10. The QR factorization

- solving the normal equations
- the QR factorization
- orthogonal matrices
- modified Gram-Schmidt algorithm
- Cholesky factorization versus QR factorization

Least-squares methods

least-squares problem

$$
\text { minimize }\|A x-b\|^{2} \quad\left(A \in \mathbf{R}^{m \times n}, m \geq n, \operatorname{rank}(A)=n\right)
$$

normal equations

$$
A^{T} A x=A^{T} b
$$

- method 1: solve the normal equations using the Cholesky factorization
- method 2: use the QR factorization
method 2 has better numerical properties; method 1 is faster

Least-squares method 1: Cholesky factorization

$$
A^{T} A x=A^{T} b
$$

n equations in n variables, $A^{T} A$ is symmetric positive definite

algorithm:

1. calculate $C=A^{T} A$ (C is symmetric: $\frac{1}{2} n(n+1)(2 m-1) \approx m n^{2}$ flops)
2. Cholesky factorization $C=L L^{T}\left((1 / 3) n^{3}\right.$ flops)
3. calculate $d=A^{T} b$ (2mn flops)
4. solve $L z=d$ by forward substitution (n^{2} flops)
5. solve $L^{T} x=z$ by backward substitution (n^{2} flops)
total for large m, n : $m n^{2}+(1 / 3) n^{3}$ flops
example

$$
A=\left[\begin{array}{rr}
3 & -6 \\
4 & -8 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{r}
-1 \\
7 \\
2
\end{array}\right]
$$

1. calculate $A^{T} A=\left[\begin{array}{rr}25 & -50 \\ -50 & 101\end{array}\right]$ and $A^{T} b=\left[\begin{array}{r}25 \\ -48\end{array}\right]$
2. Cholesky factorization: $A^{T} A=\left[\begin{array}{rr}5 & 0 \\ -10 & 1\end{array}\right]\left[\begin{array}{rr}5 & -10 \\ 0 & 1\end{array}\right]$
3. forward substitution: solve $\left[\begin{array}{rr}5 & 0 \\ -10 & 1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=\left[\begin{array}{r}25 \\ -48\end{array}\right]$ $z_{1}=5, z_{2}=2$
4. backward substitution: solve $\left[\begin{array}{rr}5 & -10 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ $x_{1}=5, x_{2}=2$

The QR factorization

if $A \in \mathbf{R}^{m \times n}$ with $m \geq n$ and $\operatorname{rank} A=n$ then it can be factored as

$$
A=Q R
$$

- $R \in \mathbf{R}^{n \times n}$ is upper triangular with $r_{i i}>0$
- $Q \in \mathbf{R}^{m \times n}$ satisfies $Q^{T} Q=I$ (Q is an orthogonal matrix)
can be computed in $2 m n^{2}$ flops (more later)

Least-squares method 2: QR factorization

rewrite normal equations $A^{T} A x=A^{T} b$ using QR factorization $A=Q R$:

$$
\begin{array}{rlr}
A^{T} A x & =A^{T} b \\
R^{T} Q^{T} Q R x & =R^{T} Q^{T} b \\
R^{T} R x & =R^{T} Q^{T} b \quad\left(Q^{T} Q=I\right) \\
R x & =Q^{T} b \quad(R \text { nonsingular })
\end{array}
$$

algorithm

1. QR factorization of $A: A=Q R\left(2 m n^{2}\right.$ flops $)$
2. form $d=Q^{T} b$ (2mn flops)
3. solve $R x=d$ by backward substitution (n^{2} flops)
total for large $m, n: 2 m n^{2}$ flops
example

$$
A=\left[\begin{array}{rr}
3 & -6 \\
4 & -8 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{r}
-1 \\
7 \\
2
\end{array}\right]
$$

1. QR factorization: $A=Q R$ with

$$
Q=\left[\begin{array}{rr}
3 / 5 & 0 \\
4 / 5 & 0 \\
0 & 1
\end{array}\right], \quad R=\left[\begin{array}{rr}
5 & -10 \\
0 & 1
\end{array}\right]
$$

