
CHAPTER 4

Vector
Spaces

4.1 SPACES AND SUBSPACES

After matrix theory became established toward the end of the nineteenth century,
it was realized that many mathematical entities that were considered to be quite
different from matrices were in fact quite similar. For example, objects such as
points in the plane �2, points in 3-space �3, polynomials, continuous functions,
and differentiable functions (to name only a few) were recognized to satisfy the
same additive properties and scalar multiplication properties given in §3.2 for
matrices. Rather than studying each topic separately, it was reasoned that it
is more efficient and productive to study many topics at one time by studying
the common properties that they satisfy. This eventually led to the axiomatic
definition of a vector space.

A vector space involves four things—two sets V and F , and two algebraic
operations called vector addition and scalar multiplication.
• V is a nonempty set of objects called vectors. Although V can be quite

general, we will usually consider V to be a set of n-tuples or a set of matrices.
• F is a scalar field—for us F is either the field � of real numbers or the

field C of complex numbers.
• Vector addition (denoted by x+y ) is an operation between elements of V.
• Scalar multiplication (denoted by αx ) is an operation between elements of
F and V.

The formal definition of a vector space stipulates how these four things relate
to each other. In essence, the requirements are that vector addition and scalar
multiplication must obey exactly the same properties given in §3.2 for matrices.
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Vector Space Definition
The set V is called a vector space over F when the vector addition
and scalar multiplication operations satisfy the following properties.

(A1) x+y ∈ V for all x,y ∈ V. This is called the closure property
for vector addition.

(A2) (x + y) + z = x + (y + z) for every x,y, z ∈ V.
(A3) x + y = y + x for every x,y ∈ V.
(A4) There is an element 0 ∈ V such that x + 0 = x for every

x ∈ V.
(A5) For each x ∈ V, there is an element (−x) ∈ V such that

x + (−x) = 0.

(M1) αx ∈ V for all α ∈ F and x ∈ V. This is the closure
property for scalar multiplication.

(M2) (αβ)x = α(βx) for all α, β ∈ F and every x ∈ V.
(M3) α(x + y) = αx + αy for every α ∈ F and all x,y ∈ V.
(M4) (α+ β)x = αx + βx for all α, β ∈ F and every x ∈ V.
(M5) 1x = x for every x ∈ V.

A theoretical algebraic treatment of the subject would concentrate on the
logical consequences of these defining properties, but the objectives in this text
are different, so we will not dwell on the axiomatic development.23 Neverthe-

23
The idea of defining a vector space by using a set of abstract axioms was contained in a general
theory published in 1844 by Hermann Grassmann (1808–1887), a theologian and philosopher
from Stettin, Poland, who was a self-taught mathematician. But Grassmann’s work was origi-
nally ignored because he tried to construct a highly abstract self-contained theory, independent
of the rest of mathematics, containing nonstandard terminology and notation, and he had a
tendency to mix mathematics with obscure philosophy. Grassmann published a complete re-
vision of his work in 1862 but with no more success. Only later was it realized that he had
formulated the concepts we now refer to as linear dependence, bases, and dimension. The
Italian mathematician Giuseppe Peano (1858–1932) was one of the few people who noticed
Grassmann’s work, and in 1888 Peano published a condensed interpretation of it. In a small
chapter at the end, Peano gave an axiomatic definition of a vector space similar to the one
above, but this drew little attention outside of a small group in Italy. The current definition is
derived from the 1918 work of the German mathematician Hermann Weyl (1885–1955). Even
though Weyl’s definition is closer to Peano’s than to Grassmann’s, Weyl did not mention his
Italian predecessor, but he did acknowledge Grassmann’s “epoch making work.” Weyl’s success
with the idea was due in part to the fact that he thought of vector spaces in terms of geometry,
whereas Grassmann and Peano treated them as abstract algebraic structures. As we will see,
it’s the geometry that’s important.
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less, it is important to recognize some of the more significant examples and to
understand why they are indeed vector spaces.

Example 4.1.1

Because (A1)–(A5) are generalized versions of the five additive properties of
matrix addition, and (M1)–(M5) are generalizations of the five scalar multipli-
cation properties given in §3.2, we can say that the following hold.

• The set �m×n of m× n real matrices is a vector space over �.
• The set Cm×n of m× n complex matrices is a vector space over C.

Example 4.1.2

The real coordinate spaces

�1×n = {(x1 x2 · · · xn ) , xi ∈ �} and �n×1 =






x1

x2
...
xn


 , xi ∈ �




are special cases of the preceding example, and these will be the object of most
of our attention. In the context of vector spaces, it usually makes no difference
whether a coordinate vector is depicted as a row or as a column. When the row or
column distinction is irrelevant, or when it is clear from the context, we will use
the common symbol �n to designate a coordinate space. In those cases where
it is important to distinguish between rows and columns, we will explicitly write
�1×n or �n×1. Similar remarks hold for complex coordinate spaces.

Although the coordinate spaces will be our primary concern, be aware that
there are many other types of mathematical structures that are vector spaces—
this was the reason for making an abstract definition at the outset. Listed below
are a few examples.

