10. The QR factorization

- solving the normal equations
- the QR factorization
- orthogonal matrices
- modified Gram-Schmidt algorithm
- Cholesky factorization versus QR factorization

Least-squares methods

least-squares problem

minimize $||Ax - b||^2$ $(A \in \mathbf{R}^{m \times n}, m \ge n, \operatorname{rank}(A) = n)$

normal equations

$$A^T A x = A^T b$$

- method 1: solve the normal equations using the Cholesky factorization
- method 2: use the QR factorization

method 2 has better numerical properties; method 1 is faster

Least-squares method 1: Cholesky factorization

$$A^T A x = A^T b$$

n equations in n variables, $A^T A$ is symmetric positive definite

algorithm:

- 1. calculate $C = A^T A$ (C is symmetric: $\frac{1}{2}n(n+1)(2m-1) \approx mn^2$ flops)
- 2. Cholesky factorization $C = LL^T$ ((1/3) n^3 flops)
- 3. calculate $d = A^T b$ (2mn flops)
- 4. solve Lz = d by forward substitution (n^2 flops)
- 5. solve $L^T x = z$ by backward substitution (n^2 flops)

total for large $m,\,n:\,mn^2+(1/3)n^3$ flops

The QR factorization

example

$$A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$$
1. calculate $A^T A = \begin{bmatrix} 25 & -50 \\ -50 & 101 \end{bmatrix}$ and $A^T b = \begin{bmatrix} 25 \\ -48 \end{bmatrix}$
2. Cholesky factorization: $A^T A = \begin{bmatrix} 5 & 0 \\ -10 & 1 \end{bmatrix} \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}$
3. forward substitution: solve $\begin{bmatrix} 5 & 0 \\ -10 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 25 \\ -48 \end{bmatrix}$
4. backward substitution: solve $\begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 25 \\ -48 \end{bmatrix}$

10-3

if $A \in \mathbf{R}^{m \times n}$ with $m \ge n$ and $\operatorname{\mathbf{rank}} A = n$ then it can be factored as

A = QR

- $R \in \mathbf{R}^{n \times n}$ is upper triangular with $r_{ii} > 0$
- $Q \in \mathbf{R}^{m \times n}$ satisfies $Q^T Q = I$ (Q is an orthogonal matrix)

can be computed in $2mn^2$ flops (more later)

The QR factorization

10–5

Least-squares method 2: QR factorization

rewrite normal equations $A^T A x = A^T b$ using QR factorization A = QR:

$$A^{T}Ax = A^{T}b$$

$$R^{T}Q^{T}QRx = R^{T}Q^{T}b$$

$$R^{T}Rx = R^{T}Q^{T}b \quad (Q^{T}Q = I)$$

$$Rx = Q^{T}b \quad (R \text{ nonsingular})$$

algorithm

- 1. QR factorization of A: A = QR ($2mn^2$ flops)
- 2. form $d = Q^T b$ (2mn flops)
- 3. solve Rx = d by backward substitution (n^2 flops)

total for large $m,\ n:\ 2mn^2$ flops

example

$$A = \begin{bmatrix} 3 & -6\\ 4 & -8\\ 0 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} -1\\ 7\\ 2 \end{bmatrix}$$

1. QR factorization: A = QR with

$$Q = \begin{bmatrix} 3/5 & 0\\ 4/5 & 0\\ 0 & 1 \end{bmatrix}, \qquad R = \begin{bmatrix} 5 & -10\\ 0 & 1 \end{bmatrix}$$

2. calculate
$$d = Q^T b = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

3. backward substitution: solve $\begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$ $x_1 = 5, x_2 = 2$

The QR factorization

10–7

Orthogonal matrices

 $Q = [q_1 \ q_2 \ \cdots \ q_n] \in \mathbf{R}^{m imes n} \ (m \ge n)$ is orthogonal if $Q^T Q = I$

