the statistics of the
chisquare distribution to describe a "goodness of fit" by looking at the variable often called "chisquare".
Here, it is sufficient to say that a reduced chisquare (chisquare/degrees of freedom, where degrees of
freedom is the number of datapoints less the number of parameters being fitted) of 1.0 is an indication
that the weighted sum of squared deviations between the fitted function and the data points is the same
as that expected for a random sample from a population characterized by the function with the current
value of the parameters and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance =
counts, then each point should be individually weighted when comparing the observed sum of deviations
and the expected sum of deviations.

At the conclusion fit reports ’stdfit’, the standard deviation of the fit, which is the rms of the residuals,
and the variance of the residuals, also called 'reduced chisquare’ when the data points are weighted.
The number of degrees of freedom (the number of data points minus the number of fitted parameters) is
used in these estimates because the parameters used in calculating the residuals of the datapoints were
obtained from the same data.

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the
fit and chisquare statistics to determine the value of chisquare corresponding to the desired confidence
level, but considerably more calculation is required to determine the combinations of parameters which
produce such values.

Rather than determine confidence intervals, fit reports parameter error estimates which are readily
obtained from the variance-covariance matrix after the final iteration. By convention, these estimates
are called "standard errors" or "asymptotic standard errors", since they are calculated in the same way
as the standard errors (standard deviation of each parameter) of a linear least-squares problem, even
though the statistical conditions for designating the quantity calculated to be a standard deviation are
not generally valid for the NLLS problem. The asymptotic standard errors are generally over-optimistic
and should not be used for determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix, which gives an indication of the correlation of pa-

21

rameters in the region of the solution; if one parameter is changed, increasing chisquare, does changing
another compensate? The main diagonal elements, autocorrelation, are all 1; if all parameters were in-
dependent, all other elements would be nearly 0. Two variables which completely compensate each other
would have an off-diagonal element of unit magnitude, with a sign depending on whether the relation
is proportional or inversely proportional. The smaller the magnitudes of the off-diagonal elements, the
closer the estimates of the standard deviation of each parameter would be to the asymptotic standard
error.

21.3.2 Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional
knowledge about your measurements, e.g., take into account that some points may be more reliable than
others. That may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional fit output after the last iteration.
Even if you weight each point equally, estimating an average standard deviation rather than using a
weight of 1 makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An "™
indicates that it did not find a smaller WSSR and is trying again.) The ’sum of squares of residuals’,
also called ’chisquare’, is the WSSR between the data and your fitted function; fit has minimized that.
At this stage, with weighted data, chisquare is expected to approach the number of degrees of freedom
(data points minus parameters). The WSSR can be used to calculate the reduced chisquare (WSSR /ndf)
or stdfit, the standard deviation of the fit, sqrt(WSSR/ndf). Both of these are reported for the final
WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function,
in user units.

If you supplied valid data errors, the number of data points is large enough, and the model is correct,
the reduced chisquare should be about unity. (For details, look up the ’chi-squared distribution’ in your
favourite statistics reference.) If so, there are additional tests, beyond the scope of this overview, for
determining how well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors
not normally distributed, systematic measurement errors, ’outliers’, or an incorrect model function. A
plot of the residuals, e.g., plot ’datafile’ using 1:($2-f($1)), may help to show any systematic trends.
Plotting both the data points and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected for a random
sample from the function with normally distributed errors. The data error estimates may be too large,
the statistical assumptions may not be justified, or the model function may be too general, fitting
fluctuations in a particular sample in addition to the underlying trends. In the latter case, a simpler
function may be more appropriate.

You’ll have to get used to both fit and the kind of problems you apply it to before you can relate the
standard errors to some more practical estimates of parameter uncertainties or evaluate the significance
of the correlation matrix.

Note that fit, in common with most NLLS implementations, minimizes the weighted sum of squared
distances (y-f(x))**2. It does not provide any means to account for "errors" in the values of x, only in y.
Also, any "outliers" (data points outside the normal distribution of the model) will have an exaggerated
effect on the solution.

21.4 Fit controlling

There are a number of gnuplot variables that can be defined to affect fit. Those which can be defined
once gnuplot is running are listed under ’control_variables’ while those defined before starting gnuplot

22

are listed under ’'environment_variables’.

21.4.1 Control variables

The default epsilon limit (1e-5) may be changed by declaring a value for
FIT_LIMIT

When the sum of squared residuals changes between two iteration steps by a factor less than this number
(epsilon), the fit is considered to have 'converged’.

The maximum number of iterations may be limited by declaring a value for
FIT_MAXITER

A value of 0 (or not defining it at all) means that there is no limit.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well,

there are some more variables to influence it. The startup value of lambda is normally calculated

automatically from the ML-matrix, but if you want to, you may provide your own one with
FIT_START_LAMBDA

Specifying FIT_START_LAMBDA as zero or less will re-enable the automatic selection. The variable
FIT_LAMBDA_FACTOR

gives the factor by which lambda is increased or decreased whenever the chi-squared target function
increased or decreased significantly. Setting FIT_.LAMBDA _FACTOR to zero re-enables the default
factor of 10.0.

Oher variables with the FIT_ prefix may be added to fit, so it is safer not to use that prefix for user-
defined variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of gnuplot with a ’fit’ patch
called gnufit and are no longer available. The datafile every modifier provides the functionality of
FIT_SKIP. FIT_INDEX was used for multi-branch fitting, but multi-branch fitting of one independent
variable is now done as a pseudo-3D fit in which the second independent variable and using are used to
specify the branch. See fit multi-branch (p. @

21.4.2 Environment variables

The environment variables must be defined before gnuplot is executed; how to do so depends on your
operating system.
FIT_LOG

changes the name (and/or path) of the file to which the fit log will be written from the default of "fit.log"
in the working directory.
FIT_SCRIPT

specifies a command that may be executed after an user interrupt. The default is replot, but a plot or
load command may be useful to display a plot customized to highlight the progress of the fit.

21.5 Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one indepen-
dent variable having common parameters by minimizing the total WSSR. The function and parameters
(branch) for each data set are selected by using a ’pseudo-variable’, e.g., either the dataline number (a
‘column’ index of -1) or the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but
having a common decay time, estimate the values of the parameters. If the datafile has the format x:z:s,
then

23

f(x,y) = (y==0) 7 axexp(-x/tau) : bxexp(-x/tau)
fit f(x,y) ’datafile’ using 1:-1:2:3 wvia a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there
is a difference in the scale of the dependent variable. Fitting each branch separately, using the multi-
branch solution as initial values, may give an indication as to the relative effect of each branch on the
joint solution.

21.6 Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest
sum of squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to
determine that; it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly
as the parameters are varied, or it may reach a numerically unstable region (e.g., too large a number
causing a floating point overflow) which results in an "undefined value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly
in the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting
values are to the solution, the less chance of stopping at another minimum. One way to find starting
values is to plot data and the fitting function on the same graph and change parameter values and replot
until reasonable similarity is reached. The same plot is also useful to check whether the fit stopped at a
minimum with a poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in either a statistical sense,
characterized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent
with the model.) Depending on the problem, it may be desirable to fit with various sets of starting
values, covering a reasonable range for each parameter.

21.7 Tips

Here are some tips to keep in mind to get the most out of fit. They’re not very organized, so you’ll have
to read them several times until their essence has sunk in.

The two forms of the via argument to fit serve two largely distinct purposes. The via "file" form is
best used for (possibly unattended) batch operation, where you just supply the startup values in a file
and can later use update to copy the results back into another (or the same) parameter file.

The via varl, var2, ... form is best used interactively, where the command history mechanism may
be used to edit the list of parameters to be fitted or to supply new startup values for the next try. This
is particularly useful for hard problems, where a direct fit to all parameters at once won’t work without
good starting values. To find such, you can iterate several times, fitting only some of the parameters,
until the values are close enough to the goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For
example, don’t try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x)
or exp(x+Db).

A technical issue: the parameters must not be too different in magnitude. The larger the ratio of the
largest and the smallest absolute parameter values, the slower the fit will converge. If the ratio is close
to or above the inverse of the machine floating point precision, it may take next to forever to converge,
or refuse to converge at all. You will have to adapt your function to avoid this, e.g., replace 'parameter’
by 'le9*parameter’ in the function definition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple functions weighted by the parameters
to be fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should

24

converge with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first
fit some functions to your data, perhaps in a multi-step process of accounting for several aspects of
the underlying theory one by one, and then extract the information you really wanted from the fitting
parameters of those functions. With fit, this may often be done in one step by writing the model function
directly in terms of the desired parameters. Transforming data can also quite often be avoided, though
sometimes at the cost of a more difficult fit problem. If you think this contradicts the previous paragraph
about simplifying the fit function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm
can’t calculate parameter values for the next iteration. Try different starting values, writing the function
in another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all
these issues: "Nonlinear fitting is an art!"

22 Help

The help command displays on-line help. To specify information on a particular topic use the syntax:

help {<topic>}

If <topic> is not specified, a short message is printed about gnuplot. After help for the requested
topic is given, a menu of subtopics is given; help for a subtopic may be requested by typing its name,
extending the help request. After that subtopic has been printed, the request may be extended again or
you may go back one level to the previous topic. Eventually, the gnuplot command line will return.

If a question mark (?) is given as the topic, the list of topics currently available is printed on the screen.

23 History

"history’ command lists or saves previous entries in the history of the command line editing, or executes
an etry.

Here you find 'usage by examples’:

history

history 5

history 10 "hist.gp"
history 7load
history 7?"set c"

hi !reread

hist !"set xr"

hi 'hi

show the complete history

show last 5 entries in the history

write last 10 commands to file hist.gp

show all history entries starting with "load"
like above, several words enclosed in quotes
execute last entry starting with "reread"
like above, several words enclosed in quotes
guess yourself :-))

H OH HHHHHHA

24 If

The if command allows commands to be executed conditionally.

Syntax:

if (<condition>) <command-line> [; else if (<condition>) ...; else ...]

<condition> will be evaluated. If it is true (non-zero), then the command(s) of the <command-line>
will be executed. If <condition> is false (zero), then the entire <command-line> is ignored until the

25

next occurence of else. Note that use of ; to allow multiple commands on the same line will not end the
conditionalized commands.

Examples:

pi=3

if (pi!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi
will display:

?Fixing pi!

3.14159265358979

but
if (1==2) print "Never see this"; print "Or this either"

will not display anything.
else:

v=0
v=v+1l; if (v%2) print "2" ; else if (v/%43) print "3"; else print "fred"

(repeat the last line repeatedly!)

See reread (p. for an example of how if (p. and reread (p. can be used together to
perform a loop.

25 Load

The load command executes each line of the specified input file as if it had been typed in interactively.
Files created by the save command can later be loaded. Any text file containing valid commands can
be created and then executed by the load command. Files being loaded may themselves contain load
or call commands. See comments (p. [6]) for information about comments in commands. To load with

arguments, see call (p. .
The load command must be the last command on a multi-command line.
Syntax:
load "<input-file>"
The name of the input file must be enclosed in quotes.

The special filename "-" may be used to load commands from standard input. This allows a gnuplot
command file to accept some commands from standard input. Please see "help batch/interactive" for
more details.

On some systems which support a popen function (Unix), the load file can be read from a pipe by
starting the file name with a '<’.

Examples:
load ’work.gnu’
load "func.dat"
load "< loadfile_generator.sh"

The load command is performed implicitly on any file names given as arguments to gnuplot. These
are loaded in the order specified, and then gnuplot exits.

26 Pause

The pause command displays any text associated with the command and then waits a specified amount
of time or until the carriage return is pressed. pause is especially useful in conjunction with load files.

Syntax:

26

pause <time> {"<string>"}

<time> may be any constant or expression. Choosing -1 will wait until a carriage return is hit, zero (0)
won’t pause at all, and a positive number will wait the specified number of seconds. The time is rounded
to an integer number of seconds if subsecond time resolution is not supported by the given platform.
pause 0 is synonymous with print.

Note: Since pause communicates with the operating system rather than the graphics, it may behave
differently with different device drivers (depending upon how text and graphics are mixed).

Examples:
pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds

pause -1 "Hit return to continue"
pause 10 "Isn’t this pretty? It’s a cubic spline."

27 Plot

plot is the primary command for drawing plots with gnuplot. It creates plots of functions and data
in many, many ways. plot is used to draw 2-d functions and data; splot draws 2-d projections of 3-d
surfaces and data. plot and splot contain many common features; see splot (p. for differences.
Note specifically that splot’s binary and matrix options do not exist for plot, and plot’s axes option
does not exist for splot.

Syntax:

plot {<ranges>}
{<function> | {"<datafile>" {datafile-modifiers}}}
{axes <axes>} {<title-spec>} {with <style>}
{, {definitions,} <function> ...}

where either a <function> or the name of a data file enclosed in quotes is supplied. A function is a
mathematical expression or a pair of mathematical expressions in parametric mode. The expressions
may be defined completely or in part earlier in the stream of gnuplot commands (see user-defined

(p-[12)).

It is also possible to define functions and parameters on the plot command itself. This is done merely
by isolating them from other items with commas.

There are four possible sets of axes available; the keyword <axes> is used to select the axes for which a
particular line should be scaled. x1y1 refers to the axes on the bottom and left; x2y2 to those on the
top and right; x1y2 to those on the bottom and right; and x2y1 to those on the top and left. Ranges
specified on the plot command apply only to the first set of axes (bottom left).

Examples:

plot sin(x)
plot f(x) = sin(x*a), a = .2, £(x), a = .4, f(x)
plot [t=1:10] [-pi:pi*2] tan(t), \
"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5

27.1 Data-file

Discrete data contained in a file can be displayed by specifying the name of the data file (enclosed in
single or double quotes) on the plot command line.

Syntax:

27

plot ’<file_name>’ {index <index list>}
{every <every list>}
{thru <thru expression>}
{using <using list>}
{smooth <option>}

The modifiers index, every, thru, using, and smooth are discussed separately. In brief, index selects
which data sets in a multi-data-set file are to be plotted, every specifies which points within a single
data set are to be plotted, using determines how the columns within a single record are to be interpreted
(thru is a special case of using), and smooth allows for simple interpolation and approximation. (’splot’
has a similar syntax, but does not support the smooth and thru options.)

Data files should contain at least one data point per record (using can select one data point from the
record). Records beginning with # (and also with ! on VMS) will be treated as comments and ignored.
Each data point represents an (x,y) pair. For plots with error bars or error bars with lines (see set style
errorbars (p. or set style errorlines (p. [80)), each data point is (x,y,ydelta), (x,y,ylow,yhigh),
(x,y,xdelta), (x,y,xlow,xhigh), or (x,y,xlow,xhigh,ylow,yhigh). In all cases, the numbers on each record
of a data file must be separated by white space (one or more blanks or tabs), unless a format specifier
is provided by the using option. This white space divides each record into columns.

Data may be written in exponential format with the exponent preceded by the letter e, E, d, D, q, or Q.

Only one column (the y value) need be provided. If x is omitted, gnuplot provides integer values
starting at 0.

In datafiles, blank records (records with no characters other than blanks and a newline and/or carriage
return) are significant — pairs of blank records separate indexes (see plot datafile index (p. [28))).
Data separated by double blank records are treated as if they were in separate data files.

Single blank records designate discontinuities in a plot; no line will join points separated by a blank
records (if they are plotted with a line style).

If autoscaling has been enabled (set autoscale), the axes are automatically extended to include all
datapoints, with a whole number of tic marks if tics are being drawn. This has two consequences: i) For
splot, the corner of the surface may not coincide with the corner of the base. In this case, no vertical
line is drawn. ii) When plotting data with the same x range on a dual-axis graph, the x coordinates may
not coincide if the x2tics are not being drawn. This is because the x axis has been autoextended to a
whole number of tics, but the x2 axis has not. The following example illustrates the problem:

reset; plot ’-’, ’-’
11

19 19

e

11

19 19

e

To avoid this, you can use the fixmin/fixmax feature of the set autoscale command, which turns off
the automatic extension of the axis range upto the next tic mark.

27.1.1 Every

The every keyword allows a periodic sampling of a data set to be plotted.
In the discussion a "point" is a datum defined by a single record in the file; "block" here will mean the
same thing as "datablock" (see glossary (p. [12)).

Syntax:
plot ’file’ every {<point_incr>}
{:{<block_incr>}

28

{:{<start_point>}
{:{<start_block>}
{:{<end_point>}
{:<end_block>}}}}}

The data points to be plotted are selected according to a loop from <start_point> to <end_point>
with increment <point_incr> and the blocks according to a loop from <start_block> to <end_block>
with increment <block_incr>.

The first datum in each block is numbered ’0’, as is the first block in the file.
Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values to the first point
or block, and the end values to the last point or block. If every is not specified, all points in all lines
are plotted.

Examples:

selects just the fourth block (’°0’ is first)
selects the first 10 blocks

selects every other point in every other block
selects points 5 through 15 in each block

o
<
I0)
]
<
- O .-
* B B

Simple Plot Demos |, Non-parametric splot demos |, and Parametric splot demos|.

27.1.2 Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:
pop(x) = 103*exp((1965-x)/10)
plot [1960:1990] ’population.dat’, pop(x)

The file "population.dat" might contain:

Gnu population in Antarctica since 1965

1965 103
1970 55
1975 34
1980 24
1985 10
27.1.3 Index

The index keyword allows only some of the data sets in a multi-data-set file to be plotted.

Syntax:
plot ’file’ index <m>{{:<n>}:<p>}

Data sets are separated by pairs of blank records. index <m> selects only set <m>; index <m>:<n>
selects sets in the range <m> to <n>; and index <m>:<n>:<p> selects indices <m>, <m>+<p>,
<m>+2<p>, etc., but stopping at <n>. Following C indexing, the index 0 is assigned to the first data
set in the file. Specifying too large an index results in an error message. If index is not specified, all
sets are plotted as a single data set.

Example:
plot ’file’ index 4:5

splot with indices demo.

http://www.nas.nasa.gov/~woo/gnuplot/simple/simple.html
http://www.nas.nasa.gov/~woo/gnuplot/surfacea/surfacea.html
http://www.nas.nasa.gov/~woo/gnuplot/surfaceb/surfaceb.html
http://www.nas.nasa.gov/~woo/gnuplot/multimsh/multimsh.html

29

27.1.4 Smooth

gnuplot includes a few general-purpose routines for interpolation and approximation of data; these
are grouped under the smooth option. More sophisticated data processing may be performed by
preprocessing the data externally or by using fit with an appropriate model.

Syntax:

smooth {unique | frequency | csplines | acsplines | bezier | sbezier}

unique and frequency plot the data after making them monotonic. Each of the other routines uses
the data to determine the coefficients of a continuous curve between the endpoints of the data. This
curve is then plotted in the same manner as a function, that is, by finding its value at uniform intervals
along the abscissa (see set samples (p.|74])) and connecting these points with straight line segments
(if a line style is chosen).

If autoscale is in effect, the ranges will be computed such that the plotted curve lies within the borders
of the graph.

If autoscale is not in effect, and the smooth option is either acspline or cspline, the sampling of the
generated curve is done across the intersection of the x range covered by the input data and the fixed
abscissa range as defined by set xrange.

If too few points are available to allow the selected option to be applied, an error message is produced.
The minimum number is one for unique, and frequency, four for acsplines, and three for the others.

The smooth options have no effect on function plots.

27.1.4.1 Acsplines The acsplines option approximates the data with a "natural smoothing spline".
After the data are made monotonic in x (see smooth unique (p.[30])), a curve is piecewise constructed
from segments of cubic polynomials whose coefficients are found by the weighting the data points; the
weights are taken from the third column in the data file. That default can be modified by the third
entry in the using list, e.g.,

plot ’data-file’ using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the number of segments used to construct
the curve. If the weights are large, the effect of each datum is large and the curve approaches that
produced by connecting consecutive points with natural cubic splines. If the weights are small, the
curve is composed of fewer segments and thus is smoother; the limiting case is the single segment
produced by a weighted linear least squares fit to all the data. The smoothing weight can be expressed
in terms of errors as a statistical weight for a point divided by a "smoothing factor" for the curve so
that (standard) errors in the file can be used as smoothing weights.

Example:

sw(x,8)=1/ (x*x*S)
plot ’data_file’ using 1:2:(sw($3,100)) smooth acsplines

27.1.4.2 Bezier The bezier option approximates the data with a Bezier curve of degree n (the
number of data points) that connects the endpoints.

27.1.4.3 Csplines The csplines option connects consecutive points by natural cubic splines after
rendering the data monotonic (see smooth unique (p. [30)).

27.1.4.4 Sbezier The sbezier option first renders the data monotonic (unique) and then applies
the bezier algorithm.

30

27.1.4.5 Unique The unique option makes the data monotonic in x; points with the same x-value
are replaced by a single point having the average y-value. The resulting points are then connected by
straight line segments. See demos.

27.1.4.6 Frequency The frequency option makes the data monotonic in x; points with the same x-
value are replaced by a single point having the summed y-values. The resulting points are then connected
by straight line segments.

27.1.5 Special-filenames

A special filename of ’-’ specifies that the data are inline; i.e., they follow the command. Only the data
follow the command; plot options like filters, titles, and line styles remain on the ’plot’ command line.
This is similar to << in unix shell script, and $DECK in VMS DCL. The data are entered as though
they are being read from a file, one data point per record. The letter "e" at the start of the first column
terminates data entry. The using option can be applied to these data — using it to filter them through
a function might make sense, but selecting columns probably doesn’t!

’-? is intended for situations where it is useful to have data and commands together, e.g., when gnuplot
is run as a sub-process of some front-end application. Some of the demos, for example, might use this
feature. While plot options such as index and every are recognized, their use forces you to enter data
that won’t be used. For example, while

plot ’-’ index 0, ’-’ index 1
2
4
6

does indeed work,

plOt R R
2

4

6

e

10

12

14

e

is a lot easier to type.
If you use ’-’ with replot, you may need to enter the data more than once (see replot (p.)

A Dblank filename (*’) specifies that the previous filename should be reused. This can be useful with
things like

http://www.nas.nasa.gov/~woo/gnuplot/mgr/mgr.html

31

plot ’a/very/long/filename’ using 1:2, ’’ using 1:3, ’’ using 1:4

(If you use both ’-* and *’ on the same plot command, you'll need to have two sets of inline data, as in
the example above.)

On some computer systems with a popen function (Unix), the datafile can be piped through a shell
command by starting the file name with a ’<’. For example,

pop(x) = 103*exp(-x/10)
plot "< awk ’{print $1-1965, $2}’ population.dat", pop(x)

would plot the same information as the first population example but with years since 1965 as the x
axis. If you want to execute this example, you have to delete all comments from the data file above or
substitute the following command for the first part of the command above (the part up to the comma):

plot "< awk ’$0 !” /~#/ {print $1-1965, $2}’ population.dat"

While this approach is most flexible, it is possible to achieve simple filtering with the using or thru
keywords.

27.1.6 Thru

The thru function is provided for backward compatibility.

Syntax:
plot ’file’ thru f(x)

It is equivalent to:

plot ’file’ using 1:(£($2))

While the latter appears more complex, it is much more flexible. The more natural

plot ’file’ thru f(y)

also works (i.e. you can use y as the dummy variable).

thru is parsed for splot and fit but has no effect.

27.1.7 Using

The most common datafile modifier is using.

Syntax:
plot ’file’ using {<entry> {:<entry> {:<entry> ...}}} {’format’}

If a format is specified, each datafile record is read using the C library’s ’scanf’ function, with the
specified format string. Otherwise the record is read and broken into columns at spaces or tabs. A
format cannot be specified if time-format data is being used (this must be done by set data time).

The resulting array of data is then sorted into columns according to the entries. Each <entry> may
be a simple column number, which selects the datum, an expression enclosed in parentheses, or empty.
The expression can use $1 to access the first item read, $2 for the second item, and so on. It can also
use column(x) and valid(x) where x is an arbitrary expression resulting in an integer. column(x)
returns the x’th datum; valid(x) tests that the datum in the x’th column is a valid number. A column
number of 0 generates a number increasing (from zero) with each point, and is reset upon encountering
two blank records. A column number of -1 gives the dataline number, which starts at 0, increments
at single blank records, and is reset at double blank records. A column number of -2 gives the index
number, which is incremented only when two blank records are found. An empty <entry> will default
to its order in the list of entries. For example, using ::4 is interpreted as using 1:2:4.

32

N.B. — the call command also uses $’s as a special character. See call (p. for details about how
to include a column number in a call (p. argument list.

If the using list has but a single entry, that <entry> will be used for y and the data point number is
used for x; for example, "plot ’file’ using 1" is identical to "plot ’file’ using 0:1". If the using list
has two entries, these will be used for x and y. Additional entries are usually errors in x and/or y. See
set style (p. for details about plotting styles that make use of error information, and fit (p.
for use of error information in curve fitting.

‘scanf’ accepts several numerical specifications but gnuplot requires all inputs to be double-precision
floating-point variables, so If is the only permissible specifier. ’scanf’ expects to see white space — a
blank, tab ("\t"), newline ("\n"), or formfeed ("\f") — between numbers; anything else in the input
stream must be explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than single-quotes.
Examples:

This creates a plot of the sum of the 2nd and 3rd data against the first: (The format string specifies
comma- rather than space-separated columns.)

plot ’file’ using 1:($2+$3) ’JL1f,%1f,%1f’

In this example the data are read from the file "MyData" using a more complicated format:
plot ’MyData’ using "J*1f%1£%*20["\n]%1f"

The meaning of this format is:

%*1f ignore a number

%1f read a double-precision number (x by default)
%*20["\n] ignore 20 non-newline characters

%1f read a double-precision number (y by default)

One trick is to use the ternary ?: operator to filter data:
plot ’file’ using 1:($3>10 7 $2 : 1/0)

which plots the datum in column two against that in column one provided the datum in column three
exceeds ten. 1/0 is undefined; gnuplot quietly ignores undefined points, so unsuitable points are
suppressed.

In fact, you can use a constant expression for the column number, provided it doesn’t start with an
opening parenthesis; constructs like using 04 (complicated expression) can be used. The crucial
point is that the expression is evaluated once if it doesn’t start with a left parenthesis, or once for each
data point read if it does.

If timeseries data are being used, the time can span multiple columns. The starting column should be
specified. Note that the spaces within the time must be included when calculating starting columns for
other data. E.g., if the first element on a line is a time with an embedded space, the y value should be
specified as column three.

It should be noted that plot ’file’, plot ’file’ using 1:2, and plot ’file’ using ($1):($2) can be subtly
different: 1) if file has some lines with one column and some with two, the first will invent x values
when they are missing, the second will quietly ignore the lines with one column, and the third will store
an undefined value for lines with one point (so that in a plot with lines, no line joins points across the
bad point); 2) if a line contains text at the first column, the first will abort the plot on an error, but the
second and third should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of garbage at the top simply by specifying
plot ’file’ using 1:2

However, if you want to leave text in your data files, it is safer to put the comment character (#) in the
first column of the text lines. Feeble using demos.

http://www.nas.nasa.gov/~woo/gnuplot/using/using.html

33

27.2 Errorbars

Error bars are supported for 2-d data file plots by reading one to four additional columns (or using
entries); these additional values are used in different ways by the various errorbar styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of the data file
— either

(x, y, ydelta),

(%, y, ylow, yhigh),

(%, y, xdelta),

(x, y, xlow, xhigh),

(x, y, xdelta, ydelta), or

(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given above, though
the using qualifier can manipulate the order and provide values for missing columns. For example,

plot ’file’ with errorbars
plot ’file’ using 1:2:(sqrt($1)) with xerrorbars
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

The last example is for a file containing an unsupported combination of relative x and absolute y errors.
The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of
ylow and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers
on the record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the
same fashion. To get lines plotted between the data points, plot the data file twice, once with errorbars
and once with lines (but remember to use the notitle option on one to avoid two entries in the key).
Alternately, use the errorlines command (see errorlines (p. [33)).

The error bars have crossbars at each end unless set bars is used (see set bars (p. for details).

If autoscaling is on, the ranges will be adjusted to include the error bars. Errorbar demos.
See plot using (p. [31)), plot with (p.[36]), and set style (p. for more information.

27.3 Errorlines

Lines with error bars are supported for 2-d data file plots by reading one to four additional columns (or
using entries); these additional values are used in different ways by the various errorlines styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of the data file
— either

(x, y, ydelta),

(x, y, ylow, yhigh),

(x, y, xdelta),

(x, y, xlow, xhigh),

(x, y, xdelta, ydelta), or

(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given above, though
the using qualifier can manipulate the order and provide values for missing columns. For example,

plot ’file’ with errorlines
plot ’file’ using 1:2:(sqrt($1)) with xerrorlines
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html

34

The last example is for a file containing an unsupported combination of relative x and absolute y errors.
The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of
ylow and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers
on the record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the
same fashion.

The error bars have crossbars at each end unless set bars is used (see set bars (p. for details).

If autoscaling is on, the ranges will be adjusted to include the error bars.
See plot using (p. , plot with (p. , and set style (p. for more information.

27.4 Parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs for plot
and in triplets for splot.

Examples:
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully specified before
a data file is given as a plot. In other words, the x parametric function (sin(t) above) and the y
parametric function (t**2 above) must not be interrupted with any modifiers or data functions; doing
so will generate a syntax error stating that the parametric function is not fully specified.

Other modifiers, such as with and title, may be specified only after the parametric function has been
completed:

plot sin(t),t**2 title ’Parametric example’ with linespoints

Parametric Mode Demos.

27.5 Ranges

The optional ranges specify the region of the graph that will be displayed.

Syntax:
[{<dummy-var>=}{{<min>}:{<max>}}]
[({{<min>}:{<max>}}]

The first form applies to the independent variable (xrange or trange, if in parametric mode). The sec-
ond form applies to the dependent variable yrange (and xrange, too, if in parametric mode). <dummy-
var> is a new name for the independent variable. (The defaults may be changed with set dummy.)
The optional <min> and <max> terms can be constant expressions or *.

