
CHAPTER 8

Perron–Frobenius
Theory of

Nonnegative Matrices

8.1 INTRODUCTION

A ∈ �m×n is said to be a nonnegative matrix whenever each aij ≥ 0, and
this is denoted by writing A ≥ 0. In general, A ≥ B means that each aij ≥ bij .
Similarly, A is a positive matrix when each aij > 0, and this is denoted by
writing A > 0. More generally, A > B means that each aij > bij .

Applications abound with nonnegative and positive matrices. In fact, many
of the applications considered in this text involve nonnegative matrices. For
example, the connectivity matrix C in Example 3.5.2 (p. 100) is nonnegative.
The discrete Laplacian L from Example 7.6.2 (p. 563) leads to a nonnegative
matrix because (4I − L) ≥ 0. The matrix eAt that defines the solution of
the system of differential equations in the mixing problem of Example 7.9.7
(p. 610) is nonnegative for all t ≥ 0. And the system of difference equations
p(k) = Ap(k − 1) resulting from the shell game of Example 7.10.8 (p. 635) has
a nonnegative coefficient matrix A.

Since nonnegative matrices are pervasive, it’s natural to investigate their
properties, and that’s the purpose of this chapter. A primary issue concerns
the extent to which the properties A > 0 or A ≥ 0 translate to spectral
properties—e.g., to what extent does A have positive (or nonnegative) eigen-
values and eigenvectors?

The topic is called the “Perron–Frobenius theory” because it evolved from
the contributions of the German mathematicians Oskar (or Oscar) Perron89 and

89
Oskar Perron (1880–1975) originally set out to fulfill his father’s wishes to be in the family busi-
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Ferdinand Georg Frobenius. 90 Perron published his treatment of positive matri-
ces in 1907, and in 1912 Frobenius contributed substantial extensions of Perron’s
results to cover the case of nonnegative matrices.

In addition to saying something useful, the Perron–Frobenius theory is ele-
gant. It is a testament to the fact that beautiful mathematics eventually tends
to be useful, and useful mathematics eventually tends to be beautiful.

ness, so he only studied mathematics in his spare time. But he was eventually captured by the
subject, and, after studying at Berlin, Tübingen, and Göttingen, he completed his doctorate,
writing on geometry, at the University of Munich under the direction of Carl von Lindemann
(1852–1939) (who first proved that π was transcendental). Upon graduation in 1906, Perron
held positions at Munich, Tübingen, and Heidelberg. Perron’s career was interrupted in 1915
by World War I in which he earned the Iron Cross. After the war he resumed work at Hei-
delberg, but in 1922 he returned to Munich to accept a chair in mathematics, a position he
occupied for the rest of his career. In addition to his contributions to matrix theory, Perron’s
work covered a wide range of other topics in algebra, analysis, differential equations, continued
fractions, geometry, and number theory. He was a man of extraordinary mental and physical
energy. In addition to being able to climb mountains until he was in his midseventies, Perron
continued to teach at Munich until he was 80 (although he formally retired at age 71), and he
maintained a remarkably energetic research program into his nineties. He published 18 of his
218 papers after he was 84.

90
Ferdinand Georg Frobenius (1849–1917) earned his doctorate under the supervision of Karl
Weierstrass (p. 589) at the University of Berlin in 1870. As mentioned earlier, Frobenius was
a mentor to and a collaborator with Issai Schur (p. 123), and, in addition to their joint work
in group theory, they were among the first to study matrix theory as a discipline unto itself.
Frobenius in particular must be considered along with Cayley and Sylvester when thinking
of core developers of matrix theory. However, in the beginning, Frobenius’s motivation came
from Kronecker (p. 597) and Weierstrass, and he seemed oblivious to Cayley’s work (p. 80).
It was not until 1896 that Frobenius became aware of Cayley’s 1857 work, A Memoir on
the Theory of Matrices, and only then did the terminology “matrix” appear in Frobenius’s
work. Even though Frobenius was the first to give a rigorous proof of the Cayley–Hamilton
theorem (p. 509), he generously attributed it to Cayley in spite of the fact that Cayley had
only discussed the result for 2× 2 and 3× 3 matrices. But credit in this regard is not overly
missed because Frobenius’s extension of Perron’s results are more substantial, and they alone
may keep Frobenius’s name alive forever.
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8.2 POSITIVE MATRICES

The purpose of this section is to focus on matrices An×n > 0 with positive en-
tries, and the aim is to investigate the extent to which this positivity is inherited
by the eigenvalues and eigenvectors of A.

There are a few elementary observations that will help along the way, so
let’s begin with them. First, notice that

A > 0 =⇒ ρ (A) > 0 (8.2.1)

because if σ (A) = {0}, then the Jordan form for A, and hence A itself, is
nilpotent, which is impossible when each aij > 0. This means that our discus-
sions can be limited to positive matrices having spectral radius 1 because A
can always be normalized by its spectral radius—i.e., A > 0 ⇐⇒ A/ρ (A) > 0,
and ρ (A) = r ⇐⇒ ρ(A/r) = 1. Other easily verified observations are

P > 0 and x ≥ 0, x 	= 0 =⇒ Px > 0, (8.2.2)
N ≥ 0 and u ≥ v ≥ 0 =⇒ Nu ≥ Nv, (8.2.3)
N ≥ 0 and Nz ≥ 0 with z > 0 =⇒ N = 0, (8.2.4)
N ≥ 0 and u > v > 0 =⇒ Nu > Nv. (8.2.5)

In all that follows, the bar notation | � | is used to denote a matrix of
absolute values—i.e., |M| is the matrix having entries |mij |. The bar notation
will never denote a determinant in the sequel. Finally, notice that as a simple
consequence of the triangle inequality, it’s always true that |Ax| ≤ |A| |x|.

Positive Eigenpair
If An×n > 0, then the following statements are true.

• ρ (A) ∈ σ (A) . (8.2.6)

• If Ax = ρ (A)x, then A|x| = ρ (A) |x| and |x| > 0. (8.2.7)

In other words, A has an eigenpair of the form (ρ (A) ,v) with v > 0.

Proof. As mentioned earlier, it can be assumed that ρ (A) = 1 without any
loss of generality. If (λ,x) is any eigenpair for A such that |λ| = 1, then

|x| = |λ| |x| = |λx| = |Ax| ≤ |A| |x| = A |x| =⇒ |x| ≤ A |x|. (8.2.8)

The goal is to show that equality holds. For convenience, let z = A |x| and
y = z − |x|, and notice that (8.2.8) implies y ≥ 0. Suppose that y 	= 0—i.e.,
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suppose that some yi > 0. In this case, it follows from (8.2.2) that Ay > 0 and
z > 0, so there must exist a number ε > 0 such that Ay > ε z or, equivalently,

A
1 + ε

z > z.

Writing this inequality as Bz > z, where B = A/(1 + ε), and successively
multiplying both sides by B while using (8.2.5) produces

B2z > Bz > z, B3z > B2z > z, . . . =⇒ Bkz > z for all k = 1, 2, . . . .

But limk→∞ Bk = 0 because ρ (B) = σ
(
A/(1 + ε)

)
= 1/(1 + ε) < 1 (recall

(7.10.5) on p. 617), so, in the limit, we have 0 > z, which contradicts the fact
that z > 0. Since the supposition that y 	= 0 led to this contradiction, the
supposition must be false and, consequently, 0 = y = A |x| − |x|. Thus |x| is
an eigenvector for A associated with the eigenvalue 1 = ρ (A) . The proof is
completed by observing that |x| = A |x| = z > 0.

Now that it’s been established that ρ (A) > 0 is in fact an eigenvalue for
A > 0, the next step is to investigate the index of this special eigenvalue.

Index of ρ (A)

If An×n > 0, then the following statements are true.

• ρ (A) is the only eigenvalue of A on the spectral circle.

• index (ρ (A)) = 1. In other words, ρ (A) is a semisimple eigenvalue.
Recall Exercise 7.8.4 (p. 596).

Proof. Again, assume without loss of generality that ρ (A) = 1. We know from
(8.2.7) on p. 663 that if (λ,x) is an eigenpair for A such that |λ| = 1, then
0 < |x| = A |x|, so 0 < |xk| =

(
A |x|

)
k

=
∑n

j=1 akj |xj |. But it’s also true that
|xk| = |λ| |xk| = |(λx)k| = |(Ax)k| =

∣∣ ∑n
j=1 akjxj

∣∣, and thus∣∣∣ ∑
j

akjxj

∣∣∣ =
∑

j

akj |xj | =
∑

j

|akjxj |. (8.2.9)

For nonzero vectors {z1, . . . , zn} ⊂ Cn, it’s a fact that ‖
∑

j zj‖2 =
∑

j ‖zj‖2
(equality in the triangle inequality) if and only if each zj = αjz1 for some
αj > 0 (Exercise 5.1.10, p. 277). In particular, this holds for scalars, so (8.2.9)
insures the existence of numbers αj > 0 such that

akjxj = αj(ak1x1) or, equivalently, xj = πjx1 with πj =
αjak1

akj
> 0.
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In other words, if |λ| = 1, then x = x1p, where p = (1, π2, . . . , πn)T > 0, so

λx = Ax =⇒ λp = Ap = |Ap| = |λp| = |λ|p = p =⇒ λ = 1,

and thus 1 is the only eigenvalue of A on the spectral circle. Now suppose that
index (1) = m > 1. It follows that

∥∥Ak
∥∥
∞ → ∞ as k → ∞ because there is

an m×m Jordan block J� in the Jordan form J = P−1AP that looks like
(7.10.30) on p. 629, so

∥∥Jk
�

∥∥
∞ → ∞, which in turn means that

∥∥Jk
∥∥
∞ → ∞

and, consequently,
∥∥Jk

∥∥
∞ =

∥∥P−1AkP
∥∥
∞ ≤

∥∥P−1
∥∥
∞

∥∥Ak
∥∥
∞ ‖P‖∞ implies∥∥Ak

∥∥
∞ ≥

∥∥Jk
∥∥
∞

‖P−1‖∞ ‖P‖∞
→ ∞.

Let Ak =
[
a
(k)
ij

]
, and let ik denote the row index for which

∥∥Ak
∥∥
∞ =

∑
j a

(k)
ikj .

We know that there exists a vector p > 0 such that p = Ap, so for such an
eigenvector,

‖p‖∞ ≥ pik
=

∑
j

a
(k)
ikjpj ≥

(∑
j

a
(k)
ikj

)
(min

i
pi) =

∥∥Ak
∥∥
∞ (min

i
pi) → ∞.

But this is impossible because p is a constant vector, so the supposition that
index (1) > 1 must be false, and thus index (1) = 1.

Establishing that ρ (A) is a semisimple eigenvalue of A > 0 was just a
steppingstone (but an important one) to get to the following theorem concerning
the multiplicities of ρ (A) .

Multiplicities of ρ (A)

If An×n > 0, then alg multA (ρ (A)) = 1. In other words, the spectral
radius of A is a simple eigenvalue of A.

So dimN (A− ρ (A) I) = geo multA (ρ (A)) = alg multA (ρ (A)) = 1.

Proof. As before, assume without loss of generality that ρ (A) = 1, and sup-
pose that alg multA (λ = 1) = m > 1. We already know that λ = 1 is a
semisimple eigenvalue, which means that alg multA (1) = geo multA (1) (p. 510),
so there are m linearly independent eigenvectors associated with λ = 1. If x
and y are a pair of independent eigenvectors associated with λ = 1, then
x 	= αy for all α ∈ C. Select a nonzero component from y, say yi 	= 0,
and set z = x− (xi/yi)y. Since Az = z, we know from (8.2.7) on p. 663
that A|z| = |z| > 0. But this contradicts the fact that zi = xi − (xi/yi)yi = 0.
Therefore, the supposition that m > 1 must be false, and thus m = 1.

Since N (A− ρ (A) I) is a one-dimensional space that can be spanned by
some v > 0, there is a unique eigenvector p ∈ N (A− ρ (A) I) such that p > 0
and

∑
j pj = 1 (it’s obtained by the normalization p = v/ ‖v‖1—see Exercise

8.2.2). This special eigenvector p is called the Perron vector for A.
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While eigenvalues of An×n > 0 other than ρ (A) may or may not be
positive, it turns out that no eigenvector for an eigenvalue λ 	= ρ (A) can be
positive—or even nonnegative.

No Other Positive Eigenvectors
There are no nonnegative eigenvectors for An×n > 0 other than the
Perron vector p and its positive multiples. (8.2.10)

Proof. If (λ,y) is an eigenpair for A such that y ≥ 0, and if x > 0 is the
Perron vector for AT , then xT y > 0 by (8.2.2), so

ρ (A)xT = xT A =⇒ ρ (A)xT y = xT Ay = λxT y =⇒ ρ (A) = λ.

It’s customary to call r = ρ (A) the Perron root of An×n > 0. In 1942
the German mathematician Lothar Collatz (1910–1990) discovered the following
formula for the Perron root, and in 1950 Helmut Wielandt (p. 534) used it to
further develop the Perron–Frobenius theory.

Collatz–Wielandt Formula
The Perron root of An×n > 0 is given by r = maxx∈N f(x), where

f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}.

Proof. The difficult part of the proof is arguing that f actually attains a maxi-
mum value on N . A standard method for showing that a function g : �m → �n

has a maximum value on a closed and bounded set D ⊆ �m is to argue that g
is continuous on D. But this doesn’t work for the case at hand because f is not
continuous on N , and N is not bounded. To work around these difficulties, set
s = supx∈N f(x), and first attack the unboundedness of N . Since

f(αx) = min
1≤i≤n
xi �=0

[Aαx]i
αxi

= min
1≤i≤n
xi �=0

[Ax]i
xi

= f(x) for all α > 0, (8.2.11)

it follows that f(x) = f(x/ ‖x‖) for all x ∈ N and, consequently,

s = sup
x∈N

f(x) = sup
x∈N ′

f(x) for N ′ = {x |x ≥ 0, ‖x‖ = 1}.
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In other words, we can limit the discussion to N ′, which is a closed and bounded
set. But this alone doesn’t get us out of the woods because f is also discontinuous
on N ′ due to those pesky zero components in x ∈ N ′. To fix this, notice that
for every x ∈ N ′, the definition of f allows us to say that

f(x) ≤ [Ax]i
xi

∀ xi 	= 0 =⇒ f(x)xi ≤ [Ax]i ∀ xi =⇒ f(x)x ≤ Ax.

(8.2.12)
Multiply both sides of this last inequality by A to get f(x)(Ax) ≤ A(Ax),
and note that Ax > 0 by (8.2.2). This permits us to write

f(x) ≤ [A(Ax)]i
[Ax]i

∀i =⇒ f(x) ≤ min
i

[A(Ax)]i
[Ax]i

= f(Ax) for all x ∈ N ′.

The set P = A(N ′) = {Ax |x ∈ N ′} contains only positive vectors, and P is
closed and bounded because it’s the continuous image of the closed and bounded
set N ′ (matrix multiplication is a continuous operation). Now f is a continuous
function on P, so f attains a maximum value on P—say the maximum occurs
at x� ∈ P so that f(x�) = maxx∈P f(x). Putting things together yields

s = sup
x∈N

f(x) = sup
x∈N ′

f(x) ≤ sup
x∈N ′

f(Ax) = max
x∈P

f(x) = f(x�).

However, P ⊂ N guarantees that

sup
x∈P

f(x) ≤ sup
x∈N

f(x) =⇒ max
x∈P

f(x) ≤ sup
x∈N

f(x) =⇒ f(x�) ≤ s,

and thus s = f(x�). Since supx∈N f(x) is attained at a point x� ∈ N , the
supremum is in fact the maximum—i.e., s = maxx∈N f(x) = f(x�). Now let’s
explain why s = r. Start with

s = f(x�) = min
i

[Ax�]i
x�

i

=⇒ s ≤ [Ax�]i
x�

i

∀i ⇐⇒ sx� ≤ Ax�.