Example 4.1.3

With function addition and scalar multiplication defined by

(f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x),

the following sets are vector spaces over � :
• The set of functions mapping the interval [0, 1] into �.
• The set of all real-valued continuous functions defined on [0, 1].
• The set of real-valued functions that are differentiable on [0, 1].
• The set of all polynomials with real coefficients.



162 Chapter 4 Vector Spaces

Example 4.1.4

Consider the vector space �2, and let

L = {(x, y) | y = αx}

be a line through the origin. L is a subset of �2, but L is a special kind
of subset because L also satisfies the properties (A1)–(A5) and (M1)–(M5)
that define a vector space. This shows that it is possible for one vector space to
properly contain other vector spaces.

Subspaces
Let S be a nonempty subset of a vector space V over F (symbolically,
S ⊆ V). If S is also a vector space over F using the same addition
and scalar multiplication operations, then S is said to be a subspace of
V. It’s not necessary to check all 10 of the defining conditions in order
to determine if a subset is also a subspace—only the closure conditions
(A1) and (M1) need to be considered. That is, a nonempty subset S
of a vector space V is a subspace of V if and only if
(A1) x,y ∈ S =⇒ x + y ∈ S
and
(M1) x ∈ S =⇒ αx ∈ S for all α ∈ F .

Proof. If S is a subset of V, then S automatically inherits all of the vector
space properties of V except (A1), (A4), (A5), and (M1). However, (A1)
together with (M1) implies (A4) and (A5). To prove this, observe that (M1)
implies (−x) = (−1)x ∈ S for all x ∈ S so that (A5) holds. Since x and (−x)
are now both in S, (A1) insures that x + (−x) ∈ S, and thus 0 ∈ S.

Example 4.1.5

Given a vector space V, the set Z = {0} containing only the zero vector is
a subspace of V because (A1) and (M1) are trivially satisfied. Naturally, this
subspace is called the trivial subspace.

Vector addition in �2 and �3 is easily visualized by using the parallelo-
gram law, which states that for two vectors u and v, the sum u + v is the
vector defined by the diagonal of the parallelogram as shown in Figure 4.1.1.
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u = (u1,u2)

v = (v1,v2)

= (uu+v 1+v1, u2+v2)

Figure 4.1.1

We have already observed that straight lines through the origin in �2 are
subspaces, but what about straight lines not through the origin? No—they can-
not be subspaces because subspaces must contain the zero vector (i.e., they must
pass through the origin). What about curved lines through the origin—can some
of them be subspaces of �2? Again the answer is “No!” As depicted in Figure
4.1.2, the parallelogram law indicates why the closure property (A1) cannot be
satisfied for lines with a curvature because there are points u and v on the
curve for which u + v (the diagonal of the corresponding parallelogram) is not
on the curve. Consequently, the only proper subspaces of �2 are the trivial
subspace and lines through the origin.

u
v

u+v

Figure 4.1.2

u

v

u+v
α u

P

Figure 4.1.3

In �3, the trivial subspace and lines through the origin are again subspaces,
but there is also another one—planes through the origin. If P is a plane through
the origin in �3, then, as shown in Figure 4.1.3, the parallelogram law guarantees
that the closure property for addition (A1) holds—the parallelogram defined by
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any two vectors in P is also in P so that if u,v ∈ P, then u + v ∈ P. The
closure property for scalar multiplication (M1) holds because multiplying any
vector by a scalar merely stretches it, but its angular orientation does not change
so that if u ∈ P, then αu ∈ P for all scalars α. Lines and surfaces in �3 that
have curvature cannot be subspaces for essentially the same reason depicted in
Figure 4.1.2. So the only proper subspaces of �3 are the trivial subspace, lines
through the origin, and planes through the origin.

The concept of a subspace now has an obvious interpretation in the visual
spaces �2 and �3 —subspaces are the flat surfaces passing through the origin.

Flatness
Although we can’t use our eyes to see “flatness” in higher dimensions,
our minds can conceive it through the notion of a subspace. From now on,
think of flat surfaces passing through the origin whenever you encounter
the term “subspace.”

For a set of vectors S = {v1,v2, . . . ,vr} from a vector space V, the set of
all possible linear combinations of the vi ’s is denoted by

span (S) = {α1v1 + α2v2 + · · ·+ αrvr | αi ∈ F} .
Notice that span (S) is a subspace of V because the two closure properties
(A1) and (M1) are satisfied. That is, if x =

∑
i ξivi and y =

∑
i ηivi are two

linear combinations from span (S) , then the sum x+y =
∑

i(ξi + ηi)vi is also
a linear combination in span (S) , and for any scalar β, βx =

∑
i(βξi)vi is

also a linear combination in span (S) .

u

v αu

βv

αu + βv

Figure 4.1.4
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For example, if u �= 0 is a vector in �3, then span {u} is the straight
line passing through the origin and u. If S = {u,v}, where u and v are two
nonzero vectors in �3 not lying on the same line, then, as shown in Figure 4.1.4,
span (S) is the plane passing through the origin and the points u and v. As we
will soon see, all subspaces of �n are of the type span (S), so it is worthwhile
to introduce the following terminology.