In non-parametric mode, the order in which ranges must be given is xrange and yrange.

In parametric mode, the order for the plot command is trange, xrange, and yrange. The following
plot command shows setting the trange to [-pi:pi], the xrange to [-1.3:1.3] and the yrange to [-1:1]
for the duration of the graph:

plot [-pi:pil] [-1.3:1.3] [-1:1] sin(t),t**2

Note that the x2range and y2range cannot be specified here — set x2range and set y2range must be
used.

Ranges are interpreted in the order listed above for the appropriate mode. Once all those needed are
specified, no further ones must be listed, but unneeded ones cannot be skipped — use an empty range
[] as a placeholder.

http://www.nas.nasa.gov/~woo/gnuplot/param/param.html

35

* can be used to allow autoscaling of either of min and max. See also set autoscale (p. [42). .

Ranges specified on the plot or splot command line affect only that graph; use the set xrange, set
yrange, etc., commands to change the default ranges for future graphs.

With time data, you must provide the range (in the same manner as the time appears in the datafile)
within quotes. gnuplot uses the timefmt string to read the value — see set timefmt (p. |106)).

Examples:

This uses the current ranges:

plot cos(x)

This sets the x range only:
plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pixt)

This sets both the x and y ranges:
plot [-pi:pi] [-3:3] tan(x), 1/x

This sets only the y range, and turns off autoscaling on both axes:
plot [] [-2:sin(5)*-8] sin(x)**besjoO(x)

This sets xmax and ymin only:
plot [:200] [-pi:] exp(sin(x))

This sets the x range for a timeseries:

set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] ’timedata.dat’

See Demo.

27.6 Title

A line title for each function and data set appears in the key, accompanied by a sample of the line and/or
symbol used to represent it. It can be changed by using the title option.
Syntax:

title "<title>" | notitle

where <title> is the new title of the line and must be enclosed in quotes. The quotes will not be shown
in the key. A special character may be given as a backslash followed by its octal value ("\345"). The tab
character "\t" is understood. Note that backslash processing occurs only for strings enclosed in double
quotes — use single quotes to prevent such processing. The newline character "\n" is not processed in
key entries in either type of string.

The line title and sample can be omitted from the key by using the keyword notitle. A null title (title
>?) is equivalent to notitle. If only the sample is wanted, use one or more blanks (title * ?).

By default the line title is the function or file name as it appears on the plot command. If it is a file
name, any datafile modifiers specified will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be controlled by set key. Please see
set key (p. for details.
Examples:

This plots y=x with the title x’:

http://www.nas.nasa.gov/~woo/gnuplot/ranges/ranges.html

36

plot x

This plots x squared with title "x~2" and file "data.1" with title "measured data":
plot x**2 title "x"2", ’data.l’ t "measured data"

This puts an untitled circular border around a polar graph:
set polar; plot my_function(t), 1 notitle

27.7 With

Functions and data may be displayed in one of a large number of styles. The with keyword provides
the means of selection.

Syntax:
with <style> { {linestyle | 1s <line_style>}

| {{linetype | 1t <line_type>}
{linewidth | lw <line_width>}
{pointtype | pt <point_type>}
{pointsize | ps <point_size>}
{palettel}}

}

where <style> is either lines, points, linespoints, impulses, dots, steps, fsteps, histeps, error-
bars, xerrorbars, yerrorbars, xyerrorbars, errorlines, xerrorlines, yerrorlines, xyerrorlines,
boxes, filledboxes, filledcurves, boxerrorbars, boxxyerrorbars, financebars, candlesticks, vec-
tor or pm3d. Some of these styles require additional information. See set style <style> (p. for
details of each style. Note that filledcurves and pm3d can take an additional option not listed above
(the latter only when used in the splot command) — see their help or examples below for more details.

Default styles are chosen with the set style function and set style data commands.

By default, each function and data file will use a different line type and point type, up to the maximum
number of available types. All terminal drivers support at least six different point types, and re-use
them, in order, if more are required. The LaTeX driver supplies an additional six point types (all
variants of a circle), and thus will only repeat after 12 curves are plotted with points. The PostScript
drivers (postscript) supplies a total of 64.

If you wish to choose the line or point type for a single plot, <line_type> and <point_type> may be
specified. These are positive integer constants (or expressions) that specify the line type and point type
to be used for the plot. Use test to display the types available for your terminal.

You may also scale the line width and point size for a plot by using <line_width> and <point_size>,
which are specified relative to the default values for each terminal. The pointsize may also be altered
globally — see set pointsize (p. for details. But note that both <point_size> as set here and as
set by set pointsize multiply the default point size — their effects are not cumulative. That is, set
pointsize 2; plot x w p ps 3 will use points three times default size, not six.

If you have defined specific line type/width and point type/size combinations with set style line, one
of these may be selected by setting <line_style> to the index of the desired style.

If gnuplot was built with pm3d support, the special keyword 'palette’ is allowed for smooth color change
of lines, points and dots in splots. The color is choosen from a smooth palette which was set previously
with the command set palette. The color value corresponds to the z-value of the point coordinates.
The 2d plot command ignores this option.

The keywords may be abbreviated as indicated.
Note that the linewidth, pointsize and palette options are not supported by all terminals.
Examples:

This plots sin(x) with impulses:

37

plot sin(x) with impulses

This plots x*y with points, x**2 with the default:

plot x*y w points, x**2 + y**2

This plots tan(x) with the default function style, file "data.1" with lines:
plot [1 [-2:5] tan(x), ’data.l’ with 1

This plots "leastsq.dat" with impulses:
plot ’leastsq.dat’ w i

This plots the data file "population" with boxes:
plot ’population’ with boxes

This plots "exper.dat" with errorbars and lines connecting the points (errorbars require three or four
columns):

plot ’exper.dat’ w lines, ’exper.dat’ notitle w errorbars

Another way to plot "exper.dat" with errorlines (errorbars require three or four columns):

plot ’exper.dat’ w errorlines

This plots sin(x) and cos(x) with linespoints, using the same line type but different point types:

plot sin(x) with linesp 1t 1 pt 3, cos(x) with linesp 1t 1 pt 4

This plots file "data" with points of type 3 and twice usual size:
plot ’data’ with points pointtype 3 pointsize 2

This plots two data sets with lines differing only by weight:
plot ’dl’ t "good" w 1 1t 2 1w 3, ’d2’ t "bad" w1l 1t 2 1w 1

This plots filled curve of x*x and a color stripe:
plot x*x with filledcurve closed, 40 with filledcurve y1=10

This plots filled curve of x*x and a color box:
plot x*x, (x>=-5 &% x<=5 7 40 : 1/0) with filledcurve y1=10 1t 8

This plots a surface with color lines:

splot x*x-y*y with line palette

This plots two color surfaces at different altitudes:

splot x*x-y*y with pm3d, x*x+y*y with pm3d at t

See set style (p. to change the default styles. Styles demos.

28 Print

The print command prints the value of <expression> to the screen. It is synonymous with pause 0.
<expression> may be anything that gnuplot can evaluate that produces a number, or it can be a string.

Syntax:

print <expression> {, <expression>, ...}

See expressions (p. .

http://www.nas.nasa.gov/~woo/gnuplot/styles/styles.html

38

29 Pwd

The pwd command prints the name of the working directory to the screen.

30 Quit

The exit and quit commands and END-OF-FILE character will exit gnuplot. Each of these commands
will clear the output device (as does the clear command) before exiting.

31 Replot

The replot command without arguments repeats the last plot or splot command. This can be useful
for viewing a plot with different set options, or when generating the same plot for several devices.

Arguments specified after a replot command will be added onto the last plot or splot command (with
an implied ’)” separator) before it is repeated. replot accepts the same arguments as the plot and splot
commands except that ranges cannot be specified. Thus you can use replot to plot a function against
the second axes if the previous command was plot but not if it was splot, and similarly you can use
replot to add a plot from a binary file only if the previous command was splot.

N.B. — use of
plot ’-’ ; ... ; replot

is not recommended. gnuplot does not store the inline data internally, so since replot appends new
information to the previous plot and then executes the modified command, the ’-’ from the initial plot
will expect to read inline data again.

Note that replot does not work in multiplot mode, since it reproduces only the last plot rather than
the entire screen.

See also command-line-editing (p. for ways to edit the last plot (p. (splot (p. [117))
command.

32 Reread

The reread command causes the current gnuplot command file, as specified by a load command or
on the command line, to be reset to its starting point before further commands are read from it. This
essentially implements an endless loop of the commands from the beginning of the command file to
the reread command. (But this is not necessarily a disaster — reread can be very useful when used
in conjunction with if. See if (p. for details.) The reread command has no effect if input from
standard input.

Examples:

Suppose the file "looper" contains the commands

a=a+l
plot sin(xxa)
pause -1

if (a<5) reread

and from within gnuplot you submit the commands
a=0
load ’looper’

39

The result will be four plots (separated by the pause message).

Suppose the file "data" contains six columns of numbers with a total yrange from 0 to 10; the first is x
and the next are five different functions of x. Suppose also that the file "plotter" contains the commands

c_p = c_p+l
plot "$0" using 1l:c_p with lines linetype c_p
if(c_p < n_p) reread

and from within gnuplot you submit the commands
n_p=6
c_p=1
unset key
set yrange [0:10]
set multiplot
call ’plotter’ ’data’
unset multiplot

The result is a single graph consisting of five plots. The yrange must be set explicitly to guarantee that
the five separate graphs (drawn on top of each other in multiplot mode) will have exactly the same axes.
The linetype must be specified; otherwise all the plots would be drawn with the same type. Reread
Animation Demo

33 Reset

The reset command causes all options that can be set with the set command to take on their default
values. The only exceptions are that the terminal set with set term and the output file set with set
output are left unchanged. This command is useful, e.g., to restore the default settings at the end of a
command file, or to return to a defined state after lots of settings have been changed within a command
file. Please refer to the set command to see the default values that the various options take.

34 Save

The save command saves user-defined functions, variables, the set term status, all set options, or all
of these, plus the last plot (splot) command to the specified file.

Syntax:

save {<option>} ’<filename>’

where <option> is functions, variables, terminal or set. If no option is used, gnuplot saves func-
tions, variables, set options and the last plot (splot) command.

saved files are written in text format and may be read by the load command. For save with the
set option or without any option, the terminal choice and the output filename are written out as a
comment, to get an output file that works in other installations of gnuplot, without changes and without
risk of unwillingly overwriting files.

save terminal will write out just the terminal status, without the comment marker in front of it. This
is mainly useful for switching the terminal setting for a short while, and getting back to the previously
set terminal, afterwards, by loading the saved terminal status. Note that for a single gnuplot session
you may rather use the other method of saving and restoring current terminal by the commands set
term push and set term pop, see set term (p. .

The filename must be enclosed in quotes.

http://www.nas.nasa.gov/~woo/gnuplot/animate/animate.html
http://www.nas.nasa.gov/~woo/gnuplot/animate/animate.html

40

The special filename "-" may be used to save commands to standard output. This provides a consistent
interface to gnuplot’s internal settings to programs which communicate with gnuplot through a pipe.
Please see "help batch/interactive" for more details.

Examples:

save ’work.gnu’

save functions ’func.dat’
save var ’var.dat’

save set ’options.dat’
save term ’myterm.gnu’

35 Set-show

The set command can be used to set lots of options. No screen is drawn, however, until a plot, splot,
or replot command is given.

The show command shows their settings; show all shows all the settings.

If a variable contains time/date data, show will display it according to the format currently defined by
set timefmt, even if that was not in effect when the variable was initially defined.

35.1 Angles

By default, gnuplot assumes the independent variable in polar graphs is in units of radians. If set
angles degrees is specified before set polar, then the default range is [0:360] and the independent
variable has units of degrees. This is particularly useful for plots of data files. The angle setting also
applies to 3-d mapping as set via the set mapping command.

Syntax:

set angles {degrees | radians}
show angles

The angle specified in set grid polar is also read and displayed in the units specified by set angles.

set angles also affects the arguments of the machine-defined functions sin(x), cos(x) and tan(x), and
the outputs of asin(x), acos(x), atan(x), atan2(x), and arg(x). It has no effect on the arguments of
hyperbolic functions or Bessel functions. However, the output arguments of inverse hyperbolic functions
of complex arguments are affected; if these functions are used, set angles radians must be in effect to
maintain consistency between input and output arguments.

x={1.0,0.1}

set angles radians

y=sinh(x)

print y #prints {1.16933, 0.154051}

print asinh(y) #prints {1.0, 0.1}

but
set angles degrees
y=sinh(x)
print y #prints {1.16933, 0.154051}

print asinh(y) #prints {57.29578, 5.729578%}
\href{http://www.nas.nasa.gov/\“woo/gnuplot/poldat/poldat.html}{\tt Polar plot using ‘set angles‘.]

41

35.2 Arrow

Arbitrary arrows can be placed on a plot using the set arrow command.

Syntax:

set arrow {<tag>} {from <position>} {tol|rto <position>}
{nohead | head | heads}
{size <length>,<angle>}
{front | back}
{ {linestyle | 1s <line_style>}
| {linetype | 1t <line_type>}
{linewidth | lw <line_width} }
unset arrow {<tag>}
show arrow

<tag> is an integer that identifies the arrow. If no tag is given, the lowest unused tag value is assigned
automatically. The tag can be used to delete or change a specific arrow. To change any attribute of an
existing arrow, use the set arrow command with the appropriate tag and specify the parts of the arrow
to be changed.

The <position>s are specified by either x,y or x,y,z, and may be preceded by first, second, graph,
or screen to select the coordinate system. Unspecified coordinates default to 0. The endpoints can be
specified in one of four coordinate systems — first or second axes, graph or screen. See coordinates
(p. @ for details. A coordinate system specifier does not carry over from the "from" position to the
"to" position. Arrows outside the screen boundaries are permitted but may cause device errors. If the
endpoint is specified by "rto" instead of "to" it is drawn relatively to the start point.

Specifying nohead produces an arrow drawn without a head — a line segment. This gives you yet
another way to draw a line segment on the plot. By default, arrows have heads. Specifying heads draws
arrow heads on both ends of the line.

Head size can be controlled by size <length>,<angle>, where <length> defines length of each branch
of the arrow head and <angle> the angle (in degrees) they make with the arrow. <Length> is in x-axis
units; this can be changed by first, second, graph or screen before the <length>; see coordinates
(p. [6]) for details.

The line style may be selected from a user-defined list of line styles (see set style line (p.[60])) or may
be defined here by providing values for <line_type> (an index from the default list of styles) and/or
<line_width> (which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected, its properties (type and width) cannot
be altered merely by issuing another set arrow command with the appropriate index and 1t or 1w.

If front is given, the arrow is written on top of the graphed data. If back is given (the default), the
arrow is written underneath the graphed data. Using front will prevent a arrow from being obscured
by dense data.

Examples:
To set an arrow pointing from the origin to (1,2) with user-defined style 5, use:

set arrow to 1,2 1s 5

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the arrow number 3, use:

set arrow 3 from graph 0,0 to -5,5,3

To change the preceding arrow to end at 1,1,1, without an arrow head and double its width, use:

set arrow 3 to 1,1,1 nohead 1lw 2

To draw a vertical line from the bottom to the top of the graph at x=3, use:

set arrow from 3, graph O to 3, graph 1 nohead

42

To draw a vertical arrow with T-shape ends, use:
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90

To draw an arrow relatively to the start point, where the relative distances are given in graph coordinates,
use:

set arrow from 0,-5 rto graph 0.1,0.1

To delete arrow number 2, use:

unset arrow 2

To delete all arrows, use:
unset arrow

To show all arrows (in tag order), use:

show arrow
\href{http://www.nas.nasa.gov/\"woo/gnuplot/arrows/arrows.html}{\tt Arrows Demos. }{

35.3 Autoscale

Autoscaling may be set individually on the x, y or z axis or globally on all axes. The default is to
autoscale all axes.

Syntax:
set autoscale {<axes>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
unset autoscale {<axes>}
show autoscale

where <axes> is either x, y, z, cb, x2, y2 or xy. A keyword with min or max appended (this cannot
be done with xy) tells gnuplot to autoscale just the minimum or maximum of that axis. If no keyword
is given, all axes are autoscaled.

A keyword with fixmin, fixmax or fix appended tells gnuplot to disable extension of the axis range to
the next tic mark position, for autoscaled axes using equidistant tics; set autoscale fix sets this for all
axes. Command set autoscale keepfix autoscales all axes while keeping the fix settings.

When autoscaling, the axis range is automatically computed and the dependent axis (y for a plot and
z for splot) is scaled to include the range of the function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the current y or z range is used.

Autoscaling the independent variables (x for plot and x,y for splot) is a request to set the domain to
match any data file being plotted. If there are no data files, autoscaling an independent variable has no
effect. In other words, in the absence of a data file, functions alone do not affect the x range (or the y
range if plotting z = f(x,y)).

Please see set xrange (p. [111)) for additional information about ranges.

The behavior of autoscaling remains consistent in parametric mode, (see set parametric (p.)
However, there are more dependent variables and hence more control over x, y, and z axis scales. In
parametric mode, the independent or dummy variable is t for plots and u,v for splots. autoscale
in parametric mode, then, controls all ranges (t, u, v, x, y, and z) and allows x, y, and z to be fully
autoscaled.

Autoscaling works the same way for polar mode as it does for parametric mode for plot, with the
extension that in polar mode set dummy can be used to change the independent variable from t (see

set dummy (p. [50))).

When tics are displayed on second axes but no plot has been specified for those axes, x2range and
y2range are inherited from xrange and yrange. This is done before xrange and yrange are autoextended

43

to a whole number of tics, which can cause unexpected results. You can use the fixmin or fixmax
options to avoid this.

Examples:

This sets autoscaling of the y axis (other axes are not affected):
set autoscale y

This sets autoscaling only for the minimum of the y axis (the maximum of the y axis and the other axes
are not affected):
set autoscale ymin

This disables extension of the x2 axis tics to the next tic mark, thus keeping the exact range as found
in the plotted data and functions:

set autoscale x2fixmin

set autoscale x2fixmax

This sets autoscaling of the x and y axes:
set autoscale xy

This sets autoscaling of the x, y, z, x2 and y2 axes:
set autoscale

This disables autoscaling of the x, y, z, x2 and y2 axes:
unset autoscale

This disables autoscaling of the z axis only:
unset autoscale z

35.3.1 Parametric mode

When in parametric mode (set parametric), the xrange is as fully scalable as the y range. In other
words, in parametric mode the x axis can be automatically scaled to fit the range of the parametric
function that is being plotted. Of course, the y axis can also be automatically scaled just as in the
non-parametric case. If autoscaling on the x axis is not set, the current x range is used.

Data files are plotted the same in parametric and non-parametric mode. However, there is a difference
in mixed function and data plots: in non-parametric mode with autoscaled x, the x range of the datafile
controls the x range of the functions; in parametric mode it has no influence.

For completeness a last command set autoscale t is accepted. However, the effect of this "scaling" is
very minor. When gnuplot determines that the t range would be empty, it makes a small adjustment
if autoscaling is true. Otherwise, gnuplot gives an error. Such behavior may, in fact, not be very useful
and the command set autoscale t is certainly questionable.

splot extends the above ideas as you would expect. If autoscaling is set, then x, y, and z ranges are
computed and each axis scaled to fit the resulting data.

35.3.2 Polar mode

When in polar mode (set polar), the xrange and the yrange are both found from the polar coordinates,
and thus they can both be automatically scaled. In other words, in polar mode both the x and y axes
can be automatically scaled to fit the ranges of the polar function that is being plotted.

When plotting functions in polar mode, the rrange may be autoscaled. When plotting data files in polar
mode, the trange may also be autoscaled. Note that if the trange is contained within one quadrant,
autoscaling will produce a polar plot of only that single quadrant.

Explicitly setting one or two ranges but not others may lead to unexpected results. |See polar demos

http://www.nas.nasa.gov/~woo/gnuplot/poldat/poldat.html

44

35.4 Bars

The set bars command controls the tics at the ends of error bars.

Syntax:
set bars {small | large | <size>}
unset bars
show bars

small is a synonym for 0.0, and large for 1.0. The default is 1.0 if no size is given.

35.5 Bmargin

The command set bmargin sets the size of the bottom margin. Please see set margin (p. for
details.

35.6 Border

The set border and unset border commands control the display of the graph borders for the plot
and splot commands. Note that the borders do not necessarily coincide with the axes; with plot they

often do, but with splot they usually do not.

Syntax:
set border {<integer> { {linestyle | 1s <line_style>}
| {linetype | 1t <line_type> }
{linewidth | 1w <line_width>} } }
unset border
show border

With a splot displayed in an arbitrary orientation, like set view 56,103, the four corners of the x-y
plane can be referred to as "front", "back", "left" and "right". A similar set of four corners exist for
the top surface, of course. Thus the border connecting, say, the back and right corners of the x-y plane
is the "bottom right back" border, and the border connecting the top and bottom front corners is the
"front vertical". (This nomenclature is defined solely to allow the reader to figure out the table that

follows.)
The borders are encoded in a 12-bit integer: the bottom four bits control the border for plot and the

sides of the base for splot; the next four bits control the verticals in splot; the top four bits control the
edges on top of the splot. In detail, <integer> should be the sum of the appropriate entries from the

following table:

’ Graph Border Encoding ‘

Bit plot splot
1 bottom bottom left front
2 left bottom left back
4 top bottom right front
8 right bottom right back
16 | no effect left vertical
32 no effect back vertical
64 | no effect right vertical
128 | no effect front vertical
256 | no effect top left back
512 | no effect top right back
1024 | no effect top left front
2048 | no effect top right front

45

Various bits or combinations of bits may be added together in the command.
The default is 31, which is all four sides for plot, and base and z axis for splot.

Using the optional <line_style>, <line_type> and <line_width> specifiers, the way the border lines are
drawn can be influenced (limited by what the current terminal driver supports).

For plot, tics may be drawn on edges other than bottom and left by enabling the second axes — see set
xtics (p. [112]) for details..

If a splot draws only on the base, as is the case with "unset surface; set contour base", then the
verticals and the top are not drawn even if they are specified.

Examples:

Draw default borders:
set border

Draw only the left and bottom (plot) or both front and back bottom left (splot) borders:
set border 3

Draw a complete box around a splot:
set border 4095

Draw a topless box around a splot, omitting the front vertical:
set border 127+256+512 # or set border 1023-128

Draw only the top and right borders for a plot and label them as axes:
unset xtics; unset ytics; set x2tics; set y2tics; set border 12

Borders Demo.

35.7 Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes, filledboxes and
boxerrorbars styles.

Syntax:

set boxwidth {<width>} {absolutel|relative}
show boxwidth

If a data file is plotted without the width being specified in the third, fourth, or fifth column (or using
entry), or if a function is plotted, the width of each box is set by the set boxwidth command. (If a
width is given both in the file and by the set boxwidth command, the one in the file is used.) If the
width is not specified in one of these ways, the width of each box will be calculated automatically so
that it touches the adjacent boxes. relative indicates, that the specified boxwidth is a scaling factor for
the automatically calculated boxwidth, otherwise the boxwidth is taken as an absolute value (which
is the default). In a four-column data set, the fourth column will be interpreted as the box width
unless the width is set to -2.0, in which case the width will be calculated automatically. See set style
boxerrorbars (p. for more details.

To set the box width to automatic use the command

set boxwidth

or, for four-column data,
set boxwidth -2

The same effect can be achieved with the using keyword in plot:
plot ’file’ using 1:2:3:4:(-2)

http://www.nas.nasa.gov/~woo/gnuplot/borders/borders.html

46

To set the box width to half of the automatic size use
set boxwidth 0.5 relative

To set the box width to an absolute value of 2 use
set boxwidth 2 absolute

or, if you didn’t specify a relative boxwidth before,
set boxwidth 2

35.8 Fillstyle

The set style filling command is used to set the fillstyle of boxes in the filledboxes style.

Syntax:
set style filling {empty | solid {<demnsity>} | pattern {<number>}}

The defaule fillstyle is solid 1.0.

The solid option causes filling with a solid color, if the terminal supports that. The <density> parameter
specifies the intensity of the filled colors. At a <density> of 0.0, the box is empty, at <density> of 1.0,
the inner area is of the same color as the border of the box. Solid filling may be implemented either by
modifying the color of the box border continuously, or by dithering, depending on the terminal driver.
If no <density> parameter is given, a default of 1.0 is used, automatically.

The pattern option causes filling to be done with a fill pattern supplied by the terminal driver.

<pattern> is the pattern number, starting at 0. The kind and number of available fill patterns de-
pend on the terminal driver. If no <pattern> number is given, a default of 0 is assumed.

The empty option causes filled boxes not to be filled, after all. This makes the filledboxes style
equivalent to simple boxes. It is equivalent to the solid option with a <density> parameter of zero.

35.9 Clabel

gnuplot will vary the linetype used for each contour level when clabel is set. When this option on (the
default), a legend labels each linestyle with the z level it represents. It is not possible at present to
separate the contour labels from the surface key.

Syntax:
set clabel {’<format>’}

unset clabel
show clabel

The default for the format string is %8.3g, which gives three decimal places. This may produce poor
label alignment if the key is altered from its default configuration.

The first contour linetype, or only contour linetype when clabel is off, is the surface linetype +1; contour
points are the same style as surface points.

See also set contour (p. [48).

35.10 Clip

gnuplot can clip data points and lines that are near the boundaries of a graph.

Syntax:
set clip <clip-type>
unset clip <clip-type>
show clip

47

Three clip types are supported by gnuplot: points, one, and two. One, two, or all three clip types
may be active for a single graph.

The points clip type forces gnuplot to clip (actually, not plot at all) data points that fall within but
too close to the boundaries. This is done so that large symbols used for points will not extend outside
the boundary lines. Without clipping points near the boundaries, the plot may look bad. Adjusting the
x and y ranges may give similar results.

Setting the one clip type causes gnuplot to draw a line segment which has only one of its two endpoints
within the graph. Only the in-range portion of the line is drawn. The alternative is to not draw any
portion of the line segment.

Some lines may have both endpoints out of range, but pass through the graph. Setting the two clip-type
allows the visible portion of these lines to be drawn.

In no case is a line drawn outside the graph.
The defaults are noclip points, clip one, and noclip two.

To check the state of all forms of clipping, use
show clip

For backward compatibility with older versions, the following forms are also permitted:
set clip
unset clip

set clip is synonymous with set clip points; unset clip turns off all three types of clipping.

35.11 Cntrparam

set cntrparam controls the generation of contours and their smoothness for a contour plot. show
contour displays current settings of cntrparam as well as contour.

Syntax:
set cntrparam { { linear
cubicspline
bspline

points <n>
order <n>
levels { auto {<n>} | <n>
| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}

—_—————

3

show contour

This command has two functions. First, it sets the values of z for which contour points are to be
determined (by linear interpolation between data points or function isosamples.) Second, it controls the
way contours are drawn between the points determined to be of equal z. <n> should be an integral
constant expression and <zl1>, <z2> ... any constant expressions. The parameters are:

linear, cubicspline, bspline — Controls type of approximation or interpolation. If linear, then
straight line segments connect points of equal z magnitude. If cubicspline, then piecewise-linear con-
tours are interpolated between the same equal z points to form somewhat smoother contours, but which
may undulate. If bspline, a guaranteed-smoother curve is drawn, which only approximates the position
of the points of equal-z.

points — Eventually all drawings are done with piecewise-linear strokes. This number controls the
number of line segments used to approximate the bspline or cubicspline curve. Number of cubicspline
or bspline segments (strokes) = points * number of linear segments.

48

order — Order of the bspline approximation to be used. The bigger this order is, the smoother the
resulting contour. (Of course, higher order bspline curves will move further away from the original
piecewise linear data.) This option is relevant for bspline mode only. Allowed values are integers in the
range from 2 (linear) to 10.

levels — Selection of contour levels, controlled by auto (default), discrete, incremental, and <n>,
number of contour levels, limited to
MAX_DISCRETE_LEVELS as defined in plot.h (30 is standard.)

For auto, <n> specifies a nominal number of levels; the actual number will be adjusted to give simple
labels. If the surface is bounded by zmin and zmax, contours will be generated at integer multiples of
dz between zmin and zmax, where dz is 1, 2, or 5 times some power of ten (like the step between two
tic marks).

For levels discrete, contours will be generated at z = <zl>, <z2> ... as specified; the number of
discrete levels sets the number of contour levels. In discrete mode, any set cntrparam levels <n>
are ignored.

For incremental, contours are generated at values of z beginning at <start> and increasing by
<increment>, until the number of contours is reached. <end> is used to determine the number of
contour levels, which will be changed by any subsequent set cntrparam levels <n>.

If the command set cntrparam is given without any arguments specified, the defaults are used: linear,
5 points, order 4, 5 auto levels.
Examples:

set cntrparam bspline
set cntrparam points 7
set cntrparam order 10

To select levels automatically, 5 if the level increment criteria are met:

set cntrparam levels auto 5

To specify discrete levels at .1, .37, and .9:

set cntrparam levels discrete .1,1/exp(1),.9

To specify levels from 0 to 4 with increment 1:

set cntrparam levels incremental 0,1,4

To set the number of levels to 10 (changing an incremental end or possibly the number of auto levels):

set cntrparam levels 10

To set the start and increment while retaining the number of levels:

set cntrparam levels incremental 100,50
See also set contour (p. for control of where the contours are drawn, and set clabel (p. for
control of the format of the contour labels and linetypes.

Contours Demo and contours with User Defined Levels.

35.12 Contour

set contour enables contour drawing for surfaces. This option is available for splot only.

Syntax:
set contour {base surface | both}
unset contour
show contour

http://www.nas.nasa.gov/~woo/gnuplot/contours/contours.html
http://www.nas.nasa.gov/~woo/gnuplot/discrete/discrete.html

49

The three options specify where to draw the contours: base draws the contours on the grid base where
the x/ytics are placed, surface draws the contours on the surfaces themselves, and both draws the
contours on both the base and the surface. If no option is provided, the default is base.