$Q^T Q =$	$ q_1^T q_1 $	$q_1^T q_2$	•••	$q_1^T q_n$
	$q_2^T q_1$	$q_2^T q_2$	•••	$\begin{array}{c} q_1^T q_n \\ q_2^T q_n \\ \vdots \end{array}$
	:	:	·	:
	$q_n^T q_1$	$q_n^T q_2$	•••	$q_n^T q_n$

properties

- the columns q_i have unit norm: $q_i^T q_i = 1$ for $i = 1, \ldots, n$
- the columns are mutually orthogonal: $q_i^T q_j = 0$ for $i \neq j$
- $\operatorname{rank} Q = n$, *i.e.*, the columns of Q are linearly independent

$$Qx = 0 \quad \Longrightarrow \quad Q^T Qx = 0 \quad \Longrightarrow \quad x = 0$$

• if Q is square (m = n), then Q is nonsingular and $Q^{-1} = Q^T$

examples of orthogonal matrices

• permutation matrices, *e.g.*, $Q = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

•
$$Q = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}$$

•
$$Q = \begin{bmatrix} \cos\theta & -\sin\theta \\ 0 & 0 \\ \sin\theta & \cos\theta \end{bmatrix}$$

•
$$Q = I - 2uu^T$$
 where $u \in \mathbb{R}^n$ with $||u|| = 1$
 $Q^T Q = (I - 2uu^T)(I - 2uu^T) = I - 2uu^T - 2uu^T + 4uu^T uu^T = I$

The QR factorization

Computing the QR factorization

given $A \in \mathbf{R}^{m \times n}$ with $\operatorname{\mathbf{rank}} A = n$

partition $\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{R}$ as

$$\begin{bmatrix} a_1 & A_2 \end{bmatrix} = \begin{bmatrix} q_1 & Q_2 \end{bmatrix} \begin{bmatrix} r_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}$$

•
$$a_1 \in \mathbf{R}^m$$
, $A_2 \in \mathbf{R}^{m \times (n-1)}$

• $q_1 \in \mathbf{R}^m$, $Q_2 \in \mathbf{R}^{m imes (n-1)}$ satisfy

$$\begin{bmatrix} q_1^T \\ Q_2^T \end{bmatrix} \begin{bmatrix} q_1 & Q_2 \end{bmatrix} = \begin{bmatrix} q_1^T q_1 & q_1^T Q_2 \\ Q_2^T q_1 & Q_2^T Q_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix},$$

i.e.,

$$q_1^T q_1 = 1, \qquad Q_2^T Q_2 = I, \qquad q_1^T Q_2 = 0$$

• $r_{11} \in \mathbf{R}$, $R_{12} \in \mathbf{R}^{1 \times (n-1)}$, $R_{22} \in \mathbf{R}^{(n-1) \times (n-1)}$ is upper triangular

recursive algorithm (*'modified Gram-Schmidt algorithm'*)

$$\begin{bmatrix} a_1 & A_2 \end{bmatrix} = \begin{bmatrix} q_1 & Q_2 \end{bmatrix} \begin{bmatrix} r_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} = \begin{bmatrix} q_1 r_{11} & q_1 R_{12} + Q_2 R_{22} \end{bmatrix}$$

1. determine q_1 and r_{11} :

$$r_{11} = ||a_1||, \qquad q_1 = (1/r_{11})a_1$$

- 2. R_{12} follows from $q_1^T A_2 = q_1^T (q_1 R_{12} + Q_2 R_{22}) = R_{12}$: $R_{12} = q_1^T A_2$
- 3. Q_2 and R_{22} follow from

$$A_2 - q_1 R_{12} = Q_2 R_{22},$$

- *i.e.*, the QR factorization of an $m \times (n-1)$ matrix
- cost: $2mn^2$ flops (no proof)