Spanning Sets

• For a set of vectors S = {v1,v2, . . . ,vr} , the subspace

span (S) = {α1v1 + α2v2 + · · ·+ αrvr}

generated by forming all linear combinations of vectors from S is
called the space spanned by S.

• If V is a vector space such that V = span (S) , we say S is a
spanning set for V. In other words, S spans V whenever each
vector in V is a linear combination of vectors from S.

Example 4.1.6

(i) In Figure 4.1.4, S = {u,v} is a spanning set for the indicated plane.

(ii) S =
{(

1
1

)
,

(
2
2

)}
spans the line y = x in �2.

(iii) The unit vectors


e1 =


 1

0
0


 , e2 =


 0

1
0


 , e3 =


 0

0
1





 span �3.

(iv) The unit vectors {e1, e2, . . . , en} in �n form a spanning set for �n.

(v) The finite set
{
1, x, x2, . . . , xn

}
spans the space of all polynomials such

that deg p(x) ≤ n, and the infinite set
{
1, x, x2, . . .

}
spans the space of all

polynomials.

Example 4.1.7

Problem: For a set of vectors S = {a1,a2, . . . ,an} from a subspace V ⊆ �m×1,
let A be the matrix containing the ai ’s as its columns. Explain why S spans V
if and only if for each b ∈ V there corresponds a column x such that Ax = b
(i.e., if and only if Ax = b is a consistent system for every b ∈ V).
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Solution: By definition, S spans V if and only if for each b ∈ V there exist
scalars αi such that

b = α1a1 + α2a2 + · · ·+ αnan =
(
a1 | a2 | · · · | an

) 

α1

α2
...
αn


 = Ax.

Note: This simple observation often is quite helpful. For example, to test whether
or not S = {( 1 1 1 ) , ( 1 −1 −1 ) , ( 3 1 1 )} spans �3, place these
rows as columns in a matrix A, and ask, “Is the system

 1 1 3
1 −1 1
1 −1 1





x1

x2

x3


 =


 b1
b2
b3




consistent for every b ∈ �3?” Recall from (2.3.4) that Ax = b is consis-
tent if and only if rank[A|b] = rank (A). In this case, rank (A) = 2, but
rank[A|b] = 3 for some b ’s (e.g., b1 = 0, b2 = 1, b3 = 0), so S doesn’t span
�3. On the other hand, S ′ = {( 1 1 1 ) , ( 1 −1 −1 ) , ( 3 1 2 )} is a
spanning set for �3 because

A =


 1 1 3

1 −1 1
1 −1 2




is nonsingular, so Ax = b is consistent for all b (the solution is x = A−1b ).

As shown below, it’s possible to “add” two subspaces to generate another.

Sum of Subspaces
If X and Y are subspaces of a vector space V, then the sum of X
and Y is defined to be the set of all possible sums of vectors from X
with vectors from Y. That is,

X + Y = {x + y | x ∈ X and y ∈ Y}.

• The sum X + Y is again a subspace of V. (4.1.1)
• If SX , SY span X , Y, then SX ∪ SY spans X + Y. (4.1.2)
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Proof. To prove (4.1.1), demonstrate that the two closure properties (A1) and
(M1) hold for S = X+Y. To show (A1) is valid, observe that if u,v ∈ S, then
u = x1 + y1 and v = x2 + y2, where x1,x2 ∈ X and y1,y2 ∈ Y. Because
X and Y are closed with respect to addition, it follows that x1 + x2 ∈ X
and y1 + y2 ∈ Y, and therefore u + v = (x1 + x2) + (y1 + y2) ∈ S. To
verify (M1), observe that X and Y are both closed with respect to scalar
multiplication so that αx1 ∈ X and αy1 ∈ Y for all α, and consequently
αu = αx1 +αy1 ∈ S for all α. To prove (4.1.2), suppose SX = {x1,x2, . . . ,xr}
and SY = {y1,y2, . . . ,yt} , and write

z ∈ span (SX ∪ SY )⇐⇒z =
r∑

i=1

αixi +
t∑

i=1

βiyi = x + y with x ∈ X , y ∈ Y

⇐⇒z ∈ X + Y.

Example 4.1.8

If X ⊆ �2 and Y ⊆ �2 are subspaces defined by two different lines through
the origin, then X + Y = �2. This follows from the parallelogram law—sketch
a picture for yourself.

Exercises for section 4.1

4.1.1. Determine which of the following subsets of �n are in fact subspaces of
�n (n > 2).

(a) {x | xi ≥ 0}, (b) {x | x1 = 0}, (c) {x | x1x2 = 0},

(d)

{
x

∣∣∣ n∑
j=1

xj = 0

}
, (e)

{
x

∣∣∣ n∑
j=1

xj = 1

}
,

(f) {x | Ax = b, where Am×n �= 0 and bm×1 �= 0} .

4.1.2. Determine which of the following subsets of �n×n are in fact subspaces
of �n×n.

(a) The symmetric matrices. (b) The diagonal matrices.
(c) The nonsingular matrices. (d) The singular matrices.
(e) The triangular matrices. (f) The upper-triangular matrices.
(g) All matrices that commute with a given matrix A.
(h) All matrices such that A2 = A.
(i) All matrices such that trace (A) = 0.