See also set cntrparam (p. for the parameters that affect the drawing of contours, and set clabel
(p- for control of labelling of the contours.

The surface can be switched off (see set surface (p. [80])), giving a contour-only graph. Though it is
possible to use set size to enlarge the plot to fill the screen, more control over the output format can
be obtained by writing the contour information to a file, and rereading it as a 2-d datafile plot:

unset surface

set contour

set cntrparam ...

set term table

set out ’filename’

splot ...

set out

contour info now in filename

set term <whatever>

plot ’filename’

In order to draw contours, the data should be organized as "grid data". In such a file all the points for
a single y-isoline are listed, then all the points for the next y-isoline, and so on. A single blank line (a
line containing no characters other than blank spaces and a carriage return and/or a line feed) separates
one y-isoline from the next. See also splot datafile (p. .

If contours are desired from non-grid data, set dgrid3d can be used to create an appropriate grid.
See set dgrid3d (p. for more information. |Contours Demo and contours with User Defined
Levels.

35.13 Data style

The set style data command changes the default plotting style for data plots.

Syntax:
set style data <style-choice>
show style data

See set style (p. for the choices. If no choice is given, the choices are listed. show style data
shows the current default data plotting style.

35.14 Decimalsign

The set decimalsign command selects a decimal sign for numbers printed into tic labels or set label
strings.

Syntax:
set decimalsign {<value>}
unset decimalsign
show decimalsign

The argument <value> is the string to be used in place of the usual decimal point. Typical choices
include the period, ’.’; and the comma, ’,’; but others may be useful, too. If you omit the <value>
argument, the decimal separator is not modified from the usual default, which is a period. Unsetting
decimalsign has the same effect as omitting <value>.

Example:

Correct typesetting in most European countries requires:

http://www.nas.nasa.gov/~woo/gnuplot/contours/contours.html
http://www.nas.nasa.gov/~woo/gnuplot/discrete/discrete.html
http://www.nas.nasa.gov/~woo/gnuplot/discrete/discrete.html

50

set decimalsign ’,’

35.15 Dgrid3d

The set dgrid3d command enables, and can set parameters for, non-grid to grid data mapping.

Syntax:
set dgrid3d {<row_size>} {,{<col_size>} {,<norm>}}
unset dgrid3d
show dgrid3d

By default dgrid3d is disabled. When enabled, 3-d data read from a file are always treated as a scattered
data set. A grid with dimensions derived from a bounding box of the scattered data and size as specified
by the row/col_size parameters is created for plotting and contouring. The grid is equally spaced in x
(rows) and in y (columns); the z values are computed as weighted averages of the scattered points’ z
values.

The third parameter, norm, controls the weighting: Each data point is weighted inversely by its distance
from the grid point raised to the norm power. (Actually, the weights are given by the inverse of dx norm
+ dy“norm, where dx and dy are the components of the separation of the grid point from each data point.
For some norms that are powers of two, specifically 4, 8, and 16, the computation is optimized by using
the Euclidean distance in the weight calculation, (dx~2+4dy~2) norm/2. However, any non-negative
integer can be used.)

The closer the data point is to a grid point, the more effect it has on that grid point and the larger the
value of norm the less effect more distant data points have on that grid point.

The dgrid3d option is a simple low pass filter that converts scattered data to a grid data set. More
sophisticated approaches to this problem exist and should be used to preprocess the data outside gnuplot
if this simple solution is found inadequate.

(The z values are found by weighting all data points, not by interpolating between nearby data points;
also edge effects may produce unexpected and/or undesired results. In some cases, small norm values
produce a grid point reflecting the average of distant data points rather than a local average, while
large values of norm may produce "steps" with several grid points having the same value as the closest
data point, rather than making a smooth transition between adjacent data points. Some areas of a grid
may be filled by extrapolation, to an arbitrary boundary condition. The variables are not normalized;
consequently the units used for x and y will affect the relative weights of points in the x and y directions.)

Examples:
set dgrid3d 10,10,1 # defaults
set dgrid3d ,,4

The first specifies that a grid of size 10 by 10 is to be constructed using a norm value of 1 in the weight
computation. The second only modifies the norm, changing it to 4. Dgrid3d Demo.

35.16 Dummy

The set dummy command changes the default dummy variable names.

Syntax:
set dummy {<dummy-var>} {,<dummy-var>}
show dummy

By default, gnuplot assumes that the independent, or "dummy", variable for the plot command is
"t" if in parametric or polar mode, or "x" otherwise. Similarly the independent variables for the splot

command are "u" and "v" in parametric mode (splot cannot be used in polar mode), or "x" and "y"
otherwise.

http://www.nas.nasa.gov/~woo/gnuplot/scatter/scatter.html

o1

It may be more convenient to call a dummy variable by a more physically meaningful or conventional
name. For example, when plotting time functions:

set dummy t
plot sin(t), cos(t)

At least one dummy variable must be set on the command; set dummy by itself will generate an error
message.

Examples:
set dummy u,v
set dummy ,s

The second example sets the second variable to s.

35.17 Encoding

The set encoding command selects a character encoding. Valid values are default, which tells a
terminal to use its default; iso_8859_1 (known in the PostScript world as ISO-Latinl), which is used
on many Unix workstations and with MS-Windows; iso_8859_2, used in Central and Eastern Europe;
cp850 and cp852 for OS/2; and cp437, for MS-DOS.

Syntax:

set encoding {<value>}
show encoding

Note that encoding is not supported by all terminal drivers and that the device must be able to produce
the desired non-standard characters. PostScript terminal is supporting all of the encodings. OS/2
Presentation Manager switches automatically to codepage 912 for iso_8859_2.

35.18 Format

The format of the tic-mark labels can be set with the set format command.

Syntax:
set format {<axes>} {"<format-string>"}
set format {<axes>} {’<format-string>’}
show format

where <axes> is either x, y, z, cb, xy, x2, y2 or nothing (which is the same as xy). The length of
the string representing a tic mark (after formatting with ’printf’) is restricted to 100 characters. If the
format string is omitted, the format will be returned to the default "%g". For LaTeX users, the format
"$%g$" is often desirable. If the empty string "" is used, no label will be plotted with each tic, though
the tic mark will still be plotted. To eliminate all tic marks, use unset xtics or unset ytics.

Newline (\n) is accepted in the format string. Use double-quotes rather than single-quotes to enable
such interpretation. See also syntax (p. .

The default format for both axes is "%g", but other formats such as "%.2f" or "%3.0em" are often
desirable. Anything accepted by ’printf’ when given a double precision number, and accepted by the
terminal, will work. Some other options have been added. If the format string looks like a floating point
format, then gnuplot tries to construct a reasonable format.

Characters not preceded by "%" are printed verbatim. Thus you can include spaces and labels in your
format string, such as "%g m", which will put " m" after each number. If you want "%" itself, double

it: "%g %%".

See also set xtics (p. [112]) for more information about tic labels, and set decimalsign (p. for
how to use non-default decimal separators in numbers printed this way. See demo.

http://www.nas.nasa.gov/~woo/gnuplot/electron/electron.html

92

35.18.1 Format specifiers

The acceptable formats (if not in time/date mode) are:

’ Tic-mark label numerical format specifiers

Format Explanation
WE floating point notation
%e or JE exponential notation; an ”e” or "E” before the power
%g or %G the shorter of %e (or %E) and %f
%x or %X hex
%o or %0 octal
Wt mantissa to base 10
yAl mantissa to base of current logscale
%s mantissa to base of current logscale; scientific power
%T power to base 10
%L power to base of current logscale
%S scientific power
he character replacement for scientific power
%P multiple of pi

A ’scientific’ power is one such that the exponent is a multiple of three. Character replacement of
scientific powers ("%c") has been implemented for powers in the range -18 to +18. For numbers outside
of this range the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-", which
left-justifies the number; "+", which forces all numbers to be explicitly signed; "#", which places a
decimal point after floats that have only zeroes following the decimal point; a positive integer, which
defines the field width; "0" (the digit, not the letter) immediately preceding the field width, which
indicates that leading zeroes are to be used instead of leading blanks; and a decimal point followed by
a non-negative integer, which defines the precision (the minimum number of digits of an integer, or the
number of digits following the decimal point of a float).

Some releases of printf’ may not support all of these modifiers but may also support others; in case of
doubt, check the appropriate documentation and then experiment.

Examples:
set format y "/t"; set ytics (5,10) # "5.0" and "1.0"
set format y "Vs"; set ytics (500,1000) # "500" and "1.0"
set format y "+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*x107%+03T"; set ytic(12345)# "1.23%107+04"
set format y "%s*10"{%S}"; set ytic(12345) # "12.345%x10"{3}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"
set log y 2; set format y ’%1’; set ytics (1,2,3)

#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 x 271)

There are some problem cases that arise when numbers like 9.999 are printed with a format that requires
both rounding and a power.

If the data type for the axis is time/date, the format string must contain valid codes for the ’strftime’
function (outside of gnuplot, type "man strftime"). See set timefmt (p. [LO6)) for a list of the allowed
input format codes.

35.18.2 Time/date specifiers

In time/date mode, the acceptable formats are:

93

’ Tic-mark label Date/Time Format Specifiers

Format Explanation

%a abbreviated name of day of the week
%A full name of day of the week

%b or %h abbreviated name of the month
%B full name of the month

%d day of the month, 1-31
%D shorthand for "%m/%d/%y"
%H or %k hour, 0-24
%I or %1 hour, 0-12
%] day of the year, 1-366
%m month, 1-12

%M minute, 0—60

%p 2 am77 Or ” pm77

%r shorthand for "%I:%M:%S %p"
%R shorthand for %H:%M"

%S second, 0—60
%T shorthand for "%H:%M:%S"

Al week of the year (week starts on Sunday)
YA day of the week, 0-6 (Sunday = 0)
YAl week of the year (week starts on Monday)

%y year, 0-99
%Y year, 4-digit

Except for the non-numerical formats, these may be preceded by a "0" ("zero", not "oh") to pad the
field length with leading zeroes, and a positive digit, to define the minimum field width (which will be
overridden if the specified width is not large enough to contain the number). There is a 24-character
limit to the length of the printed text; longer strings will be truncated.

Examples:

Suppose the text is "76/12/25 23:11:11". Then
set format x # defaults to "12/25/76" \n "23:11"
set format x "%A, %d ¥b %Y" # "Saturday, 25 Dec 1976"
set format x "Y%r D" # "11:11:11 pm 12/25/76"

Suppose the text is "98/07/06 05:04:03". Then
set format x "%1ly/%2m/%3d %01H:%02M:%03S" # "98/ 7/ 6 5:04:003"

35.19 Function style

The set style function command changes the default plotting style for function plots.

Syntax:

set style function <style-choice>
show style function

See set style (p. for the choices. If no choice is given, the choices are listed. show function style
shows the current default function plotting style.

35.20 Functions

The show functions command lists all user-defined functions and their definitions.

Syntax:

o4

show functions

For information about the definition and usage of functions in gnuplot, please see expressions (p. .
Splines as User Defined Functions. Use of functions and complex variables for airfoils

35.21 Grid

The set grid command allows grid lines to be drawn on the plot.

Syntax:
set grid {{noMm}xtics} {{noMml}ytics} {{no}{m}ztics}
{{noHm}x2tics} {{noM{m}y2tics}
{{no}{m}cbtics}
{polar {<angle>}}
{layerdefault | front | back}
{ {linestyle <major_linestyle>}
| {linetype | 1t <major_linetype>}
{linewidth | lw <major_linewidth>}
{ , {linestyle | 1s <minor_linestyle>}
| {linetype | 1t <minor_linetype>}
{linewidth | 1w <minor_linewidth>} } }
unset grid
show grid

The grid can be enabled and disabled for the major and/or minor tic marks on any axis, and the linetype
and linewidth can be specified for major and minor grid lines, also via a predefined linestyle, as far as
the active terminal driver supports this.

Additionally, a polar grid can be selected for 2-d plots — circles are drawn to intersect the selected tics,
and radial lines are drawn at definable intervals. (The interval is given in degrees or radians, depending
on the set angles setting.) Note that a polar grid is no longer automatically generated in polar mode.

The pertinent tics must be enabled before set grid can draw them; gnuplot will quietly ignore instruc-
tions to draw grid lines at non-existent tics, but they will appear if the tics are subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is used. The
default polar angle is 30 degrees.

If front is given, the grid is drawn on top of the graphed data. If back is given, the grid is drawn
underneath the graphed data. Using front will prevent the grid from being obscured by dense data.
The default setup, layerdefault, is ’back’ for 2d plots and ’front’ for 3d plots.

7 grid lines are drawn on the bottom of the plot. This looks better if a partial box is drawn around the
plot — see set border (p. [44).

35.22 Hidden3d

The set hidden3d command enables hidden line removal for surface plotting (see splot (p. [117))).
Some optional features of the underlying algorithm can also be controlled using this command.

Syntax:
set hidden3d {defaults} |
{ {{offset <offset>} | {nooffsetl}}
{trianglepattern <bitpattern>}
{{undefined <level>} | {noundefined}}
{{no}altdiagonal}
{{no}bentover} }

http://www.nas.nasa.gov/~woo/gnuplot/spline/spline.html
http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html
http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html

%)

unset hidden3d
show hidden3d

In contrast to the usual display in gnuplot, hidden line removal actually treats the given function or
data grids as real surfaces that can’t be seen through, so parts behind the surface will be hidden by it.
For this to be possible, the surface needs to have ’grid structure’ (see splot datafile (p. about
this), and it has to be drawn with lines or with linespoints.

When hidden3d is set, both the hidden portion of the surface and possibly its contours drawn on the
base (see set contour (p.) as well as the grid will be hidden. Each surface has its hidden parts
removed with respect to itself and to other surfaces, if more than one surface is plotted. Contours
drawn on the surface (set contour surface) don’t work. Labels and arrows are always visible and are
unaffected. The key is also never hidden by the surface.

Functions are evaluated at isoline intersections. The algorithm interpolates linearly between function
points or data points when determining the visible line segments. This means that the appearance of a
function may be different when plotted with hidden3d than when plotted with nohidden3d because
in the latter case functions are evaluated at each sample. Please see set samples (p. and set
isosamples (p. for discussion of the difference.

The algorithm used to remove the hidden parts of the surfaces has some additional features controllable
by this command. Specifying defaults will set them all to their default settings, as detailed below.
If defaults is not given, only explicitly specified options will be influenced: all others will keep their
previous values, so you can turn on/off hidden line removal via set {no}hidden3d, without modifying
the set of options you chose.

The first option, offset, influences the linestyle used for lines on the ’back’ side. Normally, they are
drawn in a linestyle one index number higher than the one used for the front, to make the two sides of
the surface distinguishable. You can specify a different line style offset to add instead of the default 1,
by offset <offset>. Option nooffset stands for offset 0, making the two sides of the surface use the
same linestyle.

Next comes the option trianglepattern <bitpattern>. <bitpattern> must be a number between 0
and 7, interpreted as a bit pattern. Each bit determines the visibility of one edge of the triangles each
surface is split up into. Bit 0 is for the 'horizontal’ edges of the grid, Bit 1 for the 'vertical’ ones, and
Bit 2 for the diagonals that split each cell of the original grid into two triangles. The default pattern is
3, making all horizontal and vertical lines visible, but not the diagonals. You may want to choose 7 to
see those diagonals as well.

The undefined <level> option lets you decide what the algorithm is to do with data points that are
undefined (missing data, or undefined function values), or exceed the given x-, y- or z-ranges. Such points
can either be plotted nevertheless, or taken out of the input data set. All surface elements touching a
point that is taken out will be taken out as well, thus creating a hole in the surface. If <level> = 3,
equivalent to option noundefined, no points will be thrown away at all. This may produce all kinds of
problems elsewhere, so you should avoid this. <level> = 2 will throw away undefined points, but keep
the out-of-range ones. <level> = 1, the default, will get rid of out-of-range points as well.

By specifying noaltdiagonal, you can override the default handling of a special case can occur if
undefined is active (i.e. <level> is not 3). Each cell of the grid-structured input surface will be divided
in two triangles along one of its diagonals. Normally, all these diagonals have the same orientation relative
to the grid. If exactly one of the four cell corners is excluded by the undefined handler, and this is
on the usual diagonal, both triangles will be excluded. However if the default setting of altdiagonal
is active, the other diagonal will be chosen for this cell instead, minimizing the size of the hole in the
surface.

The bentover option controls what happens to another special case, this time in conjunction with the
trianglepattern. For rather crumply surfaces, it can happen that the two triangles a surface cell is
divided into are seen from opposite sides (i.e. the original quadrangle is 'bent over’), as illustrated in
the following ASCII art:

96

C----B

original quadrangle: A--B displayed quadrangle: I\ |
("set view 0,0") | /1 ("set view 75,75" perhaps) | \ |
/1 I\

C--D I\

A D

If the diagonal edges of the surface cells aren’t generally made visible by bit 2 of the <bitpattern> there,
the edge CB above wouldn’t be drawn at all, normally, making the resulting display hard to understand.
Therefore, the default option of bentover will turn it visible in this case. If you don’t want that, you
may choose nobentover instead. Hidden Line Removal Demo and Complex Hidden Line Demo.

35.23 Historysize

Note: the command set historysize is only available when compiled with the gnu readline.

Syntax:
set historysize <int>
unset historysize

When leaving gnuplot, the value of historysize is used for truncating the history to at most that much
lines. The default is 500. "unset historysize" will disable history truncation and thus allow an infinite
number of lines to be written to the history file.

35.24 Isosamples

The isoline density (grid) for plotting functions as surfaces may be changed by the set isosamples
command.

Syntax:
set isosamples <iso_1> {,<iso_2>}
show isosamples

Each function surface plot will have <iso_1> iso-u lines and <iso_2> iso-v lines. If you only specify
<iso_1>, <iso_2> will be set to the same value as <iso_1>. By default, sampling is set to 10 isolines
per u or v axis. A higher sampling rate will produce more accurate plots, but will take longer. These
parameters have no effect on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while the other surface parameter is
fixed. Isolines provide a simple means to display a surface. By fixing the u parameter of surface s(u,v),
the iso-u lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter, the iso-v lines of
the form c(u) = s(u,v0) are produced.

When a function surface plot is being done without the removal of hidden lines, set samples con-
trols the number of points sampled along each isoline; see set samples (p. and set hidden3d
(p- . The contour algorithm assumes that a function sample occurs at each isoline intersection, so
change in samples as well as isosamples may be desired when changing the resolution of a function
surface/contour.

35.25 Key

The set key enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data set and function and samples of
the lines and/or symbols used to represent them, are determined by the title and with options of the
{s}plot command. Please see plot title (p. and plot with (p. for more information.

Syntax:

http://www.nas.nasa.gov/~woo/gnuplot/hidden/hidden.html
http://www.nas.nasa.gov/~woo/gnuplot/singulr/singulr.html

o7

set key { 1left | right | top | bottom | outside | below
| <position>}

{Left | Right} {{no}reverse}

{samplen <sample_length>} {spacing <vertical_spacing>}

{width <width_increment>}

{height <height_increment>}

{title "<text>"} {{no}enhanced}

{{no}box { {linestyle | 1ls <line_style>}

| {linetype | 1t <line_type>}
{linewidth | 1w <line_width>}}3}

unset key
show key

By default the key is placed in the upper right corner of the graph. The keywords left, right, top,
bottom, outside and below may be used to place the key in the other corners inside the graph or to
the right (outside) or below the graph. They may be given alone or combined.

Justification of the labels within the key is controlled by Left or Right (default is Right). The text
and sample can be reversed (reverse) and a box can be drawn around the key (box {...}) in a spec-
ified linetype and linewidth, or a user-defined linestyle. Note that not all terminal drivers support
linewidth selection, though.

The length of the sample line can be controlled by samplen. The sample length is computed as the sum
of the tic length and <sample_length> times the character width. samplen also affects the positions of
point samples in the key since these are drawn at the midpoint of the sample line, even if the sample
line itself is not drawn.

The vertical spacing between lines is controlled by spacing. The spacing is set equal to the product of
the pointsize, the vertical tic size, and <vertical_spacing>. The program will guarantee that the vertical
spacing is no smaller than the character height.

The <width_increment> is a number of character widths to be added to or subtracted from the length
of the string. This is useful only when you are putting a box around the key and you are using control
characters in the text. gnuplot simply counts the number of characters in the string when computing
the box width; this allows you to correct it.

The <height_increment> is a number of character heights to be added to or subtracted from the height
of the key box. This is useful mainly when you are putting a box around the key, otherwise it can be
used to adjust the vertical shift of automatically chosen key position by <height_increment> /2.

A title can be put on the key (title "<text>") — see also syntax (p. for the distinction between
text in single- or double-quotes. The key title uses the same justification as do the plot titles.

An explicitly given title is typeset using enhanced text properties on terminals supporting this, see
enhanced postscript (p. for more details. This default behavior can be switched off by the
noenhanced option.

The defaults for set key are right, top, Right, noreverse, samplen 4, spacing 1.25, title "", and
nobox. The default <linetype> is the same as that used for the plot borders. Entering set key with
no options returns the key to its default configuration.

The <position> can be a simple x,y,z as in previous versions, but these can be preceded by one of four
keywords (first, second, graph, screen) which selects the coordinate system in which the position of
the first sample line is specified. See coordinates (p. |§[) for more details.

The key is drawn as a sequence of lines, with one plot described on each line. On the right-hand side
(or the left-hand side, if reverse is selected) of each line is a representation that attempts to mimic the
way the curve is plotted. On the other side of each line is the text description (the line title), obtained
from the plot command. The lines are vertically arranged so that an imaginary straight line divides the
left- and right-hand sides of the key. It is the coordinates of the top of this line that are specified with
the set key command. In a plot, only the x and y coordinates are used to specify the line position. For

98

a splot, x, y and z are all used as a 3-d location mapped using the same mapping as the graph itself to
form the required 2-d screen position of the imaginary line.

Some or all of the key may be outside of the graph boundary, although this may interfere with other
labels and may cause an error on some devices. If you use the keywords outside or below, gnuplot
makes space for the keys and the graph becomes smaller. Putting keys outside to the right, they occupy
as few columns as possible, and putting them below, as many columns as possible (depending of the
length of the labels), thus stealing as little space from the graph as possible.

When using the TeX or PostScript drivers, or similar drivers where formatting information is embedded
in the string, gnuplot is unable to calculate correctly the width of the string for key positioning. If
the key is to be positioned at the left, it may be convenient to use the combination set key left Left
reverse. The box and gap in the grid will be the width of the literal string.

If splot is being used to draw contours, the contour labels will be listed in the key. If the alignment of
these labels is poor or a different number of decimal places is desired, the label format can be specified.
See set clabel (p. for details.

Examples:

This places the key at the default location:
set key

This disables the key:

unset key

This places a key at coordinates 2,3.5,2 in the default (first) coordinate system:
set key 2,3.5,2

This places the key below the graph:
set key below

This places the key in the bottom left corner, left-justifies the text, gives it a title, and draws a box
around it in linetype 3:

set key left bottom Left title ’Legend’ box 3

35.26 Label

Arbitrary labels can be placed on the plot using the set label command.

Syntax:

set label {<tag>}
{ {"<label text>"{,<value>}} {, ...}} }
{at <position>}
{<justification>} {{nol}rotate} {font "<name>{,<size>}"}
{front | back}
{<pointstyle> {offset x, y}| nopoint}
unset label {<tag>}
show label

The <position> is specified by either x,y or x,y,z, and may be preceded by first, second, graph, or
screen to select the coordinate system. See coordinates (p. @ for details.

The tag is an integer that is used to identify the label. If no <tag> is given, the lowest unused tag
value is assigned automatically. The tag can be used to delete or modify a specific label. To change
any attribute of an existing label, use the set label command with the appropriate tag, and specify the
parts of the label to be changed.

99

The <label text> can optionally contain numbers, generated by replacement of printf()-like format
specifiers contained in <label text>. The number to be used is given by the <value> following the
text. The same formatting capilities as for tic labels are available. See the help on ’format specifiers’
for details. To display more than one distinct <value> with a single label, several pairs of <label
text> and <value> may be given. Note that <value> is treated as a constant expression, i.e. if it
contains variables, the label text will not change if the variable values are modified, later on. The set
decimalsign option, if active, overrides the decimal separator character of numbers entered into label
texts.

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is positioned
with respect to the point x,y,z, add the parameter <justification>, which may be left, right or center,
indicating that the point is to be at the left, right or center of the text. Labels outside the plotted
boundaries are permitted but may interfere with axis labels or other text.

If rotate is given, the label is written vertically (if the terminal can do so, of course).

If front is given, the label is written on top of the graphed data. If back is given (the default), the label
is written underneath the graphed data. Using front will prevent a label from being obscured by dense
data.

If a style is given, using keywords lw, pt and ps, see style (p. , a point with the given style and
color of the given line type is plotted at the label position and the text of the label is displaced slightly.
The displacement defaults to 1, 1 in pointsize units and can be controlled by the optional offset x, y.
Example: offset 2, -3 would displace the labels 2 * pointsize horizontally and -3 * pointsize vertically
from the actual coordinate point as given by position. The size of the point depends also on the setting
of pointsize. This option is used by default for placing labels in mouse enhanced terminals. Use
nopoint to turn off the drawing of a point near the label (this is the default).

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p. [109)) and set timefmt (p. [L06)).

The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.
Examples:

To set a label at (1,2) to "y=x", use:
set label "y=x" at 1,2

To set a Sigma of size 24, from the Symbol font set, at the center of the graph, use:
set label "S" at graph 0.5,0.5 center font "Symbol,24"

To set a label "y=x"2" with the right of the text at (2,3,4), and tag the label as number 3, use:
set label 3 "y=x"2" at 2,3,4 right

To change the preceding label to center justification, use:

set label 3 center

To delete label number 2, use:
unset label 2

To delete all labels, use:

unset label

To show all labels (in tag order), use:
show label

To set a label on a graph with a timeseries on the x axis, use, for example:

set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1

60

To display a freshly fitted parameter on the plot with the data and the fitted function, do this after the
'fit’, but before the 'plot’:

set label ’a = %3.5g’,par_a at 30, 15
set label ’b = %s*107%S’,par_b at 30, 20

To set a label displaced a little bit from a small point:
set label ’origin’ at 0,0 1t 1 pt 2 ps 3 offset 1,-1

35.27 Linestyle

Each terminal has a default set of line and point types, which can be seen by using the command test.
set style line defines a set of line types and widths and point types and sizes so that you can refer to
them later by an index instead of repeating all the information at each invocation.

Syntax:

set style line <index> {linetype | 1t <line_type>}
{linewidth | lw <line_width>}
{pointtype | pt <point_type>}
{pointsize | ps <point_size>}
{palette}

unset linestyle

show style line

The line and point types are taken from the default types for the terminal currently in use. The line
width and point size are multipliers for the default width and size (but note that <point_size> here is
unaffected by the multiplier given on ’set pointsize’).

The defaults for the line and point types is the index. The defaults for the width and size are both unity.
Linestyles created by this mechanism do not replace the default styles; both may be used.

Not all terminals support the linewidth and pointsize features; if not supported, the option will be
ignored.

Note that this feature is not completely implemented; linestyles defined by this mechanism may be used
with "plot’, ’splot’, 'replot’, and ’set arrow’, but not by other commands that allow the default index to
be used, such as ’set grid’.

If gnuplot was built with pm3d support, the special keyword palette is allowed as linetype for splots
(the 2d plot command ignores palette). In this case the line color is choosen from a smooth palette
which was set previously with the command set palette. The color value corresponds to the z-value
(elevation) of the splot.

Example: Suppose that the default lines for indices 1, 2, and 3 are red, green, and blue, respectively, and
the default point shapes for the same indices are a square, a cross, and a triangle, respectively. Then

set style line 1 1t 2 1w 2 pt 3 ps 0.5

defines a new linestyle that is green and twice the default width and a new pointstyle that is a half-sized
triangle. The commands

set style function lines
plot f(x) 1t 3, g(x) 1s 1

will create a plot of f(x) using the default blue line and a plot of g(x) using the user-defined wide green
line. Similarly the commands

set style function linespoints
plot p(x) 1t 1 pt 3, q(x) 1ls 1

61

will create a plot of p(x) using the default triangles connected by a red line and q(x) using small triangles
connected by a green line.

splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w 1 pal

creates a surface plot using smooth colors according to palette. Note, that this works only on some
terminals.

See also set palette (p. , set pm3d (p. .

35.28 Lmargin

The command set lmargin sets the size of the left margin. Please see set margin (p. for details.

35.29 Loadpath

The loadpath setting defines additional locations for data and command files searched by the call,
load, plot and splot commands. If a file cannot be found in the current directory, the directories in
loadpath are tried.

Syntax:

set loadpath {"pathlistl" {"pathlist2"...}}
show loadpath

Path names may be entered as single directory names, or as a list of path names separated by a platform-
specific path separator, eg. colon (") on Unix, semicolon (’;’) on DOS/Windows/OS/2/Amiga plat-
forms. The show loadpath, save and save set commands replace the platform-specific separator with
a space character (” ’) for maximum portability.

If the environment variable GNUPLOT_LIB is set, its contents are appended to loadpath. However,
show loadpath prints the contents of user defined loadpath and system loadpath separately. Also, the
save and save set commands save only the user specified parts of loadpath, for portability reasons.

35.30 Locale

The locale setting determines the language with which {x,y,z}{d,m}tics will write the days and
months.
Syntax:

set locale {"<locale>"}

<locale> may be any language designation acceptable to your installation. See your system documen-
tation for the available options. The default value is determined from the LANG environment variable.

35.31 Logscale

Log scaling may be set on the x, y, z, x2 and/or y2 axes.