The QR factorization

proof that the algorithm works for $A \in \mathbf{R}^{m \times n}$ with rank n

- step 1: $a_1 \neq 0$ because $\operatorname{rank} A = n$
- step 3: $A_2 q_1 R_{12}$ has full rank (rank n-1):

$$A_2 - q_1 R_{12} = A_2 - (1/r_{11})a_1 R_{12}$$

hence if $(A_2 - q_1 R_{12})x = 0$, then

$$\begin{bmatrix} a_1 & A_2 \end{bmatrix} \begin{bmatrix} -R_{12}x/r_{11} \\ x \end{bmatrix} = 0$$

but this implies x = 0 because $\operatorname{rank}(A) = n$

- therefore the algorithm works for an $m\times n$ matrix with rank n, if it works for an $m\times (n-1)$ matrix with rank n-1
- obviously it works for an $m\times 1$ matrix with rank 1; so by induction it works for all $m\times n$ matrices with rank n

example

$$A = \begin{bmatrix} 9 & 0 & 26\\ 12 & 0 & -7\\ 0 & 4 & 4\\ 0 & -3 & -3 \end{bmatrix}$$

we want to factor \boldsymbol{A} as

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}$$
$$= \begin{bmatrix} q_1r_{11} & q_1r_{12} + q_2r_{22} & q_1r_{13} + q_2r_{23} + q_3r_{33} \end{bmatrix}$$

with

$$q_1^T q_1 = 1, \qquad q_2^T q_2 = 1, \qquad q_3^T q_3 = 1 q_1^T q_2 = 0, \qquad q_1^T q_3 = 0, \qquad q_2^T q_3 = 0$$

and
$$r_{11} > 0$$
, $r_{22} > 0$, $r_{33} > 0$

The QR factorization

• determine first column of Q, first row of R- $a_1 = q_1 r_{11}$ with $||q_1|| = 1$

$$r_{11} = ||a_1|| = 15, \qquad q_1 = (1/r_{11})a_1 = \begin{bmatrix} 3/5\\4/5\\0\\0 \end{bmatrix}$$

- inner product of q_1 with a_2 and a_3 :

$$q_1^T a_2 = q_1^T (q_1 r_{12} + q_2 r_{22}) = r_{12}$$

$$q_1^T a_3 = q_1^T (q_1 r_{13} + q_2 r_{23} + q_3 r_{33}) = r_{13}$$

therefore, $r_{12} = q_1^T a_2 = 0$, $r_{13} = q_1^T a_3 = 10$

$$A = \begin{bmatrix} 9 & 0 & 26\\ 12 & 0 & -7\\ 0 & 4 & 4\\ 0 & -3 & -3 \end{bmatrix} = \begin{bmatrix} 3/5 & q_{12} & q_{13}\\ 4/5 & q_{22} & q_{23}\\ 0 & q_{32} & q_{33}\\ 0 & q_{42} & q_{43} \end{bmatrix} \begin{bmatrix} 15 & 0 & 10\\ 0 & r_{22} & r_{23}\\ 0 & 0 & r_{33} \end{bmatrix}$$

The QR factorization

- determine 2nd column of ${\it Q},$ 2nd row or ${\it R}$

$$\begin{bmatrix} 0 & 26 \\ 0 & -7 \\ 4 & 4 \\ -3 & -3 \end{bmatrix} - \begin{bmatrix} 3/5 \\ 4/5 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 10 \end{bmatrix} = \begin{bmatrix} q_2 & q_3 \end{bmatrix} \begin{bmatrix} r_{22} & r_{23} \\ 0 & r_{33} \end{bmatrix}$$

i.e., the QR factorization of
$$\begin{bmatrix} 0 & 20 \\ 0 & -15 \\ 4 & 4 \\ -3 & -3 \end{bmatrix} = \begin{bmatrix} q_2 r_{22} & q_2 r_{23} + q_3 r_{33} \end{bmatrix}$$