4.1.3. If X is a plane passing through the origin in �3 and Y is the line
through the origin that is perpendicular to X , what is X + Y ?
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4.1.4. Why must a real or complex nonzero vector space contain an infinite
number of vectors?

4.1.5. Sketch a picture in �3 of the subspace spanned by each of the following.

(a)





 1

3
2


 ,


 2

6
4


 ,


−3
−9
−6





, (b)





−4

0
0


 ,


 0

5
0


 ,


 1

1
0





,

(c)





 1

0
0


 ,


 1

1
0


 ,


 1

1
1





 .

4.1.6. Which of the following are spanning sets for �3 ?

(a) {( 1 1 1 )} (b) {( 1 0 0 ) , ( 0 0 1 )},
(c) {( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) , ( 1 1 1 )},
(d) {( 1 2 1 ) , ( 2 0 −1 ) , ( 4 4 1 )},
(e) {( 1 2 1 ) , ( 2 0 −1 ) , ( 4 4 0 )}.

4.1.7. For a vector space V, and for M, N ⊆ V, explain why
span (M∪N ) = span (M) + span (N ) .

4.1.8. Let X and Y be two subspaces of a vector space V.
(a) Prove that the intersection X ∩ Y is also a subspace of V.
(b) Show that the union X ∪ Y need not be a subspace of V.

4.1.9. For A ∈ �m×n and S ⊆ �n×1, the set A(S) = {Ax |x ∈ S} contains
all possible products of A with vectors from S. We refer to A(S) as
the set of images of S under A.

(a) If S is a subspace of �n, prove A(S) is a subspace of �m.
(b) If s1, s2, . . . , sk spans S, show As1,As2, . . . ,Ask spans A(S).

4.1.10. With the usual addition and multiplication, determine whether or not
the following sets are vector spaces over the real numbers.

(a) �, (b) C, (c) The rational numbers.

4.1.11. Let M = {m1,m2, . . . ,mr} and N = {m1,m2, . . . ,mr,v} be two sets
of vectors from the same vector space. Prove that span (M) = span (N )
if and only if v ∈ span (M) .

4.1.12. For a set of vectors S = {v1,v2, . . . ,vn} , prove that span (S) is the
intersection of all subspaces that contain S. Hint: For M =

⋂
S⊆V

V,
prove that span (S) ⊆M and M⊆ span (S) .
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4.2 FOUR FUNDAMENTAL SUBSPACES

The closure properties (A1) and (M1) on p. 162 that characterize the notion
of a subspace have much the same “feel” as the definition of a linear function as
stated on p. 89, but there’s more to it than just a “similar feel.” Subspaces are
intimately related to linear functions as explained below.

Subspaces and Linear Functions
For a linear function f mapping �n into �m, let R(f) denote the
range of f. That is, R(f) = {f(x) |x ∈ �n} ⊆ �m is the set of all
“images” as x varies freely over �n.

• The range of every linear function f : �n → �m is a subspace of
�m, and every subspace of �m is the range of some linear function.

For this reason, subspaces of �m are sometimes called linear spaces.

Proof. If f : �n → �m is a linear function, then the range of f is a subspace
of �m because the closure properties (A1) and (M1) are satisfied. Establish
(A1) by showing that y1,y2 ∈ R(f)⇒ y1 +y2 ∈ R(f). If y1,y2 ∈ R(f), then
there must be vectors x1,x2 ∈ �n such that y1 = f(x1) and y2 = f(x2), so
it follows from the linearity of f that

y1 + y2 = f(x1) + f(x2) = f(x1 + x2) ∈ R(f).

Similarly, establish (M1) by showing that if y ∈ R(f), then αy ∈ R(f) for all
scalars α by using the definition of range along with the linearity of f to write

y ∈ R(f) =⇒ y = f(x) for some x ∈ �n =⇒ αy = αf(x) = f(αx) ∈ R(f).

Now prove that every subspace V of �m is the range of some linear function
f : �n → �m. Suppose that {v1,v2, . . . ,vn} is a spanning set for V so that

V = {α1v1 + · · ·+ αnvn |αi ∈ R}. (4.2.1)

Stack the vi ’s as columns in a matrix Am×n =
(
v1 |v2 | · · · |vn

)
, and put the

αi ’s in an n× 1 column x = (α1, α2, . . . , αn)T to write

α1v1 + · · ·+ αnvn =
(
v1 |v2 | · · · |vn

) 
 α1

...
αn


 = Ax. (4.2.2)

The function f(x) = Ax is linear (recall Example 3.6.1, p. 106), and we have
that R(f) = {Ax |x ∈ �n×1} = {α1v1 + · · ·+ αnvn |αi ∈ R} = V.
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In particular, this result means that every matrix A ∈ �m×n generates
a subspace of �m by means of the range of the linear function f(x) = Ax.
Likewise, the transpose 24 of A ∈ �m×n defines a subspace of �n by means
of the range of f(y) = AT y. These two “range spaces” are two of the four
fundamental subspaces defined by a matrix.