2. calculate $d=Q^{T} b=\left[\begin{array}{l}5 \\ 2\end{array}\right]$
3. backward substitution: solve $\left[\begin{array}{rr}5 & -10 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}5 \\ 2\end{array}\right]$

$$
x_{1}=5, x_{2}=2
$$

Orthogonal matrices

$Q=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right] \in \mathbf{R}^{m \times n}(m \geq n)$ is orthogonal if $Q^{T} Q=I$

$$
Q^{T} Q=\left[\begin{array}{cccc}
q_{1}^{T} q_{1} & q_{1}^{T} q_{2} & \cdots & q_{1}^{T} q_{n} \\
q_{2}^{T} q_{1} & q_{2}^{T} q_{2} & \cdots & q_{2}^{T} q_{n} \\
\vdots & \vdots & \ddots & \vdots \\
q_{n}^{T} q_{1} & q_{n}^{T} q_{2} & \cdots & q_{n}^{T} q_{n}
\end{array}\right]
$$

properties

- the columns q_{i} have unit norm: $q_{i}^{T} q_{i}=1$ for $i=1, \ldots, n$
- the columns are mutually orthogonal: $q_{i}^{T} q_{j}=0$ for $i \neq j$
- $\operatorname{rank} Q=n$, i.e., the columns of Q are linearly independent

$$
Q x=0 \quad \Longrightarrow \quad Q^{T} Q x=0 \quad \Longrightarrow \quad x=0
$$

- if Q is square $(m=n)$, then Q is nonsingular and $Q^{-1}=Q^{T}$

examples of orthogonal matrices

- permutation matrices, e.g., $Q=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $Q=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$
- $Q=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ 0 & 0 \\ \sin \theta & \cos \theta\end{array}\right]$
- $Q=I-2 u u^{T}$ where $u \in \mathbf{R}^{n}$ with $\|u\|=1$

$$
Q^{T} Q=\left(I-2 u u^{T}\right)\left(I-2 u u^{T}\right)=I-2 u u^{T}-2 u u^{T}+4 u u^{T} u u^{T}=I
$$

Computing the QR factorization

given $A \in \mathbf{R}^{m \times n}$ with $\operatorname{rank} A=n$
partition $A=Q R$ as

$$
\left[\begin{array}{ll}
a_{1} & A_{2}
\end{array}\right]=\left[\begin{array}{ll}
q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & R_{12} \\
0 & R_{22}
\end{array}\right]
$$

- $a_{1} \in \mathbf{R}^{m}, A_{2} \in \mathbf{R}^{m \times(n-1)}$
- $q_{1} \in \mathbf{R}^{m}, Q_{2} \in \mathbf{R}^{m \times(n-1)}$ satisfy

$$
\left[\begin{array}{c}
q_{1}^{T} \\
Q_{2}^{T}
\end{array}\right]\left[\begin{array}{ll}
q_{1} & Q_{2}
\end{array}\right]=\left[\begin{array}{cc}
q_{1}^{T} q_{1} & q_{1}^{T} Q_{2} \\
Q_{2}^{T} q_{1} & Q_{2}^{T} Q_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & I
\end{array}\right]
$$

i.e.,

$$
q_{1}^{T} q_{1}=1, \quad Q_{2}^{T} Q_{2}=I, \quad q_{1}^{T} Q_{2}=0
$$

- $r_{11} \in \mathbf{R}, R_{12} \in \mathbf{R}^{1 \times(n-1)}, R_{22} \in \mathbf{R}^{(n-1) \times(n-1)}$ is upper triangular
recursive algorithm ('modified Gram-Schmidt algorithm')

$$
\left[\begin{array}{ll}
a_{1} & A_{2}
\end{array}\right]=\left[\begin{array}{ll}
q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{cc}
r_{11} & R_{12} \\
0 & R_{22}
\end{array}\right]=\left[\begin{array}{ll}
q_{1} r_{11} & q_{1} R_{12}+Q_{2} R_{22}
\end{array}\right]
$$

1. determine q_{1} and r_{11} :

$$
r_{11}=\left\|a_{1}\right\|, \quad q_{1}=\left(1 / r_{11}\right) a_{1}
$$

2. R_{12} follows from $q_{1}^{T} A_{2}=q_{1}^{T}\left(q_{1} R_{12}+Q_{2} R_{22}\right)=R_{12}$:

$$
R_{12}=q_{1}^{T} A_{2}
$$

3. Q_{2} and R_{22} follow from

$$
A_{2}-q_{1} R_{12}=Q_{2} R_{22},
$$

i.e., the QR factorization of an $m \times(n-1)$ matrix
cost: $2 m n^{2}$ flops (no proof)
proof that the algorithm works for $A \in \mathbf{R}^{m \times n}$ with rank n