Syntax:

set logscale <axes> <base>
unset logscale <axes>
show logscale

where <axes> may be any combinations of x, y, z, and cb in any order, or x2 or y2 and where <base>
is the base of the log scaling. If <base> is not given, then 10 is assumed. If <axes> is not given, then
all axes are assumed. unset logscale turns off log scaling for the specified axes.

62

Examples:
To enable log scaling in both x and z axes:

set logscale xz

To enable scaling log base 2 of the y axis:

set logscale y 2

To enable z and color log axes for a pm3d plot:

set logscale zcb

To disable z axis log scaling:

unset logscale z

35.32 Mapping

If data are provided to splot in spherical or cylindrical coordinates, the set mapping command should
be used to instruct gnuplot how to interpret them.
Syntax:

set mapping {cartesian | spherical | cylindrical}

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns (or using entries). The first
two are interpreted as the polar and azimuthal angles theta and phi (or "longitude" and "latitude"), in
the units specified by set angles. The radius r is taken from the third column if there is one, or is set
to unity if there is no third column. The mapping is:

x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)

Note that this is a "geographic" spherical system, rather than a "polar" one (that is, phi is measured
from the equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three columns. The first two are
interpreted as theta (in the units specified by set angles) and z. The radius is either taken from the
third column or set to unity, as in the spherical case. The mapping is:

X = r * cos(theta)
y = r * sin(theta)
z =z

The effects of mapping can be duplicated with the using filter on the splot command, but mapping
may be more convenient if many data files are to be processed. However even if mapping is used, using
may still be necessary if the data in the file are not in the required order.

mapping has no effect on plot. Mapping Demos.

35.33 Margin

The computed margins can be overridden by the set margin commands. show margin shows the
current settings.

Syntax:

http://www.nas.nasa.gov/~woo/gnuplot/world/world.html

63

set bmargin {<margin>}
set lmargin {<margin>}
set rmargin {<margin>}
set tmargin {<margin>}
show margin

The units of <margin> are character heights or widths, as appropriate. A positive value defines the
absolute size of the margin. A negative value (or none) causes gnuplot to revert to the computed value.

Normally the margins of a plot are automatically calculated based on tics, tic labels, axis labels, the plot
title, the timestamp and the size of the key if it is outside the borders. If, however, tics are attached
to the axes (set xtics axis, for example), neither the tics themselves nor their labels will be included
in either the margin calculation or the calculation of the positions of other text to be written in the
margin. This can lead to tic labels overwriting other text if the axis is very close to the border.

35.34 Missing

The set missing command allows you to tell gnuplot what character is used in a data file to denote
missing data. Exactly how this missing value will be treated depends on the using specifier on the
{s}plot command.

Syntax:

set missing {"<character>"}
show missing

Example:
set missing "7"
set style data lines
plot ’-’

10

20

?

40

50

o O WN -

plot ’-’ using 1:2
10
20
?
40
50

o O WN -

plot ’-’ using 1:($2)
10
20
?
40
50

o O WN -

The first plot will recognize only the first datum in the "3 7" line. It will use the single-datum-on-a-line
convention that the line number is "x" and the datum is "y", so the point will be plotted (in this case
erroneously) at (2,3).

The second plot will correctly ignore the middle line. The plotted line will connect the points at (2,20)
and (4,40).

64

The third plot will also correctly ignore the middle line, but the plotted line will not connect the points
at (2,20) and (4,40).

There is no default character for missing.

35.35 Mouse

The command set mouse enables mouse actions. Currently the pm, x11, ggi and windows terminals
are mouse enhanced. There are two mouse modes. The 2d-graph mode works for 2d graphs and for
maps (i.e. splots with set view having z-rotation 0, 90, 180, 270 or 360 degrees) and it allows tracing
the position over graph, zooming, annotating graph etc. For 3d graphs splot, the view and scaling of
the graph can be changed with mouse buttons 1 and 2. If additionally to these buttons the modifier
<ctrl> is hold down, the coordinate system only is rotated which is useful for large data sets. A vertical
motion of Button 2 with the shift key hold down changes the ticslevel.

Mousing is not available in multiplot mode. If multiplot is disabled using unset multiplot though, the
mouse will be turned on again and acts on the last plot (like replot do).

X11 specific implementation details: Mouse support is turned on by default if standard input comes from
a terminal (tty). Mouse support is turned off, if standard input does not come from a tty e.g. a pipe.
If you want to use mouse support while writing to gnuplot from a pipe, the mouse must be turned on
before starting the x11 driver, e.g. immediately after startup with the explicit command set mouse.
Beware: on some UNIX flavours, special input devices as /dev/null might not be select-able; turning
on the mouse when using such devices will hang gnuplot.

Syntax:

set mouse [doubleclick <ms>] [nodoubleclick] \
[[nolzoomcoordinates] \
[[nolpolarcoordinates] \
[format <string>] \
[clipboardformat <int>/<string>] \
[mouseformat <int>/<string>] \
[[nollabels] [labeloptions <string>] \
[[no]lzoomjump] [[no]verbose]

unset mouse

The doubleclick resolution is given in miliseconds and used for Button 1 which copies the current mouse
position to the clipboard. If you want that to be done by single clicking a value of 0 ms can be used.
The default value is 300 ms.

The option zoomcoordinates determines if the coordinates of the zoom box are drawn at the edges while
zooming. This is on by default.

The option polarcoordinates determines if the distance to the ruler is also shown in polar coordinates.
This corresponds to the default key binding ’5’.

The format option takes a fprintf like format string which determines how floating point numbers are
printed to the drivers window and the clipboard. The default is "% #g".

clipboardformat and mouseformat are used for formatting the text on Buttonl and Button2 ac-
tions — copying the coordinates to the clipboard and temporaryly annotating the mouse position. This
corresponds to the key bindings ’1’, '2°; ’3’, "4’ (see the drivers’s help window). If the argument is a
string this string is used as c¢ format specifier and should contain two float specifiers, e.g. set mouse
mouseformat "mouse = %5.2g, %10.2f". Use set mouse mouseformat "" to turn this string off
again.

The following formats are available (format 5 may only be selected if the format string was specified
already):

0 real coordinates in brackets e.g. [1.23, 2.45]

65

1 real coordinates w/o brackets e.g. 1.23, 2.45

2 x == timefmt [(as set by ‘set timefmt‘), 2.45]
3 x == date [31. 12. 1999, 2.45]

4 x == time [23:59, 2.45]

5 x == date / time [31. 12. 1999 23:59, 2.45]

6 alt. format, specified as string "'

Choose the option labels to get real gnuplot labels on Button 2. (The default is nolabels which makes
Button 2 drawing only temporary annotations at the mouse positions). The labes are drawn with the
current setting of mouseformat. labeloptions controls which options are passed to the set label
command. The default is "pointstyle 1" which will plot a small plus at the label position. Note that the
pointsize is taken from the set pointsize command.

Labels can be removed by holding the Ctrl-Key down while clicking with

Button 2 on the label’s point. The threshold for how close you must be to the label is also determined
by the pointsize.

If the option zoomjump is on, the mouse pointer will be automatically offset a small distance after
starting a zoom region with button 3. This can be useful to avoid a tiny (or even empty) zoom region.
zoomjump is off by default.

If the option verbose is turned on the communication commands are shown during execution. This
option can also be toggled by hitting 6 in the driver’s window. verbose is off by default.

Press 'h’ in the driver’s window for a short summary of the mouse and key bindings. This will also
display user defined bindings or hotkeys which can be defined using the bind command, see help bind
(p- . Note, that user defined hotkeys may override the default bindings.

Press ’q’ in the driver’s window to close the window. This key cannot be overridden with the bind
command.

See also help bind (p. [4) and help label (p. [58]).

35.36 Multiplot

The command set multiplot places gnuplot in the multiplot mode, in which several plots are placed
on the same page, window, or screen.

Syntax:

set multiplot
unset multiplot

For some terminals, no plot is displayed until the command unset multiplot is given, which causes the
entire page to be drawn and then returns gnuplot to its normal single-plot mode. For other terminals,
each separate plot command produces a plot, but the screen may not be cleared between plots.

Any labels or arrows that have been defined will be drawn for each plot according to the current size
and origin (unless their coordinates are defined in the screen system). Just about everything else that
can be set is applied to each plot, too. If you want something to appear only once on the page, for
instance a single time stamp, you’ll need to put a set time/unset time pair around one of the plot,
splot or replot commands within the set multiplot/unset multiplot block.

The commands set origin and set size must be used to correctly position each plot; see set origin
(p- and set size (p. for details of their usage.
Example:

set size 0.7,0.7
set origin 0.1,0.1
set multiplot

66

set size 0.4,0.4
set origin 0.1,0.
plot sin(x)

set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)

unset multiplot

1

displays a plot of cos(x) stacked above a plot of sin(x). Note the initial set size and set origin.
While these are not always required, their inclusion is recommended. Some terminal drivers require
that bounding box information be available before any plots can be made, and the form given above
guarantees that the bounding box will include the entire plot array rather than just the bounding box
of the first plot.

set size and set origin refer to the entire plotting area used for each plot. If you want to have the
axes themselves line up, you can guarantee that the margins are the same size with the set margin
commands. See set margin (p. for their use. Note that the margin settings are absolute, in
character units, so the appearance of the graph in the remaining space will depend on the screen size of
the display device, e.g., perhaps quite different on a video display and a printer. |See demo.

35.37 Mx2tics

Minor tic marks along the x2 (top) axis are controlled by set mx2tics. Please see set mxtics (p. .

35.38 Mxtics

Minor tic marks along the x axis are controlled by set mxtics. They can be turned off with unset
mxtics. Similar commands control minor tics along the other axes.

Syntax:

set mxtics {<freq> | default}
unset mxtics
show mxtics

The same syntax applies to mytics, mztics, mx2tics and my2tics.

<freq> is the number of sub-intervals (NOT the number of minor tics) between major tics (the default
for a linear axis is either two or five depending on the major tics, so there are one or four minor tics
between major tics). Selecting default will return the number of minor ticks to its default value.

If the axis is logarithmic, the number of sub-intervals will be set to a reasonable number by default
(based upon the length of a decade). This will be overridden if <freq> is given. However the usual
minor tics (2, 3, ..., 8, 9 between 1 and 10, for example) are obtained by setting <freq> to 10, even
though there are but nine sub-intervals.

Minor tics can be used only with uniformly spaced major tics. Since major tics can be placed arbitrarily
by set {x|x2|y|y2|z}tics, minor tics cannot be used if major tics are explicitly set.

By default, minor tics are off for linear axes and on for logarithmic axes. They inherit the settings for
axis|border and {no}mirror specified for the major tics. Please see set xtics (p.[112)) for information
about these.

35.39 My2tics

Minor tic marks along the y2 (right-hand) axis are controlled by set my2tics. Please see set mxtics

(p- .

http://www.nas.nasa.gov/~woo/gnuplot/multiplot/multiplt.html

67

35.40 Mytics

Minor tic marks along the y axis are controlled by set mytics. Please see set mxtics (p. .

35.41 Mztics

Minor tic marks along the z axis are controlled by set mztics. Please see set mxtics (p. .

35.42 Offsets

Offsets provide a mechanism to put a boundary around the data inside of an autoscaled graph.

Syntax:
set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets

Each offset may be a constant or an expression. Each defaults to 0. Left and right offsets are given in
units of the x axis, top and bottom offsets in units of the y axis. A positive offset expands the graph in
the specified direction, e.g., a positive bottom offset makes ymin more negative. Negative offsets, while
permitted, can have unexpected interactions with autoscaling and clipping.

Offsets are ignored in splots.

Example:

set offsets 0, 0, 2, 2
plot sin(x)

This graph of sin(x) will have a y range [-3:3] because the function will be autoscaled to [-1:1] and the
vertical offsets are each two.

35.43 Origin

The set origin command is used to specify the origin of a plotting surface (i.e., the graph and its
margins) on the screen. The coordinates are given in the screen coordinate system (see coordinates
(p. [6]) for information about this system).

Syntax:
set origin <x-origin>,<y-origin>

35.44 Output

By default, screens are displayed to the standard output. The set output command redirects the
display to the specified file or device.

Syntax:

set output {"<filename>"}
show output

The filename must be enclosed in quotes. If the filename is omitted, any output file opened by a
previous invocation of set output will be closed and new output will be sent to STDOUT. (If you give
the command set output "STDOUT", your output may be sent to a file named "STDOUT"! ["May
be", not "will be", because some terminals, like x11, ignore set output.])

MSDOS users should note that the \ character has special significance in double-quoted strings, so
single-quotes should be used for filenames in different directories.

68

When both set terminal and set output are used together, it is safest to give set terminal first,
because some terminals set a flag which is needed in some operating systems. This would be the case,
for example, if the operating system needs to know whether or not a file is to be formatted in order to
open it properly.

On machines with popen functions (Unix), output can be piped through a shell command if the first
non-whitespace character of the filename is ’|’. For instance,

set output "|lpr -Plaser filename"
set output "|lp -dlaser filename"

On MSDOS machines, set output "PRN" will direct the output to the default printer. On VMS,
output can be sent directly to any spooled device. It is also possible to send the output to DECnet
transparent tasks, which allows some flexibility.

35.45 Parametric

The set parametric command changes the meaning of plot (splot) from normal functions to para-
metric functions. The command unset parametric restores the plotting style to normal, single-valued
expression plotting.

Syntax:

set parametric
unset parametric
show parametric

For 2-d plotting, a parametric function is determined by a pair of parametric functions operating on a
parameter. An example of a 2-d parametric function would be plot sin(t),cos(t), which draws a circle
(if the aspect ratio is set correctly — see set size (p.) gnuplot will display an error message if
both functions are not provided for a parametric plot.

For 3-d plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet of functions
is required. An example of a 3-d parametric function would be cos(u)*cos(v),cos(u)*sin(v),sin(u),
which draws a sphere. gnuplot will display an error message if all three functions are not provided for
a parametric splot.

The total set of possible plots is a superset of the simple f(x) style plots, since the two functions can
describe the x and y values to be computed separately. In fact, plots of the type t,f(t) are equivalent to
those produced with f(x) because the x values are computed using the identity function. Similarly, 3-d
plots of the type u,v,f(u,v) are equivalent to f(x,y).

Note that the order the parametric functions are specified is xfunction, yfunction (and zfunction) and
that each operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x) and f(x,y)
style plotting assume an xrange and yrange (and zrange), the parametric mode additionally specifies a
trange, urange, and vrange. These ranges may be set directly with set trange, set urange, and set
vrange, or by specifying the range on the plot or splot commands. Currently the default range for
these parametric variables is [-5:5]. Setting the ranges to something more meaningful is expected.

35.46 Pm3d

pm3d is a [new] type of splot mode for drawing color/gray maps and surfaces. It can be used for plotting
gridded as well as non-gridded data. The main power of the pm3d algorithm (see also my program pm3d)
is that it can draw maps or surfaces from large data sets without preprocessing even when the data are
non-gridded and the scans do not have same number of points, thus it produces no artefacts. Currently
supported terminals are:

69

Screen terminals:
0S/2 Presentation Manager
X11
Linux VGA (vgagl)
GGI
Windows
Files:
PostScript
pslatex, pstex, epslatex
GIF
Xfig
tgif
cgm

(You are welcome to implement the support for other terminals, e.g. png.)

The pm3d algorithm fills the region between two neighbouring points in one scan with another two points
in the next scan by a gray (or color) according to the average of the z data (or an additional ’color’
column, see splot (p.) in these four points. From this follows, that the neighbouring scans should
not cross and the number of points in the neighbouring scans should not differ too much (you see —
scans can have different number of points). No other requirements (e.g. the data must be gridded) are
needed. Another advantage is that the algorithm does not draw anything outside of the input (measured
or calculated) region.

1. function splot or data splot with one ore three data columns:

The gray is obtained by mapping the averaged z coordinate of the four
corners of the quadrangle into the range [min_color_z,max_color_z]
providing range of grays [0:1]. This value can be used directly as the
gray for gray maps. The normalized gray value can be further mapped into
a color. See ‘set palette‘ for the complete description.

2. data splot with two ore four data columns:

The gray is obtained by using the LAST coordinate instead of the z value.

The pm3d mode requires a terminal supporting filled colored polygons and palettes of smooth colors.
See above for the list of currently available terminals.

Notes:

1. The term ’scan’ referenced above is used more among physicists then the
the term ’iso_curve’ in gnuplot documentation and sources. You measure
maps recording one scan after another scan, that’s why.

2. Map is obtained by ‘set view 180,0,1.25; set yrange [*:x] reverse®,
plus something more. This can be easily switched on by using
‘set pm3d map‘. Use ‘unset pm3d‘ before switching to 2d plots.

Syntax:

set pm3d

set pm3d {

at <bst combination> }

scansautomatic | scansforward | scansbackward }
flush { begin | center | end } }

cliplin | clip4in }

hidden3d <linestyle> | nohidden3d }

transparent | solid }

map }

implicit | explicit }

B N N

70

by
show pm3d
unset pm3d

set pm3d (i.e. without options) sets up the default values. Otherwise, the options can be given in any
order.

pm3d can be drawn at the base or top (color or gray map) or as surface (color or gray surface). This is
defined by the at option with a string of up to 6 combinations of b, t and s. For instance, at b plots at
bottom only, at st plots firstly surface, then top, at bstbst...

Colored quadrangles are plotted one after another. When plotting surfaces (at s), the later overlaps the
previous ones. You may try to switch between scansforward and scansbackward to change whether
the first scan of the data is plotted first or last. The default is scansautomatic where gnuplot makes
a guess about the scan direction.

If two subsequent scans do not have the same number of points, then it has to be decided whether to
start taking points for quadrangles from the beginning of both scans (flush begin), from their ends
(flush end) or to center them (flush center). Note, that flush (center|end) are incompatible with
scansautomatic: if you specify flush center or flush end and scansautomatic is set, it is silently
switched to scansforward.

Clipping with respect to the x,y coordinates can be done in two ways. cliplin: all 4 points of the
quadrangle must be defined and at least 1 point of the quadrangle must be in the x and y ranges.
clip4in: all 4 points of the quadrangle must be in the x and y ranges.

The above clipping works fine for plotting maps. For surfaces, clipping with respect to the z coordinate
could find some use too (something like "clipzlin" and "clipz4in"). But nobody has needed this feature
until now, so it’s not available.

Notice that the ranges of z-values and color values for surfaces are adjustable independently by set
zrange, set cbrange, and set log for z or cb. Maps can be adjusted by the cb axis only; see also set
colorbox (p. [72)).

The option hidden3d takes as the argument a linestyle which must be created by set style line
(The style need not to be present when setting pm3d, but it must be present when plotting). If set, lines
are drawn using the specified line style, taking into account hidden line removal. This is by far more
efficient then using the command set hidden3d as it doesn’t really calculate hidden line removal, but
just draws the filled polygons in the correct order. So the recommended choice when using pm3d is

set pm3d at s hidden3d 100

set style line 100 1t 5 1w 0.5

unset hidden3d

unset surf

splot x*x+y*y

If the option transparent is on, borders, tics and labels are drawn always above (that is after) the
surface. This option is on by default to be compatible with the standard splot hidden3d style. If
the option is off (solid), borders, tics and labels might be partially hidden by the surface. This is
accomplished by drawing the surface and decorations in the right order and looks more realistic.

The set pm3d map is actually a macro which facilitates plotting maps. It is equivalent to these user
commands:

set pm3d at b; unset surface; unset contour

set view 180,0,1.3

set yrange [*:%*] reverse

a trick to rotate the ylabel

Notice that *now* the ylabel is rotated by an internal ’set pm3d map’ switch, as far as no user option is
available to rotate x,y,z labels explicitly. Furthermore, the graph area is smaller than that of 2D graphs
(some more white space than I would expect like). Thus could be solved if someone (why not you?!)

71

likes to implement a 2d layout for 3d maps, e.g. ’set view map’). Please use unset pm3d to correctly
get rid of the pm3d setup, notably the reversed y axis and rotated ylabel.

The coloring setup as well as the color box drawing are determinated by set palette. There can be only
one palette for the current plot. Drawing of several surfaces with different palettes can be achieved by
multiplot with fixed origin and size.

If the option implicit is on (which is the default), all surface plots will be plotted additionally to the
default type, e.g.

splot ’fred.dat’ with lines, ’lola.dat’ with lines

would give both plots additionally to a pm3d surface. If the option implicit is off (or explicit is on)
only plots specified by the with pm3d attribute are plotted with a pm3d surface, e.g.:

splot ’fred.dat’ with lines, ’lola.dat’ with pm3d

would plot ’fred.dat’ with lines (and only lines) and ’lola.dat’ with a pm3d surface. If explicit is on,
you can also switch to the default style pm3d, e.g.:

set style data pm3d

Note that when plotting several plots, they are plotted in the order given on the command line. This
can be of interest especially for pm3d surfaces which can overwrite and therefore hide part of earlier
plots.

If with pm3d is specified in the splot command line, then it accepts the ’at’ option. The following
plots draw three color surfaces at different altitudes:

set border 4095

set pm3d at s

splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t

See also set palette (p. , set colorbox (p. , help x11 pm3d (p. ??), help vgagl (p. 77?).

35.47 Palette

Palette is a color storage for use by pm3d, filled color contours or polygons, color histograms, color
gradient background, and whatever it is or it will be implemented... Here it stands for a palette of
smooth "continuous" colors or grays, but let’s call it just a palette.

Color palettes, or requires terminal entries for filled color polygons and palettes of smooth colors, are
currently available for terminals listed in help pm3d. The range of color values are adjustable inde-
pendently by set cbrange and set log cb. The whole color palette is visualized in the colorbox.

Syntax:

set palette

set palette {
{ gray | color }
{ rgbformulae <r>,<g>, }
{ positive | negative }
{ nops_allcF | ps_allcF }
{ maxcolors <maxcolors> }

}
show palette
show palette palette <n>

set palette (i.e. without options) sets up the default values. Otherwise, the options can be given in any
order. show palette shows the current palette properties. show palette palette <n> shows RGB
triplets for the current settings and a palette having <n> discrete colors.

The following options determine the coloring properties.

72

Figure using this palette can be gray or color. For instance, in pm3d the gray is obtained by mapping
the averaged z coordinate of the 4 corners of the quadrangle into the range [min_z,max z| providing
range of grays [0:1]. This value can be used directly as the gray for gray maps. The color map requires a
transformation gray->(R,G,B), i.e. a mapping [0:1]->([0:1],[0:1],[0:1]). Therefore three suitable mapping
functions have to be chosen. This is done via rgbformulae <r>,<g>,. The available mapping
functions are listed by show palette. Default is 7,5,15, some other examples are 3,11,6, 21,23,3 or
3,23,21. Negative numbers, like 3,-11,-6, mean inverted color (i.e. 1-gray passed into the formula, see
also positive (p. and negative (p. options below).

Some nice schemes:

7,5,15 ... traditional pm3d (black-blue-red-yellow)

3,11,6 ... green-red-violet

23,28,3 ... ocean (green-blue-white); try also all other permutations
21,22,23 ... hot (black-red-yellow-white)

30,31,32 ... color printable on gray (black-blue-violet-yellow-white)
33,13,10 ... rainbow (blue-green-yellow-red)

34,35,36 ... AFM hot (black-red-yellow-white)

Use positive and negative to invert the figure colors.

In order to reduce the size of postscript files, the gray value and not all three calculated r,g,b values
is written in the file. Therefore the analytical formulae are coded directly in the postscript language
as a header just before the pm3d drawing, see /g and /cF definitions. Usually, it makes sense to write
therein definitions of only the 3 formulae used. But for multiplot or any other reason you may want to
manually edit the transformations directly in the postscript file. This is the default option nops_allcF'.
Using the option ps_allcF writes postscript definitions of all formulae. This you may find interesting if
you want to edit the postscript file in order to have different palettes for different surfaces in one graph.
WEell, you can achieve this functionality by multiplot with fixed origin and size.

If pm3d map has been plotted from gridded or almost regular data with an output to a postscript file,
then it is possible to reduce the size of this postscript file up to at about 50% by the enclosed awk script
pm3dCompress.awk. This you may find interesting if you intend to keep the file for including it into
your publication or before downloading a very large file into a slow printer. Usage:

awk -f pm3dCompress.awk thefile.ps >smallerfile.ps

If pm3d map has been plotted from rectangular gridded data with an output to a postscript file, then it
is possible to reduce the file size even more by the enclosed awk script pm3dConvertTolmage.awk.
Usage:

awk -f pm3dConvertTolmage.awk <thefile.ps >smallerfile.ps

Most terminals support only discrete number of colors (e.g. 256 colors in gif). All entries of the palette
remaining after the default gnuplot linetype colors declaration are allocated for pm3d by default. Then
multiplot could fail if there are no more color positions in the terminal available. Then you should use
set palette maxcolors <maxcolors> with a reasonably small value. This option can also be used to
separate levels of z=constant in discrete steps, thus to emulate filled contours. Default value of 0 stays
for allocating all remaining entries in the terminal palette or for to use exact mapping to RGB.

35.48 Color box

The color scheme, i.e. the gradient of the smooth color with min_z and max_z values of pm3d’s palette,
is drawn in a color box unless unset colorbox.

set colorbox

set colorbox {
{ vertical | horizontal }
{ default | user }

73

{ origin x, y }

{ size x, y }

{ noborder | bdefault | border [line style] }
}

show colorbox
unset colorbox

Colorbox position can be default or user. If the latter is specified the values as given with the origin
and size subcommands are used.

vertical and horizontal switches the orientation of the color gradient.

origin x, y and size x, y are used only in combination with the user option. The x and y values must
be given in screen coordinates (as everything else did not seem to make sense) that is between [0 - 1].
Try for example:

set colorbox horiz user origin .1,.02 size .8,.04

which will draw a horizontal gradient somewhere at the bottom of the graph.

border turns the border on (this is the default). noborder turns the border off. If an positive integer
argument is given after border, it is used as a line style tag which is used for drawing the border, e.g.:

set style line 2604 linetype -1 linewidth .4
set colorbox border 2604

will use line style 2604, a thin line with the default border color (-1) for drawing the border. bdefault
(which is the default) will use the default border line style for drawing the border of the color box.

The axis of the color box is called cb and it is controlled by means of the usual axes commands,
i.e. set/unset/show with cbrange, [m]cbtics, format cb, grid [m]cb, cblabel, and perhaps even
cbdata, [no]|cbdtics, [no]cbmtics.

See also help pm3d (p. [68)), help palette (p.[71), help x11 pm3d (p. ??), help vgagl (p. ??),
help set style line (p. [60)).

35.49 Pointsize

The set pointsize command scales the size of the points used in plots.

Syntax:

set pointsize <multiplier>
show pointsize

The default is a multiplier of 1.0. Larger pointsizes may be useful to make points more visible in
bitmapped graphics.

The pointsize of a single plot may be changed on the plot command. See plot with (p. for details.

Please note that the pointsize setting is not supported by all terminal types.

35.50 Polar

The set polar command changes the meaning of the plot from rectangular coordinates to polar coordi-
nates.

Syntax:

set polar
unset polar
show polar

74

There have been changes made to polar mode in version 3.7, so that scripts for gnuplot versions 3.5 and
earlier will require modification. The main change is that the dummy variable t is used for the angle so
that the x and y ranges can be controlled independently. Other changes are: 1) tics are no longer put
along the zero axes automatically — use set xtics axis nomirror; set ytics axis nomirror; 2) the
grid, if selected, is not automatically polar — use set grid polar; 3) the grid is not labelled with angles
— use set label as necessary.

In polar coordinates, the dummy variable (t) is an angle. The default range of t is [0:2*pi], or, if degree
units have been selected, to [0:360] (see set angles (p. [40)).

The command unset polar changes the meaning of the plot back to the default rectangular coordinate
system.

The set polar command is not supported for splots. See the set mapping (p. command for
similar functionality for splot (p.[117)s.

While in polar coordinates the meaning of an expression in t is really r = f(t), where t is an angle of
rotation. The trange controls the domain (the angle) of the function, and the x and y ranges control

the range of the graph in the x and y directions. Each of these ranges, as well as the rrange, may be
autoscaled or set explicitly. See set xrange (p. [111]) for details of all the ranges (p. commands.

Example:
set polar
plot t*sin(t)
plot [-2xpi:2*pi] [-3:3] [-3:3] t*sin(t)

The first plot uses the default polar angular domain of 0 to 2*pi. The radius and the size of the graph
are scaled automatically. The second plot expands the domain, and restricts the size of the graph to
[-3:3] in both directions.

You may want to set size square to have gnuplot try to make the aspect ratio equal to unity, so that
circles look circular. Polar demos |Polar Data Plot.

35.51 Rmargin

The command set rmargin sets the size of the right margin. Please see set margin (p. for details.

35.52 Rrange

The set rrange command sets the range of the radial coordinate for a graph in polar mode. Please see
set xrange (p.[111]) for details.

35.53 Samples

The sampling rate of functions, or for interpolating data, may be changed by the set samples command.

Syntax:
set samples <samples_1> {,<samples_2>}
show samples

By default, sampling is set to 100 points. A higher sampling rate will produce more accurate plots,
but will take longer. This parameter has no effect on data file plotting unless one of the interpola-
tion/approximation options is used. See plot smooth (p. re 2-d data and set cntrparam (p.
and set dgrid3d (p. re 3-d data.

When a 2-d graph is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples specifies the
number of samples that are to be evaluated for the isolines. Each iso-v line will have <sample_1> samples

http://www.nas.nasa.gov/~woo/gnuplot/polar/polar.html
http://www.nas.nasa.gov/~woo/gnuplot/poldat/poldat.html

(6]

and each iso-u line will have <sample_ 2> samples. If you only specify <samples_ 1>, <samples_2> will
be set to the same value as <samples_1>. See also set isosamples (p. .

35.54 Size

The set size command scales the displayed size of the plot.