Range Spaces
The range of a matrix A ∈ �m×n is defined to be the subspace
R (A) of �m that is generated by the range of f(x) = Ax. That is,

R (A) = {Ax |x ∈ �n} ⊆ �m.

Similarly, the range of AT is the subspace of �n defined by

R
(
AT

)
= {AT y |y ∈ �m} ⊆ �n.

Because R (A) is the set of all “images” of vectors x ∈ �m under
transformation by A, some people call R (A) the image space of A.

The observation (4.2.2) that every matrix–vector product Ax (i.e., every
image) is a linear combination of the columns of A provides a useful character-
ization of the range spaces. Allowing the components of x = (ξ1, ξ2, . . . , ξn)T to
vary freely and writing

Ax =
(
A∗1 | A∗2 | · · · | A∗n

) 

ξ1
ξ2
...
ξn


 =

n∑
j=1

ξjA∗j

shows that the set of all images Ax is the same as the set of all linear combi-
nations of the columns of A. Therefore, R (A) is nothing more than the space
spanned by the columns of A. That’s why R (A) is often called the column
space of A.

Likewise, R
(
AT

)
is the space spanned by the columns of AT . But the

columns of AT are just the rows of A (stacked upright), so R
(
AT

)
is simply

the space spanned by the rows 25 of A. Consequently, R
(
AT

)
is also known as

the row space of A. Below is a summary.

24
For ease of exposition, the discussion in this section is in terms of real matrices and real spaces,

but all results have complex analogs obtained by replacing AT by A∗ .
25

Strictly speaking, the range of AT is a set of columns, while the row space of A is a set of
rows. However, no logical difficulties are encountered by considering them to be the same.
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Column and Row Spaces
For A ∈ �m×n, the following statements are true.

• R (A) = the space spanned by the columns of A (column space).

• R
(
AT

)
= the space spanned by the rows of A (row space).

• b ∈ R (A)⇐⇒ b = Ax for some x. (4.2.3)

• a ∈ R
(
AT

)
⇐⇒ aT = yT A for some yT . (4.2.4)

Example 4.2.1

Problem: Describe R (A) and R
(
AT

)
for A =

(
1 2 3
2 4 6

)
.

Solution: R (A) = span {A∗1,A∗2,A∗3} = {α1A∗1+α2A∗2+α3A∗3 |αi ∈ �},
but since A∗2 = 2A∗1 and A∗3 = 3A∗1, it’s clear that every linear combination
of A∗1, A∗2, and A∗3 reduces to a multiple of A∗1, so R (A) = span {A∗1} .
Geometrically, R (A) is the line in �2 through the origin and the point (1, 2).
Similarly, R

(
AT

)
= span {A1∗,A2∗} = {α1A1∗ + α2A2∗ | α1, α2 ∈ �} . But

A2∗ = 2A1∗ implies that every combination of A1∗ and A2∗ reduces to a
multiple of A1∗, so R

(
AT

)
= span {A1∗} , and this is a line in �3 through

the origin and the point (1, 2, 3).

There are times when it is desirable to know whether or not two matrices
have the same row space or the same range. The following theorem provides the
solution to this problem.

Equal Ranges
For two matrices A and B of the same shape:

• R
(
AT

)
= R

(
BT

)
if and only if A row∼ B. (4.2.5)

• R (A) = R (B) if and only if A col∼ B. (4.2.6)

Proof. To prove (4.2.5), first assume A row∼ B so that there exists a nonsingular
matrix P such that PA = B. To see that R

(
AT

)
= R

(
BT

)
, use (4.2.4) to

write
a ∈ R

(
AT

)
⇐⇒ aT = yT A = yT P−1PA for some yT

⇐⇒ aT = zT B for zT = yT P−1

⇐⇒ a ∈ R
(
BT

)
.



172 Chapter 4 Vector Spaces

Conversely, if R
(
AT

)
= R

(
BT

)
, then

span {A1∗,A2∗, . . . ,Am∗} = span {B1∗,B2∗, . . . ,Bm∗} ,
so each row of B is a combination of the rows of A, and vice versa. On the
basis of this fact, it can be argued that it is possible to reduce A to B by using
only row operations (the tedious details are omitted), and thus A row∼ B. The
proof of (4.2.6) follows by replacing A and B with AT and BT .

Example 4.2.2

Testing Spanning Sets. Two sets {a1,a2, . . . ,ar} and {b1,b2, . . . ,bs} in
�n span the same subspace if and only if the nonzero rows of EA agree with
the nonzero rows of EB, where A and B are the matrices containing the ai ’s
and bi ’s as rows. This is a corollary of (4.2.5) because zero rows are irrelevant
in considering the row space of a matrix, and we already know from (3.9.9) that
A row∼ B if and only if EA = EB.

Problem: Determine whether or not the following sets span the same subspace:

A =







1
2
2
3


 ,




2
4
1
3


 ,




3
6
1
4





 , B =







0
0
1
1


 ,




1
2
3
4





 .