- step 1: $a_{1} \neq 0$ because $\operatorname{rank} A=n$
- step 3: $A_{2}-q_{1} R_{12}$ has full rank (rank $n-1$):

$$
A_{2}-q_{1} R_{12}=A_{2}-\left(1 / r_{11}\right) a_{1} R_{12}
$$

hence if $\left(A_{2}-q_{1} R_{12}\right) x=0$, then

$$
\left[\begin{array}{ll}
a_{1} & A_{2}
\end{array}\right]\left[\begin{array}{c}
-R_{12} x / r_{11} \\
x
\end{array}\right]=0
$$

but this implies $x=0$ because $\operatorname{rank}(A)=n$

- therefore the algorithm works for an $m \times n$ matrix with rank n, if it works for an $m \times(n-1)$ matrix with rank $n-1$
- obviously it works for an $m \times 1$ matrix with rank 1 ; so by induction it works for all $m \times n$ matrices with rank n
example

$$
A=\left[\begin{array}{rrr}
9 & 0 & 26 \\
12 & 0 & -7 \\
0 & 4 & 4 \\
0 & -3 & -3
\end{array}\right]
$$

we want to factor A as

$$
\begin{aligned}
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] & =\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right] \\
& =\left[\begin{array}{lll}
q_{1} r_{11} & q_{1} r_{12}+q_{2} r_{22} & q_{1} r_{13}+q_{2} r_{23}+q_{3} r_{33}
\end{array}\right]
\end{aligned}
$$

with

$$
\begin{array}{lll}
q_{1}^{T} q_{1}=1, & q_{2}^{T} q_{2}=1, & q_{3}^{T} q_{3}=1 \\
q_{1}^{T} q_{2}=0, & q_{1}^{T} q_{3}=0, & q_{2}^{T} q_{3}=0
\end{array}
$$

and $r_{11}>0, r_{22}>0, r_{33}>0$

- determine first column of Q, first row of R
$-a_{1}=q_{1} r_{11}$ with $\left\|q_{1}\right\|=1$

$$
r_{11}=\left\|a_{1}\right\|=15, \quad q_{1}=\left(1 / r_{11}\right) a_{1}=\left[\begin{array}{c}
3 / 5 \\
4 / 5 \\
0 \\
0
\end{array}\right]
$$

- inner product of q_{1} with a_{2} and a_{3} :

$$
\begin{aligned}
q_{1}^{T} a_{2} & =q_{1}^{T}\left(q_{1} r_{12}+q_{2} r_{22}\right)=r_{12} \\
q_{1}^{T} a_{3} & =q_{1}^{T}\left(q_{1} r_{13}+q_{2} r_{23}+q_{3} r_{33}\right)=r_{13}
\end{aligned}
$$

therefore, $r_{12}=q_{1}^{T} a_{2}=0, r_{13}=q_{1}^{T} a_{3}=10$

$$
A=\left[\begin{array}{rrr}
9 & 0 & 26 \\
12 & 0 & -7 \\
0 & 4 & 4 \\
0 & -3 & -3
\end{array}\right]=\left[\begin{array}{ccc}
3 / 5 & q_{12} & q_{13} \\
4 / 5 & q_{22} & q_{23} \\
0 & q_{32} & q_{33} \\
0 & q_{42} & q_{43}
\end{array}\right]\left[\begin{array}{rrr}
15 & 0 & 10 \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right]
$$

- determine 2 nd column of Q, 2 nd row or R

$$
\left[\begin{array}{rr}
0 & 26 \\
0 & -7 \\
4 & 4 \\
-3 & -3
\end{array}\right]-\left[\begin{array}{c}
3 / 5 \\
4 / 5 \\
0 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 10
\end{array}\right]=\left[\begin{array}{ll}
q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{rr}
r_{22} & r_{23} \\
0 & r_{33}
\end{array}\right]
$$

i.e., the QR factorization of $\left[\begin{array}{rr}0 & 20 \\ 0 & -15 \\ 4 & 4 \\ -3 & -3\end{array}\right]=\left[\begin{array}{ll}q_{2} r_{22} & q_{2} r_{23}+q_{3} r_{33}\end{array}\right]$

- first column is $q_{2} r_{22}$ where $\left\|q_{2}\right\|=1$, hence

$$
r_{22}=5, \quad q_{2}=\left[\begin{array}{c}
0 \\
0 \\
4 / 5 \\
-3 / 5
\end{array}\right]
$$