Syntax:
set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size

The <xscale> and <yscale> values are the scaling factors for the size of the plot, which includes the
graph and the margins.

ratio causes gnuplot to try to create a graph with an aspect ratio of <r> (the ratio of the y-axis length
to the x-axis length) within the portion of the plot specified by <xscale> and <yscale>.

The meaning of a negative value for <r> is different. If <r>=-1, gnuplot tries to set the scales so that
the unit has the same length on both the x and y axes (suitable for geographical data, for instance). If
<r>=-2, the unit on y has twice the length of the unit on x, and so on.

The success of gnuplot in producing the requested aspect ratio depends on the terminal selected. The
graph area will be the largest rectangle of aspect ratio <r> that will fit into the specified portion of the
output (leaving adequate margins, of course).

square is a synonym for ratio 1.

Both noratio and nosquare return the graph to the default aspect ratio of the terminal, but do not
return <xscale> or <yscale> to their default values (1.0).

ratio and square have no effect on 3-d plots.

set size is relative to the default size, which differs from terminal to terminal. Since gnuplot fills as
much of the available plotting area as possible by default, it is safer to use set size to decrease the size
of a plot than to increase it. See set terminal (p. for the default sizes.

On some terminals, changing the size of the plot will result in text being misplaced.
Examples:
To set the size to normal size use:

set size 1,1

To make the graph half size and square use:
set size square 0.5,0.5

To make the graph twice as high as wide use:
set size ratio 2

See demo.

35.55 Style

Default styles are chosen with the set style function and set style data commands. See plot with
(p- for information about how to override the default plotting style for individual functions and
data sets.

Syntax:
set style function <style>
set style data <style>
show style function
show style data

http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html

76

The types used for all line and point styles (i.e., solid, dash-dot, color, etc. for lines; circles, squares,
crosses, etc. for points) will be either those specified on the plot or splot command or will be chosen
sequentially from the types available to the terminal in use. Use the command test to see what is
available.

None of the styles requiring more than two columns of information (e.g., errorbars or errorlines) can
be used with splots or function plots. Neither boxes, filledboxes, filledcurves nor any of the steps
styles can be used with splots. If an inappropriate style is specified, it will be changed to points.

For 2-d data with more than two columns, gnuplot is picky about the allowed errorbar and errorline
styles. The using option on the plot command can be used to set up the correct columns for the style
you want. (In this discussion, "column" will be used to refer both to a column in the data file and an
entry in the using list.)

For three columns, only xerrorbars, yerrorbars (or errorbars), xerrorlines, yerrorlines (or error-
lines), boxes, filledboxes and boxerrorbars are allowed. If another plot style is used, the style will
be changed to yerrorbars. The boxerrorbars style will calculate the boxwidth automatically.

For four columns, only xerrorbars, yerrorbars (or errorbars), xyerrorbars, xerrorlines, yerror-
lines (or errorlines), xyerrorlines, boxxyerrorbars, and boxerrorbars are allowed. An illegal style
will be changed to yerrorbars.

Five-column data allow only the boxerrorbars, financebars, and candlesticks styles. (The last two
of these are primarily used for plots of financial prices.) An illegal style will be changed to boxerrorbars
before plotting.

Six- and seven-column data only allow the xyerrorbars, xyerrorlines, and boxxyerrorbars styles.
Tllegal styles will be changed to xyerrorbars before plotting.

For more information about error bars with and without lines, please see plot errorlines (p. and
plot errorbars (p. .

35.55.1 Boxerrorbars

The boxerrorbars style is only relevant to 2-d data plotting. It is a combination of the boxes and
yerrorbars styles. The boxwidth will come from the fourth column if the y errors are in the form
of "ydelta" and the boxwidth was not previously set equal to -2.0 (set boxwidth -2.0) or from the
fifth column if the y errors are in the form of "ylow yhigh". The special case boxwidth = -2.0 is for
four-column data with y errors in the form "ylow yhigh". In this case the boxwidth will be calculated so
that each box touches the adjacent boxes. The width will also be calculated in cases where three-column
data are used.

The box height is determined from the y error in the same way as it is for the yerrorbars style — either
from y-ydelta to y+ydelta or from ylow to yhigh, depending on how many data columns are provided.
See Demo.

35.55.2 Boxes

The boxes style is only relevant to 2-d plotting. It draws a box centered about the given x coordinate
from the x axis (not the graph border) to the given y coordinate. The width of the box is obtained in
one of three ways. If it is a data plot and the data file has a third column, this will be used to set the
width of the box. If not, if a width has been set using the set boxwidth command, this will be used.
If neither of these is available, the width of each box will be calculated automatically so that it touches
the adjacent boxes. For filled boxes, see the filledboxes (p. style.

http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html

7

35.55.3 Filledboxes

The filledboxes style is only relevant to 2-d plotting. Like boxes, it draws a box centered about the
given x coordinate from the x axis (not the graph border) to the given y coordinate. See the boxes
(p- style for how the width of the box is obtained. The filledboxes keyword may be abbreviated to
fillb. The drawn box is filled with a color pattern according to a style defined by the set style filling
command. The fillstyle may be one of empty, solid and pattern.

For fillstyle empty the box is filled with the background color.

For fillstyle solid the box is filled with a solid pattern using the current drawing color. The fill density
is determined by set filldensity. Values for filldensity are in the range from 0.0 (empty) to 1.0 (solid).
It depends on the terminal driver how many density steps between 0.0 and 1.0 are available (e.g. the
bitmap drivers currently support only filldensities 0.0, 0.25, 0.5, 0.75 and 1.0). Most drivers (e.g. x11,
windows, bitmap drivers) use halftone patterns to achieve several filldensities, others (e.g. postscript)
use true RGB colors.

For fillstyle pattern the box is filled in the current drawing color with a pattern as selected by set
style filling pattern <number>. fillpattern is a number starting at 0. The kind and number of the
available fillpatterns depend on the terminal driver.

Examples:
To plot a data file with solid filled boxes with a small vertical space seperating them (bargraph):

set boxwidth 0.9 relative
plot ’file.dat’ with filledboxes

To plot a sine and a cosine curve in filledboxes style with filldensity 50 percent:

set style function filledboxes
set style filling solid 0.5
plot sin(x), cos(x)

Currently only the following terminal drivers support the filledboxes style: x11, windows, pm,
postscript, fig, pbm, png, gif, hpdj, hppj, hpljii, hp500c, nec_cp6, epson_180dpi, epson_60dpi, ep-
son_1x800, okidata, starc and tandy_60dpi. The BeOS driver (be) supports filledboxes too, but it
is unknown whether it works as intended.

35.55.4 Filledcurves

The filledcurves style is only relevant to 2-d plotting. It draws either the current curve closed and
filled, or the region between the current curve and a given axis, horizontal or vertical line, or a point,
filled with the current drawing color.

Syntax:
set style [data | function] filledcurves [option]
plot ... with filledcurves [option]

where the option can be

[closed | {x1 | x2 | y1 | y2}[=<a>] | xy=<x>,<y>]

The area is filled between the current curve and

filledcurves closed ... Jjust filled closed curve,

filledcurves x1 ... x1 axis,

filledcurves x2 ... x2 axis, etc for yl and y2 axes,

filledcurves y1=0 ... line y=0 (at yl axis) ie parallel to x1 axis,
filledcurves y2=42 ... line y=42 (at y2 axis) ie parallel to x2, etc,

filledcurves xy=10,20 ... point 10,20 of x1,yl axes (arc-like shape).

78

Note: filling is supported on filled-polygon capable terminals, see help pm3d (p. for their list.

Zoom of a filled curve drawn from a datafile may produce empty or incorrect area because gnuplot is
clipping points and lines, and not areas.

If the values of <a>, <x>, <y> are out of the drawing boundary, then they are moved to the graph
boundary. Then the actually filled area in the case of option xy=<x>,<y> will depend on xrange and
yrange.

35.55.5 Boxxyerrorbars

The boxxyerrorbars style is only relevant to 2-d data plotting. It is a combination of the boxes and
xyerrorbars styles.

The box width and height are determined from the x and y errors in the same way as they are for the
xyerrorbars style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta
and from y-ydelta to y+ydelta , depending on how many data columns are provided.

35.55.6 Candlesticks

The candlesticks style is only relevant for 2-d data plotting of financial data. Five columns of data are
required; in order, these should be the x coordinate (most likely a date) and the opening, low, high, and
closing prices. The symbol is an open rectangle, centered horizontally at the x coordinate and limited
vertically by the opening and closing prices. A vertical line segment at the x coordinate extends up from
the top of the rectangle to the high price and another down to the low. The width of the rectangle may
be changed by set bars. The symbol will be unchanged if the low and high prices are interchanged.
The rectangle is pseudo-filled by three vertical lines inside it, if the open value is larger than the close.
Otherwise it’s left empty. See set bars (p. and financebars (p. . See demos.

35.55.7 Dots

The dots style plots a tiny dot at each point; this is useful for scatter plots with many points.

35.55.8 Financebars

The financebars style is only relevant for 2-d data plotting of financial data. Five columns of data are
required; in order, these should be the x coordinate (most likely a date) and the opening, low, high, and
closing prices. The symbol is a vertical line segment, located horizontally at the x coordinate and limited
vertically by the high and low prices. A horizontal tic on the left marks the opening price and one on
the right marks the closing price. The length of these tics may be changed by set bars. The symbol
will be unchanged if the high and low prices are interchanged. See set bars (p. and candlesticks

(p. [78)). |See demos.

35.55.9 Fsteps

The fsteps style is only relevant to 2-d plotting. It connects consecutive points with two line segments:
the first from (x1,y1) to (x1,y2) and the second from (x1,y2) to (x2,y2). See demo.

35.55.10 Histeps

The histeps style is only relevant to 2-d plotting. It is intended for plotting histograms. Y-values
are assumed to be centered at the x-values; the point at x1 is represented as a horizontal line from
((x0+x1)/2,y1) to ((x14x2)/2,y1). The lines representing the end points are extended so that the step

http://www.nas.nasa.gov/~woo/gnuplot/finance/finance.html
http://www.nas.nasa.gov/~woo/gnuplot/finance/finance.html
http://www.nas.nasa.gov/~woo/gnuplot/steps/steps.html

79

is centered on at x. Adjacent points are connected by a vertical line at their average x, that is, from
((x14x2)/2,y1) to ((x14x2)/2,y2).

If autoscale is in effect, it selects the xrange from the data rather than the steps, so the end points will
appear only half as wide as the others. See demo.

histeps is only a plotting style; gnuplot does not have the ability to create bins and determine their
population from some data set.

35.55.11 Impulses

The impulses style displays a vertical line from the x axis (not the graph border), or from the grid base
for splot, to each point.

35.55.12 Lines

The lines style connects adjacent points with straight line segments. See also linetype (p. ,

linewidth (p. , and linestyle (p. .

35.55.13 Linespoints

The linespoints style does both lines and points, that is, it draws a small symbol at each point and
then connects adjacent points with straight line segments. The command set pointsize may be used
to change the size of the points. See set pointsize (p. for its usage.

linespoints may be abbreviated lp.
35.55.14 Points

The points style displays a small symbol at each point. The command set pointsize may be used to
change the size of the points. See set pointsize (p. for its usage.

35.55.15 Steps

The steps style is only relevant to 2-d plotting. It connects consecutive points with two line segments:
the first from (x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2). See demo.

35.55.16 Vector

The vector style draws a vector from (x,y) to (x+xdelta,y+ydelta). Thus it requires four columns of
data. It also draws a small arrowhead at the end of the vector.

set clip one and set clip two affect drawing vectors. Please see set clip (p. [46)).

35.55.17 Xerrorbars

The xerrorbars style is only relevant to 2-d data plots. xerrorbars is like dots, except that a horizontal
error bar is also drawn. At each point (x,y), a line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y)
to (x+xdelta,y), depending on how many data columns are provided. A tic mark is placed at the ends
of the error bar (unless set bars is used — see set bars (p. for details).

http://www.nas.nasa.gov/~woo/gnuplot/steps/steps.html
http://www.nas.nasa.gov/~woo/gnuplot/steps/steps.html

80

35.55.18 Xyerrorbars

The xyerrorbars style is only relevant to 2-d data plots. xyerrorbars is like dots, except that
horizontal and vertical error bars are also drawn. At each point (x,y), lines are drawn from (x,y-ydelta)
to (x,y+ydelta) and from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from (xlow,y)
to (xhigh,y), depending upon the number of data columns provided. A tic mark is placed at the ends of
the error bar (unless set bars is used — see set bars (p. for details).

If data are provided in an unsupported mixed form, the using filter on the plot command should be
used to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh),
then you can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

35.55.19 Yerrorbars

The yerrorbars (or errorbars) style is only relevant to 2-d data plots. yerrorbars is like points,
except that a vertical error bar is also drawn. At each point (x,y), a line is drawn from (x,y-ydelta) to
(x,y+ydelta) or from (x,ylow) to (x,yhigh), depending on how many data columns are provided. A tic
mark is placed at the ends of the error bar (unless set bars is used — see set bars (p. for details).
See demo.

35.55.20 Xerrorlines

The xerrorlines style is only relevant to 2-d data plots. xerrorlines is like linespoints, except that
a horizontal error line is also drawn. At each point (x,y), a line is drawn from (xlow,y) to (xhigh,y) or
from (x-xdelta,y) to (x+xdelta,y), depending on how many data columns are provided. A tic mark is
placed at the ends of the error bar (unless set bars is used — see set bars (p. for details).

35.55.21 Xyerrorlines

The xyerrorlines style is only relevant to 2-d data plots. xyerrorlines is like linespoints, except that
horizontal and vertical error bars are also drawn. At each point (x,y), lines are drawn from (x,y-ydelta)
to (x,y+ydelta) and from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from (xlow,y)
to (xhigh,y), depending upon the number of data columns provided. A tic mark is placed at the ends of
the error bar (unless set bars is used — see set bars (p. for details).

If data are provided in an unsupported mixed form, the using filter on the plot command should be
used to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh),
then you can use

plot ’data’ using 1:2:($1-$3), ($1+$3),4,5 with xyerrorbars

35.55.22 Yerrorlines

The yerrorlines (or errorlines) style is only relevant to 2-d data plots. yerrorlines is like linespoints,
except that a vertical error line is also drawn. At each point (x,y), a line is drawn from (x,y-ydelta) to
(x,y+ydelta) or from (x,ylow) to (x,yhigh), depending on how many data columns are provided. A tic
mark is placed at the ends of the error bar (unless set bars is used — see set bars (p. for details).
See demo.

35.56 Surface

The command set surface controls the display of surfaces by splot.

Syntax:

http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html
http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html

81

set surface
unset surface
show surface

The surface is drawn with the style specifed by with, or else the appropriate style, data or function.

Whenever unset surface is issued, splot will not draw points or lines corresponding to the function or
data file points. Contours may be still be drawn on the surface, depending on the set contour option.
unset surface; set contour base is useful for displaying contours on the grid base. See also set

contour (p. [48).

35.57 Terminal

gnuplot supports many different graphics devices. Use set terminal to tell gnuplot what kind of
output to generate. Use set output to redirect that output to a file or device.
Syntax:

set terminal {<terminal-type> | push | pop}
show terminal

If <terminal-type> is omitted, gnuplot will list the available terminal types. <terminal-type> may be
abbreviated.

If both set terminal and set output are used together, it is safest to give set terminal first, because
some terminals set a flag which is needed in some operating systems.

Several terminals have additional options. For example, see dumb (p. , iris4d (p. ?77?), hpljii
(p. or postscript (p. [93).

The command set term push remembers the current terminal including its settings while set term
pop restores it. This is equivalent to save term and load term, but without accessing the filesystem.
Therefore they can be used to achieve platform independent restoring of the terminal after printing, for
instance.

This document may describe drivers that are not available to you because they were not installed, or it
may not describe all the drivers that are available to you, depending on its output format.

35.57.1 Windows

Three options may be set in the windows terminal driver.

Syntax:

set terminal windows {<color>} {"<fontname>"} {<fontsize>}
where <color>> is either color or monochrome, "<fontname>" is the name of a valid Windows font,
and <fontsize> is the size of the font in points.
Other options may be set with the graph-menu, the initialization file, and set linestyle.

The Windows version normally terminates immediately as soon as the end of any files given as command
line arguments is reached (i.e. in non-interactive mode). It will also not show the text-window at all,
in this mode, only the plot. By giving the optional argument /noend or -noend, you can disable this
behaviour.

35.57.1.1 Graph-menu The gnuplot graph window has the following options on a pop-up menu
accessed by pressing the right mouse button or selecting Options from the system menu:

Bring to Top when checked brings the graph window to the top after every plot.

Color when checked enables color linestyles. When unchecked it forces monochrome linestyles.

82

Copy to Clipboard copies a bitmap and a Metafile picture.
Background... sets the window background color.

Choose Font... selects the font used in the graphics window.
Line Styles... allows customization of the line colors and styles.

Print... prints the graphics windows using a Windows printer driver and allows selection of the printer
and scaling of the output. The output produced by Print is not as good as that from gnuplot’s own
printer drivers.

Update wgnuplot.ini saves the current window locations, window sizes, text window font, text window
font size, graph window font, graph window font size, background color and linestyles to the initialization
file WGNUPLOT.INI.

35.57.1.2 Printing In order of preference, graphs may be be printed in the following ways.

1. Use the gnuplot command set terminal to select a printer and set output to redirect output to
a file.

2. Select the Print... command from the gnuplot graph window. An extra command screendump
does this from the text window.

3. If set output "PRN" is used, output will go to a temporary file. When you exit from gnuplot
or when you change the output with another set output command, a dialog box will appear for you
to select a printer port. If you choose OK, the output will be printed on the selected port, passing
unmodified through the print manager. It is possible to accidentally (or deliberately) send printer
output meant for one printer to an incompatible printer.

35.57.1.3 Text-menu The gnuplot text window has the following options on a pop-up menu
accessed by pressing the right mouse button or selecting Options from the system menu:

Copy to Clipboard copies marked text to the clipboard.
Paste copies text from the clipboard as if typed by the user.
Choose Font... selects the font used in the text window.

System Colors when selected makes the text window honor the System Colors set using the Control
Panel. When unselected, text is black or blue on a white background.

Update wgnuplot.ini saves the current text window location, text window size, text window font and
text window font size to the initialisation file WGNUPLOT.INI.

MENU BAR

If the menu file WGNUPLOT.MNU is found in the same directory as WGNUPLOT.EXE, then the
menu specified in WGNUPLOT.MNU will be loaded. Menu commands:

[Menu]| starts a new menu with the name on the following line.
[EndMenu] ends the current menu.

[-] inserts a horizontal menu separator.

[|] inserts a vertical menu separator.

[Button] puts the next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and the macro on the second
line. Leading spaces are ignored. Macro commands:

[INPUT] — Input string with prompt terminated by [EOS] or {ENTER}
[EOS] — End Of String terminator. Generates no output.
[OPEN] — Get name of file to open from list box, with title of list box terminated by [EOS], followed

83

by default filename terminated by [EOS] or {ENTER}. This uses COMMDLG.DLL from Windows 3.1.
[SAVE| — Get name of file to save. Similar to [OPEN]

Macro character substitutions:

{ENTER} — Carriage Return "\1r’

{TAB} — Tab "\011’

{ESC} — Escape "\033’

{~A} — \oO1’

{~-} —\o3r

Macros are limited to 256 characters after expansion.

35.57.1.4 Wgnuplot.ini Windows gnuplot will read some of its options from the [WGNUPLOT]
section of WGNUPLOT.INI in the Windows directory. A sample WGNUPLOT.INTI file:

[WGNUPLOT]
TextOrigin=0 O
TextSize=640 150
TextFont=Terminal,9
GraphOrigin=0 150
GraphSize=640 330
GraphFont=Arial, 10
GraphColor=1
GraphToTop=1
GraphBackground=255 255 255
Border=0 0 0 0 O
Axis=192 192 192 2 2
Linel=0 0 255 0 O
Line2=0 255 0 0 1
Line3=255 0 0 0 2
Line4=255 0 255 0 3
Lineb5=0 0 128 0 4

The GraphFont entry specifies the font name and size in points. The five numbers given in the Border,
Axis and Line entries are the Red intensity (0-255), Green intensity, Blue intensity, Color Linestyle
and Mono Linestyle. Linestyles are 0=SOLID, 1=DASH, 2=DOT, 3=DASHDOT, 4=DASHDOT-
DOT. In the sample WGNUPLOT.INI file above, Line 2 is a green solid line in color mode, or a
dashed line in monochrome mode. The default line width is 1 pixel. If Linestyle is negative, it specifies
the width of a SOLID line in pixels. Linel and any linestyle used with the points style must be SOLID
with unit width.

35.57.1.5 Windows3.0 Windows 3.1 is preferred, but WGNUPLOT will run under Windows 3.0
with the following restrictions: 1. COMMDLG.DLL and SHELL.DLL (available with Windows 3.1 or
Borland C++ 3.1) must be in the windows directory.

2. WGNUPLOT.HLP produced by Borland C++ 3.1 is in Windows 3.1 format. You need to use the
WINHELP.EXE supplied with Borland C++ 3.1.

3. It will not run in real mode due to lack of memory.
4. TrueType fonts are not available in the graph window.

5. Drag-drop does not work.

84

35.57.2 Aifm

Several options may be set in aifm — the Adobe Illustrator 3.0+ driver.

Syntax:

set terminal aifm {<color>} {"<fontname>"} {<fontsize>}

<color> is either color or monochrome; "<fontname>" is the name of a valid PostScript font;
<fontsize> is the size of the font in PostScript points, before scaling by the set size command. Selecting
default sets all options to their default values: monochrome, "Times-Roman", and 14pt.

Since Al does not really support multiple pages, multiple graphs will be drawn directly on top of one
another. However, each graph will be grouped individually, making it easy to separate them inside Al
(just pick them up and move them).

Examples:

set term aifm
set term aifm 22
set size 0.7,1.4; set term aifm color "Times-Roman" 14

35.57.3 Cgm

The cgm terminal generates a Computer Graphics Metafile, Version 1. This file format is a subset of
the ANSI X3.122-1986 standard entitled "Computer Graphics - Metafile for the Storage and Transfer of
Picture Description Information". Several options may be set in cgm.

Syntax:

set terminal cgm {<mode>} {<color>} {<rotation>} {solid | dashed}
{width <plot_width>} {linewidth <line_width>}
{""} {<fontsize>}
{<color0> <colori> <color2> ...}

where <mode> is landscape, portrait, or default; <color> is either color or monochrome;
<rotation> is either rotate or norotate; solid draws all curves with solid lines, overriding any dashed
patterns; <plot_width> is the assumed width of the plot in points; <line_width> is the line width in
points (default 1); is the name of a font; and <fontsize> is the size of the font in points (default
12).

By default, cgm uses rotated text for the Y axis label.
The first six options can be in any order. Selecting default sets all options to their default values.

Each color must be of the form ’xrrggbb’, where x is the literal character 'x’ and 'rrggbb’ are the red,
green and blue components in hex. For example, 'x00ff00’ is green. The background color is set first,
then the plotting colors. Examples:

set terminal cgm landscape color rotate dashed width 432 \
linewidth 1 ’Helvetica Bold’ 12 # defaults

set terminal cgm 14 linewidth 2 14 # wider lines & larger font

set terminal cgm portrait "Times Italic" 12

set terminal cgm color solid # no pesky dashes!

35.57.3.1 Font The first part of a Computer Graphics Metafile, the metafile description, includes
a font table. In the picture body, a font is designated by an index into this table. By default, this
terminal generates a table with the following 16 fonts, plus six more with italic replaced by oblique,
or vice-versa (since at least the Microsoft Office and Corel Draw CGM import filters treat italic and
oblique as equivalent):

85

CGM fonts
Helvetica
Helvetica Bold
Helvetica Oblique
Helvetica Bold Oblique
Times Roman
Times Bold
Times Italic
Times Bold Italic
Courier
Courier Bold
Courier Oblique
Courier Bold Oblique
Symbol
Hershey/Cartographic_Roman
Hershey/Cartographic_Greek
Hershey/Simplex_Roman
Hershey/Simplex_Greek
Hershey /Simplex_Script
Hershey/Complex_Roman
Hershey/Complex_Greek
Hershey/Complex_Script
Hershey/Complex Ttalic
Hershey /Complex_Cyrillic
Hershey /Duplex_Roman
Hershey/Triplex_Roman
Hershey/Triplex_Italic
Hershey/Gothic_German
Hershey /Gothic_English
Hershey/Gothic_Italian
Hershey /Symbol_Set_1
Hershey/Symbol_Set_2
Hershey /Symbol Math
ZapfDingbats
Script
15

The first thirteen of these fonts are required for WebCGM. The Microsoft Office CGM import filter
implements the 13 standard fonts listed above, and also *ZapfDingbats’ and ’Script’. However, the script
font may only be accessed under the name ’15’. For more on Microsoft import filter font substitutions,
check its help file which you may find here:

C:\Program Files\Microsoft Office\Office\Cgmimp32.hlp

and/or its configuration file, which you may find here:
C:\Program Files\Common Files\Microsoft Shared\Grphflt\Cgmimp32.cfg

In the set term command, you may specify a font name which does not appear in the default font table.
In that case, a new font table is constructed with the specified font as its first entry. You must ensure
that the spelling, capitalization, and spacing of the name are appropriate for the application that will
read the CGM file. (Gnuplot and any MIL-D-28003A compliant application ignore case in font names.)
If you need to add several new fonts, use several set term commands.

Example:

set terminal cgm ’01d English’
set terminal cgm ’Tengwar’

86

set terminal cgm ’Arabic’
set output ’myfile.cgm’
plot ...

set output

You cannot introduce a new font in a set label command.2 fontsize Fonts are scaled assuming the
page is 6 inches wide. If the size command is used to change the aspect ratio of the page or the CGM
file is converted to a different width, the resulting font sizes will be scaled up or down accordingly. To
change the assumed width, use the width option.

35.57.3.2 Linewidth The linewidth option sets the width of lines in pt. The default width is 1 pt.
Scaling is affected by the actual width of the page, as discussed under the fontsize and width options

35.57.3.3 Rotate The norotate option may be used to disable text rotation. For example, the
CGM input filter for Word for Windows 6.0c can accept rotated text, but the DRAW editor within Word
cannot. If you edit a graph (for example, to label a curve), all rotated text is restored to horizontal.
The Y axis label will then extend beyond the clip boundary. With norotate, the Y axis label starts in
a less attractive location, but the page can be edited without damage. The rotate option confirms the
default behavior.

35.57.3.4 Solid The solid option may be used to disable dashed line styles in the plots. This is
useful when color is enabled and the dashing of the lines detracts from the appearance of the plot. The
dashed option confirms the default behavior, which gives a different dash pattern to each curve.

35.57.3.5 Size Default size of a CGM plot is 32599 units wide and 23457 units high for landscape,
or 23457 units wide by 32599 units high for portrait.

35.57.3.6 Width All distances in the CGM file are in abstract units. The application that reads
the file determines the size of the final plot. By default, the width of the final plot is assumed to be 6
inches (15.24 c¢cm). This distance is used to calculate the correct font size, and may be changed with the
width option. The keyword should be followed by the width in points. (Here, a point is 1/72 inch, as in
PostScript. This unit is known as a "big point" in TeX.) Gnuplot expressions can be used to convert
from other units.

Example:
set terminal cgm width 432 # default
set terminal cgm width 6%72 # same as above
set terminal cgm width 10/2.54%72 # 10 cm wide

35.57.3.7 Nofontlist The default font table includes the fonts recommended for WebCGM, which
are compatible with the Computer Graphics Metafile input filter for Microsoft Office and Corel Draw.
Another application might use different fonts and/or different font names, which may not be documented.
As a workaround, the nofontlist option deletes the font table from the CGM file. In this case, the reading
application should use a default table. Gnuplot will still use its own default font table to select font
indices. Thus, 'Helvetica’ will give you an index of 1, which should get you the first entry in your
application’s default font table. "Helvetica Bold’” will give you its second entry, etc.

The former winword6 option is now a deprecated synonym for nofontlist. The problems involving the
color and font tables that the winword6 option was intended to work around turned out to be gnuplot
bugs which have now been fixed.

87

35.57.4 Corel

The corel terminal driver supports CorelDraw.

Syntax:

set terminal corel { default
| {monochrome | color
{"" {<fontsize>
{<xsize> <ysize> {<linewidth> }}}}}

where the fontsize and linewidth are specified in points and the sizes in inches. The defaults are
monochrome, "SwitzerlandLight", 22, 8.2, 10 and 1.2.

35.57.5 Dumb

The dumb terminal driver has an optional size specification and trailing linefeed control.

Syntax:
set terminal dumb {[nolfeed} {<xsize> <ysize>}

where <xsize> and <ysize> set the size of the dumb terminals. Default is 79 by 24. The last newline
is printed only if feed is enabled.
Examples:

set term dumb nofeed
set term dumb 79 49 # VGA screen---why would anyone do that?

35.57.6 Dxf

The dxf terminal driver creates pictures that can be imported into AutoCad (Release 10.x). It has no
options of its own, but some features of its plots may be modified by other means. The default size is
120x80 AutoCad units, which can be changed by set size. dxf uses seven colors (white, red, yellow,
green, cyan, blue and magenta), which can be changed only by modifying the source file. If a black-and-
white plotting device is used, the colors are mapped to differing line thicknesses. See the description of
the AutoCad print/plot command.

35.57.7 Emf

The emf terminal generates an Enhanced Metafile Format file. This file format is the metafile standard
on MS Win32 Systems Syntax:

set terminal emf {<color>} {solid | dashed}
{""} {<fontsize>}

<color> is either color or monochrome; solid draws all curves with solid lines, overriding any dashed
patterns; is the name of a font; and <fontsize> is the size of the font in points.
The first two options can be in any order. Selecting default sets all options to their default values.