Solution: Place the vectors as rows in matrices A and B, and compute

A =


 1 2 2 3

2 4 1 3
3 6 1 4


 →


 1 2 0 1

0 0 1 1
0 0 0 0


 = EA

and

B =
(

0 0 1 1
1 2 3 4

)
→

(
1 2 0 1
0 0 1 1

)
= EB.

Hence span {A} = span {B} because the nonzero rows in EA and EB agree.

We already know that the rows of A span R
(
AT

)
, and the columns of A

span R (A), but it’s often possible to span these spaces with fewer vectors than
the full set of rows and columns.

Spanning the Row Space and Range
Let A be an m× n matrix, and let U be any row echelon form derived
from A. Spanning sets for the row and column spaces are as follows:
• The nonzero rows of U span R

(
AT

)
. (4.2.7)

• The basic columns in A span R (A). (4.2.8)
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Proof. Statement (4.2.7) is an immediate consequence of (4.2.5). To prove
(4.2.8), suppose that the basic columns in A are in positions b1, b2, . . . , br,
and the nonbasic columns occupy positions n1, n2, . . . , nt, and let Q1 be the
permutation matrix that permutes all of the basic columns in A to the left-hand
side so that AQ1 = (Bm×r Nm×t ) , where B contains the basic columns and
N contains the nonbasic columns. Since the nonbasic columns are linear com-
binations of the basic columns—recall (2.2.3)—we can annihilate the nonbasic
columns in N using elementary column operations. In other words, there is a
nonsingular matrix Q2 such that (B N )Q2 = (B 0 ) . Thus Q = Q1Q2 is
a nonsingular matrix such that AQ = AQ1Q2 = (B N )Q2 = (B 0 ) , and
hence A col∼ (B 0 ). The conclusion (4.2.8) now follows from (4.2.6).

Example 4.2.3

Problem: Determine spanning sets for R (A) and R
(
AT

)
, where

A =


 1 2 2 3

2 4 1 3
3 6 1 4


 .

Solution: Reducing A to any row echelon form U provides the solution—the
basic columns in A correspond to the pivotal positions in U, and the nonzero

rows of U span the row space of A. Using EA =
(

1 2 0 1
0 0 1 1
0 0 0 0

)
produces

R (A) = span





 1

2
3


 ,


 2

1
1





 and R

(
AT

)
= span







1
2
0
1


 ,




0
0
1
1





 .

So far, only two of the four fundamental subspaces associated with each
matrix A ∈ �m×n have been discussed, namely, R (A) and R

(
AT

)
. To see

where the other two fundamental subspaces come from, consider again a general
linear function f mapping �m into �n, and focus on N (f) = {x | f(x) = 0}
(the set of vectors that are mapped to 0 ). N (f) is called the nullspace of f
(some texts call it the kernel of f ), and it’s easy to see that N (f) is a subspace
of �n because the closure properties (A1) and (M1) are satisfied. Indeed, if
x1,x2 ∈ N (f), then f(x1) = 0 and f(x2) = 0, so the linearity of f produces

f(x1 + x2) = f(x1) + f(x2) = 0 + 0 = 0 =⇒ x1 + x2 ∈ N (f). (A1)

Similarly, if α ∈ �, and if x ∈ N (f), then f(x) = 0 and linearity implies

f(αx) = αf(x) = α0 = 0 =⇒ αx ∈ N (f). (M1)

By considering the linear functions f(x) = Ax and g(y) = AT y, the
other two fundamental subspaces defined by A ∈ �m×n are obtained. They are
N (f) = {xn×1 | Ax = 0} ⊆ �n and N (g) =

{
ym×1 | ATy = 0

}
⊆ �m.
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Nullspace

• For an m× n matrix A, the set N (A) = {xn×1 | Ax = 0} ⊆ �n

is called the nullspace of A. In other words, N (A) is simply the
set of all solutions to the homogeneous system Ax = 0.

• The set N
(
AT

)
=

{
ym×1 | AT y = 0

}
⊆ �m is called the left-

hand nullspace of A because N
(
AT

)
is the set of all solutions

to the left-hand homogeneous system yT A = 0T .

Example 4.2.4

Problem: Determine a spanning set for N (A), where A =
(

1 2 3
2 4 6

)
.

Solution: N (A) is merely the general solution of Ax = 0, and this is deter-
mined by reducing A to a row echelon form U. As discussed in §2.4, any such
U will suffice, so we will use EA =

(
1 2 3
0 0 0

)
. Consequently, x1 = −2x2−3x3,

where x2 and x3 are free, so the general solution of Ax = 0 is


x1

x2

x3


 =


−2x2 − 3x3

x2

x3


 = x2


−2

1
0


 + x3


−3

0
1


 .

In other words, N (A) is the set of all possible linear combinations of the vectors

h1 =


−2

1
0


 and h2 =


−3

0
1


 ,

and therefore span {h1,h2} = N (A). For this example, N (A) is the plane in
�3 that passes through the origin and the two points h1 and h2.