This last inequality is in fact an equality; otherwise

sx� < Ax� =⇒ s <
[Ax�]i
x�

i

∀i =⇒ s < min
i

[Ax�]i
x�

i

= f(x�) = s.

Thus Ax� = sx� with x� > 0, so (8.2.10) insures the existence of α > 0 such
that x� = αp, where p is the Perron vector for A, and (8.2.11) guarantees
that

s = f(x�) = f(αp) = f(p) = min
i

[Ap]i
pi

= min
i

[rp]i
pi

= r.

Note: There is a min-max version of the Collatz–Wielandt formula that says

r = min
x∈N

max
1≤i≤n
xi �=0

[Ax]i
xi

. (8.2.13)

Furthermore, the Collatz–Wielandt formula can be extended to nonnegative ma-
trices as discussed in Exercise 8.3.15.

Below is a summary of the results obtained in this section.
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Perron’s Theorem
If An×n > 0 with r = ρ (A) , then the following statements are true.

• r > 0. (8.2.14)

• r ∈ σ (A) (r is called the Perron root). (8.2.15)

• alg multA (r) = 1. (8.2.16)

• There exists an eigenvector x > 0 such that Ax = rx. (8.2.17)

• The Perron vector is the unique vector defined by

Ap = rp, p > 0, and ‖p‖1 = 1,

and, except for positive multiples of p, there are no other nonneg-
ative eigenvectors for A, regardless of the eigenvalue.

• r is the only eigenvalue on the spectral circle of A. (8.2.18)

• The Collatz–Wielandt formula says r = maxx∈N f(x), where

f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}.

Exercises for section 8.2

8.2.1. Convince yourself that (8.2.2)–(8.2.5) are indeed true.

8.2.2. Provide the details that explain why the Perron vector is uniquely de-
fined.

8.2.3. Find the Perron root and the Perron vector for A =
(

1− α β
α 1− β

)
,

where α+ β = 1 with α, β > 0.

8.2.4. Suppose that An×n > 0 has ρ(A) = r.
(a) Explain why limk→∞(A/r)k exists.
(b) Explain why limk→∞(A/r)k = G > 0 is the projector onto

N(A− rI) along R(A− rI).
(c) Explain why rank (G) = 1.
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8.2.5. Prove that if every row (or column) sum of An×n > 0 is equal to ρ,
then ρ (A) = ρ.

8.2.6. Prove that if An×n > 0, then mini

∑n
j=1 aij ≤ ρ (A) ≤ maxi

∑n
j=1 aij .

Hint: Recall Example 7.10.2 (p. 619).

8.2.7. To show the extent to which the hypothesis of positivity cannot be re-
laxed in Perron’s theorem, construct examples of square matrices A
such that A ≥ 0, but A 	> 0 (i.e., A has at least one zero entry),
with r = ρ (A) ∈ σ (A) that demonstrate the validity of the following
statements. Different examples may be used for the different statements.

(a) r can be 0.
(b) alg multA (r) can be greater than 1.
(c) index (r) can be greater than 1.
(d) N(A− rI) need not contain a positive eigenvector.
(e) r need not be the only eigenvalue on the spectral circle.

8.2.8. Prove that the min-max version of Collatz–Wielandt formula in (8.2.13)
is valid.
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8.3 NONNEGATIVE MATRICES

Now let zeros creep into the picture and investigate the extent to which Perron’s
results generalize to nonnegative matrices containing at least one zero entry. The
first result along these lines shows how to extend the statements on p. 663 to
nonnegative matrices by sacrificing the existence of a positive eigenvector for a
nonnegative one.

Nonnegative Eigenpair
If An×n ≥ 0 with r = ρ (A) , then r ∈ σ (A) , and there exists an
associated eigenvector x ≥ 0 such that Ax = rx. (8.3.1)

Proof. Consider the sequence of positive matrices Ak = A+(1/k)E > 0, where
E is the matrix of all 1 ’s, and let rk and pk denote the Perron root and Perron
vector for Ak, respectively. Observe that {pk}∞k=1 is a bounded set because it’s
contained in the unit 1-sphere in �n. The Bolzano–Weierstrass theorem states
that each bounded sequence in �n has a convergent subsequence. Therefore,
{pk}∞k=1 has convergent subsequence

{pki}∞i=1 → p�, where p� ≥ 0, p� 	= 0 (because pki > 0 and ‖pki‖1 = 1).

Since A1 > A2 > · · · > A, the result in Example 7.10.2 (p. 619) guarantees
that r1 ≥ r2 ≥ · · · ≥ r, so {rk}∞k=1 is a monotonic sequence of positive numbers
that is bounded below by r. A standard result from analysis guarantees that

lim
k→∞

rk = r� exists, and r� ≥ r. In particular, lim
i→∞

rki
= r� ≥ r.

Furthermore, limk→∞ Ak = A implies limi→∞ Aki → A, so, by using the
easily established fact that the limit of a product is the product of the limits
(provided that all limits exist), it’s also true that

Ap� = lim
i→∞

Akipki = lim
i→∞

rkipki = r�p� =⇒ r� ∈ σ (A) =⇒ r� ≤ r.

Therefore, r� = r, and Ap� = rp� with p� ≥ 0 and p 	= 0.

This is as far as Perron’s theorem can be generalized to nonnegative matrices
without additional hypothesis. For example, A =

(
0 1
0 0

)
shows that properties

(8.2.14), (8.2.16), and (8.2.17) on p. 668 do not hold for general nonnegative ma-
trices, and A =

(
0 1
1 0

)
shows that (8.2.18) is also lost. Rather than accepting

that the major issues concerning spectral properties of nonnegative matrices had
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been settled, Frobenius had the insight to look below the surface and see that
the problem doesn’t stem just from the existence of zero entries, but rather from
the positions of the zero entries. For example, (8.2.16) and (8.2.17) are false for

A =
(

1 0
1 1

)
, but they are true for Ã =

(
1 1
1 0

)
. (8.3.2)

Frobenius’s genius was to see the difference between A and Ã in terms of re-
ducibility and to relate these ideas to spectral properties of nonnegative matrices.
Reducibility and graphs were discussed in Example 4.4.6 (p. 202) and Exercise
4.4.20 (p. 209), but for the sake of continuity they are reviewed below.

Reducibility and Graphs
• An×n is said to be a reducible matrix when there exists a permu-

tation matrix P such that

PT AP =
(

X Y
0 Z

)
, where X and Z are both square.

Otherwise A is said to be an irreducible matrix.

• PT AP is called a symmetric permutation of A. The effect is to
interchange rows in the same way as columns are interchanged.

• The graph G(A) of A is defined to be the directed graph on n
nodes {N1, N2, . . . , Nn} in which there is a directed edge leading
from Ni to Nj if and only if aij 	= 0.

• G(PT AP) = G(A) whenever P is a permutation matrix—the effect
is simply a relabeling of nodes.

• G(A) is called strongly connected if for each pair of nodes (Ni, Nk)
there is a sequence of directed edges leading from Ni to Nk.

• A is an irreducible matrix if and only if G(A) is strongly connected
(see Exercise 4.4.20 on p. 209).

For example, the matrix A in (8.3.2) is reducible because

PT AP =
(

1 1
0 1

)
for P =

(
0 1
1 0

)
,

and, as can be seen from Figure 8.3.1, G(A) is not strongly connected because
there is no sequence of paths leading from node 1 to node 2. On the other
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hand, Ã is irreducible, and as shown in Figure 8.3.1, G(Ã) is strongly connected
because each node is accessible from the other.

1 2 1 2

G(A) G(Ã)
Figure 8.3.1

This discussion suggests that some of Perron’s properties given on p. 668
extend to nonnegative matrices when the zeros are in just the right positions to
insure irreducibility. To prove that this is in fact the case, the following lemma is
needed. It shows how to convert a nonnegative irreducible matrix into a positive
matrix in a useful fashion.

Converting Nonnegativity & Irreducibility to Positivity
If An×n ≥ 0 is irreducible, then (I + A)n−1 > 0. (8.3.3)

Proof. Let a
(k)
ij denote the (i, j)-entry in Ak, and observe that

a
(k)
ij =

∑
h1,...,hk−1

aih1ah1h2 · · · ahk−1j > 0

if and only if there exists a set of indicies h1, h2, . . . , hk−1 such that

aih1 > 0 and ah1h2 > 0 and · · · and ahk−1j > 0.

In other words, there is a sequence of k paths Ni → Nh1 → Nh2 → · · · → Nj

in G(A) that lead from node Ni to node Nj if and only if a
(k)
ij > 0. The

irreducibility of A insures that G(A) is strongly connected, so for any pair of
nodes (Ni, Nj) there is a sequence of k paths (with k < n) from Ni to Nj .
This means that for each position (i, j), there is some 0 ≤ k ≤ n− 1 such that
a
(k)
ij > 0, and this guarantees that for each i and j,

[
(I + A)n−1

]
ij

=

[
n−1∑
k=0

(
n− 1
k

)
Ak

]
ij

=
n−1∑
k=0

(
n− 1
k

)
a
(k)
ij > 0.

So far it has been established that ρ (A) ∈ σ (A) is the only property
in the list of Perron properties on p. 668 that extends to nonnegative matrices
without additional hypothesis. The next theorem shows how adding irreducibility
to nonnegativity recovers the Perron properties (8.2.14), (8.2.16), and (8.2.17).
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Perron–Frobenius Theorem
If An×n ≥ 0 is irreducible, then each of the following is true.

• r = ρ (A) ∈ σ (A) and r > 0. (8.3.4)

• alg multA (r) = 1. (8.3.5)

• There exists an eigenvector x > 0 such that Ax = rx. (8.3.6)

• The unique vector defined by

Ap = rp, p > 0, and ‖p‖1 = 1, (8.3.7)

is called the Perron vector. There are no nonnegative eigenvectors
for A except for positive multiples of p, regardless of the eigenvalue.

• The Collatz–Wielandt formula holds—i.e., ρ (A) = max
x∈N

f(x), where

f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}.

Proof. We already know from (8.3.1) that r = ρ (A) ∈ σ (A) . To prove that
alg multA (r) = 1, let B = (I + A)n−1 > 0 be the matrix in (8.3.3). It fol-
lows from (7.9.3) that λ ∈ σ (A) if and only if (1 + λ)n−1 ∈ σ (B) , and
alg multA (λ) = alg multB

(
(1 + λ)n−1

)
. Consequently, if µ = ρ (B) , then

µ = max
λ∈σ(A)

|(1 + λ)|n−1 =
{

max
λ∈σ(A)

|(1 + λ)|
}n−1

= (1 + r)n−1

because when a circular disk |z| ≤ ρ is translated one unit to the right, the point
of maximum modulus in the resulting disk |z + 1| ≤ ρ is z = 1 + ρ (it’s clear if
you draw a picture). Therefore, alg multA (r) = 1; otherwise alg multB (µ) > 1,
which is impossible because B > 0. To see that A has a positive eigenvector
associated with r, recall from (8.3.1) that there exists a nonnegative eigenvector
x ≥ 0 associated with r. It’s a simple consequence of (7.9.9) that if (λ,x) is an
eigenpair for A, then (f(λ),x) is an eigenpair for f(A) (Exercise 7.9.9, p. 613),
so (r,x) being an eigenpair for A implies that (µ,x) is an eigenpair for B.
Hence (8.2.10) insures that x must be a positive multiple of the Perron vector of
B, and thus x must in fact be positive. Now, r > 0; otherwise Ax = 0, which
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is impossible because A ≥ 0 and x > 0 forces Ax > 0. The argument used
to prove (8.2.10) also proves (8.3.7). The proof of the Collatz–Wielandt formula
is the same as that on p. 667 except (8.3.3) is used in place of A in appropriate
places. Details are called for in Exercise 8.3.15.

Example 8.3.1

Problem: Suppose that An×n ≥ 0 is irreducible with r = ρ (A) , and suppose
that rz ≤ Az for z ≥ 0. Explain why rz = Az, and z > 0.

Solution: If rz < Az, then by using the Perron vector q > 0 for AT we have

(A− rI)z ≥ 0 =⇒ qT (A− rI)z > 0,

which is impossible since qT (A − rI) = 0. Thus rz = Az, and since z must
be a multiple of the Perron vector for A by (8.3.7), we also have that z > 0.

The only property in the list on p. 668 that irreducibility is not able to
salvage is (8.2.18), which states that there is only one eigenvalue on the spectral
circle. Indeed, A =

(
0 1
1 0

)
is nonnegative and irreducible, but the eigenvalues

±1 are both on the unit circle. The property of having (or not having) only
one eigenvalue on the spectral circle divides the set of nonnegative irreducible
matrices into two important classes.

Primitive Matrices
• A nonnegative irreducible matrix A having only one eigenvalue,

r = ρ (A) , on its spectral circle is said to be a primitive matrix.

• A nonnegative irreducible matrix having h > 1 eigenvalues on its
spectral circle is called imprimitive, and h is referred to as index
of imprimitivity.

• A nonnegative irreducible matrix A with r = ρ (A) is primitive if
and only if limk→∞(A/r)k exists, in which case

lim
k→∞

(A
r

)k

= G =
pqT

qT p
> 0, (8.3.8)

where p and q are the respective Perron vectors for A and AT .
G is the (spectral) projector onto N(A− rI) along R(A− rI).
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Proof of (8.3.8). The Perron–Frobenius theorem insures that 1 = ρ(A/r) is a
simple eigenvalue for A/r, and it’s clear that A is primitive if and only if A/r
is primitive. In other words, A is primitive if and only if 1 = ρ(A/r) is the only
eigenvalue on the unit circle, which is equivalent to saying that limk→∞(A/r)k

exists by the results on p. 630. The structure of the limit as described in (8.3.8)
is the result of (7.2.12) on p. 518.

The next two results, discovered by Helmut Wielandt (p. 534) in 1950,
establish the remarkable fact that the eigenvalues on the spectral circle of an
imprimitive matrix are in fact the hth roots of the spectral radius.

Wielandt’s Theorem
If |B| ≤ An×n, where A is irreducible, then ρ (B) ≤ ρ (A) . If equality
holds (i.e., if µ = ρ (A) eiφ ∈ σ (B) for some φ), then

B = eiφDAD−1 for some D =




eiθ1

eiθ2

. . .
eiθn


 , (8.3.9)

and conversely.

Proof. We already know that ρ (B) ≤ ρ (A) by Example 7.10.2 (p. 619). If
ρ (B) = r = ρ (A) , and if (µ,x) is an eigenpair for B such that |µ| = r, then

r|x| = |µ| |x| = |µx| = |Bx| ≤ |B| |x| ≤ A|x| =⇒ |B| |x| = r|x|

because the result in Example 8.3.1 insures that A|x| = r|x|, and |x| > 0.
Consequently, (A − |B|)|x| = 0. But A − |B| ≥ 0, and |x| > 0, so A = |B|
by (8.2.4). Since xk/|xk| is on the unit circle, xk/|xk| = eiθk for some θk. Set

D =




eiθ1

eiθ2

. . .
eiθn


 , and notice that x = D|x|.

Since |µ| = r, there is a φ ∈ � such that µ = reiφ, and hence

BD|x|=Bx=µx=reiφx=reiφD|x| ⇒ e−iφD−1BD|x|=r|x|=A|x|. (8.3.10)

For convenience, let C = e−iφD−1BD, and note that |C| = |B| = A to write
(8.3.10) as 0 = (|C| − C)|x|. Considering only the real part of this equation
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yields 0 =
(
|C| − Re (C)

)
|x|. But |C| ≥ Re (C) , and |x| > 0, so it follows

from (8.2.4) that Re (C) = |C|, and hence

Re (cij) = |cij | =
√

Re (cij)
2 + Im (cij)

2 =⇒ Im (cij) = 0 =⇒ Im (C) = 0.