- inner product of q_{2} with 2 nd column gives r_{23}

$$
q_{2}^{T}\left[\begin{array}{r}
20 \\
-15 \\
4 \\
-3
\end{array}\right]=q_{2}^{T}\left(q_{2} r_{23}+q_{3} r_{33}\right)=r_{23}
$$

therefore, $r_{23}=5$

QR factorization so far:

$$
A=\left[\begin{array}{rrr}
9 & 0 & 26 \\
12 & 0 & -7 \\
0 & 4 & 4 \\
0 & -3 & -3
\end{array}\right]=\left[\begin{array}{ccc}
3 / 5 & 0 & q_{13} \\
4 / 5 & 0 & q_{23} \\
0 & 4 / 5 & q_{33} \\
0 & -3 / 5 & q_{43}
\end{array}\right]\left[\begin{array}{rcr}
15 & 0 & 10 \\
0 & 5 & 5 \\
0 & 0 & r_{33}
\end{array}\right]
$$

- determine 3rd column of Q, 3rd row of R

$$
\begin{aligned}
{\left[\begin{array}{r}
26 \\
-7 \\
4 \\
-3
\end{array}\right]-\left[\begin{array}{cc}
3 / 5 & 0 \\
4 / 5 & 0 \\
0 & 4 / 5 \\
0 & -3 / 5
\end{array}\right]\left[\begin{array}{r}
10 \\
5
\end{array}\right]=q_{3} r_{33} } \\
{\left[\begin{array}{r}
20 \\
-15 \\
0 \\
0
\end{array}\right]=q_{3} r_{33} }
\end{aligned}
$$

with $\left\|q_{3}\right\|=1$, hence

$$
r_{33}=25, \quad q_{3}=\left[\begin{array}{c}
4 / 5 \\
-3 / 5 \\
0 \\
0
\end{array}\right]
$$

in summary,

$$
\begin{aligned}
A=\left[\begin{array}{rrr}
9 & 0 & 26 \\
12 & 0 & -7 \\
0 & 4 & 4 \\
0 & -3 & -3
\end{array}\right] & =\left[\begin{array}{ccc}
3 / 5 & 0 & 4 / 5 \\
4 / 5 & 0 & -3 / 5 \\
0 & 4 / 5 & 0 \\
0 & -3 / 5 & 0
\end{array}\right]\left[\begin{array}{rrr}
15 & 0 & 10 \\
0 & 5 & 5 \\
0 & 0 & 25
\end{array}\right] \\
& =Q R
\end{aligned}
$$

Cholesky factorization versus QR factorization

example: minimize $\|A x-b\|^{2}$ with

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 10^{-5} \\
0 & 0
\end{array}\right], \quad b=\left[\begin{array}{c}
0 \\
10^{-5} \\
1
\end{array}\right]
$$

solution:

normal equations $A^{T} A x=A^{T} b$:

$$
\left[\begin{array}{rc}
1 & -1 \\
-1 & 1+10^{-10}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
10^{-10}
\end{array}\right]
$$

solution: $x_{1}=1, x_{2}=1$
let us compare both methods, rounding intermediate results to 8 significant decimal digits
method 1 (Cholesky factorization)
$A^{T} A$ and $A^{T} b$ rounded to 8 digits:

$$
A^{T} A=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \quad A^{T} b=\left[\begin{array}{c}
0 \\
10^{-10}
\end{array}\right]
$$

no solution (singular matrix)
method 2 (QR factorization): factor $A=Q R$ and solve $R x=Q^{T} b$

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad R=\left[\begin{array}{cc}
1 & -1 \\
0 & 10^{-5}
\end{array}\right], \quad Q^{T} b=\left[\begin{array}{c}
0 \\
10^{-5}
\end{array}\right]
$$

rounding does not change any values
solution of $R x=Q^{T} b$ is $x_{1}=1, x_{2}=1$

conclusion:

- for this example, Cholesky factorization method fails due to rounding errors; QR factorization method gives the exact solution
- from numerical analysis: Cholesky factorization method can be very inaccurate if $\kappa\left(A^{T} A\right)$ is high
- numerical stability of QR factorization method is better

Summary

cost for dense A

- method 1 (Cholesky factorization): $m n^{2}+(1 / 3) n^{3}$ flops
- method 2 (QR factorization): $2 m n^{2}$ flops
- method 1 is always faster (twice as fast if $m \gg n$)
cost for large sparse A
- method 1: we can form $A^{T} A$ fast, and use a sparse Cholesky factorization (cost $\ll m n^{2}+(1 / 3) n^{3}$)
- method 2: no good methods for sparse QR factorization
- method 1 is much more efficient
numerical stability: method 2 is more accurate
in practice: preferred method is method 2 ; method 1 is used when A is large and sparse