Example 4.2.4 indicates the general technique for determining a spanning
set for N (A). Below is a formal statement of this procedure.
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Spanning the Nullspace
To determine a spanning set for N (A), where rank (Am×n) = r, row
reduce A to a row echelon form U, and solve Ux = 0 for the basic
variables in terms of the free variables to produce the general solution
of Ax = 0 in the form

x = xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r. (4.2.9)

By definition, the set H = {h1,h2, . . . ,hn−r} spans N (A). Moreover,
it can be proven that H is unique in the sense that H is independent
of the row echelon form U.

It was established in §2.4 that a homogeneous system Ax = 0 possesses a
unique solution (i.e., only the trivial solution x = 0 ) if and only if the rank of
the coefficient matrix equals the number of unknowns. This may now be restated
using vector space terminology.

Zero Nullspace
If A is an m× n matrix, then

• N (A) = {0} if and only if rank (A) = n; (4.2.10)

• N
(
AT

)
= {0} if and only if rank (A) = m. (4.2.11)

Proof. We already know that the trivial solution x = 0 is the only solution to
Ax = 0 if and only if the rank of A is the number of unknowns, and this is
what (4.2.10) says. Similarly, AT y = 0 has only the trivial solution y = 0 if
and only if rank

(
AT

)
= m. Recall from (3.9.11) that rank

(
AT

)
= rank (A)

in order to conclude that (4.2.11) holds.

Finally, let’s think about how to determine a spanning set for N
(
AT

)
. Of

course, we can proceed in the same manner as described in Example 4.2.4 by
reducing AT to a row echelon form to extract the general solution for AT x = 0.
However, the other three fundamental subspaces are derivable directly from EA

(or any other row echelon form U row∼ A ), so it’s rather awkward to have to
start from scratch and compute a new echelon form just to get a spanning set
for N

(
AT

)
. It would be better if a single reduction to echelon form could

produce all four of the fundamental subspaces. Note that EAT �= ET
A, so ET

A

won’t easily lead to N
(
AT

)
. The following theorem helps resolve this issue.
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Left-Hand Nullspace
If rank (Am×n) = r, and if PA = U, where P is nonsingular and
U is in row echelon form, then the last m − r rows in P span the
left-hand nullspace of A. In other words, if P =

(
P1

P2

)
, where P2 is

(m− r)×m, then
N

(
AT

)
= R

(
PT

2

)
. (4.2.12)

Proof. If U =
(

C
0

)
, where Cr×n, then PA = U implies P2A = 0, and

this says R
(
PT

2

)
⊆ N

(
AT

)
. To show equality, demonstrate containment in

the opposite direction by arguing that every vector in N
(
AT

)
must also be in

R
(
PT

2

)
. Suppose yT ∈ N

(
AT

)
, and let P−1 = (Q1 Q2 ) to conclude that

0 = yT A = yT P−1U = yT Q1C =⇒ 0 = yT Q1

because N
(
CT

)
= {0} by (4.2.11). Now observe that PP−1 = I = P−1P

insures P1Q1 = Ir and Q1P1 = Im −Q2P2, so

0 = yT Q1 =⇒ 0 = yT Q1P1 = yT (I−Q2P2)

=⇒ yT = yT Q2P2 =
(
yT Q2

)
P2

=⇒ y ∈ R
(
PT

2

)
=⇒ yT ∈ R

(
PT

2

)
.

Example 4.2.5

Problem: Determine a spanning set for N
(
AT

)
, where A =

(
1 2 2 3
2 4 1 3
3 6 1 4

)
.

Solution: To find a nonsingular matrix P such that PA = U is in row echelon
form, proceed as described in Exercise 3.9.1 and row reduce the augmented
matrix

(
A | I

)
to

(
U | P

)
. It must be the case that PA = U because P

is the product of the elementary matrices corresponding to the elementary row
operations used. Since any row echelon form will suffice, we may use Gauss–
Jordan reduction to reduce A to EA as shown below:

 1 2 2 3 1 0 0
2 4 1 3 0 1 0
3 6 1 4 0 0 1


 −→


 1 2 0 1 −1/3 2/3 0

0 0 1 1 2/3 −1/3 0
0 0 0 0 1/3 −5/3 1




P =


−1/3 2/3 0

2/3 −1/3 0
1/3 −5/3 1


 , so (4.2.12) implies N

(
AT

)
= span





 1/3
−5/3

1





 .
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Example 4.2.6

Problem: Suppose rank (Am×n) = r, and let P =
(

P1

P2

)
be a nonsingular

matrix such that PA = U =
(

Cr×n

0

)
, where U is in row echelon form. Prove

R (A) = N (P2). (4.2.13)

Solution: The strategy is to first prove R (A) ⊆ N (P2) and then show the
reverse inclusion N (P2) ⊆ R (A). The equation PA = U implies P2A = 0, so
all columns of A are in N (P2), and thus R (A) ⊆ N (P2) . To show inclusion
in the opposite direction, suppose b ∈ N (P2), so that

Pb =
(

P1

P2

)
b =

(
P1b
P2b

)
=

(
dr×1

0

)
.

Consequently, P
(
A |b

)
=

(
PA | Pb

)
=

(
C d
0 0

)
, and this implies

rank[A|b] = r = rank (A).