Examples:

set terminal emf ’Times Roman Italic’ 12
set terminal emf color solid # no pesky dashes!

88

35.57.8 Fig

The fig terminal device generates output in the Fig graphics language.

Syntax:

set terminal fig {monochrome | color} {small | big}
{pointsmax <max_points>}
{landscape | portrait}
{metric | inches}
{solid | dashed}
{fontsize <fsize>}
{textnormal | {textspecial texthidden textrigid} }
{size <xsize> <ysize>}
{thickness <units>}
{depth <layer>}
{version <number>}

monochrome and color determine whether the picture is black-and-white or color. small and big
produce a 5x3 or 8x5 inch graph in the default landscape mode and 3x5 or 5x8 inches in portrait
mode. <max_points> sets the maximum number of points per polyline. Default units for editing with
"xfig" may be metric or inches. ’solid’ inhibts automatic usage of dashed lines when solid linestyles
are used up, which otherwise occurs.

fontsize sets the size of the text font to <fsize> points. textnormal resets the text flags and selects
postscript fonts, textspecial sets the text flags for LaTeX specials, texthidden sets the hidden flag and
textrigid the rigid flag. size sets (overrides) the size of the drawing area to <xsize>*<ysize> in units
of inches or centimeters depending on the inches or metric setting in effect. depth sets the default
depth layer for all lines and text. The default depth is 10 to leave room for adding material with "xfig"
on top of the plot. ’version’ sets the format version of the generated fig output. Currently only versions
3.1 and 3.2 are supported.

thickness sets the default line thickness, which is 1 if not specified. Overriding the thickness can be
achieved by adding a multiple of 100 to the to the linetype value for a plot command. In a similar
way the depth of plot elements (with respect to the default depth) can be controlled by adding a
multiple of 1000 to <linetype>. The depth is then <layer> + <linetype>/1000 and the thickness is
(<linetype>%1000)/100 or, if that is zero, the default line thickness.

Additional point-plot symbols are also available with the fig driver. The symbols can be used through
pointtype values % 100 above 50, with different fill intensities controlled by <pointtype> % 5 and
outlines in black (for <pointtype> % 10 < 5) or in the current color. Available symbols are

50 - 59: circles

60 - 69: squares

70 - 79: diamonds

80 - 89: wupwards triangles
90 - 99: downwards triangles

The size of these symbols is linked to the font size. The depth of symbols is by default one less than
the depth for lines to achieve nice error bars. If <pointtype> is above 1000, the depth is <layer> +
<pointtype>/1000-1. If <pointtype>%1000 is above 100, the fill color is (<pointtype>%1000)/100-1.

Available fill colors are (from 1 to 9): black, blue, green, cyan, red, magenta, yellow, white and dark
blue (in monochrome mode: black for 1 to 6 and white for 7 to 9).

See plot with (p. for details of <linetype> and <pointtype>.
The big option is a substitute for the bfig terminal in earlier versions, which is no longer supported.

Examples:

set terminal fig monochrome small pointsmax 1000 # defaults

89

plot ’file.dat’ with points linetype 102 pointtype 759

would produce circles with a blue outline of width 1 and yellow fill color.

plot ’file.dat’ using 1:2:3 with err linetype 1 pointtype 554

would produce errorbars with black lines and circles filled red. These circles are one layer above the
lines (at depth 9 by default).
To plot the error bars on top of the circles use

plot ’file.dat’ using 1:2:3 with err linetype 1 pointtype 2554

35.57.9 Gif

The gif terminal driver generates output in GIF format. It uses Thomas Boutell’s gd library, which is
available from http://www.boutell.com/gd/

By default, the gif terminal driver uses a shared Web-friendy palette.
Syntax:

set terminal gif {transparent} {interlace}
{tiny | small | medium | large | giant}
{size <x>,<y>}
{<color0> <coloril> <color2> ...}

transparent instructs the driver to generate transparent GIFs. The first color will be the transparent
one.

interlace instructs the driver to generate interlaced GIFs.

The choice of fonts is tiny (5x8 pixels), small (6x12 pixels), medium (7x13 Bold), large (8x16) or
giant (9x15 pixels)

The size <x,y> is given in pixels — it defaults to 640x480. The number of pixels can be also modified
by scaling with the set size command.

Each color must be of the form ’xrrggbb’, where x is the literal character 'x’ and ’'rrggbb’ are the red,
green and blue components in hex. For example, 'x00ff00’ is green. The background color is set first,
then the border colors, then the X & Y axis colors, then the plotting colors. The maximum number of
colors that can be set is 256.

Examples:

set terminal gif small size 640,480 \
xffffff x000000 x404040 \
xf£f0000 xffa500 x66cdaa xcdbbcd \
xadd8e6 x0000ff xdda0dd x9500d43 # defaults

which uses white for the non-transparent background, black for borders, gray for the axes, and red,
orange, medium aquamarine, thistle 3, light blue, blue, plum and dark violet for eight plotting colors.

set terminal gif transparent xffffff \
x000000 x202020 x404040 x606060 \
x808080 xAOAOAO0 xCOCOCO xEOEOEO \

which uses white for the transparent background, black for borders, dark gray for axes, and a gray-scale
for the six plotting colors.

The page size is 640x480 pixels. The gif driver can create either color or monochromatic output, but
you have no control over which is produced.

The current version of the gif driver does not support animated GIFs.

90

35.57.10 Hp2623a

The hp2623a terminal driver supports the Hewlett Packard HP2623A. It has no options.

35.57.11 Hp2648

The hp2648 terminal driver supports the Hewlett Packard HP2647 and HP2648. It has no options.

35.57.12 Hp500c

The hp500c terminal driver supports the Hewlett Packard HP DeskJet 500c. It has options for resolution
and compression.
Syntax:

set terminal hp500c {<res>} {<comp>}

where res can be 75, 100, 150 or 300 dots per inch and comp can be "rle", or "tiff". Any other inputs are
replaced by the defaults, which are 75 dpi and no compression. Rasterization at the higher resolutions
may require a large amount of memory.

35.57.13 Hpgl

The hpgl driver produces HPGL output for devices like the HP7475A plotter. There are two options
which can be set: the number of pens and eject, which tells the plotter to eject a page when done. The
default is to use 6 pens and not to eject the page when done.

The international character sets ISO-8859-1 and CP850 are recognized via set encoding iso_8859_1
or set encoding cp850 (see set encoding (p. for details).
Syntax:

set terminal hpgl {<number_of_pens>} {eject}

The selection

set terminal hpgl 8 eject

is equivalent to the previous hp7550 terminal, and the selection

set terminal hpgl 4

is equivalent to the previous hp7580b terminal.

The pcl5 driver supports plotters such as the Hewlett-Packard Designjet 750C, the Hewlett-Packard
Laserjet 111, and the Hewlett-Packard Laserjet IV. It actually uses HPGL-2, but there is a name conflict
among the terminal devices. It has several options which must be specified in the order indicated below:

Syntax:
set terminal pcl5 {mode <mode>} {<plotsize>}
{{color {<number_of_pens>}} | monochrome} {solid | dashed}
{font } {size <fontsize>} {pspoints | nopspoints}

<mode> is landscape or portrait. <plotsize> is the physical plotting size of the plot, which is one
of the following: letter for standard (8 1/2" X 11") displays, legal for (8 1/2" X 14") displays, noex-
tended for (36" X 48") displays (a letter size ratio) or, extended for (36" X 55") displays (almost
a legal size ratio). color is for multi-pen (i.e. color) plots, and <number_of pens> is the number of
pens (i.e. colors) used in color plots. monochrome is for one (e.g. black) pen plots. solid draws all
lines as solid lines, or ’dashed’ will draw lines with different dashed and dotted line patterns.
is stick, univers, cg_times, zapf_dingbats, antique_olive, arial, courier, garamond_antigua,

91

letter_gothic, cg_omega, albertus, times_new_roman, clarendon, coronet, marigold, true-
type_symbols, or wingdings. <fontsize> is the font size in points. The point type selection can be
the standard default set by specifying nopspoints, or the same set of point types found in the postscript
terminal by specifying pspoints.

Note that built-in support of some of these options is printer device dependendent. For instance, all
the fonts are supposedly supported by the HP Laserjet IV, but only a few (e.g. univers, stick) may be
supported by the HP Laserjet III and the Designjet 750C. Also, color obviously won’t work on the the
laserjets since they are monochrome devices.

Defaults: landscape, noextended, color (6 pens), solid, univers, 12 point,

and nopspoints.
With pcl5 international characters are handled by the printer; you just put the appropriate 8-bit char-
acter codes into the text strings. You don’t need to bother with set encoding.

HPGL graphics can be imported by many software packages.

35.57.14 Hbpljii

The hpljii terminal driver supports the HP Laserjet Series II printer. The hpdj driver supports the HP
DeskJet 500 printer. These drivers allow a choice of resolutions.

Syntax:

set terminal hpljii | hpdj {<res>}
where res may be 75, 100, 150 or 300 dots per inch; the default is 75. Rasterization at the higher
resolutions may require a large amount of memory.

The hp500c terminal is similar to hpdj; hp500c additionally supports color and compression.

35.57.15 Hppj

The hppj terminal driver supports the HP PaintJet and HP3630 printers. The only option is the choice
of font.

Syntax:
set terminal hppj {FNT5X9 | FNT9X17 | FNT13X25}

with the middle-sized font (FNT9X17) being the default.

35.57.16 Imagen

The imagen terminal driver supports Imagen laser printers. It is capable of placing multiple graphs on
a single page.

Syntax:
set terminal imagen {<fontsize>} {portrait | landscape}
{[<horiz>,<vert>]}
where fontsize defaults to 12 points and the layout defaults to landscape. <horiz> and <vert> are
the number of graphs in the horizontal and vertical directions; these default to unity.
Example:

set terminal imagen portrait [2,3]

puts six graphs on the page in three rows of two in portrait orientation.

92

35.57.17 Mif

The mif terminal driver produces Frame Maker MIF format version 3.00. It plots in MIF Frames with
the size 15*10 cm, and plot primitives with the same pen will be grouped in the same MIF group. Plot
primitives in a gnuplot page will be plotted in a MIF Frame, and several MIF Frames are collected in
one large MIF Frame. The MIF font used for text is "Times".

Several options may be set in the MIF 3.00 driver.
Syntax:

set terminal mif {colour | monochrome} {polyline | vectors}
{help | 7}

colour plots lines with line types >= 0 in colour (MIF sep. 2-7) and monochrome plots all line types
in black (MIF sep. 0). polyline plots curves as continuous curves and vectors plots curves as collections
of vectors. help and ? print online help on standard error output — both print a short description of
the usage; help also lists the options;

Examples:
set term mif colour polylines # defaults
set term mif # defaults

set term mif vectors
set term mif help

35.57.18 Pbm

Several options may be set in the pbm terminal — the driver for PBMplus.

Syntax:

set terminal pbm {<fontsize>} {<mode>}

where <fontsize> is small, medium, or large and <mode> is monochrome, gray or color. The
default plot size is 640 pixels wide and 480 pixels high; this may be changed by set size.

The output of the pbm driver depends upon <mode>: monochrome produces a portable bitmap (one
bit per pixel), gray a portable graymap (three bits per pixel) and color a portable pixmap (color, four
bits per pixel).

The output of this driver can be used with Jef Poskanzer’s excellent PBMPLUS package, which provides
programs to convert the above PBMPLUS formats to GIF, TIFF, MacPaint, Macintosh PICT, PCX,
X11 bitmap and many others. PBMPLUS may be obtained from ftp.x.org. The relevant files have names
that begin with "netpbm-1mar1994.p1"; they reside in /contrib/utilities. The package can probably also
be obtained from one of the many sites that mirrors ftp.x.org.

Examples:

set terminal pbm small monochrome # defaults
set size 2,2; set terminal pbm color medium

35.57.19 Png

The png terminal driver supports Portable Network Graphics. To compile it, you will need the third-
party libraries "libpng" and "zlib"; both are available at http://www.cdrom.com/pub/png/. png has
four options.

By default, the png terminal driver uses a shared Web-friendy palette.
Syntax:

93

set terminal png {small | medium | large}
{transparent |notransparent}
{picsize <xsize> <ysize>}
{monochrome | gray | color}
{<color0> <color1l> <color2> ...}

transparent instructs the driver to generate transparent PNGs. The first color will be the transparent
one.

The defaults are small (fontsize) and color. Default size of the output is 640*480 pixel. This can be
changed by the option picsize.

Each <color> must be of the form 'xrrggbb’, where x is the literal character 'x’ and ’rrggbb’ are the
red, green and blue components in hex. For example, 'x00ff00’ is green. The background color is set
first, then the border color, then the X & Y axis color, then the plotting colors. The maximum number
of colors that can be set is currently 99.

35.57.20 Postscript

Several options may be set in the postscript driver.

Syntax:

set terminal postscript {<mode>} {enhanced | noenhanced}
{color | colour | monochrome}
{blacktext | colortext | colourtext}
{solid | dashed} {dashlength | dl <DL>}
{linewidth | 1w <LW>}
{<duplexing>}
{"<fontname>"} {<fontsize>}

where <mode> is landscape, portrait, eps or default; enhanced activates the "enhanced PostScript"
features (subscripts, superscripts and mixed fonts); color enables color; blacktext forces all text to
be written in black even in color mode; solid draws all plots with solid lines, overriding any dashed
patterns; dashlength or dl scales the length of the dashed-line segments by <DL> (which is a floating-
point number greater than zero); linewidth or lw scales all linewidths by <LW>; <duplexing> is
defaultplex, simplex or duplex ("duplexing" in PostScript is the ability of the printer to print on
both sides of the same page — don’t set this if your printer can’t do it); "<fontname>" is the name
of a valid PostScript font; and <fontsize> is the size of the font in PostScript points.

default mode sets all options to their defaults: landscape, monochrome, dashed, dl 1.0, lw 1.0,
defaultplex, noenhanced, "Helvetica" and 14pt. Default size of a PostScript plot is 10 inches wide
and 7 inches high.

eps mode generates EPS (Encapsulated PostScript) output, which is just regular PostScript with some
additional lines that allow the file to be imported into a variety of other applications. (The added lines
are PostScript comment lines, so the file may still be printed by itself.) To get EPS output, use the eps
mode and make only one plot per file. In eps mode the whole plot, including the fonts, is reduced to
half of the default size.

Examples:
set terminal postscript default # old postscript
set terminal postscript enhanced # old enhpost
set terminal postscript landscape 22 # old psbig
set terminal postscript eps 14 # old epsfl
set terminal postscript eps 22 # old epsf2
set size 0.7,1.4; set term post portrait color "Times-Roman" 14

Linewidths and pointsizes may be changed with set linestyle.

94

The postscript driver supports about 70 distinct pointtypes, selectable through the pointtype option
on plot and set linestyle.

Several possibly useful files about gnuplot’s PostScript are included in the /docs/ps subdirectory of the
gnuplot distribution and at the distribution sites. These are "ps_symbols.gpi" (a gnuplot command
file that, when executed, creates the file "ps_symbols.ps" which shows all the symbols available through
the postscript terminal), "ps_guide.ps" (a PostScript file that contains a summary of the enhanced
syntax and a page showing what the octal codes produce with text and symbol fonts) and "ps_file.doc"
(a text file that contains a discussion of the organization of a PostScript file written by gnuplot).

A PostScript file is editable, so once gnuplot has created one, you are free to modify it to your heart’s
desire. See the "editing postscript" section for some hints.

35.57.20.1 Enhanced postscript

Enhanced Text Control Codes
Control Examples Explanation
- a"x superscript
_ a_x subscript
@ ©@x or a@ b_c phantom box (occupies no width)
& &{space} inserts space of specified length

*_&_\verb*a.8-* overprints -’ on ’a’, raised by .8

times the current fontsize ‘

Braces can be used to place multiple-character text where a single character is expected (e.g., 27{10}).
To change the font and/or size, use the full form: {/[fontname][=fontsize | *fontscale] text}. Thus
{/Symbol=20 G} is a 20-point GAMMA) and {/*0.75 K} is a K at three-quarters of whatever fontsize
is currently in effect. (The ’/’ character MUST be the first character after the '{’.)

If the encoding vector has been changed by set encoding, the default encoding vector can be used
instead by following the slash with a dash. This is unnecessary if you use the Symbol font, however —
since /Symbol uses its own encoding vector, gnuplot will not apply any other encoding vector to it.

The phantom box is useful for a@~b_c to align superscripts and subscripts but does not work well for
overwriting an accent on a letter. (To do the latter, it is much better to use set encoding iso_8859_1
to change to the ISO Latin-1 encoding vector, which contains a large variety of letters with accents or
other diacritical marks.) Since the box is non-spacing, it is sensible to put the shorter of the subscript
or superscript in the box (that is, after the @).

Space equal in length to a string can be inserted using the '&’ character. Thus
>abck{def}ghi’

would produce

’abc ghi’.

The ’~ ’ character causes the next character or bracketed text to be overprinted by the following character
or bracketed text. The second text will be horizontally centered on the first. Thus ™ a/’ will result in
an ’a’ with a slash through it. You can also shift the second text vertically by preceding the second text
with a number, which will define the fraction of the current fontsize by which the text will be raised or
lowered. In this case the number and text must be enclosed in brackets because more than one character
is necessary. If the overprinted text begins with a number, put a space between the vertical offset and
the text (°~ {abc}{.5 000}’); otherwise no space is needed (’~ {abc}{.5 — }’). You can change the font
for one or both strings ("~ a{.5 /*.2 0}’ — an ’a’ with a one-fifth-size o’ on top — and the space between
the number and the slash is necessary), but you can’t change it after the beginning of the string. Neither
can you use any other special syntax within either string. You can, of course, use control characters by
escaping them (see below), such as *~ a{\"}’

95

You can access special symbols numerically by specifying \character-code (in octal), e.g., {/Symbol
\245} is the symbol for infinity.

You can escape control characters using \, e.g., \\, \{, and so on.

But be aware that strings in double-quotes are parsed differently than those enclosed in single-quotes.
The major difference is that backslashes may need to be doubled when in double-quoted strings.

Examples (these are hard to describe in words — try them!):
set xlabel ’Time (1076 {/Symbol m}s)’
set title ’{/Symbol=18 \3620_{/=9.6 0}"{/=12 x}} \
{/Helvetica e"{-{/Symbol m}~2/2} d}{/Symbol m}’

The file "ps_guide.ps" in the /docs/ps subdirectory of the gnuplot source distribution contains more
examples of the enhanced syntax.

35.57.20.2 Editing postscript The PostScript language is a very complex language — far too
complex to describe in any detail in this document. Nevertheless there are some things in a PostScript
file written by gnuplot that can be changed without risk of introducing fatal errors into the file.

For example, the PostScript statement " /Color true def" (written into the file in response to the command
set terminal postscript color), may be altered in an obvious way to generate a black-and-white version
of a plot. Similarly line colors, text colors, line weights and symbol sizes can also be altered in straight-
forward ways. Text (titles and labels) can be edited to correct misspellings or to change fonts. Anything
can be repositioned, and of course anything can be added or deleted, but modifications such as these
may require deeper knowledge of the PostScript language.

The organization of a PostScript file written by gnuplot is discussed in the text file "ps_file.doc" in the
docs/ps subdirectory of the gnuplot source distribution.

35.57.21 Qms

The gms terminal driver supports the QMS/QUIC Laser printer, the Talaris 1200 and others. It has
no options.

35.57.22 Svg

This terminal produces files in the W3C Scalable Vector Graphics format.

Syntax:
set terminal svg {size <x> <y>}
{fname ""} {fsize <fontsize>}

where <x> and <y> are the size of the SVG plot to generate, is the name of the default font
to use (default Arial) and <fontsize> is the font size (in points, default 12)

35.57.23 Table

Instead of producing a graph, the table terminal prints out the points on which a graph would be based,
i.e., the results of processing the plot or splot command, in a multicolumn ASCII table of X Y {Z} R
values. The character R takes on one of three values: "i" if the point is in the active range, "o" if it is
out-of-range, or "u" if it is undefined. The data format is determined by the format of the axis labels
(see set format (p.)7 and the columns are separated by single spaces.

For those times when you want the numbers, you can display them on the screen or save them to a file.
This can be useful if you want to generate contours and then save them for further use, perhaps for
plotting with plot; see set contour (p. |48]) for an example. The same method can be used to save
interpolated data (see set samples (p. nd set dgrid3d (p.)

96

35.57.24 Tgif

Tgif is an X11-based drawing tool — it has nothing to do with GIF.

The tgif driver supports different pointsizes (with set pointsize), different label fonts and font sizes (e.g.
set label "Hallo" at x,y font "Helvetica,34") and multiple graphs on the page. The proportions of
the axes are not changed.

Syntax:
set terminal tgif {portrait | landscape} {<[x,yl>}
{solid | dashed}
{"<fontname>"} {<fontsize>}

where <[x,y]> specifies the number of graphs in the x and y directions on the page, "<fontname>" is
the name of a valid PostScript font, and <fontsize> specifies the size of the PostScript font. Defaults
are portrait, [1,1], dashed, "Helvetica", and 18.

The solid option is usually prefered if lines are colored, as they often are in the editor. Hardcopy will
be black-and-white, so dashed should be chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot feature:

set terminal tgif

set output "file.obj"
set multiplot

set origin x01,y01
set size xs,ys

plot ...

set origin x02,y02
plot ...
set nomultiplot

See set multiplot (p. for further information.

The second version is the [x,y] option for the driver itself. The advantage of this implementation is that
everything is scaled and placed automatically without the need for setting origins and sizes; the graphs
keep their natural x/y proportions of 3/2 (or whatever is fixed by set size).

If both multiplot methods are selected, the standard method is chosen and a warning message is given.

Examples of single plots (or standard multiplot):
set terminal tgif # defaults
set terminal tgif "Times-Roman" 24
set terminal tgif landscape
set terminal tgif landscape solid

Examples using the built-in multiplot mechanism:

set terminal tgif portrait [2,4] # portrait; 2 plots in the x-
and 4 in the y-direction
portrait; 1 plot in the x-
and 2 in the y-direction
landscape; 3 plots in both
directions

set terminal tgif [1,2]

set terminal tgif landscape [3,3]

H O H

35.57.25 Tkcanvas

This terminal driver generates Tk canvas widget commands based on Tcl/Tk (default) or Perl. To use
it, rebuild gnuplot (after uncommenting or inserting the appropriate line in "term.h"), then

97

gnuplot> set term tkcanvas {perltk} {interactive}
gnuplot> set output ’plot.file’

After invoking "wish", execute the following sequence of Tcl/Tk commands:

% source plot.file
% canvas .c

% pack .c

% gnuplot .c

Or, for Perl/Tk use a program like this:
use Tk;

my $top = MainWindow->new;

my $c = $top->Canvas->pack;

my $gnuplot = do "plot.pl";
$gnuplot->($c);

MainLoop;

The code generated by gnuplot creates a procedure called "gnuplot" that takes the name of a canvas as
its argument. When the procedure is called, it clears the canvas, finds the size of the canvas and draws
the plot in it, scaled to fit.

For 2-dimensional plotting (plot) two additional procedures are defined: "gnuplot_plotarea" will return
a list containing the borders of the plotting area "xleft, xright, ytop, ybot" in canvas screen coordinates,
while the ranges of the two axes "x1lmin, xlmax, ylmin, ylmax, x2min, x2max, y2min, y2max" in
plot coordinates can be obtained calling "gnuplot_axisranges". If the "interactive" option is specified,
mouse clicking on a line segment will print the coordinates of its midpoint to stdout. Advanced actions
can happen instead if the user supplies a procedure named "user_gnuplot_coordinates", which takes the
following arguments: "win id x1s yls x2s y2s xle yle x2e y2e x1m ylm x2m y2m", the name of the
canvas and the id of the line segment followed by the coordinates of its start and end point in the two
possible axis ranges; the coordinates of the midpoint are only filled for logarithmic axes.

The current version of tkcanvas supports neither multiplot nor replot.

35.57.26 Epson-180dpi

This driver supports a family of Epson printers and derivatives.

epson-180dpi and epson-60dpi are drivers for Epson LQ-style 24-pin printers with resolutions of 180
and 60 dots per inch, respectively.

epson-1x800 is a generic 9-pin driver appropriate for printers like the Epson LX-800, the Star NL-10
and NX-1000, the PROPRINTER, and so forth.

nec-cp6 is generix 24-pin driver that can be used for printers like the NEC CP6 and the Epson LQ-800.
The okidata driver supports the 9-pin OKIDATA 320/321 Standard printers.

The starc driver is for the Star Color Printer.

The tandy-60dpi driver is for the Tandy DMP-130 series of 9-pin, 60-dpi printers.

Only nec-cp6 has any options.

Syntax:

set terminal nec-cp6 {monochrome | colour | draft}

which defaults to monochrome.

With each of these drivers, a binary copy is required on a PC to print. Do not use print — use instead
copy file /b Ipt1:.

98

35.57.27 Latex

The latex and emtex drivers allow two options.
Syntax:

set terminal latex | emtex {courier | roman | default} {<fontsize>}

fontsize may be any size you specify. The default is for the plot to inherit its font setting from the
embedding document.

Unless your driver is capable of building fonts at any size (e.g. dvips), stick to the standard 10, 11 and
12 point sizes.

METAFONT users beware: METAFONT does not like odd sizes.

All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with '{’,
you also need to include a '}’ at the end of the text, and the whole text will be centered both horizontally
and vertically. If the text string begins with ’[’, you need to follow this with a position specification (up
to two out of t,b,1,r), ’]{’, the text itself, and finally ’}’. The text itself may be anything LaTeX can
typeset as an LR-box. "\rule{}{}’s may help for best positioning.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and "\Box". These
commands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is
part of the base distribution and thus part of any LaTeX implementation. Please do not forget to use
this package.

Points are drawn with the LaTex commands \Diamond and \Box. These commands do no longer belong
to the LaTeX2e core, but are included in the latexsym-package in the base distribution, and are hence
part of all LaTeX implementations. Please do not forget to use this package.

Examples: About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really
best):
set title ’\LaTeX\ -- $ \gamma $’

Force centering both horizontally and vertically:
set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’

The other label — account for long ticlabels:
set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{Opt}’

35.57.28 Pslatex and pstex

The pslatex and pstex drivers generate output for further processing by LaTeX and TeX, respectively.
Figures generated by pstex can be included in any plain-based format (including LaTeX).

Syntax:

set terminal pslatex | pstex {<color>} {<dashed>} {<rotate>}
{auxfile} {<font_size>}

<color> is either color or monochrome. <dashed> is either dashed or solid. <rotate> is either
rotate or norotate and determines if the y-axis label is rotated. <font_size> is the size (in pts) of the
desired font.

If auxfile is specified, it directs the driver to put the PostScript commands into an auxiliary file instead
of directly into the LaTeX file. This is useful if your pictures are large enough that dvips cannot handle
them. The name of the auxiliary PostScript file is derived from the name of the TeX file given on the

99

set output command; it is determined by replacing the trailing .tex (actually just the final extent in
the file name) with .ps in the output file name, or, if the TeX file has no extension, .ps is appended.
Remember to close the file before leaving gnuplot.

All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with
{7, you also need to include a ’}’ at the end of the text, and the whole text will be centered both
horizontally and vertically by LaTeX. — If the text string begins with ’[’, you need to continue it with:
a position specification (up to two out of t,b,1,r), "]{’, the text itself, and finally, ’}’. The text itself may
be anything LaTeX can typeset as an LR-box. \rule{}{}’s may help for best positioning.

Examples:

set term pslatex monochrome dashed rotate # set to defaults

To write the PostScript commands into the file "foo.ps":

set term pslatex auxfile
set output "foo.tex"; plot ...: set output

About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really best):
set title ’\LaTeX\ -- $ \gamma $’

Force centering both horizontally and vertically:
set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’

The other label — account for long ticlabels:
set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{Opt}’

Linewidths and pointsizes may be changed with set linestyle.

35.57.29 [Epslatex

Two options may be set in the epslatex driver.

Syntax:
set terminal epslatex {default}
{color | monochrome} {solid | dashed}
{"<fontname>"} {<fontsize>}

default mode sets all options to their defaults: monochrome, dashed, "default" and 11pt.

Default size of a plot is 5 inches wide and 3 inches high.

solid draws all plots with solid lines, overriding any dashed patterns; "<fontname>" is the name of
font; and <fontsize> is the size of the font in PostScript points. Font selection isn’t supported yet.
Font size selection is supported only for the calculation of proper spacing. The actual LaTeX font at the
point of inclusion is taken, so use LaTeX commands for changing fonts. If you use e.g. 12pt as font size
for your LaTeX documents, use *"default" 12’ as options.

All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with
{’, you also need to include a ’}’ at the end of the text, and the whole text will be centered both
horizontally and vertically by LaTeX. — If the text string begins with [, you need to continue it with:
a position specification (up to two out of t,b,l,;r), ’]{’, the text itself, and finally, ’}’. The text itself may
be anything LaTeX can typeset as an LR-box. \rule{}{}’s may help for best positioning. See also the
documenation of the pslatex terminal driver. To create multiline labels, use \shortstack, example

set ylabel ’[r]{\shortstack{first line \\ second line}}’

100

The driver produces two different files, one for the LaTeX part and one for the eps part of the figure.
The name of the LaTeX file is derived from the name of the eps file given on the set output command;
it is determined by replacing the trailing .eps (actually just the final extent in the file name — and
the option will be turned off if there is no extent) with .tex in the output file name. Remember to
close the file before leaving gnuplot. There is no LaTeX output if no output file is given! In your
LaTeX documents use ’\input{filename}’ for inclusion of the figure. Include \usepackage{graphics} in
the preambel! Via ’epstopdf’ (contained e.g. in the teTeX package, requires ghostscript) pdf files can
made out of the eps files. If the graphics package is properly configured, the LaTeX files can also be
processed by pdflatex without changes, and the pdf files are included instead of the eps files

35.57.30 Eepic

The eepic terminal driver supports the extended LaTeX picture environment. It is an alternative to the
latex driver.

