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10. The QR factorization

• solving the normal equations

• the QR factorization

• orthogonal matrices

• modified Gram-Schmidt algorithm

• Cholesky factorization versus QR factorization
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Least-squares methods

least-squares problem

minimize ‖Ax − b‖2 (A ∈ Rm×n, m ≥ n, rank(A) = n)

normal equations

ATAx = AT b

• method 1: solve the normal equations using the Cholesky factorization

• method 2: use the QR factorization

method 2 has better numerical properties; method 1 is faster
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Least-squares method 1: Cholesky factorization

ATAx = AT b

n equations in n variables, ATA is symmetric positive definite

algorithm:

1. calculate C = ATA (C is symmetric: 1
2n(n + 1)(2m − 1) ≈ mn2 flops)

2. Cholesky factorization C = LLT ((1/3)n3 flops)

3. calculate d = AT b (2mn flops)

4. solve Lz = d by forward substitution (n2 flops)

5. solve LTx = z by backward substitution (n2 flops)

total for large m, n: mn2 + (1/3)n3 flops
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example

A =





3 −6
4 −8
0 1



 , b =





−1
7
2





1. calculate ATA =

[

25 −50
−50 101

]

and AT b =

[

25
−48

]

2. Cholesky factorization: ATA =

[

5 0
−10 1

] [

5 −10
0 1

]

3. forward substitution: solve

[

5 0
−10 1

] [

z1

z2

]

=

[

25
−48

]

z1 = 5, z2 = 2

4. backward substitution: solve

[

5 −10
0 1

] [

x1

x2

]

=

[

5
2

]

x1 = 5, x2 = 2
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The QR factorization

if A ∈ Rm×n with m ≥ n and rankA = n then it can be factored as

A = QR

• R ∈ Rn×n is upper triangular with rii > 0

• Q ∈ Rm×n satisfies QTQ = I (Q is an orthogonal matrix)

can be computed in 2mn2 flops (more later)
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Least-squares method 2: QR factorization

rewrite normal equations ATAx = AT b using QR factorization A = QR:

ATAx = AT b

RTQTQRx = RTQT b

RTRx = RTQT b (QTQ = I)

Rx = QT b (R nonsingular)

algorithm

1. QR factorization of A: A = QR (2mn2 flops)

2. form d = QT b (2mn flops)

3. solve Rx = d by backward substitution (n2 flops)

total for large m, n: 2mn2 flops
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example

A =





3 −6
4 −8
0 1



 , b =





−1
7
2





1. QR factorization: A = QR with

Q =





3/5 0
4/5 0

0 1



 , R =

[

5 −10
0 1

]

2. calculate d = QT b =

[

5
2

]

3. backward substitution: solve

[

5 −10
0 1

] [

x1

x2

]

=

[

5
2

]

x1 = 5, x2 = 2
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Orthogonal matrices

Q = [q1 q2 · · · qn] ∈ Rm×n (m ≥ n) is orthogonal if QTQ = I

QTQ =













qT
1 q1 qT

1 q2 · · · qT
1 qn

qT
2 q1 qT

2 q2 · · · qT
2 qn

... ... . . . ...

qT
n q1 qT

n q2 · · · qT
n qn













properties

• the columns qi have unit norm: qT
i qi = 1 for i = 1, . . . , n

• the columns are mutually orthogonal: qT
i qj = 0 for i 6= j

• rankQ = n, i.e., the columns of Q are linearly independent

Qx = 0 =⇒ QTQx = 0 =⇒ x = 0

• if Q is square (m = n), then Q is nonsingular and Q−1 = QT
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examples of orthogonal matrices

• permutation matrices, e.g., Q =





0 1 0
1 0 0
0 0 1





• Q =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ





• Q =





cos θ − sin θ
0 0

sin θ cos θ





• Q = I − 2uuT where u ∈ Rn with ‖u‖ = 1

QTQ = (I − 2uuT )(I − 2uuT ) = I − 2uuT − 2uuT + 4uuTuuT = I
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Computing the QR factorization

given A ∈ Rm×n with rankA = n

partition A = QR as

[

a1 A2

]

=
[

q1 Q2

]

[

r11 R12

0 R22

]

• a1 ∈ Rm, A2 ∈ Rm×(n−1)

• q1 ∈ Rm, Q2 ∈ Rm×(n−1) satisfy

[

qT
1

QT
2

]

[

q1 Q2

]

=

[

qT
1 q1 qT

1 Q2

QT
2 q1 QT

2 Q2

]

=

[

1 0
0 I

]

,

i.e.,
qT
1 q1 = 1, QT

2 Q2 = I, qT
1 Q2 = 0

• r11 ∈ R, R12 ∈ R1×(n−1), R22 ∈ R(n−1)×(n−1) is upper triangular
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recursive algorithm (‘modified Gram-Schmidt algorithm’)

[

a1 A2

]

=
[

q1 Q2

]

[

r11 R12

0 R22

]

=
[

q1r11 q1R12 + Q2R22

]

1. determine q1 and r11:

r11 = ‖a1‖, q1 = (1/r11)a1

2. R12 follows from qT
1 A2 = qT

1 (q1R12 + Q2R22) = R12:

R12 = qT
1 A2

3. Q2 and R22 follow from

A2 − q1R12 = Q2R22,

i.e., the QR factorization of an m × (n − 1) matrix

cost: 2mn2 flops (no proof)
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proof that the algorithm works for A ∈ Rm×n with rank n

• step 1: a1 6= 0 because rankA = n

• step 3: A2 − q1R12 has full rank (rank n − 1):

A2 − q1R12 = A2 − (1/r11)a1R12

hence if (A2 − q1R12)x = 0, then

[

a1 A2

]

[

−R12x/r11

x

]

= 0

but this implies x = 0 because rank(A) = n

• therefore the algorithm works for an m × n matrix with rank n, if it
works for an m × (n − 1) matrix with rank n − 1

• obviously it works for an m × 1 matrix with rank 1; so by induction it
works for all m × n matrices with rank n
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example

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









we want to factor A as

A =
[

a1 a2 a3

]

=
[

q1 q2 q3

]





r11 r12 r13

0 r22 r23

0 0 r33





=
[

q1r11 q1r12 + q2r22 q1r13 + q2r23 + q3r33

]

with
qT
1 q1 = 1, qT

2 q2 = 1, qT
3 q3 = 1

qT
1 q2 = 0, qT

1 q3 = 0, qT
2 q3 = 0

and r11 > 0, r22 > 0, r33 > 0
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• determine first column of Q, first row of R

– a1 = q1r11 with ‖q1‖ = 1

r11 = ‖a1‖ = 15, q1 = (1/r11)a1 =









3/5
4/5
0
0









– inner product of q1 with a2 and a3:

qT
1 a2 = qT

1 (q1r12 + q2r22) = r12

qT
1 a3 = qT

1 (q1r13 + q2r23 + q3r33) = r13

therefore, r12 = qT
1 a2 = 0, r13 = qT

1 a3 = 10

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









=









3/5 q12 q13

4/5 q22 q23

0 q32 q33

0 q42 q43













15 0 10
0 r22 r23

0 0 r33
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• determine 2nd column of Q, 2nd row or R









0 26
0 −7
4 4

−3 −3









−









3/5
4/5
0
0









[

0 10
]

=
[

q2 q3

]

[

r22 r23

0 r33

]

i.e., the QR factorization of









0 20
0 −15
4 4

−3 −3









=
[

q2r22 q2r23 + q3r33

]

– first column is q2r22 where ‖q2‖ = 1, hence

r22 = 5, q2 =









0
0

4/5
−3/5
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– inner product of q2 with 2nd column gives r23

qT
2









20
−15

4
−3









= qT
2 (q2r23 + q3r33) = r23

therefore, r23 = 5

QR factorization so far:

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









=









3/5 0 q13

4/5 0 q23

0 4/5 q33

0 −3/5 q43













15 0 10
0 5 5
0 0 r33
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• determine 3rd column of Q, 3rd row of R









26
−7

4
−3









−









3/5 0
4/5 0
0 4/5
0 −3/5









[

10
5

]

= q3r33









20
−15

0
0









= q3r33

with ‖q3‖ = 1, hence

r33 = 25, q3 =









4/5
−3/5

0
0
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in summary,

A =









9 0 26
12 0 −7
0 4 4
0 −3 −3









=









3/5 0 4/5
4/5 0 −3/5
0 4/5 0
0 −3/5 0













15 0 10
0 5 5
0 0 25





= QR
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Cholesky factorization versus QR factorization

example: minimize ‖Ax − b‖2 with

A =





1 −1
0 10−5

0 0



 , b =





0
10−5

1





solution:

normal equations ATAx = AT b:

[

1 −1
−1 1 + 10−10

] [

x1

x2

]

=

[

0
10−10

]

solution: x1 = 1, x2 = 1

let us compare both methods, rounding intermediate results to 8
significant decimal digits
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method 1 (Cholesky factorization)

ATA and AT b rounded to 8 digits:

ATA =

[

1 −1
−1 1

]

, AT b =

[

0
10−10

]

no solution (singular matrix)

method 2 (QR factorization): factor A = QR and solve Rx = QT b

Q =





1 0
0 1
0 0



 , R =

[

1 −1
0 10−5

]

, QT b =

[

0
10−5

]

rounding does not change any values

solution of Rx = QT b is x1 = 1, x2 = 1
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conclusion:

• for this example, Cholesky factorization method fails due to rounding
errors; QR factorization method gives the exact solution

• from numerical analysis: Cholesky factorization method can be very
inaccurate if κ(ATA) is high

• numerical stability of QR factorization method is better
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Summary

cost for dense A

• method 1 (Cholesky factorization): mn2 + (1/3)n3 flops

• method 2 (QR factorization): 2mn2 flops

• method 1 is always faster (twice as fast if m À n)

cost for large sparse A

• method 1: we can form ATA fast, and use a sparse Cholesky
factorization (cost ¿ mn2 + (1/3)n3)

• method 2: no good methods for sparse QR factorization

• method 1 is much more efficient

numerical stability: method 2 is more accurate

in practice: preferred method is method 2; method 1 is used when A is
large and sparse
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