Therefore, C = Re (C) = |C| = A, which implies B = eiφDAD−1. Conversely,
if B = eiφDAD−1, then similarity insures that ρ (B) = ρ

(
eiφA

)
= ρ (A) .

hth Roots of ρ (A) on Spectral Circle
If An×n ≥ 0 is irreducible and has h eigenvalues {λ1, λ2, . . . , λh} on
its spectral circle, then each of the following statements is true.

• alg multA (λk) = 1 for k = 1, 2, . . . , h. (8.3.11)

• {λ1, λ2, . . . , λh} are the hth roots of r = ρ (A) given by

{r, rω, rω2, . . . , rωh−1}, where ω = e2πi/h. (8.3.12)

Proof. Let S = {r, reiθ1 , . . . , reiθh−1} denote the eigenvalues on the spectral
circle of A. Applying (8.3.9) with B = A and µ = reiθk insures the existence
of a diagonal matrix Dk such that A = eiθkDkAD−1

k , thus showing that eiθkA
is similar to A. Since r is a simple eigenvalue of A (by the Perron–Frobenius
theorem), reiθk must be a simple eigenvalue of eiθkA. But similarity transfor-
mations preserve eigenvalues and algebraic multiplicities (because the Jordan
structure is preserved), so reiθk must be a simple eigenvalue of A, thus estab-
lishing (8.3.11). To prove (8.3.12), consider another eigenvalue reiθs ∈ S. Again,
we can write A = eiθsDsAD−1

s for some Ds, so

A = eiθkDkAD−1
k = eiθkDk(eiθsDsAD−1

s )D−1
k = ei(θk+θr)(DkDs)A(DkDs)−1

and, consequently, rei(θk+θr) is also an eigenvalue on the spectral circle of A.
In other words, S = {r, reiθ1 , . . . , reiθh−1} is closed under multiplication. This
means that G = {1, eiθ1 , . . . , eiθh−1} is closed under multiplication, and it follows
that G is a finite commutative group of order h. A standard result from algebra
states that the hth power of every element in a finite group of order h must be
the identity element in the group. Therefore, (eiθk)h = 1 for each 0 ≤ k ≤ h−1,
so G is the set of the hth roots of unity e2πki/h ( 0 ≤ k ≤ h− 1), and thus S
must be the hth roots of r.

Combining the preceding results reveals just how special the spectrum of an
imprimitive matrix is.
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Rotational Invariance
If A is imprimitive with h eigenvalues on its spectral circle, then σ (A)
is invariant under rotation about the origin through an angle 2π/h. No
rotation less than 2π/h can preserve σ (A) . (8.3.13)

Proof. Since λ ∈ σ (A) ⇐⇒ λe2πi/h ∈ σ(e2πi/hA), it follows that σ(e2πi/hA)
is σ (A) rotated through 2π/h. But (8.3.9) and (8.3.12) insure that A and
e2πi/hA are similar and, consequently, σ (A) = σ(e2πi/hA). No rotation less
than 2π/h can keep σ (A) invariant because (8.3.12) makes it clear that the
eigenvalues on the spectral circle won’t go back into themselves for rotations less
than 2π/h.

Example 8.3.2

The Spectral Projector Is Positive. We already know from (8.3.8) that if
A is a primitive matrix, and if G is the spectral projector associated with
r = ρ (A) , then G > 0.

Problem: Explain why this is also true for an imprimitive matrix. In other
words, establish the fact that if G is the spectral projector associated with
r = ρ (A) for any nonnegative irreducible matrix A, then G > 0.

Solution: Being imprimitive means that A is nonnegative and irreducible with
more than one eigenvalue on the spectral circle. However, (8.3.11) says that
each eigenvalue on the spectral circle is simple, so the results concerning Cesàro
summability on p. 633 can be applied to A/r to conclude that

lim
k→∞

I + (A/r) + · · · + (A/r)k−1

k
= G,

where G is the spectral projector onto N((A/r) − I) = N(A − rI) along
R((A/r) − I) = R(A − rI). Since r is a simple eigenvalue the same argument
used to establish (8.3.8) (namely, invoking (7.2.12) on p. 518) shows that

G =
pqT

qT p
> 0,

where p and q are the respective Perron vectors for A and AT .

Trying to determine if an irreducible matrix A ≥ 0 is primitive or imprim-
itive by finding the eigenvalues is generally a difficult task, so it’s natural to ask
if there’s another way. It turns out that there is, and, as the following example
shows, determining primitivity can sometimes be trivial.



678 Chapter 8 Perron–Frobenius Theory of Nonnegative Matrices

Example 8.3.3

Sufficient Condition for Primitivity. If a nonnegative irreducible matrix A
has at least one positive diagonal element, then A is primitive.

Proof. Suppose there are h > 1 eigenvalues on the spectral circle. We know
from (8.3.13) that if λ0 ∈ σ (A) , then λk = λ0e2πik/h ∈ σ (A) for k =
0, 1, . . . , h− 1, so

h−1∑
k=0

λk = λ0

h−1∑
k=0

e2πik/h = 0 (roots of unity sum to 1—see p. 357).

This implies that the sum of all of the eigenvalues is zero. In other words,

• if A is imprimitive, then trace (A) = 0. (Recall (7.1.7) on p. 494.)

Therefore, if A has a positive diagonal entry, then A must be primitive.

Another of Frobenius’s contributions was to show how the powers of a non-
negative matrix determine whether or not the matrix is primitive. The exact
statement is as follows.

Frobenius’s Test for Primitivity
A ≥ 0 is primitive if and only if Am > 0 for some m > 0. (8.3.14)

Proof. First assume that Am > 0 for some m. This implies that A is irre-
ducible; otherwise there exists a permutation matrix such that

A = P
(

X Y
0 Z

)
PT =⇒ Am = P

(
Xm �
0 Zm

)
PT has zero entries.

Suppose that A has h eigenvalues {λ1, λ2, . . . , λh} on its spectral circle so
that r = ρ (A) = |λ1| = · · · = |λh| > |λh+1| > · · · > |λn|. Since λ ∈ σ (A)
implies λm ∈ σ(Am) with alg multA (λ) = alg multAm (λm) (consider the Jor-
dan form—Exercise 7.9.9 on p. 613), it follows that λm

k (1 ≤ k ≤ h) is on the
spectral circle of Am with alg multA (λk) = alg multAm (λm

k ) . Perron’s theo-
rem (p. 668) insures that Am has only one eigenvalue (which must be rm) on
its spectral circle, so rm = λm

1 = λm
2 = · · · = λm

h . But this means that

alg multA (r) = alg multAm (rm) = h,

and therefore h = 1 by (8.3.5). Conversely, if A is primitive with r = ρ (A) ,
then limk→∞(A/r)k > 0 by (8.3.8). Hence there must be some m such that
(A/r)m > 0, and thus Am > 0.
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Example 8.3.4

Suppose that we wish to decide whether or not a nonnegative matrix A is
primitive by computing the sequence of powers A,A2,A3, . . . . Since this can be
a laborious task, it would be nice to know when we have computed enough powers
of A to render a judgement. Unfortunately there is nothing in the statement or
proof of Frobenius’s test to help us with this decision. But Wielandt provided
an answer by proving that a nonnegative matrix An×n is primitive if and only
if An2−2n+2 > 0. Furthermore, n2 − 2n + 2 is the smallest such exponent
that works for the class of n× n primitive matrices having all zeros on the
diagonal—see Exercise 8.3.9.

Problem: Determine whether or not A =
(

0 1 0
0 0 2
3 4 0

)
is primitive.

Solution: Since A has zeros on the diagonal, the result in Example 8.3.3 doesn’t
apply, so we are forced into computing powers of A. This job is simplified by
noticing that if B = β(A) is the Boolean matrix that results from setting

bij =
{

1 if aij > 0,
0 if aij = 0,

then [Bk]ij > 0 if and only if [Ak]ij > 0 for every k > 0. This means that
instead of using A,A2,A3, . . . to decide on primitivity, we need only compute

B1 = β(A), B2 = β(B1B1), B3 = β(B1B2), B4 = β(B1B3), . . . ,

going no further than Bn2−2n+2, and these computations require only Boolean
operations AND and OR. The matrix A in this example is primitive because

B1 =

(
0 1 0
0 0 1
1 1 0

)
, B2 =

(
0 0 1
1 1 0
0 1 1

)
, B3 =

(
1 1 0
0 1 1
1 1 1

)
, B4 =

(
0 1 1
1 1 1
1 1 1

)
, B5 =

(
1 1 1
1 1 1
1 1 1

)
.

The powers of an irreducible matrix A ≥ 0 can tell us if A has more
than one eigenvalue on its spectral circle, but the powers of A provide no clue
to the number of such eigenvalues. The next theorem shows how the index of
imprimitivity can be determined without explicitly calculating the eigenvalues.

Index of Imprimitivity
If c(x) = xn + ck1x

n−k1 + ck2x
n−k2 + · · · + cksx

n−ks = 0 is the char-
acteristic equation of an imprimitive matrix An×n in which only the
terms with nonzero coefficients are listed (i.e., each ckj

	= 0, and
n > (n − k1) > · · · > (n − ks)), then the index of imprimitivity h
is the greatest common divisor of {k1, k2, . . . , ks}.
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Proof. We know from (8.3.13) that if {λ1, λ2, . . . , λn} are the eigenvalues of
A (including multiplicities), then {ωλ1, ωλ2, . . . , ωλn} are also the eigenvalues
of A, where ω = e2πi/h. It follows from the results on p. 494 that

ckj
= (−1)kj

∑
1≤i1<···<ikj

≤n

λi1 · · ·λikj
= (−1)kj

∑
1≤i1<···<ikj

≤n

ωλi1 · · ·ωλikj
= ωkjckj

=⇒ ωkj = 1.

Therefore, h must divide each kj . If d divides each kj with d > h, then
γ−kj = 1 for γ = e2πi/d. Hence γλ ∈ σ (A) for each λ ∈ σ (A) because
c(γλ) = 0. But this means that σ (A) is invariant under a rotation through
an angle (2π/d) < (2π/h), which, by (8.3.13), is impossible.

Example 8.3.5

Problem: Find the index of imprimitivity of A =


 0 1 0 0

2 0 1 0
0 1 0 2
0 0 1 0


.

Solution: Using the principal minors to compute the characteristic equation as
illustrated in Example 7.1.2 (p. 496) produces the characteristic equation

c(x) = x4 − 5x2 + 4 = 0,

so that k1 = 2 and k2 = 4. Since gcd{2, 4} = 2, it follows that h = 2. The
characteristic equation is relatively simple in this example, so the eigenvalues
can be explicitly determined to be {±2,±1}. This corroborates the fact that
h = 2. Notice also that this illustrates the property that σ (A) is invariant
under rotation through an angle 2π/h = π.

More is known about nonnegative matrices than what has been presented
here—in fact, there are entire books on the subject. But before moving on to
applications, there is a result that Frobenius discovered in 1912 that is worth
mentioning because it completely reveals the structure of an imprimitive matrix.

Frobenius Form
For each imprimitive matrix A with index of imprimitivity h > 1,
there exists a permutation matrix P such that

PT AP=




0 A12 0 · · · 0
0 0 A23 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Ah−1,h

Ah1 0 · · · 0 0


,

where the zero blocks on the main diagonal are square.
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Example 8.3.6

Leontief’s91 Input–Output Economic Model. Suppose that n major indus-
tries in a closed economic system each make one commodity, and let a J-unit be
what industry J produces that sells for $1. For example, the Boeing Company
makes airplanes, and the Champion Company makes rivets, so a BOEING-unit
is only a tiny fraction of an airplane, but a CHAMPION-unit might be several
rivets. If

0 ≤ sj = # J-units produced by industry J each year, and if
0 ≤ aij = # I-units needed to produce one J-unit ,

then
aijsj = # I-units consumed by industry J each year, and

n∑
j=1

aijsj = # I-units consumed by all industries each year,

so

di = si −
n∑

j=1

aijsj = # I-units available to the public (nonindustry) each year.

Consider d = (d1, d2, . . . , dn)T to be the public demand vector, and think of
s = (s1, s2, . . . , sn)T as the industrial supply vector.

Problem: Determine the supply s ≥ 0 that is required to satisfy a given
demand d ≥ 0.

Solution: At first glance the problem seems to be trivial because the equations
di = si−

∑n
j=1 aijsj translate to (I−A)s = d, so if I−A is nonsingular, then

s = (I−A)−1d. The catch is that this solution may have negative components in
spite of the fact that A ≥ 0. So something must be added. It’s not unreasonable
to assume that major industries are strongly connected in the sense that the
commodity of each industry is either directly or indirectly needed to produce
all commodities in the system. In other words, it’s reasonable to assume that

91
Wassily Leontief (1906–1999) was the 1973 Nobel Laureate in Economics. He was born in St.
Petersburg (now Leningrad), where his father was a professor of economics. After receiving his
undergraduate degree in economics at the University of Leningrad in 1925, Leontief went to
the University of Berlin to earn a Ph.D. degree. He migrated to New York in 1931 and moved
to Harvard University in 1932, where he became Professor of Economics in 1946. Leontief spent
a significant portion of his career developing and applying his input–output analysis, which
eventually led to the famous “Leontief paradox.” In the U.S. economy of the 1950s, labor was
considered to be scarce while capital was presumed to be abundant, so the prevailing thought
was that U.S. foreign trade was predicated on trading capital-intensive goods for labor-intensive
goods. But Leontief’s input–output tables revealed that just the opposite was true, and this
contributed to his fame. One of Leontief’s secret weapons was the computer. He made use
of large-scale computing techniques (relative to the technology of the 1940s and 1950s), and
he was among the first to put the Mark I (one of the first electronic computers) to work on
nonmilitary projects in 1943.
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G(A) is a strongly connected graph so that in addition to being nonnegative,
A is an irreducible matrix. Furthermore, it’s not unreasonable to assume that
ρ (A) < 1. To understand why, notice that the jth column sum of A is

cj =
n∑

i=1

aij = total number of all units required to make one J-unit

= total number of dollars spent by J to create $1 of revenue.

In a healthy economy all major industries should have cj ≤ 1, and there should
be at least one major industry such that cj < 1. This means that there exists a
matrix E ≥ 0, but E 	= 0, such that each column sum of A + E is 1, so

eT (A + E) = eT , where eT is the row of all 1 ’s.

This forces ρ (A) < 1; otherwise the Perron vector p > 0 for A can be used
to write

1 = eT p = eT (A + E)p = 1 + eT Ep > 1

because
E ≥ 0, E 	= 0, p > 0 =⇒ Ep > 0.

(Conditions weaker than the column-sum condition can also force ρ (A) < 1—see
Example 7.10.3 on p. 620.) The assumption that A is a nonnegative irreducible
matrix whose spectral radius is ρ (A) < 1 combined with the Neumann series
(p. 618) provides the conclusion that

(I−A)−1 =
∞∑

k=0

Ak > 0.

Positivity is guaranteed by the irreducibility of A because the same argu-
ment given on p. 672 that is to prove (8.3.3) also applies here. Therefore, for
each demand vector d ≥ 0, there exists a unique supply vector given by
s = (I−A)−1d, which is necessarily positive. The fact that (I−A)−1 > 0
and s > 0 leads to the interesting conclusion that an increase in public demand
by just one unit from a single industry will force an increase in the output of all
industries.

Note: The matrix I − A is an M-matrix as defined and discussed in Example
7.10.7 (p. 626). The realization that M-matrices are naturally present in economic
models provided some of the motivation for studying M-matrices during the first
half of the twentieth century. Some of the M-matrix properties listed on p. 626
were independently discovered and formulated in economic terms.
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Example 8.3.7

Leslie Population Age Distribution Model. Divide a population of females
into age groups G1, G2, . . . , Gn, where each group covers the same number of
years. For example,

G1 = all females under age 10,
G2 = all females from age 10 up to 20,
G1 = all females from age 20 up to 30,
...