The output of this terminal is intended for use with the "eepic.sty" macro package for LaTeX. To use it,
you need "eepic.sty", "epic.sty" and a printer driver that supports the "tpic" \specials. If your printer
driver doesn’t support those \specials, "eepicemu.sty" will enable you to use some of them. dvips and
dvipdfm do support the "tpic" \specials.

Syntax:
set terminal eepic {color, dashed, rotate, small, tiny, default, <fontsize>}

Options: You can give options in any order you wish. ’color’ causes gnuplot to produce \color{...}
commands so that the graphs are colored. Using this option, you must include \usepackage{color} in
the preambel of your latex document. ’dashed’ will allow dashed line types; without this option, only
solid lines with varying thickness will be used. ’dashed’ and ’color’ are mutually exclusive; if ’color’ is
specified, then 'dashed’ will be ignored ’rotate’ will enable true rotated text (by 90 degrees). Otherwise,
rotated text will be typeset with letters stacked above each other. If you use this option you must
include \usepackage{graphicx} in the preamble. ’small’ will use \scriptsize symbols as point markers
(Probably does not work with TeX, only LaTeX2e). Default is to use the default math size. ’tiny’
uses \scriptscriptstyle symbols. ’default’ resets all options to their defaults = no color, no dashed lines,
pseudo-rotated (stacked) text, large point symbols. <fontsize> is a number which specifies the font size
inside the picture environment; the unit is pt (points), i.e., 10 pt equals approx. 3.5 mm. If fontsize is
not specified, then all text inside the picture will be set in \footnotesize.

Notes: Remember to escape the # character (or other chars meaningful to (La-)TeX) by \\ (2 back-
slashes). It seems that dashed lines become solid lines when the vertices of a plot are too close. (I do
not know if that is a general problem with the tpic specials, or if it is caused by a bug in eepic.sty or
dvips/dvipdfm.) The default size of an eepic plot is 5x3 inches, which can be scaled by ’set size a,b’
Points, among other things, are drawn using the LaTeX commands "\Diamond", "\Box", etc. These
commands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is
part of the base distribution and thus part of any LaTeX implementation. Please do not forget to use
this package. Instead of latexsym, you can also include the amssymb package. All drivers for LaTeX
offer a special way of controlling text positioning: If any text string begins with ’{’, you also need to
include a '}’ at the end of the text, and the whole text will be centered both horizontally and vertically.
If the text string begins with '[’, you need to follow this with a position specification (up to two out of
t,b,Lir), ’]{’, the text itself, and finally ’}’. The text itself may be anything LaTeX can typeset as an
LR-box. \rule{}{}’s may help for best positioning.

Examples: set term eepic
output graphs as eepic macros inside a picture environment;
\input the resulting file in your LaTeX document.

set term eepic color tiny rotate 8
eepic macros with \color macros, \scripscriptsize point markers,
true rotated text, and all text set with 8pt.

101

About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really best):
set title ’\LaTeX\ -- $ \gamma $’

Force centering both horizontally and vertically:
set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’

The other label — account for long ticlabels:
set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{Opt}’

35.57.31 Tpic

The tpic terminal driver supports the LaTeX picture environment with tpic \specials. It is an alternative
to the latex and eepic terminal drivers. Options are the point size, line width, and dot-dash interval.
Syntax:

set terminal tpic <pointsize> <linewidth> <interval>

where pointsize and linewidth are integers in milli-inches and interval is a float in inches. If a
non-positive value is specified, the default is chosen: pointsize = 40, linewidth = 6, interval = 0.1.

All drivers for LaTeX offer a special way of controlling text positioning: If any text string begins with
{’, you also need to include a ’}’ at the end of the text, and the whole text will be centered both
horizontally and vertically by LaTeX. — If the text string begins with ’[’, you need to continue it with:
a position specification (up to two out of t,b,l,;r), ’]{’, the text itself, and finally, ’}’. The text itself may
be anything LaTeX can typeset as an LR-box. \rule{}{}’s may help for best positioning.

Examples: About label positioning: Use gnuplot defaults (mostly sensible, but sometimes not really
best):
set title ’\LaTeX\ -- $ \gamma $’

Force centering both horizontally and vertically:
set label ’{\LaTeX\ -- $ \gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\LaTeX\ -- $ \gamma $}’

The other label — account for long ticlabels:
set ylabel ’[r]{\LaTeX\ -- $ \gamma $\rule{7mm}{Opt}’

35.57.32 Pstricks

The pstricks driver is intended for use with the "pstricks.sty" macro package for LaTeX. It is an
alternative to the eepic and latex drivers. You need "pstricks.sty", and, of course, a printer that
understands PostScript, or a converter such as Ghostscript.

PSTricks is available via anonymous ftp from the /pub directory at Princeton. EDU. This driver definitely
does not come close to using the full capability of the PSTricks package.

Syntax:

set terminal pstricks {hacktext | nohacktext} {unit | nounit}

The first option invokes an ugly hack that gives nicer numbers; the second has to do with plot scaling.
The defaults are hacktext and nounit.

102

35.57.33 Texdraw

The texdraw terminal driver supports the LaTeX texdraw environment. It is intended for use with
"texdraw.sty" and "texdraw.tex" in the texdraw package.

Points, among other things, are drawn using the LaTeX commands "\Diamond" and "\Box". These
commands no longer belong to the LaTeX2e core; they are included in the latexsym package, which is
part of the base distribution and thus part of any LaTeX implementation. Please do not forget to use
this package.

It has no options.

35.57.34 Mf

The mf terminal driver creates an input file to the METAFONT program. Thus a figure may be used
in the TeX document in the same way as is a character.

To use a picture in a document, the METAFONT program must be run with the output file from gnuplot
as input. Thus, the user needs a basic knowledge of the font creating process and the procedure for
including a new font in a document. However, if the METAFONT program is set up properly at the
local site, an unexperienced user could perform the operation without much trouble.

The text support is based on a METAFONT character set. Currently the Computer Modern Roman font
set is input, but the user is in principal free to choose whatever fonts he or she needs. The METAFONT
source files for the chosen font must be available. Each character is stored in a separate picture variable
in METAFONT. These variables may be manipulated (rotated, scaled etc.) when characters are needed.
The drawback is the interpretation time in the METAFONT program. On some machines (i.e. PC) the
limited amount of memory available may also cause problems if too many pictures are stored.

The mf terminal has no options.

35.57.34.1 METAFONT Instructions - Set your terminal to METAFONT:

set terminal mf

- Select an output-file, e.g.:

set output "myfigures.mf"

- Create your pictures. Each picture will generate a separate character. Its default size will be 5*3
inches. You can change the size by saying set size 0.5,0.5 or whatever fraction of the default size you
want to have.

- Quit gnuplot.

- Generate a TFM and GF file by running METAFONT on the output of gnuplot. Since the picture is
quite large (5*3 in), you will have to use a version of METAFONT that has a value of at least 150000 for
memmax. On Unix systems these are conventionally installed under the name bigmf. For the following
assume that the command virmf stands for a big version of METAFONT. For example:

- Invoke METAFONT:

virmf ’&plain’

- Select the output device: At the METAFONT prompt (’*’) type:

\mode :=CanonCX; % or whatever printer you use

- Optionally select a magnification:
mag:=1; % or whatever you wish

- Input the gnuplot-file:
input myfigures.mf

103

On a typical Unix machine there will usually be a script called "mf" that executes virmf '&plain’, so you
probably can substitute mf for virmf &plain. This will generate two files: mfput.tfm and mfput.$$$gf
(where $3% indicates the resolution of your device). The above can be conveniently achieved by typing
everything on the command line, e.g.: virmf "&plain’ "\mode:=CanonCX; mag:=1; input myfigures.mf’
In this case the output files will be named myfigures.tfm and myfigures.300gf.

- Generate a PK file from the GF file using gftopk:
gftopk myfigures.300gf myfigures.300pk

The name of the output file for gftopk depends on the DVI driver you use. Ask your local TeX admin-
istrator about the naming conventions. Next, either install the TFM and PK files in the appropriate
directories, or set your environment variables properly. Usually this involves setting TEXFONTS to
include the current directory and doing the same thing for the environment variable that your DVI
driver uses (no standard name here...). This step is necessary so that TeX will find the font metric file
and your DVI driver will find the PK file.

- To include your pictures in your document you have to tell TeX the font:

\font\gnufigs=myfigures

Each picture you made is stored in a single character. The first picture is character 0, the second
is character 1, and so on... After doing the above step, you can use the pictures just like any other
characters. Therefore, to place pictures 1 and 2 centered in your document, all you have to do is:

\centerline{\gnufigs\char0}
\centerline{\gnufigs\char1}

in plain TeX. For LaTeX you can, of course, use the picture environment and place the picture wherever
you wish by using the \makebox and \put macros.

This conversion saves you a lot of time once you have generated the font; TeX handles the pictures as
characters and uses minimal time to place them, and the documents you make change more often than
the pictures do. It also saves a lot of TeX memory. One last advantage of using the METAFONT driver
is that the DVI file really remains device independent, because no \special commands are used as in the
eepic and tpic drivers.

35.57.35 Mp

The mp driver produces output intended to be input to the Metapost program. Running Metapost on
the file creates EPS files containing the plots. By default, Metapost passes all text through TeX. This
has the advantage of allowing essentially any TeX symbols in titles and labels.

Syntax:

set term mp {color} {solid} {notex} {mag <magsize>} {"<name>"} {<size>}

The option color causes lines to be drawn in color (on a printer or display that supports it),
monochrome (or nothing) selects black lines. The option solid draws solid lines, while dashed (or
nothing) selects lines with different patterns of dashes. If solid is selected but color is not, nearly all
lines will be identical. This may occasionally be useful, so it is allowed.

The option notex bypasses TeX entirely, therefore no TeX code can be used in labels under this option.
This is intended for use on old plot files or files that make frequent use of common characters like $ and
% that require special handling in TeX.

Changing font sizes in TeX has no effect on the size of mathematics, and there is no foolproof way
to make such a change, except by globally setting a magnification factor. This is the purpose of the
magnification option. It must be followed by a scaling factor. All text (NOT the graphs) will be
scaled by this factor. Use this if you have math that you want at some size other than the default 10pt.
Unfortunately, all math will be the same size, but see the discussion below on editing the MP output.

104

mag will also work under notex but there seems no point in using it as the font size option (below)
works as well.

A name in quotes selects the font that will be used when no explicit font is given in a set label or
set title. A name recognized by TeX (a TFM file exists) must be used. The default is "cmr10" unless
notex is selected, then it is "pcrr8r" (Courier). Even under notex, a TFM file is needed by Metapost.
The file pcrr8r.tfm is the name given to Courier in LaTeX’s psnfss package. If you change the font
from the notex default, choose a font that matches the ASCII encoding at least in the range 32-126.
cmtt10 almost works, but it has a nonblank character in position 32 (space).

The size can be any number between 5.0 and 99.99. If it is omitted, 10.0 is used. It is advisable to use
magstep sizes: 10 times an integer or half-integer power of 1.2, rounded to two decimals, because those
are the most available sizes of fonts in TeX systems.

All the options are optional. If font information is given, it must be at the end, with size (if present)
last. The size is needed to select a size for the font, even if the font name includes size information. For
example, set term mp "cmtt12" selects cmtt12 shrunk to the default size 10. This is probably not
what you want or you would have used cmtt10.

The following common ascii characters need special treatment in TeX:
$, &’ #’ %, —; |’ <, >; A’ ~, \) {’ and }

The five characters $, #, &, _, and % can simply be escaped, e.g., \$. The three characters <, >, and
| can be wrapped in math mode, e.g., $<$. The remainder require some TeX work-arounds. Any good
book on TeX will give some guidance.

If you type your labels inside double quotes, backslashes in TeX code need to be escaped (doubled).
Using single quotes will avoid having to do this, but then you cannot use \n for line breaks. As of this
writing, version 3.7 of gnuplot processess titles given in a plot command differently than in other places,
and backslashes in TeX commands need to be doubled regardless of the style of quotes.

Metapost pictures are typically used in TeX documents. Metapost deals with fonts pretty much the
same way TeX does, which is different from most other document preparation programs. If the picture
is included in a LaTeX document using the graphics package, or in a plainTeX document via epsf.tex,
and then converted to PostScript with dvips (or other dvi-to-ps converter), the text in the plot will
usually be handled correctly. However, the text may not appear if you send the Metapost output as-is
to a PostScript interpreter.

35.57.35.1 Metapost Instructions - Set your terminal to Metapost, e.g.:
set terminal mp mono "cmttl2" 12

- Select an output-file, e.g.:
set output "figure.mp"

- Create your pictures. Each plot (or multiplot group) will generate a separate Metapost beginfig...endfig
group. Its default size will be 5 by 3 inches. You can change the size by saying set size 0.5,0.5 or
whatever fraction of the default size you want to have.
- Quit gnuplot.
- Generate EPS files by running Metapost on the output of gnuplot:

mpost figure.mp OR mp figure.mp

The name of the Metapost program depends on the system, typically mpost for a Unix machine and
mp on many others. Metapost will generate one EPS file for each picture.

- To include your pictures in your document you can use the graphics package in LaTeX or epsf.tex in
plainTeX:

\usepackage{graphics} % LaTeX
\input epsf.tex % plainTeX

105

If you use a driver other than dvips for converting TeX DVI output to PS, you may need to add the
following line in your LaTeX document:
\DeclareGraphicsRule{*}{eps}{*}{}

Each picture you made is in a separate file. The first picture is in, e.g., figure.0, the second in figure.1,
and so on.... To place the third picture in your document, for example, all you have to do is:
\includegraphics{figure.2} % LaTeX
\epsfbox{figure.2} % plainTeX

The advantage, if any, of the mp terminal over a postscript terminal is editable output. Considerable
effort went into making this output as clean as possible. For those knowledgeable in the Metapost
language, the default line types and colors can be changed by editing the arrays 1t[] and col[]. The
choice of solid vs dashed lines, and color vs black lines can be change by changing the values assigned
to the booleans dashedlines and colorlines. If the default tex option was in effect, global changes
to the text of labels can be achieved by editing the vebatimtex...etex block. In particular, a LaTeX
preamble can be added if desired, and then LaTeX’s built-in size changing commands can be used for
maximum flexibility. Be sure to set the appropriate MP configuration variable to force Metapost to run
LaTeX instead of plainTeX.

35.58 Tics

The set tics command can be used to change the tics to be drawn outwards.

Syntax:
set tics {<direction>}
show tics

where <direction> may be in (the default) or out.

See also set xtics (p.[112]) for more control of major (labelled) tic marks and set mxtics for control
of minor tic marks.

35.59 Ticslevel

Using splot, one can adjust the relative height of the vertical (Z) axis using set ticslevel. The numeric
argument provided specifies the location of the bottom of the scale (as a fraction of the z-range) above
the xy-plane. The default value is 0.5. Negative values are permitted, but tic labels on the three axes
may overlap.

To place the xy-plane at a position 'pos’ on the z-axis, ticslevel should be set equal to (pos - zmin) /
(zmin - zmax).

Syntax:
set ticslevel {<level>}
show tics

See also set view (p. [108]).

35.60 Ticscale

The size of the tic marks can be adjusted with set ticscale.

Syntax:
set ticscale {<major> {<minor>}}
show tics

If <minor> is not specified, it is 0.5*<major>. The default size is 1.0 for major tics and 0.5 for minor
tics. Note that it is possible to have the tic marks pointing outward by specifying a negative size.

106

35.61 Timestamp

The command set timestamp places the time and date of the plot in the left margin.
Syntax:

set timestamp {"<format>"} {topl|bottom} {{no}rotate}
{<xoff>}{,<yoff>} {""}

unset timestamp

show timestamp

The format string allows you to choose the format used to write the date and time. Its default value is
what asctime() uses: "%a %b %d %H:%M:%S %Y" (weekday, month name, day of the month, hours,
minutes, seconds, four-digit year). With top or bottom you can place the timestamp at the top or
bottom of the left margin (default: bottom). rotate lets you write the timestamp vertically, if your
terminal supports vertical text. The constants <xoff>> and <off> are offsets from the default position
given in character screen coordinates. is used to specify the font with which the time is to be
written.

The abbreviation time may be used in place of timestamp.

Example:
set timestamp "Y%d/%m/%y %H:%M" 80,-2 "Helvetica"

See set timefmt (p. [106]) for more information about time format strings.

35.62 Timefmt

This command applies to timeseries where data are composed of dates/times. It has no meaning unless
the command set xdata time is given also.

Syntax:

set timefmt "<format string>"
show timefmt

The string argument tells gnuplot how to read timedata from the datafile. The valid formats are:

’ Time Series timedata Format Specifiers

Format Explanation
Ak day of the month, 1-31
%m month of the year, 1-12
hy year, 0-99
nY year, 4-digit
hj day of the year, 1-365
%H hour, 0-24
yAUl minute, 0-60
%S second, 0—60
%b three-character abbreviation of the name of the month
%B name of the month

Any character is allowed in the string, but must match exactly. \t (tab) is recognized. Backslash-octals
(\nnn) are converted to char. If there is no separating character between the time/date elements, then
%d, %m, %y, %H, %M and %S read two digits each, %Y reads four digits and %j reads three digits.
%D requires three characters, and %B requires as many as it needs.

Spaces are treated slightly differently. A space in the string stands for zero or more whitespace characters
in the file. That is, "%H %M" can be used to read "1220" and "12 20" as well as "12 20".

107

Each set of non-blank characters in the timedata counts as one column in the using n:n specification.
Thus 11:11 25/12/76 21.0 consists of three columns. To avoid confusion, gnuplot requires that you
provide a complete using specification if your file contains timedata.

Since gnuplot cannot read non-numerical text, if the date format includes the day or month in words,
the format string must exclude this text. But it can still be printed with the "%a", "%A", "%b", or
"%B" specifier: see set format (p. for more details about these and other options for printing
timedata. (gnuplot will determine the proper month and weekday from the numerical values.)

See also set xdata (p. [109]) and Time/date (p. for more information.
Example:

set timefmt "%d/%m/%Y\t%H:%M"

tells gnuplot to read date and time separated by tab. (But look closely at your data — what began as
a tab may have been converted to spaces somewhere along the line; the format string must match what
is actually in the file.) Time Data Demo

35.63 Title

The set title command produces a plot title that is centered at the top of the plot. set title is a special
case of set label.

Syntax:
set title {"<title-text>"} {<xoff>}{,<yoff>} {"{,<size>}"}
show title

Specifying constants <xoff> or <yoff>> as optional offsets for the title will move the title <xoff> or
<yoff> character screen coordinates (not graph coordinates). For example, "set title ,-1" will change
only the y offset of the title, moving the title down by roughly the height of one character.

 is used to specify the font with which the title is to be written; the units of the font <size>
depend upon which terminal is used.

set title with no parameters clears the title.

See syntax (p. for details about the processing of backslash sequences and the distinction between
single- and double-quotes.

35.64 Tmargin

The command set tmargin sets the size of the top margin. Please see set margin (p. for details.

35.65 Trange

The set trange command sets the parametric range used to compute x and y values when in parametric
or polar modes. Please see set xrange (p.[111]) for details.

35.66 Urange

The set urange and set vrange commands set the parametric ranges used to compute x, y, and z
values when in splot parametric mode. Please see set xrange (p.[111)) for details.

35.67 Variables

The show variables command lists all user-defined variables and their values.

Syntax:

http://www.nas.nasa.gov/~woo/gnuplot/timedat/timedat.html

108

show variables

35.68 Version

The show version command lists the version of gnuplot being run, its last modification date, the
copyright holders, and email addresses for the FAQ, the info-gnuplot mailing list, and reporting bugs—in
short, the information listed on the screen when the program is invoked interactively.
Syntax:

show version {long}

When the long option is given, it also lists the operating system, the compilation options used when
gnuplot was installed, the location of the help file, and (again) the useful email addresses.

35.69 View

The set view command sets the viewing angle for splots. It controls how the 3-d coordinates of the
plot are mapped into the 2-d screen space. It provides controls for both rotation and scaling of the
plotted data, but supports orthographic projections only.
Syntax:

set view <rot_x> {,{<rot_z>}{,{<scale>}{,<scale_z>}}}

show view

where <rot_x> and <rot_z> control the rotation angles (in degrees) in a virtual 3-d coordinate system
aligned with the screen such that initially (that is, before the rotations are performed) the screen hori-
zontal axis is x, screen vertical axis is y, and the axis perpendicular to the screen is z. The first rotation
applied is <rot_x> around the x axis. The second rotation applied is <rot_z> around the new z axis.

<rot_x> is bounded to the [0:180] range with a default of 60 degrees, while <rot_z> is bounded to
the [0:360] range with a default of 30 degrees. <scale> controls the scaling of the entire splot, while
<scale_z> scales the z axis only. Both scales default to 1.0.

Examples:
set view 60, 30, 1, 1
set view ,,0.5

The first sets all the four default values. The second changes only scale, to 0.5.
See also set ticslevel (p. [105]). .

35.70 Vrange

The set urange and set vrange commands set the parametric ranges used to compute x, y, and z
values when in splot parametric mode. Please see set xrange (p.[111)) for details.

35.71 X2data

The set x2data command sets data on the x2 (top) axis to timeseries (dates/times). Please see set
xdata (p. [109)).

35.72 X2dtics

The set x2dtics command changes tics on the x2 (top) axis to days of the week. Please see set xdtics

(p- [109) for details.

109

35.73 XZ2label

The set x2label command sets the label for the x2 (top) axis. Please see set xlabel (p.[110]).

35.74 X2mtics

The set x2mtics command changes tics on the x2 (top) axis to months of the year. Please see set

xmtics (p. [111)) for details.

35.75 XZ2range

The set x2range command sets the horizontal range that will be displayed on the x2 (top) axis. Please
see set xrange (p. [111)) for details.

35.76 X2tics

The set x2tics command controls major (labelled) tics on the x2 (top) axis. Please see set xtics

(p- [112) for details.

35.77 X2zeroaxis

The set x2zeroaxis command draws a line at the origin of the x2 (top) axis (y2 = 0). For details,
please see set zeroaxis (p. [116]).

35.78 Xdata

This command sets the datatype on the x axis to time/date. A similar command does the same thing
for each of the other axes.
Syntax:

set xdata {time}
show xdata

The same syntax applies to ydata, zdata, x2data and y2data.

The time option signals that the datatype is indeed time/date. If the option is not specified, the
datatype reverts to normal.

See set timefmt (p. to tell gnuplot how to read date or time data. The time/date is converted
to seconds from start of the century. There is currently only one timefmt, which implies that all the
time/date columns must confirm to this format. Specification of ranges should be supplied as quoted
strings according to this format to avoid interpretation of the time/date as an expression.

The function ’strftime’ (type "man strftime" on unix to look it up) is used to print tic-mark labels.
gnuplot tries to figure out a reasonable format for this unless the set format x "string" has supplied
something that does not look like a decimal format (more than one %’ or neither %f nor %g).

See also Time/date (p. for more information.

35.79 Xdtics

The set xdtics commands converts the x-axis tic marks to days of the week where 0=Sun and 6=Sat.
Overflows are converted modulo 7 to dates. set noxdtics returns the labels to their default values.
Similar commands do the same things for the other axes.

110

Syntax:

set xdtics
unset xdtics
show xdtics

The same syntax applies to ydtics, zdtics, x2dtics and y2dtics.
See also the set format (p. command.

35.80 Xlabel

The set xlabel command sets the x axis label. Similar commands set labels on the other axes.

Syntax:

set xlabel {"<label>"} {<xoff>}{,<yoff>} {"{,<size>}"}
show xlabel

The same syntax applies to x2label, ylabel, y2label, zlabel and cblabel.

Specifying the constants <xoff> or <yoff>> as optional offsets for a label will move it <xoff> or <yoff>
character widths or heights. For example, "set xlabel -1" will change only the x offset of the xlabel,
moving the label roughly one character width to the left. The size of a character depends on both the
font and the terminal.

 is used to specify the font in which the label is written; the units of the font <size> depend
upon which terminal is used.

To clear a label, put no options on the command line, e.g., "set y2label".
The default positions of the axis labels are as follows:
xlabel: The x-axis label is centered below the bottom axis.

ylabel: The position of the y-axis label depends on the terminal, and can be one of the following three
positions:

1. Horizontal text flushed left at the top left of the plot. Terminals that cannot rotate text will probably
use this method. If set x2tics is also in use, the ylabel may overwrite the left-most x2tic label. This
may be remedied by adjusting the ylabel position or the left margin.

2. Vertical text centered vertically at the left of the plot. Terminals that can rotate text will probably
use this method.

3. Horizontal text centered vertically at the left of the plot. The EEPIC, LaTeX and TPIC drivers use
this method. The EEPIC driver will produce a stack of characters so as not to overwrite the plot. With
other drivers (such as LaTeX and TPIC), the user probably has to insert line breaks using \\ to prevent
the ylabel from overwriting the plot.

zlabel: The z-axis label is centered along the z axis and placed in the space above the grid level.

cblabel: The color box axis label is centered along the box and placed below or right according to
horizontal or vertical color box gradient.

y2label: The y2-axis label is placed to the right of the y2 axis. The position is terminal-dependent in
the same manner as is the y-axis label.

x2label: The x2-axis label is placed above the top axis but below the plot title. It is also possible to
create an x2-axis label by using new-line characters to make a multi-line plot title, e.g.,

set title "This is the title\n\nThis is the x2label"

Note that double quotes must be used. The same font will be used for both lines, of course.

If you are not satisfied with the default position of an axis label, use set label instead—that command
gives you much more control over where text is placed.

111

Please see syntax (p. for further information about backslash processing and the difference between
single- and double-quoted strings.

35.81 Xmtics

The set xmtics commands converts the x-axis tic marks to months of the year where 1=Jan and
12=Dec. Overflows are converted modulo 12 to months. The tics are returned to their default labels by
unset xmtics. Similar commands perform the same duties for the other axes.

Syntax:

set xmtics
unset xmtics
show xmtics

The same syntax applies to x2mtics, ymtics, y2mtics, and zmtics.

See also the set format (p. command.

35.82 Xrange

The set xrange command sets the horizontal range that will be displayed. A similar command exists
for each of the other axes, as well as for the polar radius r and the parametric variables t, u, and v.

Syntax:

set xrange { [{{<min>}:{<max>}}] {{no}reverse} {{no}writeback} }
| restore
show xrange

where <min> and <max> terms are constants, expressions or an asterisk to set autoscaling. If the data
are time/date, you must give the range as a quoted string according to the set timefmt format. Any
value omitted will not be changed.

The same syntax applies to yrange, zrange, x2range, y2range, rrange, trange, urange and vrange.

The reverse option reverses the direction of the axis, e.g., set xrange [0:1] reverse will produce an
axis with 1 on the left and 0 on the right. This is identical to the axis produced by set xrange [1:0],
of course. reverse is intended primarily for use with autoscale.

The writeback option essentially saves the range found by autoscale in the buffers that would be
filled by set xrange. This is useful if you wish to plot several functions together but have the range
determined by only some of them. The writeback operation is performed during the plot execution, so
it must be specified before that command. To restore, the last saved horizontal range use set xrange
restore. For example,

set xrange [-10:10]

set yrange [] writeback
plot sin(x)

set yrange restore
replot x/2

results in a yrange of [-1:1] as found only from the range of sin(x); the [-5:5] range of x/2 is ignored.
Executing show yrange after each command in the above example should help you understand what
is going on.

In 2-d, xrange and yrange determine the extent of the axes, trange determines the range of the
parametric variable in parametric mode or the range of the angle in polar mode. Similarly in parametric
3-d, xrange, yrange, and zrange govern the axes and urange and vrange govern the parametric
variables.

112

In polar mode, rrange determines the radial range plotted. <rmin> acts as an additive constant to the
radius, whereas <rmax> acts as a clip to the radius — no point with radius greater than <rmax> will
be plotted. xrange and yrange are affected — the ranges can be set as if the graph was of r(t)-rmin,
with rmin added to all the labels.

Any range may be partially or totally autoscaled, although it may not make sense to autoscale a para-
metric variable unless it is plotted with data.

Ranges may also be specified on the plot command line. A range given on the plot line will be used for
that single plot command; a range given by a set command will be used for all subsequent plots that
do not specify their own ranges. The same holds true for splot.

Examples:

To set the xrange to the default:
set xrange [-10:10]

To set the yrange to increase downwards:
set yrange [10:-10]

To change zmax to 10 without affecting zmin (which may still be autoscaled):
set zrange [:10]

To autoscale xmin while leaving xmax unchanged:
set xrange [*:]

35.83 Xtics

Fine control of the major (labelled) tics on the x axis is possible with the set xtics command. The tics
may be turned off with the unset xtics command, and may be turned on (the default state) with set
xtics. Similar commands control the major tics on the y, z, x2 and y2 axes.

Syntax:
set xtics {axis | border} {{mol}mirror} {{no}rotate}
{ autofreq

| <incr>

| <start>, <incr> {,<end>}

| ({"<label>"} <pos> {,{"<label>"} <pos>}...) }
unset xtics
show xtics

The same syntax applies to ytics, ztics, x2tics, y2tics and cbtics.

axis or border tells gnuplot to put the tics (both the tics themselves and the accompanying labels)
along the axis or the border, respectively. If the axis is very close to the border, the axis option can
result in tic labels overwriting other text written in the margin.

mirror tells gnuplot to put unlabelled tics at the same positions on the opposite border. nomirror
does what you think it does.

rotate asks gnuplot to rotate the text through 90 degrees, which will be done if the terminal driver in
use supports text rotation. norotate cancels this.

The defaults are border mirror norotate for tics on the x and y axes, and border nomirror norotate
for tics on the x2 and y2 axes. For the z axis, the {axis | border} option is not available and the
default is nomirror. If you do want to mirror the z-axis tics, you might want to create a bit more room
for them with set border.

set xtics with no options restores the default border or axis if xtics are being displayed; otherwise it
has no effect. Any previously specified tic frequency or position {and labels} are retained.