– first column is q_2r_{22} where $\|q_2\|=1$, hence

$$r_{22} = 5, \qquad q_2 = \begin{bmatrix} 0 \\ 0 \\ 4/5 \\ -3/5 \end{bmatrix}$$

The QR factorization

– inner product of $q_{\rm 2}$ with 2nd column gives $r_{\rm 23}$

$$q_2^T \begin{bmatrix} 20\\ -15\\ 4\\ -3 \end{bmatrix} = q_2^T (q_2 r_{23} + q_3 r_{33}) = r_{23}$$

therefore, $r_{23} = 5$

QR factorization so far:

$$A = \begin{bmatrix} 9 & 0 & 26\\ 12 & 0 & -7\\ 0 & 4 & 4\\ 0 & -3 & -3 \end{bmatrix} = \begin{bmatrix} 3/5 & 0 & q_{13}\\ 4/5 & 0 & q_{23}\\ 0 & 4/5 & q_{33}\\ 0 & -3/5 & q_{43} \end{bmatrix} \begin{bmatrix} 15 & 0 & 10\\ 0 & 5 & 5\\ 0 & 0 & r_{33} \end{bmatrix}$$

• determine 3rd column of Q, 3rd row of R

$$\begin{bmatrix} 26\\ -7\\ 4\\ -3 \end{bmatrix} - \begin{bmatrix} 3/5 & 0\\ 4/5 & 0\\ 0 & 4/5\\ 0 & -3/5 \end{bmatrix} \begin{bmatrix} 10\\ 5 \end{bmatrix} = q_3 r_{33}$$
$$\begin{bmatrix} 20\\ -15\\ 0\\ 0 \end{bmatrix} = q_3 r_{33}$$

with $\|q_3\| = 1$, hence

$$r_{33} = 25, \qquad q_3 = \begin{bmatrix} 4/5 \\ -3/5 \\ 0 \\ 0 \end{bmatrix}$$

The QR factorization

in summary,

$$A = \begin{bmatrix} 9 & 0 & 26\\ 12 & 0 & -7\\ 0 & 4 & 4\\ 0 & -3 & -3 \end{bmatrix} = \begin{bmatrix} 3/5 & 0 & 4/5\\ 4/5 & 0 & -3/5\\ 0 & 4/5 & 0\\ 0 & -3/5 & 0 \end{bmatrix} \begin{bmatrix} 15 & 0 & 10\\ 0 & 5 & 5\\ 0 & 0 & 25 \end{bmatrix}$$
$$= QR$$

The QR factorization

Cholesky factorization versus QR factorization

example: minimize $||Ax - b||^2$ with

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \\ 0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 10^{-5} \\ 1 \end{bmatrix}$$

solution:

normal equations $A^T A x = A^T b$:

$$\begin{bmatrix} 1 & -1 \\ -1 & 1+10^{-10} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 10^{-10} \end{bmatrix}$$

solution: $x_1 = 1$, $x_2 = 1$

let us compare both methods, rounding intermediate results to 8 significant decimal digits

The QR factorization

method 1 (Cholesky factorization)

 $A^T A$ and $A^T b$ rounded to 8 digits:

$$A^{T}A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \qquad A^{T}b = \begin{bmatrix} 0 \\ 10^{-10} \end{bmatrix}$$

no solution (singular matrix)

method 2 (QR factorization): factor A = QR and solve $Rx = Q^T b$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad R = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \end{bmatrix}, \qquad Q^T b = \begin{bmatrix} 0 \\ 10^{-5} \end{bmatrix}$$

rounding does not change any values

solution of $Rx = Q^T b$ is $x_1 = 1$, $x_2 = 1$

conclusion:

- for this example, Cholesky factorization method fails due to rounding errors; QR factorization method gives the exact solution
- from numerical analysis: Cholesky factorization method can be very inaccurate if $\kappa(A^TA)$ is high
- numerical stability of QR factorization method is better

The QR factorization

10–21

Summary

cost for dense A

- method 1 (Cholesky factorization): $mn^2 + (1/3)n^3$ flops
- method 2 (QR factorization): $2mn^2$ flops
- method 1 is always faster (twice as fast if $m \gg n$)

cost for large sparse A

- method 1: we can form $A^T A$ fast, and use a sparse Cholesky factorization (cost $\ll mn^2 + (1/3)n^3$)
- method 2: no good methods for sparse QR factorization
- method 1 is much more efficient

numerical stability: method 2 is more accurate

in practice: preferred method is method 2; method 1 is used when A is large and sparse