Consider discrete points in time, say t = 0, 1, 2, . . . years, and let bk and sk

denote the birth rate and survival rate for females in Gk. That is, let

bk = Expected number of daughters produced by a female in Gk,

sk = Proportion of females in Gk at time t that are in Gk+1 at time t+ 1.

If

fk(t) = Number of females in Gk at time t,
then it follows that

f1(t+ 1) = f1(t)b1 + f2(t)b2 + · · · + fn(t)bn
and (8.3.15)

fk(t+ 1) = fk−1(t)sk−1 for k = 2, 3, . . . , n.

Furthermore,

Fk(t) =
fk(t)

f1(t) + f2(t) + · · · + fn(t)
= % of population in Gk at time t.

The vector F(t) = (F1(t), F2(t), . . . , Fn(t))T represents the population age dis-
tribution at time t, and, provided that it exists, F� = limt→∞ F(t) is the
long-run (or steady-state) age distribution.

Problem: Assuming that s1, . . . , sn and b2, . . . , bn are positive, explain why
the population age distribution approaches a steady state, and then describe it.
In other words, show that F� = limt→∞ F(t) exists, and determine it’s value.

Solution: The equations in (8.3.15) constitute a system of homogeneous differ-
ence equations that can be written in matrix form as

f(t+ 1) = Lf(t), where L =



b1 b2 · · · bn−1 bn
s1 0 · · · · · · 0
0 s2 0 0
...

. . . . . .
...

0 0 · · · sn 0




n×n

. (8.3.16)
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The matrix L is called the Leslie matrix in honor of P. H. Leslie who used this
model in 1945. Notice that in addition to being nonnegative, L is also irreducible
when s1, . . . , sn and b2, . . . , bn are positive because the graph G(L) is strongly
connected. Moreover, L is primitive. This is obvious if in addition to s1, . . . , sn

and b2, . . . , bn being positive we have b1 > 0 (recall Example 8.3.3 on p. 678).
But even if b1 = 0, L is still primitive because Ln+2 > 0 (recall (8.3.14) on
p. 678). The technique on p. 679 also can be used to show primitivity (Exercise
8.3.11). Consequently, (8.3.8) on p. 674 guarantees that

lim
t→∞

(L
r

)t

= G =
pqT

qT p
> 0,

where p > 0 and q > 0 are the respective Perron vectors for L and LT . If we
combine this with the fact that the solution to the system of difference equations
in (8.3.16) is f(t) = Ltf(0) (p. 617), and if we assume that f(0) 	= 0, then we
arrive at the conclusion that

lim
t→∞

f(t)
rt

= Gf(0) = p

(
qT f(0)
qT p

)
and lim

t→∞

∥∥∥∥ f(t)
rt

∥∥∥∥
1

=
qT f(0)
qT p

> 0 (8.3.17)

(because ‖�‖1 is a continuous function—Exercise 5.1.7 on p. 277). Now

Fk(t) =
fk(t)
‖f(t)‖1

= % of population that is in Gk at time t

is the quantity of interest, and (8.3.17) allows us to conclude that

F� = lim
t→∞

F(t) = lim
t→∞

f(t)
‖f(t)‖1

= lim
t→∞

f(t)/rt

‖f(t)‖1 /r
t

=
limt→∞ f(t)/rt

limt→∞ ‖f(t)‖1 /r
t

= p (the Perron vector!).

In other words, while the numbers in the various age groups may increase or
decrease, depending on the value of r (Exercise 8.3.10), the proportion of in-
dividuals in each age group becomes stable as time increases. And because the
steady-state age distribution is given by the Perron vector of L, each age group
must eventually contain a positive fraction of the population.

Exercises for section 8.3

8.3.1. Let A =
(

0 1 0
3 0 3
0 2 0

)
.

(a) Show that A is irreducible.
(b) Find the Perron root and Perron vector for A.
(c) Find the number of eigenvalues on the spectral circle of A.
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8.3.2. Suppose that the index of imprimitivity of a 5 × 5 nonnegative irre-
ducible matrix A is h = 3. Explain why A must be singular with
alg multA (0) = 2.

8.3.3. Suppose that A is a nonnegative matrix that possesses a positive spec-
tral radius and a corresponding positive eigenvector. Does this force A
to be irreducible?

8.3.4. Without computing the eigenvalues or the characteristic polynomial,
explain why σ (Pn) = {1, ω, ω2, . . . , ωn−1}, where ω = e2πi/n for

Pn=




0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 · · · 0 1
1 0 0 · · · 0


 .

8.3.5. Determine whether A =


 0 1 2 0 0

0 0 0 7 0
2 0 0 0 0
0 9 2 0 4
0 0 0 1 0


 is reducible or irreducible.

8.3.6. Determine whether the matrix A in Exercise 8.3.5 is primitive or im-
primitive.

8.3.7. A matrix Sn×n ≥ 0 having row sums less than or equal to 1 with at
least one row sum less than 1 is called a substochastic matrix.

(a) Explain why ρ (S) ≤ 1 for every substochastic matrix.
(b) Prove that ρ (S) < 1 for every irreducible substochastic matrix.

8.3.8. A nonnegative matrix for which each row sum is 1 is called a stochastic
matrix (some say row -stochastic). Prove that if An×n is nonnegative
and irreducible with r = ρ (A) , then A is similar to rP for some ir-

reducible stochastic matrix P. Hint: Consider D=




p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn


,

where the pk ’s are the components of the Perron vector for A.

8.3.9. Wielandt constructed the matrix Wn=




0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 · · · 0 1
1 1 0 · · · 0


 to show

that Wn2−2n+2 > 0, but [Wn2−2n+1]11 = 0. Verify that this is true
for n = 4.
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8.3.10. In the Leslie population model on p. 683, explain what happens to the
vector f(t) as t → ∞ depending on whether r < 1, r = 1, or r > 1.

8.3.11. Use the characteristic equation as described on p. 679 to show that the
Leslie matrix in (8.3.16) is primitive even if b1 = 0 (assuming all other
bk ’s and sk ’s are positive).

8.3.12. A matrix A ∈ �n×n is said to be essentially positive if A is irre-
ducible and aij ≥ 0 for every i 	= j. Prove that each of the following
statements is equivalent to saying that A is essentially positive.

(a) There exists some α ∈ � such that A + αI is primitive.
(b) etA > 0 for all t > 0.

8.3.13. Let A be an essentially positive matrix as defined in Exercise 8.3.12.
Prove that each of the following statements is true.

(a) A has an eigenpair (ξ,x), where ξ is real and x > 0.
(b) If λ is any eigenvalue for A other than ξ, then Re (λ) < ξ.
(c) ξ increases when any entry in A is increased.

8.3.14. Let A be a nonnegative irreducible matrix, and let a
(k)
ij denote entries

in Ak. Prove that A is primitive if and only if

ρ (A) = lim
k→∞

[
a
(k)
ij

]1/k

.

8.3.15. Prove the Collatz–Wielandt formula on p. 666 is valid for nonnegative
irreducible matrices A . That is, ρ (A) = maxx∈N f(x), where

f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}.

Hint: Consider using (8.3.3) on p. 672 in an appropriate place in the
proof on p. 667.
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8.4 STOCHASTIC MATRICES AND MARKOV CHAINS

One of the most elegant applications of the Perron–Frobenius theory is the al-
gebraic development of the theory of finite Markov chains. The purpose of this
section is to present some of the aspects of this development.

A stochastic matrix is a nonnegative matrix Pn×n in which each row
sum is equal to 1. Some authors say “row -stochastic” to distinguish this from
the case when each column sum is 1.

A Markov
92
chain is a stochastic process (a set of random variables {Xt}∞t=0

in which Xt has the same range {S1, S2, . . . , Sn}, called the state space) that
satisfies the Markov property

P (Xt+1 = Sj |Xt = Sit
, Xt−1 = Sit−1 , . . . , X0 = Si0) = P (Xt+1 = Sj |Xt = Sit

)

for each t = 0, 1, 2, . . . . Think of a Markov chain as a random chain of events
that occur at discrete points t = 0, 1, 2, . . . in time, where Xt represents the
state of the event that occurs at time t. For example, if a mouse moves randomly
through a maze consisting of chambers S1, S2, . . . , Sn, then Xt might represent
the chamber occupied by the mouse at time t. The Markov property asserts that
the process is memoryless in the sense that the state of the chain at the next
time period depends only on the current state and not on the past history of the
chain. In other words, the mouse moving through the maze obeys the Markov
property if its next move doesn’t depend on where in the maze it has been in
the past—i.e., the mouse is not using its memory (if it has one).

To emphasize that time is considered discretely rather than continuously the
phrase “discrete-time Markov chain” is often used, and the phrase “finite-state
Markov chain” might be used to emphasize that the state space is finite rather
than infinite.

92
Andrei Andreyevich Markov (1856–1922) was born in Ryazan, Russia, and he graduated from
Saint Petersburg University in 1878 where he later became a professor. Markov’s early interest
was number theory because this was the area of his famous teacher Pafnuty Lvovich Chebyshev
(1821–1894). But when Markov discovered that he could apply his knowledge of continued frac-
tions to probability theory, he embarked on a new course that would make him famous—enough
so that there was a lunar crater named in his honor in 1964. In addition to being involved with
liberal political movements (he once refused to be decorated by the Russian Czar), Markov
enjoyed poetry, and in his spare time he studied poetic style. Therefore, it was no accident
that led him to analyze the distribution of vowels and consonants in Pushkin’s work, Eugene
Onegin, by constructing a simple model based on the assumption that the probability that a
consonant occurs at a given position in any word should depend only on whether the preceding
letter is a vowel or a consonant and not on any prior history. This was the birth of the “Markov
chain.” Markov was wrong in one regard—he apparently believed that the only real examples
of his chains were to be found in literary texts. But Markov’s work in 1907 has grown to be-
come an indispensable tool of enormous power. It launched the theory of stochastic processes
that is now the foundation for understanding, explaining, and predicting phenomena in diverse
areas such as atomic physics, quantum theory, biology, genetics, social behavior, economics,
and finance. Markov’s chains serve to underscore the point that the long-term applicability of
mathematical research is impossible to predict.
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Every Markov chain defines a stochastic matrix, and conversely. Let’s see
how this happens. The value pij(t) = P (Xt = Sj |Xt−1 = Si) is the probability
of being in state Sj at time t given that the chain is in state Si at time t− 1,
so pij(t) is called the transition probability of moving from Si to Sj at
time t. The matrix of transition probabilities Pn×n(t) = [pij(t)] is clearly a
nonnegative matrix, and a little thought should convince you that each row sum
must be 1. Thus P(t) is a stochastic matrix. When the transition probabilities
don’t vary with time (say pij(t) = pij for all t), the chain is said to be stationary
(or homogeneous), and the transition matrix is the constant stochastic matrix
P = [pij ]. We will make the assumption of stationarity throughout. Conversely,
every stochastic matrix Pn×n defines an n -state Markov chain because the
entries pij define a set of transition probabilities, which can be interpreted as a
stationary Markov chain on n states.

A probability distribution vector is defined to be a nonnegative vector
pT = (p1, p2, . . . , pn) such that

∑
k pk = 1. (Every row in a stochastic ma-

trix is such a vector.) For an n -state Markov chain, the kth step probability
distribution vector is defined to be

pT (k) =
(
p1(k), p2(k), . . . , pn(k)

)
, k = 1, 2, . . . , where pj(k) = P (Xk = Sj).

In other words, pj(k) is the probability of being in the jth state after the kth

step, but before the (k + 1)st step. The initial distribution vector is

pT (0) =
(
p1(0), p2(0), . . . , pn(0)

)
, where pj(0) = P (X0 = Sj)

is the probability that the chain starts in Sj .
For example, consider the Markov chain defined by placing a mouse in the

3-chamber box with connecting doors as shown in Figure 8.4.1, and suppose that
the mouse moves from the chamber it occupies to another chamber by picking a
door at random—say that the doors open each minute, and when they do, the
mouse is forced to move by electrifying the floor of the occupied chamber.

#1

#2

#3

Figure 8.4.1

If the mouse is initially placed in chamber #2, then the initial distribution vector
is pT (0) = (0, 1, 0) = eT

2 . But if the process is started by tossing the mouse into
the air so that it randomly lands in one of the chambers, then a reasonable
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initial distribution is pT (0) = (.5, .25, .25) because the area of chamber #1 is
50% of the box, while chambers #2 and #3 each constitute 25% of the box. The
transition matrix for this Markov chain is the stochastic matrix

M =


 0 1/2 1/2

1/3 0 2/3
1/3 2/3 0


 . (8.4.1)

A standard eigenvalue calculation reveals that σ (M) = {1, −1/3, /,−2/3}, so
it’s apparent that M is a nonnegative matrix having spectral radius ρ (M) = 1.
This is a feature that is shared by all stochastic matrices Pn×n because having
row sums equal to 1 means that ‖P‖∞ = 1 or, equivalently, Pe = e, where e
is the column of all 1’s. Because (1, e) is an eigenpair for every stochastic matrix,
and because ρ (�) ≤ ‖�‖ for every matrix norm (recall (7.1.12) on p. 497), it
follows that

1 ≤ ρ (P) ≤ ‖P‖∞ = 1 =⇒ ρ (P) = 1.

Furthermore, e is a positive eigenvector associated with ρ (P) = 1. But be
careful! This doesn’t mean that you necessarily can call e the Perron vector for
P because P might not be irreducible—consider P =

(
.5 .5
0 1

)
.

Two important issues that arise in Markovian analysis concern the transient
behavior of the chain as well as the limiting behavior. In other words, we want
to accomplish the following goals.

• Describe the kth step distribution pT (k) for any given initial distribution
vector pT (0).

• Determine whether or not limk→∞ pT (k) exists, and if it exists, determine
the value of limk→∞ pT (k).

• If there is no limiting distribution, then determine the possibility of having
a Cesàro limit

lim
k→∞

[
pT (0) + pT (1) + · · · + pT (k − 1)

k

]
.

If such a limit exists, interpret its meaning, and determine its value.

The kth step distribution is easily described by using the laws of elementary
probability—in particular, recall that P (E ∨ F ) = P (E) + P (F ) when E and
F are mutually exclusive events, and the conditional probability of E occurring
given that F occurs is P (E |F ) = P (E ∧ F )/P (F ) (it’s convenient to use ∧
and ∨ to denote AND and OR, respectively). To determine the jth component
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pj(1) in pT (1) for a given pT (0), write

pj(1) = P (X1=Sj) =P
[
X1=Sj ∧ (X0=S1 ∨X0=S2 ∨ · · · ∨X0=Sn)

]
= P

[
(X1=Sj ∧X0=S1) ∨ (X1=Sj ∧X0=S2) ∨ · · · ∨ (X1=Sj ∧X0=Sn)

]
=

n∑
i=1

P
[
X1=Sj ∧X0=Si

]
=

n∑
i=1

P
[
X0 = Si

]
P

[
X1 = Sj |X0 = Si

]

=
n∑

i=1

pi(0)pij for j = 1, 2, . . . , n.

Consequently, pT (1) = pT (0)P. This tells us what to expect after one step when
we start with pT (0). But the “no memory” Markov property tells us that the
state of affairs at the end of two steps is determined by where we are at the end of
the first step—it’s like starting over but with pT (1) as the initial distribution.
In other words, it follows that pT (2) = pT (1)P, and pT (3) = pT (2)P, etc.
Therefore, successive substitution yields

pT (k) = pT (k − 1)P = pT (k − 2)P2 = · · · = pT (0)Pk,

and thus the kth step distribution is determined from the initial distribution
and the transition matrix by the vector–matrix product

pT (k) = pT (0)Pk. (8.4.2)

Notice that if we adopt the notation Pk =
[
p
(k)
ij

]
, and if we set pT (0) = eT

i in

(8.4.2), then we get pj(k) = p
(k)
ij for each i = 1, 2, . . . , n, and thus we arrive at

the following conclusion.