113

Positions of the tics are calculated automatically by default or if the autofreq option is given; otherwise
they may be specified in either of two forms:

The implicit <start>, <incr>, <end> form specifies that a series of tics will be plotted on the axis
between the values <start> and <end> with an increment of <incr>. If <end> is not given, it is
assumed to be infinity. The increment may be negative. If neither <start> nor <end> is given, <start>
is assumed to be negative infinity, <end> is assumed to be positive infinity, and the tics will be drawn
at integral multiples of <step>. If the axis is logarithmic, the increment will be used as a multiplicative
factor.

Examples:

Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
set xtics 0,.5,10

Make tics at ..., -10, -5, 0, 5, 10, ...
set xtics 5

Make tics at 1, 100, 1led, 1e6, le8.
set logscale x; set xtics 1,100,10e8

The explicit ("<label>" <pos>, ...) form allows arbitrary tic positions or non-numeric tic labels. A set
of tics is a set of positions, each with its own optional label. Note that the label is a string enclosed by
quotes. It may be a constant string, such as "hello", may contain formatting information for converting
the position into its label, such as "%3f clients", or may be empty, "". See set format (p. for
more information. If no string is given, the default label (numerical) is used. In this form, the tics do
not need to be listed in numerical order.

Examples:
set xtics ("low" O, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set ytics ("bottom" O, "" 10, "top" 20)

In the second example, all tics are labelled. In the third, only the end tics are labelled.
However they are specified, tics will only be plotted when in range.

Format (or omission) of the tic labels is controlled by set format, unless the explicit text of a labels is
included in the set xtic (<label>) form.

Minor (unlabelled) tics can be added by the set mxtics command.

In case of timeseries data, position values must be given as quoted dates or times according to the format
timefmt. If the <start>, <incr>, <end> form is used, <start> and <end> must be given according
to timefmt, but <incr> must be in seconds. Times will be written out according to the format given
on set format, however.

Examples:
set xdata time
set timefmt "%d/%m"
set format x "%b %d"
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"

set xdata time

set timefmt "%d/%m"

set format x "¥%b %d"

set xrange ["01/12":"06/12"]

set xtics ("01/12", "" "03/12", "05/12")

Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but in the second example the tic at
"Dec 3" will be unlabelled.

114

35.84 Xzeroaxis

The set xzeroaxis command draws a line at y = 0. For details, please see set zeroaxis (p. [116)).

35.85 Y2data

The set y2data command sets y2 (right-hand) axis data to timeseries (dates/times). Please see set

xdata (p. [109)).

35.86 Y2dtics

The set y2dtics command changes tics on the y2 (right-hand) axis to days of the week. Please see set
xdtics (p. [109) for details.

35.87 Y2label

The set y2dtics command sets the label for the y2 (right-hand) axis. Please see set xlabel (p. [110)).

35.88 Y2mtics

The set y2mtics command changes tics on the y2 (right-hand) axis to months of the year. Please see
set xmtics (p. [111])) for details.

35.89 YZ2range

The set y2range command sets the vertical range that will be displayed on the y2 (right-hand) axis.
Please see set xrange (p.[111)) for details.

35.90 Y2tics

The set y2tics command controls major (labelled) tics on the y2 (right-hand) axis. Please see set xtics

(p- [112)) for details.

35.91 Y2zeroaxis

The set y2zeroaxis command draws a line at the origin of the y2 (right-hand) axis (x2 = 0). For
details, please see set zeroaxis (p. [116)).

35.92 Ydata

Sets y-axis data to timeseries (dates/times). Please see set xdata (p. [109)).

35.93 Ydtics

The set ydtics command changes tics on the y axis to days of the week. Please see set xdtics (p. [109))
for details.

115

35.94 Ylabel

This command sets the label for the y axis. Please see set xlabel (p.[110]).

35.95 Ymtics

The set ymtics command changes tics on the y axis to months of the year. Please see set xmtics

(p- [111)) for details.

35.96 Yrange

The set yrange command sets the vertical range that will be displayed on the y axis. Please see set

xrange (p.[111) for details.

35.97 Ytics

The set ytics command controls major (labelled) tics on the y axis. Please see set xtics (p. [112)) for
details.

35.98 Yzeroaxis

The set yzeroaxis command draws a line at x = 0. For details, please see set zeroaxis (p. [116)).

35.99 Zdata

Set zaxis date to timeseries (dates/times). Please see set xdata (p. [L09)).

35.100 Zdtics

The set zdtics command changes tics on the z axis to days of the week. Please see set xdtics (p. [109))
for details.

35.101 Cbdata

Set color box axis date to timeseries (dates/times). Please see set xdata (p. [109)).

35.102 Chbdtics

The set cbdtics command changes tics on the color box axis to days of the week. Please see set cbdtics

(p. [115]) for details.

35.103 Zero

The zero value is the default threshold for values approaching 0.0.

Syntax:

set zero <expression>
show zero

116

gnuplot will not plot a point if its imaginary part is greater in magnitude than the zero threshold.
This threshold is also used in various other parts of gnuplot as a (crude) numerical-error threshold.
The default zero value is le-8. zero values larger than le-3 (the reciprocal of the number of pixels in a
typical bitmap display) should probably be avoided, but it is not unreasonable to set zero to 0.0.

35.104 Zeroaxis

The x axis may be drawn by set xzeroaxis and removed by unset xzeroaxis. Similar commands
behave similarly for the y, x2, and y2 axes.

Syntax:
set {x|x2|yly2|}zeroaxis { {linestyle | ls <line_style>}
| { linetype | 1t <line_type>}
{ linewidth | 1w <line_width>}}
unset {x|x2|yly2|}zeroaxis
show {x|yl|}zeroaxis

By default, these options are off. The selected zero axis is drawn with a line of type <line_type>
and width <line_width> (if supported by the terminal driver currently in use), or a user-defined style
<line_style>.

If no linetype is specified, any zero axes selected will be drawn using the axis linetype (linetype 0).

set zeroaxis 1 is equivalent to set xzeroaxis 1; set yzeroaxis 1. set nozeroaxis is equivalent to
unset xzeroaxis; unset yzeroaxis.

35.105 Zlabel

This command sets the label for the z axis. Please see set xlabel (p.[110)).

35.106 Zmtics

The set zmtics command changes tics on the z axis to months of the year. Please see set xmtics

(p- [111)) for details.

35.107 Zrange

The set zrange command sets the range that will be displayed on the z axis. The zrange is used only
by splot and is ignored by plot. Please see set xrange (p.[111]) for details.

35.108 Ztics

The set ztics command controls major (labelled) tics on the z axis. Please see set xtics (p.[112]) for
details.

35.109 Cblabel

This command sets the label for the color box axis. Please see set xlabel (p. [110]).

35.110 Cbmtics

The set cbmtics command changes tics on the color box axis to months of the year. Please see set

xmtics (p. [111]) for details.

117

35.111 Cbrange

The set cbrange command sets the range of z-values which are colored by pm3d mode of splot. If
the cb-axis is autoscaled, then the pm3d / palette range is taken from zrange.

Please see set xrange (p.[111]) for details on set cbrange (p.[117) syntax.

35.112 Cbtics

The set cbtics command controls major (labelled) tics on the color box axis. Please see set xtics

(p- [112)) for details.

36 Shell

The shell command spawns an interactive shell. To return to gnuplot, type logout if using VMS, exit
or the END-OF-FILE character if using Unix, endcli if using AmigaOS, or exit if using MS-DOS or
08/2.

There are two ways of spawning a shell command: using system command or via ! ($ if using VMS). The
former command takes a string as a parameter and thus it can be used anywhere among other gnuplot
commands, while the latter syntax requires to bethe only command on the line. Control will return
immediately to gnuplot after this command is executed. For example, in Unix, AmigaOS, MS-DOS or

08/2,

I dir

or

system "dir"

prints a directory listing and then returns to gnuplot.

Other examples of the former syntax:

system "date"; set time; plot "a.dat"
print=1; if (print) replot; set out; system "lpr x.ps"

On an Atari, the ! command first checks whether a shell is already loaded and uses it, if available. This
is practical if gnuplot is run from gulam, for example.

37 Splot

splot is the command for drawing 3-d plots (well, actually projections on a 2-d surface, but you knew
that). It can create a plot from functions or a data file in a manner very similar to the plot command.

See plot (p. for features common to the plot (p. command; only differences are discussed in
detail here. Note specifically that the binary and matrix options (discussed under "datafile-modifiers")
are not available for plot, and plot’s axes option is not available for splot.

Syntax:
splot {<ranges>}
<function> | "<datafile>" {datafile-modifiers}}
{<title-spec>} {with <style>}
{, {definitions,} <function> ...}

where either a <function> or the name of a data file enclosed in quotes is supplied. The function can
be a mathematical expression, or a triple of mathematical expressions in parametric mode.

118

By default splot draws the xy plane completely below the plotted data. The offset between the lowest
ztic and the xy plane can be changed by set ticslevel. The orientation of a splot projection is controlled
by set view. See set view (p.[108]) and set ticslevel (p.[105)) for more information.

The syntax for setting ranges on the splot command is the same as for plot. In non-parametric mode,
the order in which ranges must be given is xrange, yrange, and zrange. In parametric mode, the
order is urange, vrange, xrange, yrange, and zrange.

The title option is the same as in plot. The operation of with is also the same as in plot, except that
the plotting styles available to splot are limited to lines, points, linespoints, dots, and impulses;
the error-bar capabilities of plot are not available for splot.

The datafile options have more differences.

37.1 Data-file

As for plot, discrete data contained in a file can be displayed by specifying the name of the data file,
enclosed in quotes, on the splot command line.

Syntax:
splot ’<file_name>’ {binary | matrix}
{index <index list>}
{every <every list>}
{using <using list>}

The special filenames "" and "-" are permitted, as in plot.

In brief, binary and matrix indicate that the data are in a special form, index selects which data sets
in a multi-data-set file are to be plotted, every specifies which datalines (subsets) within a single data
set are to be plotted, and using determines how the columns within a single record are to be interpreted.

The options index and every behave the same way as with plot; using does so also, except that the
using list must provide three entries instead of two.

The plot options thru and smooth are not available for splot, but cntrparam and dgrid3d provide
limited smoothing cabilities.

Data file organization is essentially the same as for plot, except that each point is an (x,y,z) triple. If
only a single value is provided, it will be used for z, the datablock number will be used for y, and the
index of the data point in the datablock will be used for x. If two or four values are provided, gnuplot
uses the last value for calculating the color in pm3d plots. Three values are interpreted as an (x,y,z)
triple. Additional values are generally used as errors, which can be used by fit.

Single blank records separate datablocks in a splot datafile; splot treats datablocks as the equivalent
of function y-isolines. No line will join points separated by a blank record. If all datablocks contain the
same number of points, gnuplot will draw cross-isolines between datablocks, connecting corresponding
points. This is termed "grid data", and is required for drawing a surface, for contouring (set contour)
and hidden-line removal (set hidden3d). See also splot grid_data (p. [120).

It is no longer necessary to specify parametric mode for three-column splots.

37.1.1 Binary

splot can read binary files written with a specific format (and on a system with a compatible binary file
representation.)

In previous versions, gnuplot dynamically detected binary data files. It is now necessary to specify the
keyword binary directly after the filename.

Single precision floats are stored in a binary file as follows:
<N+1> <y0> <y1> <y2> ... <yN>

119

<x0> <z0,0> <z0,1> <z0,2> ... <z0,N>
<x1> <z1,0> <zl,1> <z1,2> ... <zl1,N>

which are converted into triplets:

<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>

<x0> <yN> <z0,N>

<x1> <y0> <z1,0>
<x1> <y1> <z1,1>

These triplets are then converted into gnuplot iso-curves and then gnuplot proceeds in the usual
manner to do the rest of the plotting.

A collection of matrix and vector manipulation routines (in C) is provided in binary.c. The routine to
write binary data is

int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)

An example of using these routines is provided in the file bf_test.c, which generates binary files for the
demo file demo/binary.dem.

The index keyword is not supported, since the file format allows only one surface per file. The every
and using filters are supported. using operates as if the data were read in the above triplet form.
Binary File Splot Demo.

37.1.2 Example datafile

A simple example of plotting a 3-d data file is
splot ’datafile.dat’

where the file "datafile.dat" might contain:

The valley of the Gnu.
00 10
0110
0210

10 10
115
1210

2 0 10
1
2210

N
-

30 10
0
3210

w
—

http://www.nas.nasa.gov/~woo/gnuplot/binary/binary.html

120

Note that "datafile.dat" defines a 4 by 3 grid (4 rows of 3 points each). Rows (datablocks) are separated
by blank records.

Note also that the x value is held constant within each dataline. If you instead keep y constant, and
plot with hidden-line removal enabled, you will find that the surface is drawn ’inside-out’.

Actually for grid data it is not necessary to keep the x values constant within a datablock, nor is it
necessary to keep the same sequence of y values. gnuplot requires only that the number of points be
the same for each datablock. However since the surface mesh, from which contours are derived, connects
sequentially corresponding points, the effect of an irregular grid on a surface plot is unpredictable and
should be examined on a case-by-case basis.

37.1.3 Matrix

The matrix flag indicates that the ASCII data are stored in matrix format. The z-values are read in a
row at a time, i. e.,

z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...

and so forth. The row and column indices are used for the x- and y-values.

A blank line or comment line ends the matrix, and starts a new surface mesh. You can select among
the meshes inside a file by the index option to the plot command, as usual.

37.2 Grid_data

The 3D routines are designed for points in a grid format, with one sample, datapoint, at each mesh
intersection; the datapoints may originate from either evaluating a function, see set isosamples (p. ,
or reading a datafile, see splot datafile (p. . The term "isoline" is applied to the mesh lines for both
functions and data. Note that the mesh need not be rectangular in x and y, as it may be parameterized
in u and v, see set isosamples (p. .

However, gnuplot does not require that format. In the case of functions, 'samples’ need not be equal to
‘isosamples’, i.e., not every x-isoline sample need intersect a y-isoline. In the case of data files, if there
are an equal number of scattered data points in each datablock, then "isolines" will connect the points
in a datablock, and "cross-isolines" will connect the corresponding points in each datablock to generate
a "surface". In either case, contour and hidden3d modes may give different plots than if the points were
in the intended format. Scattered data can be converted to a {different} grid format with set dgrid3d.

The contour code tests for z intensity along a line between a point on a y-isoline and the corresponding
point in the next y-isoline. Thus a splot contour of a surface with samples on the x-isolines that do not
coincide with a y-isoline intersection will ignore such samples. Try:

set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]

set style function 1lp

set contour

set isosamples 10,10; set samples 10,10;

splot cos(x)*cos(y)

set samples 4,10; replot

set samples 10,4; replot

37.3 Splot_overview

splot can display a surface as a collection of points, or by connecting those points. As with plot, the
points may be read from a data file or result from evaluation of a function at specified intervals, see

121

set isosamples (p. . The surface may be approximated by connecting the points with straight line
segments, see set surface (p. , in which case the surface can be made opaque with set hidden3d.
The orientation from which the 3d surface is viewed can be changed with set view.

Additionally, for points in a grid format, splot can interpolate points having a common amplitude (see
set contour (p. [48))) and can then connect those new points to display contour lines, either directly
with straight-line segments or smoothed lines (see set cntrparam (p.) Functions are already
evaluated in a grid format, determined by set isosamples and set samples, while file data must either
be in a grid format, as described in data-file, or be used to generate a grid (see set dgrid3d (p.)

Contour lines may be displayed either on the surface or projected onto the base. The base projections
of the contour lines may be written to a file, and then read with plot, to take advantage of plot’s
additional formatting capabilities.

38 System

system spawns shell to execute a command. Please type help shell for more details.

39 Test

test creates a display of line and point styles and other useful things appropriate for the terminal you
are using.
Syntax:

test

40 Update

This command writes the current values of the fit parameters into the given file, formatted as an initial-
value file (as described in the fitsection). This is useful for saving the current values for later use or for
restarting a converged or stopped fit.

Syntax:
update <filename> {<filename>}

If a second filename is supplied, the updated values are written to this file, and the original parameter
file is left unmodified.

Otherwise, if the file already exists, gnuplot first renames it by appending .old and then opens a new file.
That is, "update ’fred’" behaves the same as "!rename fred fred.old; update ’fred.old’ ’fred’".
[On DOS and other systems that use the twelve-character "filename.ext" naming convention, "ext" will
be "old" and "filename" will be related (hopefully recognizably) to the initial name. Renaming is not
done at all on VMS systems, since they use file-versioning.]

Please see fit (p. for more information.

Part 111

Graphical User Interfaces

Several graphical user interfaces have been written for gnuplot and one for win32 is included in this
distribution. In addition, there is a Macintosh interface at

122

ftp://ftp.ee.gatech.edu/pub/mac/gnuplot

Also several X11 interfaces exist. One of them is called xgfe. It uses the Qt library and can be found on
http://www.flash.net/” dmishee/xgfe/xgfe.html

In addition three Tcl/Tk located at the usual Tcl/Tk repositories exist.

Bruce Ravel (ravel@phys.washington.edu) has written a new version of gnuplot-mode for GNU emacs
and XEmacs. This version is based on the gnuplot.el file by Gershon Elber. While the gnuplot CVS
repository has its own copy the most recent version of this package is available from

http://feff.phys.washington.edu/~ ravel/gnuplot

Part IV
Bugs

Floating point exceptions (floating point number too large/small, divide by zero, etc.) may occasionally
be generated by user defined functions. Some of the demos in particular may cause numbers to exceed
the floating point range. Whether the system ignores such exceptions (in which case gnuplot labels the
corresponding point as undefined) or aborts gnuplot depends on the compiler/runtime environment.

The bessel functions do not work for complex arguments.
The gamma function does not work for complex arguments.

As of gnuplot version 3.7, all development has been done using ANSI C. With current operating system,
compiler, and library releases, the OS specific bugs documented in release 3.5, now relegated to old_bugs,
may no longer be relevant.

Bugs reported since the current release as well as older ones may be located via the official distribution
site:

http://www.gnuplot.info
Please e-mail any bugs to bug-gnuplot mailinglist (see Seeking-assistance (p. [2]))

41 Old_bugs

There is a bug in the stdio library for old Sun operating systems (SunOS Sys4-3.2). The "%g" format
for ’printf’ sometimes incorrectly prints numbers (e.g., 200000.0 as "2"). Thus, tic mark labels may be
incorrect on a Sun4 version of gnuplot. A work-around is to rescale the data or use the set format
command to change the tic mark format to "%7.0f" or some other appropriate format. This appears to
have been fixed in SunOS 4.0.

Another bug: On a Sun3 under SunOS 4.0, and on Sun4’s under Sys4-3.2 and SunOS 4.0, the ’sscanf’
routine incorrectly parses "00 12" with the format "%f %f" and reads 0 and 0 instead of 0 and 12. This
affects data input. If the data file contains x coordinates that are zero but are specified like "00’, 000’,
etc, then you will read the wrong y values. Check any data files or upgrade the SunOS. It appears to
have been fixed in SunOS 4.1.1.

Suns appear to overflow when calculating exp(-x) for large x, so gnuplot gets an undefined result. One
work-around is to make a user-defined function like e(x) = x<-500 ? 0 : exp(x). This affects plots of
Gaussians (exp(-x*x)) in particular, since x*x grows quite rapidly.

Microsoft C 5.1 has a nasty bug associated with the %g format for ’printf’. When any of the formats
"%.2g", "%.1g", "%.0g", "%.g" are used, ’printf’ will incorrectly print numbers in the range le-4 to
le-1. Numbers that should be printed in the %e format are incorrectly printed in the %f format, with

ftp://ftp.ee.gatech.edu/pub/mac/gnuplot
http://www.flash.net/~dmishee/xgfe/xgfe.html
http://feff.phys.washington.edu/~ravel/gnuplot/
http://www.gnuplot.info

123

the wrong number of zeros after the decimal point. To work around this problem, use the %e or %f
formats explicitly.

gnuplot, when compiled with Microsoft C, did not work correctly on two VGA displays that were tested.
The CGA, EGA and VGA drivers should probably be rewritten to use the Microsoft C graphics library.
gnuplot compiled with Borland C++ uses the Turbo C graphics drivers and does work correctly with
VGA displays.

VAX/VMS 4.7 C compiler release 2.4 also has a poorly implemented %g format for 'printf’. The numbers
are printed numerically correct, but may not be in the requested format. The K&R second edition says
that for the %g format, %e is used if the exponent is less than -4 or greater than or equal to the precision.
The VAX uses %e format if the exponent is less than -1. The VAX appears to take no notice of the
precision when deciding whether to use %e or %f for numbers less than 1. To work around this problem,
use the %e or %f formats explicitly. From the VAX C 2.4 release notes: e,E.f,F,g,G Result will always
contain a decimal point. For g and G, trailing zeros will not be removed from the result.

VAX/VMS 5.2 C compiler release 3.0 has a slightly better implemented %g format than release 2.4, but
not much. Trailing decimal points are now removed, but trailing zeros are still not removed from %g
numbers in exponential format.

The two preceding problems are actually in the libraries rather than in the compilers. Thus the problems
will occur whether gnuplot is built using either the DEC compiler or some other one (e.g. the latest
gee).

ULTRIX X11R3 has a bug that causes the X11 driver to display "every other" graph. The bug seems
to be fixed in DEC’s release of X11R4 so newer releases of ULTRIX don’t seem to have the problem.
Solutions for older sites include upgrading the X11 libraries (from DEC or direct from MIT) or defining
ULTRIX_KLUDGE when compiling the x11.trm file. Note that the kludge is not an ideal fix, however.

The constant HUGE was incorrectly defined in the NeXT OS 2.0 operating system. HUGE should be
set to 1e38 in plot.h. This error has been corrected in the 2.1 version of NeXT OS.

Some older models of HP plotters do not have a page eject command 'PG’. The current HPGL driver
uses this command in HPGL_reset. This may need to be removed for these plotters. The current PCL5
driver uses HPGL/2 for text as well as graphics. This should be modified to use scalable PCL fonts.

On the Atari version, it is not possible to send output directly to the printer (using /dev/lp as output
file), since CRs are added to LFs in binary output. As a work-around, write the output to a file and
copy it to the printer afterwards using a shell command.

On AIX 4, the literal 'NaNq’ in a datafile causes the special internal value 'not-a-number’ to be stored,
rather than setting an internal 'undefined’ flag. A workaround is to use set missing 'NalNq’.

	I Gnuplot
	1 Copyright
	2 Introduction
	3 Seeking-assistance
	4 What is New in version 3.7
	4.1 Bind

	5 Batch/Interactive Operation
	6 Command-line-editing
	7 Comments
	8 Coordinates
	9 Environment
	10 Expressions
	10.1 Functions
	10.2 Operators
	10.2.1 Unary
	10.2.2 Binary
	10.2.3 Ternary

	10.3 User-defined

	11 Glossary
	12 Plotting
	13 Start-up
	14 Substitution
	15 Syntax
	16 Time/Date data

	II Commands
	17 Cd
	18 Call
	19 Clear
	20 Exit
	21 Fit
	21.1 Adjustable parameters
	21.2 Short introduction
	21.3 Error estimates
	21.3.1 Statistical overview
	21.3.2 Practical guidelines

	21.4 Fit controlling
	21.4.1 Control variables
	21.4.2 Environment variables

	21.5 Multi-branch
	21.6 Starting values
	21.7 Tips

	22 Help
	23 History
	24 If
	25 Load
	26 Pause
	27 Plot
	27.1 Data-file
	27.1.1 Every
	27.1.2 Example datafile
	27.1.3 Index
	27.1.4 Smooth
	27.1.4.1 Acsplines
	27.1.4.2 Bezier
	27.1.4.3 Csplines
	27.1.4.4 Sbezier
	27.1.4.5 Unique
	27.1.4.6 Frequency

	27.1.5 Special-filenames
	27.1.6 Thru
	27.1.7 Using

	27.2 Errorbars
	27.3 Errorlines
	27.4 Parametric
	27.5 Ranges
	27.6 Title
	27.7 With

	28 Print
	29 Pwd
	30 Quit
	31 Replot
	32 Reread
	33 Reset
	34 Save
	35 Set-show
	35.1 Angles
	35.2 Arrow
	35.3 Autoscale
	35.3.1 Parametric mode
	35.3.2 Polar mode

	35.4 Bars
	35.5 Bmargin
	35.6 Border
	35.7 Boxwidth
	35.8 Fillstyle
	35.9 Clabel
	35.10 Clip
	35.11 Cntrparam
	35.12 Contour
	35.13 Data style
	35.14 Decimalsign
	35.15 Dgrid3d
	35.16 Dummy
	35.17 Encoding
	35.18 Format
	35.18.1 Format specifiers
	35.18.2 Time/date specifiers

	35.19 Function style
	35.20 Functions
	35.21 Grid
	35.22 Hidden3d
	35.23 Historysize
	35.24 Isosamples
	35.25 Key
	35.26 Label
	35.27 Linestyle
	35.28 Lmargin
	35.29 Loadpath
	35.30 Locale
	35.31 Logscale
	35.32 Mapping
	35.33 Margin
	35.34 Missing
	35.35 Mouse
	35.36 Multiplot
	35.37 Mx2tics
	35.38 Mxtics
	35.39 My2tics
	35.40 Mytics
	35.41 Mztics
	35.42 Offsets
	35.43 Origin
	35.44 Output
	35.45 Parametric
	35.46 Pm3d
	35.47 Palette
	35.48 Color box
	35.49 Pointsize
	35.50 Polar
	35.51 Rmargin
	35.52 Rrange
	35.53 Samples
	35.54 Size
	35.55 Style
	35.55.1 Boxerrorbars
	35.55.2 Boxes
	35.55.3 Filledboxes
	35.55.4 Filledcurves
	35.55.5 Boxxyerrorbars
	35.55.6 Candlesticks
	35.55.7 Dots
	35.55.8 Financebars
	35.55.9 Fsteps
	35.55.10 Histeps
	35.55.11 Impulses
	35.55.12 Lines
	35.55.13 Linespoints
	35.55.14 Points
	35.55.15 Steps
	35.55.16 Vector
	35.55.17 Xerrorbars
	35.55.18 Xyerrorbars
	35.55.19 Yerrorbars
	35.55.20 Xerrorlines
	35.55.21 Xyerrorlines
	35.55.22 Yerrorlines

	35.56 Surface
	35.57 Terminal
	35.57.1 Windows
	35.57.1.1 Graph-menu
	35.57.1.2 Printing
	35.57.1.3 Text-menu
	35.57.1.4 Wgnuplot.ini
	35.57.1.5 Windows3.0

	35.57.2 Aifm
	35.57.3 Cgm
	35.57.3.1 Font
	35.57.3.2 Linewidth
	35.57.3.3 Rotate
	35.57.3.4 Solid
	35.57.3.5 Size
	35.57.3.6 Width
	35.57.3.7 Nofontlist

	35.57.4 Corel
	35.57.5 Dumb
	35.57.6 Dxf
	35.57.7 Emf
	35.57.8 Fig
	35.57.9 Gif
	35.57.10 Hp2623a
	35.57.11 Hp2648
	35.57.12 Hp500c
	35.57.13 Hpgl
	35.57.14 Hpljii
	35.57.15 Hppj
	35.57.16 Imagen
	35.57.17 Mif
	35.57.18 Pbm
	35.57.19 Png
	35.57.20 Postscript
	35.57.20.1 Enhanced postscript
	35.57.20.2 Editing postscript

	35.57.21 Qms
	35.57.22 Svg
	35.57.23 Table
	35.57.24 Tgif
	35.57.25 Tkcanvas
	35.57.26 Epson-180dpi
	35.57.27 Latex
	35.57.28 Pslatex and pstex
	35.57.29 Epslatex
	35.57.30 Eepic
	35.57.31 Tpic
	35.57.32 Pstricks
	35.57.33 Texdraw
	35.57.34 Mf
	35.57.34.1 METAFONT Instructions

	35.57.35 Mp
	35.57.35.1 Metapost Instructions

	35.58 Tics
	35.59 Ticslevel
	35.60 Ticscale
	35.61 Timestamp
	35.62 Timefmt
	35.63 Title
	35.64 Tmargin
	35.65 Trange
	35.66 Urange
	35.67 Variables
	35.68 Version
	35.69 View
	35.70 Vrange
	35.71 X2data
	35.72 X2dtics
	35.73 X2label
	35.74 X2mtics
	35.75 X2range
	35.76 X2tics
	35.77 X2zeroaxis
	35.78 Xdata
	35.79 Xdtics
	35.80 Xlabel
	35.81 Xmtics
	35.82 Xrange
	35.83 Xtics
	35.84 Xzeroaxis
	35.85 Y2data
	35.86 Y2dtics
	35.87 Y2label
	35.88 Y2mtics
	35.89 Y2range
	35.90 Y2tics
	35.91 Y2zeroaxis
	35.92 Ydata
	35.93 Ydtics
	35.94 Ylabel
	35.95 Ymtics
	35.96 Yrange
	35.97 Ytics
	35.98 Yzeroaxis
	35.99 Zdata
	35.100 Zdtics
	35.101 Cbdata
	35.102 Cbdtics
	35.103 Zero
	35.104 Zeroaxis
	35.105 Zlabel
	35.106 Zmtics
	35.107 Zrange
	35.108 Ztics
	35.109 Cblabel
	35.110 Cbmtics
	35.111 Cbrange
	35.112 Cbtics

	36 Shell
	37 Splot
	37.1 Data-file
	37.1.1 Binary
	37.1.2 Example datafile
	37.1.3 Matrix

	37.2 Grid_data
	37.3 Splot_overview

	38 System
	39 Test
	40 Update

	III Graphical User Interfaces
	IV Bugs
	41 Old_bugs