• The (i, j)-entry in Pk represents the probability of moving from Si to Sj

in exactly k steps. For this reason, Pk is often called the k-step transition
matrix.

Example 8.4.1

Let’s go back to the mouse-in-the-box example, and, as suggested earlier, toss
the mouse into the air so that it randomly lands somewhere in the box in Fig-
ure 8.4.1—i.e., take the initial distribution to be pT (0) = (1/2, 1/4, 1/4). The
transition matrix is given by (8.4.1), so the probability of finding the mouse in
chamber #1 after three moves is

[pT (3)]1 = [pT (0)M3]1 = 13/54.

In fact, the entire third step distribution is pT (3) = ( 13/54, 41/108, 41/108 ) .
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To analyze limiting properties of Markov chains, divide the class of stochas-
tic matrices (and hence the class of stationary Markov chains) into four mutually
exclusive categories as described below.

(1) Irreducible with limk→∞ Pk existing (i.e., P is primitive).
(2) Irreducible with limk→∞ Pk not existing (i.e., P is imprimitive).
(3) Reducible with limk→∞ Pk existing.
(4) Reducible with limk→∞ Pk not existing.

In case (1), where P is primitive, we know exactly what limk→∞ Pk looks
like. The Perron vector for P is e/n (the uniform distribution vector), so if
π = (π1, π2, . . . , πn)T is the Perron vector for PT , then

lim
k→∞

Pk =
(e/n)πT

πT (e/n)
=

eπT

πT e
= eπT =



π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

π1 π2 · · · πn


 > 0 (8.4.3)

by (8.3.8) on p. 674. Therefore, if P is primitive, then a limiting probability
distribution exists, and it is given by

lim
k→∞

pT (k) = lim
k→∞

pT (0)Pk = pT (0)eπT = πT . (8.4.4)

Notice that because
∑

k pk(0) = 1, the term pT (0)e drops away, so we have the
conclusion that the value of the limit is independent of the value of the initial
distribution pT (0), which isn’t too surprising.

Example 8.4.2

Going back to the mouse-in-the-box example, it’s easy to confirm that the transi-
tion matrix M in (8.4.1) is primitive, so limk→∞ Mk as well as limk→∞ pT (0)
must exist, and their values are determined by the left-hand Perron vector of
M that can be found by calculating any nonzero vector v ∈ N

(
I−MT

)
and

normalizing it to produce πT = vT / ‖v‖1 . Routine computation reveals that
the one solution of the homogeneous equation (I−MT )v = 0 is vT = (2, 3, 3),
so πT = (1/8)(2, 3, 3), and thus

lim
k→∞

Mk =
1
8


 2 3 3

2 3 3
2 3 3


 and lim

k→∞
pT (k) =

1
8
(2, 3, 3).

This limiting distribution can be interpreted as meaning that in the long run the
mouse will occupy chamber #1 one-fourth of the time, while 37.5% of the time it’s
in chamber #2, and 37.5% of the time it’s in chamber #3, and this is independent
of where (or how) the process started. The mathematical justification for this
statement is on p. 693.
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Now consider the imprimitive case. We know that if P is irreducible and has
h > 1 eigenvalues on the unit (spectral) circle, then limk→∞ Pk cannot exist
(p. 674), and hence limk→∞ pT (k) cannot exist (otherwise taking pT (0) = eT

i

for each i would insure that Pk has a limit). However, each eigenvalue on the
unit circle is simple (p. 676), and this means that P is Cesàro summable (p. 633).
Moreover, e/n is the Perron vector for P, and, as pointed out in Example 8.3.2
(p. 677), if πT = (π1, π2, . . . , πn) is the left-hand Perron vector, then

lim
k→∞

I + P + · · · + Pk−1

k
=

(e/n)πT

πT (e/n)
=

eπT

πT e
= eπT =



π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

π1 π2 · · · πn


 ,

which is exactly the same form as the limit (8.4.3) for the primitive case. Con-
sequently, the kth step distributions have a Cesàro limit given by

lim
k→∞

[
pT (0) + pT (1) + · · · + pT (k − 1)

k

]
= lim

k→∞
pT (0)

[
I + P + · · · + Pk−1

k

]
= pT (0)eπT = πT ,

and, just as in the primitive case (8.4.4), this Cesàro limit is independent of the
initial distribution.

Let’s interpret the meaning of this Cesàro limit. The analysis is essentially
the same as the description outlined in the shell game in Example 7.10.8 (p. 635),
but for the sake of completeness we will duplicate some of the logic here. The
trick is to focus on one state, say Sj , and define a sequence of random variables
{Zk}∞k=0 that count the number of visits to Sj . Let

Z0 =
{

1 if the chain starts in Sj ,
0 otherwise,

and for i > 1, (8.4.5)

Zi =
{

1 if the chain is in Sj after the ith move,
0 otherwise.

Notice that Z0 + Z1 + · · ·+ Zk−1 counts the number of visits to Sj before the
kth move, so (Z0 +Z1 + · · ·+Zk−1)/k represents the fraction of times that Sj

is hit before the kth move. The expected (or mean) value of each Zi is

E[Zi] = 1 · P (Zi=1) + 0 · P (Zi=0) = P (Zi=1) = pj(i),

and, since expectation is linear, the expected fraction of times that Sj is hit
before move k is

E

[
Z0 + Z1 + · · · + Zk−1

k

]
=

E[Z0] + E[Z1] + · · · + E[Zk−1]
k

=
pj(0) + pj(1) + · · · + pj(k − 1)

k
=

[
pT (0) + pT (1) + · · · + pT (k − 1)

k

]
j

→ πj .



8.4 Stochastic Matrices and Markov Chains 693

In other words, the long-run fraction of time that the chain spends in Sj is
πj , which is the jth component of the Cesàro limit or, equivalently, the jth

component of the left-hand Perron vector for P.
When limk→∞ pT (k) exists, it must be the case that

lim
k→∞

pT (k) = lim
k→∞

[
pT (0)+pT (1)+· · ·+pT (k−1)

k

]
(Exercise 7.10.11, p. 639),

and therefore the interpretation of the limiting distribution limk→∞ pT (k) for
the primitive case is exactly the same as the interpretation of the Cesàro limit
in the imprimitive case.

Below is a summary of our findings for irreducible chains.

Irreducible Markov Chains
Let P be the transition probability matrix for an irreducible Markov
chain on states {S1, S2, . . . , Sn} (i.e., P is an n× n irreducible
stochastic matrix), and let πT denote the left-hand Perron vector for P.
The following statements are true for every initial distribution pT (0).

• The kth step transition matrix is Pk because the (i, j) -entry in
Pk is the probability of moving from Si to Sj in exactly k steps.

• The kth step distribution vector is given by pT (k) = pT (0)Pk.

• If P is primitive, and if e denotes the column of all 1’s, then

lim
k→∞

Pk = eπT and lim
k→∞

pT (k) = πT .

• If P is imprimitive, then

lim
k→∞

I + P + · · · + Pk−1

k
= eπT

and
lim

k→∞

[
pT (0)+pT (1)+· · ·+pT (k−1)

k

]
= πT .

• Regardless of whether P is primitive or imprimitive, the jth com-
ponent πj of πT represents the long-run fraction of time that the
chain is in Sj .

• πT is often called the stationary distribution vector for the chain
because it is the unique distribution vector satisfying πT P = πT .
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Example 8.4.3

Periodic Chains. Consider an electronic switch that can be in one of three
states {S1, S2, S3}, and suppose that the switch changes states on regular clock
cycles. If the switch is in either S1 or S3, then it must change to S2 on the
next clock cycle, but if the switch is in S2, then there is an equal likelihood that
it changes to S1 or S3 on the next clock cycle. The transition matrix is

P =


 0 1 0
.5 0 .5
0 1 0


 ,

and it’s not difficult to see that P is irreducible (because G(P) is strongly con-
nected) and imprimitive (because σ (P) = {±1, 0}). Since the left-hand Perron
vector is πT = (.25, .5, .25), the long-run expectation is that the switch should
be in S1 25% of the time, in S2 50% of the time, and in S3 25% of the time,
and this agrees with what common sense tells us. Furthermore, notice that the
switch cannot be in just any position at any given clock cycle because if the
chain starts in either S1 or S3, then it must be in S2 on every odd-numbered
cycle, and it can occupy S1 or S3 only on even-numbered cycles. The situation
is similar, but with reversed parity, when the chain starts in S2. In other words,
the chain is periodic in the sense that the states can be occupied only at peri-
odic points in time. In this example the period of the chain is 2, and this is the
same as the index of imprimitivity. This is no accident. The Frobenius form for
imprimitive matrices on p. 680 can be used to prove that this is true in general.
Consequently, an irreducible Markov chain is said to be a periodic chain when
its transition matrix P is imprimitive (with the period of the chain being the
index of imprimitivity for P), and an irreducible Markov chain for which P
is primitive is called an aperiodic chain. The shell game in Example 7.10.8
(p. 635) is a periodic Markov chain that is similar to the one in this example.

Because the Perron–Frobenius theorem is not directly applicable to reducible
chains (chains for which P is a reducible matrix), the strategy for analyzing
reducible chains is to deflate the situation, as much as possible, back to the
irreducible case as described below.

If P is reducible, then, by definition, there exists a permutation matrix Q
and square matrices X and Z such that

QT PQ =
(

X Y
0 Z

)
. For convenience, denote this by writing P ∼

(
X Y
0 Z

)
.

If X or Z is reducible, then another symmetric permutation can be performed
to produce

(
X Y
0 Z

)
∼

(
R S T
0 U V
0 0 W

)
, where R, U, and W are square.
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Repeating this process eventually yields

P ∼




X11 X12 · · · X1k

0 X22 · · · X2k

...
. . .

...
0 0 · · · Xkk


, where each Xii is irreducible or Xii = [0]1×1.

Finally, if there exist rows having nonzero entries only in diagonal blocks, then
symmetrically permute all such rows to the bottom to produce

P ∼




P11 P12 · · · Prr P1,r+1 P1,r+2 · · · P1m

0 P22 · · · P2r P2,r+1 P2,r+2 · · · P2m

...
. . .

...
...

... · · ·
...

0 0 · · · Prr Pr,r+1 Pr,r+2 · · · Prm

0 0 · · · 0 Pr+1,r+1 0 · · · 0
0 0 · · · 0 0 Pr+2,r+2 · · · 0

...
... · · ·

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · Pmm



, (8.4.6)

where each P11, . . . ,Prr is either irreducible or [0]1×1, and Pr+1,r+1, . . . ,Pmm

are irreducible (they can’t be zero because each has row sums equal to 1). As
mentioned on p. 671, the effect of a symmetric permutation is simply to relabel
nodes in G(P) or, equivalently, to reorder the states in the chain. When the
states of a chain have been reordered so that P assumes the form on the right-
hand side of (8.4.6), we say that P is in the canonical form for reducible
matrices. When P is in canonical form, the subset of states corresponding
to Pkk for 1 ≤ k ≤ r is called the kth transient class (because once left,
a transient class can’t be reentered), and the subset of states corresponding to
Pr+j,r+j for j ≥ 1 is called the jth ergodic class. Each ergodic class is an
irreducible Markov chain unto itself that is imbedded in the larger reducible
chain. From now on, we will assume that the states in our reducible chains have
been ordered so that P is in canonical form.

The results on p. 676 guarantee that if an irreducible stochastic matrix P
has h eigenvalues on the unit circle, then these h eigenvalues are the hth roots
of unity, and each is a simple eigenvalue for P. The same can’t be said for
reducible stochastic matrices, but the canonical form (8.4.6) allows us to prove
the next best thing as discussed below.
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Unit Eigenvalues
The unit eigenvalues for a stochastic matrix are defined to be those
eigenvalues that are on the unit circle. For every stochastic matrix Pn×n,
the following statements are true.

• Every unit eigenvalue of P is semisimple.

• Every unit eigenvalue has form λ = e2kπi/h for some k < h ≤ n.

• In particular, ρ (P) = 1 is always a semisimple eigenvalue of P.

Proof. If P is irreducible, then there is nothing to prove because, as proved on
p. 676, the unit eigenvalues are roots of unity, and each unit eigenvalue is simple.
If P is reducible, suppose that a symmetric permutation has been performed so
that P is in the canonical form (8.4.6), and observe that

ρ (Pkk) < 1 for each k = 1, 2, . . . , r. (8.4.7)

This is certainly true when Pkk = [0]1×1, so suppose that Pkk (1 ≤ k ≤ r)
is irreducible. Because there must be blocks Pkj , j 	= k, that have nonzero
entries, it follows that

Pkke ≤ e and Pkke 	= e, where e is the column of all 1’s.

If ρ (Pkk) = 1, then the observation in Example 8.3.1 (p. 674) forces Pkke = e,
which is impossible, and thus ρ (Pkk) < 1. Consequently, the unit eigenval-
ues for P are the collection of the unit eigenvalues of the irreducible matrices
Pr+1,r+1, . . . ,Pmm. But each unit eigenvalue of Pr+i,r+i is simple and is a
root of unity. Consequently, if λ is a unit eigenvalue for P, then it must be
some root of unity, and although it might be repeated because it appears in
the spectrum of more than one Pr+i,r+i, it must nevertheless be the case that
alg multP (λ) = geo multP (λ) , so λ is a semisimple eigenvalue of P.

We know from the discussion on p. 633 that a matrix A ∈ Cn×n is Cesàro
summable if and only if ρ(A) < 1 or ρ(A) = 1 with each eigenvalue on the unit
circle being semisimple. We just proved that the latter holds for all stochastic
matrices P, so we have in fact established the following powerful statement
concerning all stochastic matrices.
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All Stochastic Matrices Are Summable
Every stochastic matrix P is Cesàro summable. That is,

lim
k→∞

I + P + · · · + Pk−1

k
exists for all stochastic matrices P,

and, as discussed on p. 633, the value of the limit is the (spectral) pro-
jector G onto N (I−P) along R (I−P).

Since we already know the structure and interpretation of the Cesàro limit
when P is an irreducible stochastic matrix (p. 693), all that remains in order to
complete the picture is to analyze the nature of limk→∞ (I + P + · · · + Pk−1)/k
for the reducible case.

Suppose that P =
(

T11 T12

0 T22

)
is a reducible stochastic matrix that is in

the canonical form (8.4.6), where

T11 =


 P11 · · · Prr

. . .
...

Prr


, T12 =


 P1,r+1 · · · P1m

...
...

Pr,r+1 · · · Prm


 ,

and

T22 =


 Pr+1,r+1

. . .
Pmm


.

(8.4.8)

We know from (8.4.7) that ρ (Pkk) < 1 for each k = 1, 2, . . . , r, so it follows
that ρ (T11) < 1, and hence

lim
k→∞

I + T11 + · · · + Tk−1
11

k
= lim

k→∞
Tk

11 = 0 (recall Exercise 7.10.11 on p. 639).

Furthermore, Pr+1,r+1, . . . ,Pmm are each irreducible stochastic matrices, so if
πT

j is the left-hand Perron vector for Pjj , r + 1 ≤ j ≤ m, then our previous
results (p. 693) tell us that

lim
k→∞

I + T22 + · · · + Tk−1
22

k
=




eπT
r+1

. . .
eπT

m


 = E. (8.4.9)

Furthermore, it’s clear from the results on p. 674 that limk→∞ Tk
22 exists if and

only if Pr+1,r+1, . . . ,Pmm are each primitive, in which case limk→∞ Tk
22 = E.
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Therefore, the limits, be they Cesàro or ordinary (if it exists), all have the form

lim
k→∞

I + P + · · · + Pk−1

k
=

(
0 Z
0 E

)
= G = lim

k→∞
Pk (when it exists).

To determine the precise nature of Z, use the fact that R (G) = N (I−P)
(because G is the projector onto N (I−P) along R (I−P)) to write

(I−P)G = 0 =⇒
(

I−T11 −T12

0 I−T22

) (
0 Z
0 E

)
= 0 =⇒ (I−T11)Z = T12E.

Since I−T11 is nonsingular (because ρ (T11) < 1 by (8.4.7)), it follows that

Z = (I−T11)−1T12E,

and thus the following results concerning limits of reducible chains are produced.

Reducible Markov Chains
If the states in a reducible Markov chain have been ordered to make the
transition matrix assume the canonical form

P =
(

T11 T12

0 T22

)

that is described in (8.4.6) and (8.4.8), and if πT
j is the left-hand Perron

vector for Pjj (r + 1 ≤ j ≤ m), then I−T11 is nonsingular, and

lim
k→∞

I + P + · · · + Pk−1

k
=

(
0 (I−T11)−1T12E

0 E

)
,

where

E =


 eπT

r+1

. . .
eπT

m


.

Furthermore, limk→∞ Pk exists if and only if the stochastic matrices
Pr+1,r+1, . . . ,Pmm in (8.4.6) are each primitive, in which case

lim
k→∞

Pk =
(

0 (I−T11)−1T12E

0 E

)
. (8.4.10)
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The preceding analysis shows that every reducible chain eventually gets
absorbed (trapped) into one of the ergodic classes—i.e., into a subchain defined
by Pr+j,r+j for some j ≥ 1. If Pr+j,r+j is primitive, then the chain settles
down to a steady-state defined by the left-hand Perron vector of Pr+j,r+j , but
if Pr+j,r+j is imprimitive, then the process will oscillate in the jth ergodic class
forever. There is not much more that can be said about the limit, but there are
still important questions concerning which ergodic class the chain will end up in
and how long it takes to get there. This time the answer depends on where the
chain starts—i.e., on the initial distribution.

For convenience, let Ti denote the ith transient class, and let Ej be the jth

ergodic class. Suppose that the chain starts in a particular transient state—say
we start in the pth state of Ti. Since the question at hand concerns only which
ergodic class is hit but not what happens after it’s entered, we might as well
convert every state in each ergodic class into a trap by setting Pr+j,r+j = I
for each j ≥ 1 in (8.4.6). The transition matrix for this modified chain is
P̃ =

(
T11 T12

0 I

)
, and it follows from (8.4.10) that limk→∞ P̃k exists and has

the form

lim
k→∞

P̃k =
(

0 (I−T11)−1T12

0 I

)
=




0 0 · · · 0 L1,1 L1,2 · · · L1s

0 0 · · · 0 L2,1 L2,2 · · · L2s

...
. . .

...
...

... · · ·
...

0 0 · · · 0 Lr,1 Lr,2 · · · Lrs

0 0 · · · 0 I 0 · · · 0
0 0 · · · 0 0 I · · · 0
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · I



.

Consequently, the (p, q)-entry in block Lij represents the probability of even-
tually hitting the qth state in Ej given that we start from the pth state in
Ti. Therefore, if e is the vector of all 1 ’s, then the probability of eventually
entering somewhere in Ej is given by

• P (absorption into Ej | start in pth state of Ti) =
∑

k

[
Lij

]
pk

=
[
Lije

]
p
.

If pT
i (0) is an initial distribution for starting in the various states of Ti, then

• P
(
absorption into Ej |pT

i (0)
)

= pT
i (0)Lije.

To determine the expected number of steps required to first hit an ergodic
state, proceed as follows. Count the number of times the chain is in transient
state Sj given that it starts in transient state Si by reapplying the argument
given in (8.4.5) on p. 692. That is, given that the chain starts in Si, let

Z0 =
{

1 if Si = Sj ,
0 otherwise, and Zk =

{ 1 if the chain is in Sj after step k,
0 otherwise.
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Since
E[Zk] = 1 · P (Zk=1) + 0 · P (Zk=0) = P (Zk=1) =

[
Tk

11

]
ij
,

and since
∑∞

k=0 Zk is the total number of times the chain is in Sj , we have

E[# times in Sj | start in Si] = E

[ ∞∑
k=0

Zk

]
=

∞∑
k=0

E [Zk] =
∞∑

k=0

[
Tk

11

]
ij

=
[
(I−T11)−1

]
ij

(because ρ (T11) < 1).

Summing this over all transient states produces the expected number of times
the chain is in some transient state, which is the same as the expected number
of times before first hitting an ergodic state. In other words,

• E[# steps until absorption | start in ith transient state] =
[
(I−T11)−1e

]
i
.

Example 8.4.4

Absorbing Markov Chains. It’s often the case in practical applications that
there is only one transient class, and the ergodic classes are just single absorbing
states (states such that once they are entered, they are never left). If the single
transient class contains r states, and if there are s absorbing states, then the
canonical form for the transition matrix is

P =




p11 · · · p1r p1,r+1 · · · p1s

...
...

...
...

pr1 · · · prr pr,r+1 · · · prs

0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1




and Lij =
[
(I−T11)−1T12

]
ij
.

The preceding analysis specializes to say that every absorbing chain must even-
tually reach one of its absorbing states. The probability of being absorbed into
the jth absorbing state (which is state Sr+j ) given that the chain starts in the
ith transient state (which is Si) is

P (absorption into Sr+j | start in Si for 1 ≤ i ≤ r) =
[
(I−T11)−1T12

]
ij
,

while the expected time until absorption is

E[# steps until absorption | start in Si] =
[
(I−T11)−1e

]
i
,

and the amount of time spent in Sj is

E[# times in Sj | start in Si] =
[
(I−T11)−1

]
ij
.
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Example 8.4.5

Fail-Safe System. Consider a system that has two independent controls, A and
B, that can prevent the system from being destroyed. The system is activated at
discrete points in time t1, t2, t3, . . . , and the system is considered to be “under
control” if either control A or B holds at the time of activation. The system is
destroyed if A and B fail simultaneously.

5 For example, an automobile has two independent braking systems—one is
operated by a foot pedal, whereas the “emergency brake” is operated by a
hand lever. The automobile is “under control” if at least one braking system
is operative when you try to stop, but a crash occurs if both braking systems
fail simultaneously.

If one of the controls fails at some activation point but the other control holds,
then the defective control is repaired before the next activation. If a control holds
at time t = tk, then it is considered to be 90% reliable at t = tk+1, but if a
control fails at time t = tk, then its untested replacement is considered to be
only 60% reliable at t = tk+1.

Problem: Can the system be expected to run indefinitely without every being
destroyed? If not, how long is the system expected to run before destruction
occurs?

Solution: This is a four-state Markov chain with the states being the controls
that hold at any particular time of activation. In other words the state space is
the set of pairs (a, b) in which

a =
{

1 if A holds,
0 if A fails, and b =

{ 1 if B holds,
0 if B fails.

State (0, 0) is absorbing, and the transition matrix (in canonical form) is

P =




(1, 1) (1, 0) (0, 1) (0, 0)
(1, 1) .81 .09 .09 .01
(1, 0) .54 .36 .06 .04
(0, 1) .54 .06 .36 .04
(0, 0) 0 0 0 1




with

T11 =


 .81 .09 .09
.54 .36 .06
.54 .06 .36


 and T12 =


 .01
.04
.04


 .

The fact that limk→∞ Pk exists and is given by

lim
k→∞

Pk =
(

0 (I−T11)−1T12

0 1

)
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makes it clear that the absorbing state must eventually be reached. In other
words, this proves the validity of the popular belief that “if something can go
wrong, then it eventually will.” Rounding to three significant figures produces

(I−T11)−1 =


 44.6 6.92 6.92

41.5 8.02 6.59
41.5 6.59 8.02


 and (I−T11)−1e =


 58.4

56.1
56.1


 ,

so the mean time to failure starting with two proven controls is slightly more
than 58 steps, while the mean time to failure starting with one untested control
and one proven control is just over 56 steps. The difference here doesn’t seem
significant, but consider what happens when only one control is used in the
system. In this case, there are only two states in the chain, 1 (meaning that the
control holds) and 0 (meaning that it doesn’t). The transition matrix is

P =
( 1 0

1 .9 .1
0 0 1

)
,

so now the mean time to failure is only (I−T11)−1e = 10 steps. It’s interesting
to consider what happens when three independent control are used. How much
more security does your intuition tell you that you should have? See Exercise
8.4.8.

Exercises for section 8.4

8.4.1. Find the stationary distribution for P =


 1/4 0 0 3/4

3/8 1/4 3/8 0
1/3 1/6 1/6 1/3
0 0 1/2 1/2


. Does

this stationary distribution represent a limiting distribution in the reg-
ular sense or only in the Cesàro sense?

8.4.2. A doubly-stochastic matrix is a nonnegative matrix Pn×n having
all row sums as well as all column sums equal to 1. For an irreducible
n -state Markov chain whose transition matrix is doubly stochastic,
what is the long-run proportion of time spent in each state? What form
do limk→∞ (I + P + · · · + Pk−1)/k and limk→∞ Pk (if it exists) have?
Note: The purpose of this exercise is to show that doubly-stochastic
matrices are not very interesting from a Markov-chain point of view.
However, there is an interesting theoretical result (due to G. Birkhoff
in 1946) that says the set of n× n doubly-stochastic matrices forms
a convex polyhedron in �n×n with the permutation matrices as the
vertices.
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8.4.3. Explain why rank (I−P) = n− 1 for every irreducible stochastic ma-
trix Pnn. Give an example to show that this need not be the case for
reducible stochastic matrices.

8.4.4. Prove that the left-hand Perron vector for an irreducible stochastic ma-
trix Pn×n (n > 1) is given by

πT =
1∑n

i=1 Pi

(
P1, P2, . . . , Pn

)
,

where Pi is the ith principal minor determinant of order n−1 in I−P.
Hint: What is [adj (A)]A if A is singular?

8.4.5. Let Pn×n be an irreducible stochastic matrix, and let Qk×k be a prin-
cipal submatrix of I−P, where 1 ≤ k < n. Prove that ρ (Q) < 1.

8.4.6. Let Pn×n be an irreducible stochastic matrix, and let Qk×k be a prin-
cipal submatrix of I − P, where 1 ≤ k < n. Explain why Q is an
M-matrix as defined and discussed on p. 626.

8.4.7. Let Pn×n (n > 1) be an irreducible stochastic matrix. Explain why all
principal minors of order 1 ≤ k < n in I−P are positive.

8.4.8. Use the same assumptions that are used for the fail-safe system described
in Example 8.4.5, but use three controls, A, B, and C, instead of two.
Determine the mean time to failure starting with three proven controls,
two proven but one untested control, and three untested controls.

8.4.9. A mouse is placed in one chamber of the box shown in Figure 8.4.1 on
p. 688, and a cat is placed in another chamber. Each minute the doors to
the chambers are opened just long enough to allow movement from one
chamber to an adjacent chamber. Half of the time when the doors are
opened, the cat doesn’t leave the chamber it occupies. The same is true
for the mouse. When either the cat or mouse moves, a door is chosen at
random to pass through.

(a) Explain why the cat and mouse must eventually end up in the
same chamber, and determine the expected number of steps for
this to occur.

(b) Determine the probability that the cat will catch the mouse in
chamber #j for each j = 1, 2, 3.
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Technical skill is mastery of complexity while
creativity is mastery of simplicity.

— E. Christopher Zeeman (1925–)
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cofactor, 477, 487

expansion, 478, 481
Collatz, Lothar, 666
Collatz–Wielandt formula, 666, 673, 686
column, 7

equivalence, 134
and nullspace, 177

operations, 14, 134
rank, 198
relationships, 50, 136
scaling, 27
space, 170, 171, 178

spanning set for, 172
vector, 8, 81

Comdico, David, xii
commutative law, 97
commutative property of addition, 82
commuting matrices, eigenvectors, 503, 522
companion matrix, 648
compatibility of norms, 285
compatible norms, 279, 280
competing species model, 546
complementary projector, 386
complementary subspaces, 383, 403

angle between, 389, 450
complete pivoting, 28

numerical stability, 349
complete set of eigenvectors, 507
complex conjugate, 83
complex exponential, 362, 544

complex numbers, the set of, 81
component matrices, 604
component vectors, 384
composition

of linear functions, 93
of linear transformations, 245, 246
of matrix functions, 608, 615

computer graphics, 328, 330
condition number

for eigenvalues, 528
generalized, 426
for matrices, 127, 128, 414, 415

condition of
eigenvalues, hermitian matrices, 552
linear system, 128

conditioning and pivots, 426
conformable, 96
conformably partitioned, 111
congruence transformation, 568
conjugate, complex, 83
conjugate gradient algorithm, 657
conjugate matrix, 84
conjugate transpose, 84

reverse order law, 109
conjugate vectors, 657
connected graph, 202
connectivity and linear dependence, 208
connectivity matrix, 100
consistent system, 53, 54
constituent matrices, 604
continuity

of eigenvalues, 497
of inversion, 480
of norms, 277

continuous Fourier transform, 357
continuous functions, max and min, 276
convergence, 276, 277
convergent matrix, 631
converse of a statement, 54
convolution

with circulants, 380
definition, 366
operation count, 377
theorem, 367, 368, 377

Cooley, J. W., 368, 375, 651
cooperating species model, 546
coordinate matrix, 242
coordinates, 207, 240, 299

change of, 252
of a vector, 240

coordinate spaces, 161
core-nilpotent decomposition, 397
correlation, 296
correlation coefficient, 297
cosine

of angle, 295
minimal angle, 450

discrete, 361
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Courant–Fischer theorem, 550
alternate, 557
for singular values, 555

Courant, Richard, 550
covariance, 447
Cramer, Gabriel, 476
Cramer’s rule, 459, 476
critical point, 570
cross product, 332, 339
Cuomo, Kelly, xii
curve fitting, 186, 229

D

defective, 507
deficient, 496, 507
definite matrices, 559
deflation, eigenvalue problems, 516
dense matrix, 350
dependent set, 181
derivative

of a determinant, 471, 474, 486
of a linear system, 130
of a matrix, 103, 226
operator, 245

determinant, 461
computing, 470
of a product, 467
as product of eigenvalues, 494
of a sum, 485
and volume, 468

deviation from symmetry, 436
diagonal dominance, 639
diagonal matrix, 85

eigenvalues of, 501
inverse of, 122

diagonalizability, 507
being arbitrarily close to, 533
in terms of minimum polynomial, 645
in terms of multiplicities, 512
summary, 520

diagonalization
of circulants, 379
Jacobi’s method, 353
of normal matrices, 547
simultaneous, 522

diagonally dominant, 184, 499, 622, 623, 639
systems, 193

difference equations, 515, 616
difference of matrices, 82
difference of projectors, 393
differential equations, 489, 541, 542

independent solutions, 481
nonhomogeneous, 609
solution of, 546
stability, 544, 609
systems, 608
uncoupling, 559

diffusion equation, 563
diffusion model, 542
dimension, 196

of direct sum, 383
of fundamental subspaces, 199
of left-hand nullspace, 218
of nullspace, 218
of orthogonal complement, 339
of range, 218
of row space, 218
of space of linear transformations, 241
of subspace, 198
of sum, 205

direct product, 380, 597
direct sum, 383

of linear operators, 399
of several subspaces, 392
of symmetric and skew-symmetric matrices, 391

directed distance between subspaces, 453
directed graph, 202
Dirichlet, Johann P. G. L, 563, 597
Dirichlet problem, 563
discrete Fourier transform, 356, 358
discrete Laplacian, 563

eigenvalues of, 598
discrete sine, cosine, and exponential, 361
disjoint subspaces, 383
distance, 271

to lower-rank matrices, 417
between subspaces, 450
to symmetric matrices, 436
between a vector and a subspace, 435

distinct eigenvalues, 514
distributions, 532
distributive property

of matrix multiplication, 105
of scalar multiplication, 83

domain, 89
doubly stochastic, 702
Drazin generalized inverse, 399, 401, 422, 640

Cauchy formula, 615
integral representation, 441

Drazin, M. P., 399
Duffin, R. J., 441
Duncan, W. J., 124

E

Eckart, C., 411
economic input–output model, 681
edge matrix, 331
edges, 202
eigenpair, 490
eigenspace, 490
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eigenvalues, 266, 410, 490
bounds for, 498
continuity of, 497
determinant and trace, 494
distinct, 514
generalized, 571
index of, 401, 587, 596
perturbations and condition of, 528, 551
semisimple, 596
sensitivity, hermitian matrices, 552
unit, 696

eigenvalues of
bordered matrices, 552
discrete Laplacian, 566, 598
triangular and diagonal matrices, 501
tridiagonal Toeplitz matrices, 514

eigenvectors, 266, 490
of commuting matrices, 503
generalized, 593, 594
independent, 511
of tridiagonal Toeplitz matrices, 514

electrical circuits, 73, 204
elementary matrices, 131–133

interchange matrices, 135, 140
elementary orthogonal projector, 322, 431

rank of, 337
elementary reflector, 324, 444

determinant of, 485
elementary row and column operations, 4, 8

and determinants, 463
elementary triangular matrix, 142
ellipsoid, 414

degenerate, 425
elliptical inner product, 286
elliptical norm, 288
EP matrices, 408
equal matrices, 81
equivalence, row and column, 134

testing for, 137
equivalent norms

matrices, 425
vectors, 276

equivalent statements, 54
equivalent systems, 3
ergodic class, 695
error, absolute and relative, 414
essentially positive matrix, 686
estimators, 446
euclidean norm, 270

unitary invariance of, 321
evolutionary processes, 616
exponential

complex, 544
discrete, 361
matrix, 441, 525

inverse of, 614
products of, 539
sums of, 614

extending to a basis, 201
extending to an orthonormal basis, 325, 335, 338, 404
extension set, 188

F

Faddeev and Sominskii, 504
fail-safe system, 701
fast Fourier transform (FFT), 368

FFT algorithm, 368, 370, 373, 381, 651
FFT operation count, 377

fast integer multiplication, 375
filtering random noise, 418
finite difference matrix, 522, 639
finite-dimensional spaces, 195
finite group, 676
Fischer, Ernst, 550
five-point difference equations, 564
fixed points, 386, 391

of a reflector, 338
flatness, 164
floating-point number, 21
forward substitution, 145
four fundamental subspaces, 169

summary, 178
Fourier coefficients, 299
Fourier expansion, 299

and projection, 440
Fourier, Jean Baptiste Joseph, 299
Fourier matrix, 357
Fourier series, 299, 300
Fourier transform

continuous, 357
discrete, 356, 358

Frame, J. S., 504
Francis, J. F. G., 535
Fréchet, Maurice, R., 289
free variables, 58, 61

in nonhomogeneous systems, 70
frequency, 362
frequency domain, 363
Frobenius, Ferdinand Georg, 44, 123, 215, 662
Frobenius form, 680
Frobenius inequality, 221
Frobenius matrix norm, 279, 425, 428

and inner product, 288
of rank-one matrices, 391
unitary invariance of, 337

Frobenius test for primitivity, 678
full-rank factorization, 140, 221, 633

for determining index, 640
of a projector, 393

function
affine, 89
composition of, 93, 615, 608
domain of, 89
linear, 89, 238
norm of, 288
range of, 89
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functional matrix identities, 608
functions of

diagonalizable matrices, 526
of Jordan blocks, 600
matrices, 601

using Cauchy integral formula, 611
using Cayley–Hamilton theorem, 614

nondiagonalizable matrices, 603
fundamental mode of vibration, 562
fundamental problem of matrix theory, 506
fundamental subspaces, 169

dimension of, 199
orthonormal bases for, 407
projector onto, 434

fundamental theorem of algebra, 185, 492
fundamental theorem of linear algebra, 405

G

gap, 453, 454
Gauss, Carl F., ix, 2, 93, 234, 488

as a teacher, 353
Gaussian elimination, 2, 3

and LU factorization, 141
effects of roundoff, 129
modified, 43
numerical stability, 348
operation counts, 10

Gaussian transformation, 341
Gauss–Jordan method, 15, 47, 48

for computing a matrix inverse, 118
operation counts, 16

Gauss–Markov theorem, 229, 448
Gauss–Seidel method, 622
general solution

algebraic equations
homogeneous systems, 59, 61,
nonhomogeneous systems, 64, 66, 70, 180, 221

difference equations, 616
differential equations, 541, 609

generalized condition number, 426
generalized eigenvalue problem, 571
generalized eigenvectors, 593, 594
generalized inverse, 221, 393, 422, 615

Drazin, 399
group, 402
and orthogonal projectors, 434

generalized minimal residual (GMRES), 655
genes and chromosomes, 543
geometric multiplicity, 510
geometric series, 126, 527, 618
Gerschgorin circles, 498
Gerschgorin, S. A., 497
Givens reduction, 344

and determinants, 485
numerical stability, 349

Givens rotations, 333
Givens, Wallace, 333

GMRES, 655
Golub, Gene H., xii
gradient, 570
Gram, Jorgen P., 307
Gram matrix, 307
Gram–Schmidt algorithm

classical version, 309
implementations of, 319
and minimum polynomial, 643
modified version, 316
numerical stability of, 349
and volume, 431

Gram–Schmidt process, 345
Gram–Schmidt sequence, 308, 309
graph, 202

of a matrix, 209, 671
graphics, 3-D rotations, 328, 330
Grassmann, Hermann G., 160
Graybill, Franklin A., xii
grid norm, 274
grid points, 18
group, finite, 676
group inverse, 402, 640, 641
growth in Gaussian elimination, 26
Guttman, L., 124

H

Hadamard, Jacques, 469, 497
Hadamard’s inequality, 469
Halmos, Paul, xii, 268
Hamilton, William R., 509
harmonic functions, 563
Haynsworth, Emilie V., 123
heat equation, 563
Helfrich, Laura, xii
Hermite, Charles, 48
Hermite interpolation polynomial, 607
Hermite normal form, 48
Hermite polynomial, 231
hermitian matrix, 85, 409, 410

condition of eigenvalues, 552
eigen components of, 549

Hessenberg matrices 350
QR factorization of, 352

Hessian matrix, 570
Hestenes, Magnus R., 656
hidden surfaces, 332, 339
Hilbert, David, 307
Hilbert matrix, 14, 31, 39
Hilbert–Schmidt norm, 279
Hohn, Franz, xii
Hölder, Ludwig O., 278
Hölder’s inequality, 274, 277, 278
homogeneous systems, 57, 61
Hooke, Robert, 86
Hooke’s law, 86
Horn, Roger, xii
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Horst, Paul, 504
Householder, Alston S., 324
Householder reduction, 341, 342

and determinants, 485
and fundamental subspaces, 407
numerical stability, 349

Householder transformations, 324
hyperplane, 442

I

idempotent, 113, 258, 339, 386
and projectors, 387

identity matrix, 106
identity operator, 238
ill-conditioned matrix, 127, 128, 415
ill-conditioned system, 33, 535

normal equations, 214
image and image space, 168, 170

dimension of, 208
image of unit sphere, 417
imaginary, pure, 556
imprimitive matrices, 674

maximal root of, 676
spectrum of, 677
test for, 678

imprimitivity, index of, 679, 680
incidence matrix, 202
inconsistent system, 53
independent columns, 218
independent eigenvectors, 511
independent rows, 218
independent set, 181

basic facts, 188
maximal, 186

independent solutions
for algebraic equations, 209
for differential equations, 481

index
of an eigenvalue, 401, 587, 596
of imprimitivity, 674, 679, 680
of nilpotency, 396
of a square matrix, 394, 395

by full-rank factorization, 640
induced matrix norm, 280, 389

of A−1, 285
elementary properties, 285
of rank-one matrices, 391
unitary invariance of, 337

inertia, 568
infinite-dimensional spaces, 195
infinite series and matrix functions, 527
infinite series of matrices, 605
information retrieval, 419
inner product, 286

geometric interpretation, 431
input–output economic model, 681
integer matrices, 156, 473, 485

integer multiplication, 375
integral formula

for generalized inverses, 441
for matrix functions, 611

intercept model, 447
interchange matrices, 135, 140
interlacing of eigenvalues, 552
interpolation

formula for f(A), 529
Hermite polynomial, 607
Lagrange polynomial, 186

intersection of subspaces
basis for, 211
projection onto, 441

invariant subspace, 259, 262, 263
inverse Fourier transform, 358
inverse iteration, 534
inverse matrix, 115

best approximation to, 428
Cauchy formula for, 615
computation of, 118

operation counts, 119
continuity of, 480
determinants, 479
eigenvalues of, 501
existence of, 116
generalized, 615
integral representation of, 441
norm of, 285
properties of, 120
of a sum, 220

invertible operators, 246, 250
invertible part of an operator, 399
involutory, 113, 325, 339, 485
irreducible Markov chain, limits, 693
irreducible matrix, 209, 671
isometry, 321
iteration matrix, 620
iterative methods, 620

J

Jacobi’s diagonalization method, 353
Jacobi’s iterative method, 622, 626
Jacobi, Karl G. J., 353
Johnson, Charlie, xii
Jordan blocks, 588, 590

functions of, 600
nilpotent, 579

Jordan chains, 210, 401, 575, 576, 593
construction of, 594

Jordan form, 397, 408, 589, 590
for nilpotent matrices, 579
preliminary version, 397

Jordan, Marie Ennemond Camille, 15, 411, 589
Jordan segment, 588, 590
Jordan structure of matrices, 580, 581, 586, 589

uniqueness of, 580
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Jordan, Wilhelm, 15

K

Kaczmarz’s projection method, 442, 443
Kaczmarz, Stefan, 442
Kaplansky, Irving, 268
Kearn, Vickie, xi, 12
kernel, 173
Kirchhoff’s rules, 73

loop rule, 204
Kline, Morris, 80
Kowa, Seki, 459
Kronecker, Leopold, 597
Kronecker product, 380, 597

and the Laplacian, 573
Krylov, Aleksei Nikolaevich, 645
Krylov

method, 649
sequence, 401
subspaces, sequences, matrices, 646

Kummer, Ernst Eduard, 597

L

Lagrange interpolating polynomial, 186, 230, 233, 529
Lagrange, Joseph-Louis, 186, 572
Lagrange multipliers, 282
Lancaster, Peter, xii
Lanczos algorithm, 651
Lanczos, Cornelius, 651
Laplace’s determinant expansion, 487
Laplace’s equation, 624
Laplace, Pierre-Simon, 81, 307, 487, 572
Laplacian, 563
latent semantic indexing, 419
latent values and vectors, 490
law of cosines, 295
LDU factorization, 154
leading principal minor, 558
leading principal submatrices, 148, 156
least common multiple, 647
least squares, 226, 439

and Gram–Schmidt, 313
and orthogonal projection, 437
and polynomial fitting, 230
and pseudoinverse, 438
and QR factorization, 346
total least squares, 223
why least squares?, 446

LeBlanc, Kathleen, xii
left-hand eigenvectors, 490, 503, 516, 523, 524

in inverses, 521
and projectors, 518

left-hand nullspace, 174, 178, 199
spanning set for, 176

Legendre, Adrien–Marie, 319, 572
Legendre polynomials, 319

Legendre’s differential equation, 319
Leibniz, Gottfried W., 459
length of a projection, 323
Leontief’s input–output model, 681
Leontief, Wassily, 681
Leslie, P. H., 684
Leslie population model, 683
Leverrier–Souriau–Frame Algorithm, 504
Leverrier, U. J. J., 504
Lévy, L., 497
limiting distribution, 531, 636
limits

and group inversion, 640
in Markov chains

irreducible Markov chains, 693
reducible Markov chains, 698

of powers of matrices, 630
and spectral radius, 617
of vector sequences, 639
in vector spaces, 276, 277

Lindemann, Carl Louis Ferdinand von, 662
linear

algebra, 238
combination, 91
correlation, 296, 306
dependence and connectivity, 208
estimation, 446
functions, 89, 238

defined by matrix multiplication, 106
defined by systems of equations, 99

models, 448
operators, 238

and block matrices, 392
regression, 227, 446
spaces, 169
stationary iterations, 620
transformation, 238

linearly independent and dependent sets, 181
basic facts, 188
maximal, 186
and rank, 183

linearly independent eigenvectors, 511
lines in �n not through the origin, 440
lines, projection onto, 440
long-run distribution, 531
loop, 73

equations, 204
rule, 74
simple, 75

lower triangular, 103
LU factorization, 141, 144

existence of, 149
with interchanges, 148
operation counts, 146
summary, 153
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M

main diagonal, 41, 85
Markov, Andrei Andreyevich, 687
Markov chains, 532, 638, 687

absorbing, 700
periodic, 694

mass-stiffness equation, 571
matrices, the set of, 81
matrix, 7

diagonal 85
exponential, 441, 525, 529

and differential equations, 541, 546, 608
inverse of, 614
products, 539
sums, 614

functions, 526, 601
as infinite series, 527
as polynomials, 606

group, 402
multiplication, 96

by blocks, 111
as a linear function, 106
properties of, 105
relation to linear transformations, 244

norms, 280
1-norm, 283
2-norm, 281, 425
∞-norm, 127, 283
Frobenius norm, 425
induced norm, 285

polynomials, 501
product, 96
representation of a projector, 387
representations, 262
triangular 41

maximal angle, 455
maximal independent set, 218
maximal linearly independent subset, 186, 196
maximum and minimum of continuous functions, 276
McCarthy, Joseph R., 651
mean, 296, 447
Meyer

Bethany B., xii
Carl, Sr., xii
Holly F., xii
Louise, xii
Margaret E., xii
Martin D., xii

min-max theorem, 550
alternate formulation, 557
for singular values, 555

minimal angle, 450
minimal spanning set, 196, 197
minimum norm least squares solution, 438
minimum norm solution, 426

minimum polynomial, 642
determination of, 643
of a vector, 646

minimum variance estimator, 446
Minkowski, Hermann, 184, 278, 497, 626
Minkowski inequality, 278
minor determinant, principal, 559, 466
MINRES algorithm, 656
Mirsky, Leonid, xii
M-matrix, 626, 639, 682, 703
modern least squares, 437
modified gaussian elimination, 43
modified Gram–Schmidt algorithm, 316
monic polynomial, 642
Montgomery, Michelle, xii
Moore, E. H., 221
Moore–Penrose generalized inverse, 221, 422, 400

best approximate inverse, 428
integral representation, 441
and orthogonal projectors, 434

Morrison, W. J., 124
multiplication

of integers, 375
of matrices, 96
of polynomials, 367

multiplicities, 510
and diagonalizability, 512

multiplier, 22, 25
in partial pivoting, 26

N

negative definite, 570
Neumann series, 126, 527, 618
Newton, 86
Newton’s identities, 504
Newton’s second law, 560
nilpotent, 258, 396, 502, 510

Jordan blocks, 579
part of an operator, 399

Noble, Ben, xii
node, 18, 73, 202, 204

rule, 74, 204
no-intercept model, 447
noise removal with SVD, 418
nonbasic columns, 50, 61
nonderogatory matrices, 644, 648
nondiagonalizable, spectral resolution, 603
nonhomogeneous differential equations, 609
nonhomogeneous systems, 57, 64

general solution, 64, 66, 70
summary, 70

nonnegative matrices, 661, 670
nonsingular matrices, 115

and determinants, 465
and elementary matrices, 133
products of, 121
sequences of, 220
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norm, 269
compatibility, 279, 280, 285
elliptical, 288
equivalent, 276, 425
of a function, 288
on a grid, 274
of an inverse, 285
for matrices, 280

1-, 2-, and ∞-norms, 281, 283
Frobenius, 279, 337
induced, 280, 285, 337

of a projection, 323
for vectors, 275

1-, 2-, and ∞-norms, 274
p-norms, 274

of a waveform, 382
normal equations, 213, 214, 221, 226, 313, 437
normalized vector, 270
normal matrix, 304, 400, 409, 547
nullity, 200, 220
nullspace, 173, 174, 178, 199

equality, 177
of an orthogonal projector, 434
of a partitioned matrix, 208
of a product, 180, 220
spanning set for, 175
and transpose, 177

number of pivots, 218
numerical stability, 347

O

oblique projection, 385
method for linear systems, 443

oblique projectors from SVD, 634
Ohm’s law, 73
Oh notation O(hp) , 18
one-to-one mapping, 250
onto mapping, 250
operation counts

for convolution, 377
for Gaussian elimination, 10
for Gauss–Jordan method, 16
for LU factorization, 146
for matrix inversion, 119

operator, linear, 238
operator norm, 280
Ortega, James, xii
orthogonal complement, 322, 403

dimension of, 339
involving range and nullspace, 405

orthogonal decomposition theorem, 405, 407
orthogonal diagonalization, 549
orthogonal distance, 435
orthogonal matrix, 320

determinant of, 473

orthogonal projection, 239, 243, 248, 299, 305, 385, 429
and 3-D graphics, 330
onto an affine space, 436
and least squares, 437

orthogonal projectors, 322, 410, 427, 429
elementary, 431
formulas for, 430
onto an intersection, 441
and pseudoinverses, 434
sums of, 441

orthogonal reduction, 341
to determine full-rank factorization, 633
to determine fundamental subspaces, 407

orthogonal triangularization, 342
orthogonal vectors, 294
orthonormal basis, 298

extending to, 325, 335, 38
for fundamental subspaces, 407
by means of orthogonal reduction, 355

orthonormal set, 298
Ostrowski, Alexander, 626
outer product, 103
overrelaxation, 624

P

Painter, Richard J., xii
parallelepiped, 431, 468
parallelogram identity, 290, 291
parallelogram law, 162
parallel sum, 441
parity of a permutation, 460
Parseval des Chênes, M., 305
Parseval’s identity, 305
partial pivoting, 24

and diagonal dominance, 193
and LU factorization, 148
and numerical stability, 349

particular solution, 58, 65–68, 70, 180, 213
partitioned matrix, 111

and linear operators, 392
rank and nullity of, 208

Peano, Giuseppe, 160
Penrose equations, 422
Penrose, Roger, 221
perfect shuffle, 372, 381
period of trigonometric functions, 362
periodic extension, 302
periodic function, 301
periodic Markov chain, 694
permutation, 460

symmetric, 671
permutation counter, 151
permutation matrix, 135, 140, 151
perpendicular, 294
perp, properties of, 404, 409
Perron–Frobenius theory, 661, 673
Perron, Oskar, 661
Perron root, 666, 668
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Perron vector, 665, 668, 673
perturbations

affecting rank, 216
eigenvalues, 528

hermitian eigenvalues, 551
in inverses, 128
in linear systems, 33, 128, 217
rank-one update, 208
singular values, 421

Piazzi, Giuseppe, 233
pivot

conditioning, 426
determinant formula for, 474, 558
elements and equations, 5
positions, 5, 58, 61

in partial pivoting, 24
uniqueness, 44

pivoting
complete, 28
partial, 24

plane rotation, 333
determinant of, 485

p-norm, 274
Poisson’s equation, 563, 572
Poisson, Siméon D., 78, 572
polar factorization, 572
polarization identity, 293
polynomial

equations, 493
in a matrix, 501
and matrix functions, 606
minimum, 642
multiplication and convolution, 367

polytope, 330, 339
ponderal index, 236
poor man’s root finder, 649
population distribution, 532
population migration, 531
population model, Leslie, 683
positive definite form, 567
positive definite matrix, 154, 474, 558, 559
positive matrix, 661, 663
positive semidefinite matrix, 558, 566
Poulson, Deborah , xii
power method, 532, 533
powers of a matrix, 107

limiting values, 530
powers of linear transformations, 248
precision, 21
preconditioned system, 658
predator–prey model, 544
primitive matrices, 674

test for, 678
principal angles, 456
principal minors, 494, 558

in an M-matrix, 626, 639
nonnegative, 566
positive, 559

principal submatrix, 494, 558
and interlaced eigenvalues, 553
of an M-matrix, 626
of a stochastic, 703

products
of matrices, 96
of nonsingular matrices, 121
of orthogonal projectors, 441
of projectors, 393

product rule for determinants, 467
projection, 92, 94, 322, 385, 429

and Fourier expansion, 440
method for solving linear systems, 442, 443
onto

affine spaces, 436
fundamental subspaces, 434
hyperplanes, 442
lines, 440, 431
oblique subspaces, 385
orthogonal subspaces, 429
symmetric matrices, 436

projectors, 239, 243, 339, 385, 386
complementary, 386
from core-nilpotent decomposition, 398
difference of, 393
from full-rank factorization, 633, 634
as idempotents, 387
induced norm of, 389
matrix representation of, 387
oblique, 386
orthogonal, 429
product of, 393
spectral, 517, 603
sum of, 393

proper values and vectors, 490
pseudoinverse, 221, 422, 615

as best approximate inverse, 428
Drazin, 399
group, 402
inner, outer, reflexive, 393
integral representation of, 441, 615
and least squares, 438
Moore–Penrose, 422
and orthogonal projectors, 434

pure imaginary, 556
Pythagorean theorem, 294, 305, 423

and closest point theorem, 435
for matrices with Frobenius norm, 428

Q

QR factorization, 345, 535
and Hessenberg matrices, 352
and least squares, 346
and minimum polynomial, 643
rectangular version of, 311
and volume, 431

quadratic form, 567
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quaternions, 509

R

random integer matrices, 156
random walk, 638
range

of a function, 89, 169
of a matrix, 170, 171, 178, 199
of an operator, 250
of an orthogonal projector, 434
of a partitioned matrix, 179
of a product, 180, 220
of a projector, 391
of a sum, 206

range-nullspace decomposition, 394, 407
range-symmetric matrices, 408
rank, 45, 139

of a block diagonal matrix, 137
and consistency, 54
and determinants, 466
of a difference, 208
of an elementary projector, 337
and free variables, 61
of an incidence matrix, 203
and independent sets, 183
and matrix inverses, 116
and nonhomogeneous systems, 70
and nonsingular submatrices, 218
numerical determination, 421
of a partitioned matrix, 208
of a perturbed matrix, 216
of a product, 210, 211, 219
of a projector, 392
and submatrices, 215
of a sum, 206, 221
summary, 218
and trivial nullspaces, 175

rank normal form, 136
rank-one matrices

characterization of, 140
diagonalizability of, 522
perturbations of, 208

rank-one updates
determinants of, 475
eigenvalues of, 503

rank plus nullity theorem, 199, 410
Rayleigh, Lord, 550
Rayleigh quotient, 550

iteration, 535
real numbers, the set of, 81
real Schur form, 524
real-symmetric matrix, 409, 410
rectangular matrix, 8
rectangular QR factorization, 311
rectangular systems, 41
reduced row echelon form, 48
reducible Markov chain, 698

reducible matrices, 209, 671
canonical form for, 695
in linear systems, 112

reflection, 92, 94
about a hyperplane, 445
method for solving linear systems, 445

reflector, 239, 324, 444
determinant of, 485

reflexive pseudoinverse, 393
regression, 227, 446
relative uncertainty or error, 414
relaxation parameter, 445, 624
residual, 36, 416
resolvent, 285, 611
restricted operators, 259, 393, 399
restricted transformations, 424
reversal matrix, 596
reverse order law

for inversion, 120, 121
for transpose and conjugate transpose, 109

reversing binary bits, 372
Richardson iterative method, 622
right angle, 294
right-hand rule, 340
right-hand side, 3
Ritz values, 651
roots of unity, 356

and imprimitive matrices, 676
Rose, Nick, xii
rotation, 92, 94

determinant of, 485
plane (Givens rotations), 333

in �2, 326

in �3, 328
in �n, 334

rotator, 239, 326
rounding convention, 21
roundoff error, 21, 129, 347
row, 7

echelon form, 44
reduced, 48

equivalence, 134, 218
and nullspace, 177

operations, 134
rank, 198
relationships, 136
scaling, 27
space, 170, 171, 178, 199

spanning set for, 172
vector, 8, 81

RPN matrices, 408
Rutishauser, Heinz, 535

S

Saad, Yousef, 655
saw-toothed function, 306
scalar, 7, 81
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scalar multiplication, 82, 83
scale, 27
scaling a linear system, 27, 28
scaling in 3-D graphics, 332
Schmidt, Erhard, 307
Schrödinger, Erwin, 651
Schultz, Martin H., 655
Schur complements, 123, 475
Schur form for real matrices, 524
Schur, Issai, 123, 508, 662
Schur norm, 279
Schur triangularization theorem, 508
Schwarz, Hermann A., 271, 307
search engine, 418, 419
sectionally continuous, 301
secular equation, 503
Seidel, Ludwig, 622
Sellers, Lois, xii
semiaxes, 414
semidefinite, 566
semisimple eigenvalue, 510, 591, 593, 596
semistable, 544
sensitivity, 128

minimum norm solution, 426
sequence

limit of, 639
of matrices, 220

series for f(A) , 605
shape, 8
shell game, 635
Sherman, J., 124
Sherman–Morrison formula, 124, 130
SIAM, 324, 333
signal processing, 359
signal-to-noise ratio, 418
sign of a permutation, 461
similar matrices, 255, 473, 506
similarity, 505

and block-diagonal matrices, 263
and block-triangular matrices, 263
and eigenvalues, 508
invariant, 256
and orthogonal matrices, 549
transformation, 255, 408, 506
and transpose, 596
unitary, 547

simple eigenvalue, 510
simple loops, 75
simultaneous diagonalization, triangularization, 522
simultaneous displacements, 622
sine, discrete, 361
singular matrix, 115

eigenvalues of, 501
sequences of, 220

singular systems, practical solution of, 217

singular values, 553
Courant–Fischer theorem, 555
and determinants, 473
as eigenvalues, 555
and the SVD, 412

size, 8
skew-hermitian matrices, 85, 88
skew-symmetric matrices, 85, 88, 391, 473

eigenvalues of, 549, 556
as exponentials, 539
vector space of, 436

SOR method, 624
Souriau, J. M., 504
spanning sets, 165

for column space, 172
for four fundamental subspaces, 178
for left-hand nullspace, 176
minimal, 197
for nullspace, 175
for row space, 172
test for, 172

sparse least squares, 237
sparse matrix, 350
spectral circle, imprimitive matrices, 676
spectral mapping property, 539, 613
spectral projectors, 517, 602, 603

commuting property, 522
interpolation formula for, 529
positivity of, 677
in terms of eigenvectors, 518

spectral radius, 497, 521, 540
Collatz–Wielandt formula, 666, 673, 686
as a limit, 619
and limits, 617

spectral representation of matrix functions, 526
spectral resolution of f(A) , 603
spectral theorem for diagonalizable matrices, 517
spectrum, 490

of imprimitive matrix, 677
spheres, 275
splitting, 620
spring-mass vibrations, 570
springs, 86
square

matrix, 8
system, 5
wave function, 301

stable, 544
algorithm, 217, 317, 347, 422
matrix, 544
system, 544, 609

standard
basis, 194, 240, 299
coordinates, 240
deviation, 296
inner product, 95, 271
scores, 296

standardization of data, 296
stationary distribution, 531, 693
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steady-state distribution, 531, 636
steepest descent, 657
step size, 19
Stewart, G. W., xii
Stiefel, Eduard, 656
stiffness

constant, 86
matrix, 87

stochastic matrix, 685, 687
doubly, 702
summability of, 697
unit eigenvalues of, 696

Strang, Gilbert, xii
strongly connected graph, 209, 671
Strutt, John W., 550
stuff in a vector space, 197, 200
subgroup, 402
submatrix, 7

as a block matrix, 111
and rank, 215

subscripts, 7
subset, 162
subspace, 162

angles or gaps between, 450
dimension of, 198
directed distance between, 453
four fundamental, 169
invariant, 259, 262, 263
maximal angle between, 455
sum of, 205

substochastic matrix, 685
successive displacements, 623
successive overrelaxation method, 624
sum

of matrices, 81
of orthogonal projectors, 441
of projectors, 393
of vector spaces, 166, 383

dimension of, 205
summable matrix and summability, 631, 633, 677

stochastic matrices, 697
superdiagonal, 575
SVD, 412

and full-rank factorization, 634
and oblique projectors, 634

switching circuits, 539
Sylvester, James J., 44, 80, 411
Sylvester’s law of inertia, 568
Sylvester’s law of nullity, 220
symmetric

functions, 494
matrices, 85

diagonalization and eigen components of, 549
reduction to tridiagonal form, 352
space of, 436

permutation, 671

T

Taussky-Todd, Olga, 497
Taylor series, 18, 570, 600
t-digit arithmetic, 21
tensor product, 380, 597

and the Laplacian, 573
term-by-document matrix, 419
text mining, 419
three-dimensional rotations, 328, 330
time domain, 363
Todd, John, 497
Toeplitz matrices, 514
Toeplitz, Otto, 514
total least squares, 223
trace, 90

and characteristic equation, 504
of imprimitive matrices, 678
inequalities, 293
of a linear operator, 256
of a product, 110, 114
of a projector, 392
as sum of eigenvalues, 494

transformation, linear, 238
transient behavior, 532
transient class, 695
transition diagram, 108, 531
transition matrix, 108, 531, 688
transitive operations, 257
translation, in 3-D graphics, 332
transpose, 83

and determinants, 463
nullspace, 177
properties of, 84
reverse order law for, 109
and similarity, 596

trapezoidal form, 342
trend of observations, 231
triangle inequality, 220, 273, 277

backward version, 273
triangular matrices, 41, 103

block versions, 112
determinant of, 462
eigenvalues of, 501
elementary, 142
inverses of, 122

triangularization, simultaneous, 522
triangularization using elementary reflectors, 342
triangular system, 6
tridiagonal matrix, 20, 156, 352

Toeplitz matrices, 514
trivial

nullspaces, 175
solution, 57, 60, 69

and nonhomogeneous systems, 70
and nonsingular matrices, 116

subspace, 162, 197
Tukey, J. W., 368, 375, 651
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two-point boundary value problem, 18

U

unbiased estimator for variance, 449, 446
uncertainties in linear systems, 414
underrelaxation, 624
unique solution

for differential equations, 541
and free variables, 61
for homogeneous systems, 61
for nonhomogeneous systems, 70

unitarily invariant norm, 425, 337
unitary diagonalization, 547
unitary matrices, 304, 320

determinant of, 473
unit columns, 102, 107
unit eigenvalues of stochastic matrices, 696
units, 27
unit sphere, 275

image of, 414, 425
unstable, 544
upper-trapezoidal form, 342, 344
upper triangular, 103
URV factorization, 406, 407

and full-rank factorization, 634

V

Vandermonde, Alexandre-Theophile, 185
Vandermonde determinant, 486
Vandermonde matrices, 185, 230, 357
Van Loan, Charlie, xii
variance, 447
vector, 159

norms, 274
spaces, 160

vertex matrix, 330
vibrations, small, 559
volume

by determinants, 468
by Gram–Schmidt, and QR, 431

von Mises, R., 533
von Neumann, John, 289

W

Weierstrass, Karl Theodor Wilhelm, 589, 662
well conditioned, 33, 127, 415
Weyl, Hermann, 160
why least squares?, 446
Wielandt, Helmut, 534, 666, 675, 679
Wielandt’s matrix, 685
Wielandt’s theorem, 675
Will, Marianne, xii
wire frame figure, 330
Woodbury, M., 124
Wronskian, 474, 481, 486

Wronski, Jozef M., 189
Wronski matrix, 189, 190

X, Y, Z

Young, David M., 625
Young, G., 411
Zeeman, E. Christopher, 704
zero nullspace, 175
zero transformation, 238
Z-matrix, 628, 639, 296
z-scores, 296
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