Recall from (2.3.4) that this means the system Ax = b is consistent, and thus
b ∈ R (A) by (4.2.3). Therefore, N (P2) ⊆ R (A), and we may conclude that
N (P2) = R (A).

It’s often important to know when two matrices have the same nullspace (or
left-hand nullspace). Below is one test for determining this.

Equal Nullspaces
For two matrices A and B of the same shape:
• N (A) = N (B) if and only if A row∼ B. (4.2.14)

• N
(
AT

)
= N

(
BT

)
if and only if A col∼ B. (4.2.15)

Proof. We will prove (4.2.15). If N
(
AT

)
= N

(
BT

)
, then (4.2.12) guarantees

R
(
PT

2

)
= N

(
BT

)
, and hence P2B = 0. But this means the columns of B

are in N (P2). That is, R (B) ⊆ N (P2) = R (A) by using (4.2.13). If A is
replaced by B in the preceding argument—and in (4.2.13)— the result is that
R (A) ⊆ R (B), and consequently we may conclude that R (A) = R (B) . The
desired conclusion (4.2.15) follows from (4.2.6). Statement (4.2.14) now follows
by replacing A and B by AT and BT in (4.2.15).
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Summary
The four fundamental subspaces associated with Am×n are as follows.

• The range or column space: R (A) = {Ax} ⊆ �m.

• The row space or left-hand range: R
(
AT

)
=

{
AT y

}
⊆ �n.

• The nullspace: N (A) = {x | Ax = 0} ⊆ �n.

• The left-hand nullspace: N
(
AT

)
=

{
y | AT y = 0

}
⊆ �m.

Let P be a nonsingular matrix such that PA = U, where U is in row
echelon form, and suppose rank (A) = r.

• Spanning set for R (A) = the basic columns in A.

• Spanning set for R
(
AT

)
= the nonzero rows in U.

• Spanning set for N (A) =the hi ’s in the general solution of Ax = 0.

• Spanning set for N
(
AT

)
= the last m− r rows of P.

If A and B have the same shape, then

• A row∼ B⇐⇒ N (A) = N (B)⇐⇒ R
(
AT

)
= R

(
BT

)
.

• A col∼ B⇐⇒ R (A) = R (B)⇐⇒ N
(
AT

)
= N

(
BT

)
.

Exercises for section 4.2

4.2.1. Determine spanning sets for each of the four fundamental subspaces
associated with

A =


 1 2 1 1 5
−2 −4 0 4 −2

1 2 2 4 9


 .

4.2.2. Consider a linear system of equations Am×nx = b.
(a) Explain why Ax = b is consistent if and only if b ∈ R (A).
(b) Explain why a consistent system Ax = b has a unique solution

if and only if N (A) = {0}.
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4.2.3. Suppose that A is a 3× 3 matrix such that

R =





 1

2
3


 ,


 1
−1

2





 and N =





−2

1
0







span R (A) and N (A), respectively, and consider a linear system

Ax = b, where b =
(

1
−7

0

)
.

(a) Explain why Ax = b must be consistent.
(b) Explain why Ax = b cannot have a unique solution.

4.2.4. If A =



−1 1 1 −2 1
−1 0 3 −4 2
−1 0 3 −5 3
−1 0 3 −6 4
−1 0 3 −6 4


 and b =



−2
−5
−6
−7
−7


 , is b ∈ R (A) ?

4.2.5. Suppose that A is an n× n matrix.
(a) If R (A) = �n, explain why A must be nonsingular.
(b) If A is nonsingular, describe its four fundamental subspaces.

4.2.6. Consider the matrices A =


 1 1 5

2 0 6
1 2 7


 and B =


 1 −4 4

4 −8 6
0 −4 5


 .

(a) Do A and B have the same row space?
(b) Do A and B have the same column space?
(c) Do A and B have the same nullspace?
(d) Do A and B have the same left-hand nullspace?

4.2.7. If A =
(

A1

A2

)
is a square matrix such that N (A1) = R

(
AT

2

)
, prove

that A must be nonsingular.

4.2.8. Consider a linear system of equations Ax = b for which yT b = 0
for every y ∈ N

(
AT

)
. Explain why this means the system must be

consistent.

4.2.9. For matrices Am×n and Bm×p, prove that

R (A | B) = R (A) +R (B).
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4.2.10. Let p be one particular solution of a linear system Ax = b.
(a) Explain the significance of the set

p +N (A) = {p + h | h ∈ N (A)} .

(b) If rank (A3×3) = 1, sketch a picture of p +N (A) in �3.
(c) Repeat part (b) for the case when rank (A3×3) = 2.

4.2.11. Suppose that Ax = b is a consistent system of linear equations, and
let a ∈ R

(
AT

)
. Prove that the inner product aT x is constant for all

solutions to Ax = b.

4.2.12. For matrices such that the product AB is defined, explain why each of
the following statements is true.

(a) R (AB) ⊆ R (A).
(b) N (AB) ⊇ N (B).

4.2.13. Suppose that B = {b1,b2, . . . ,bn} is a spanning set for R (B). Prove
that A(B) = {Ab1,Ab2, . . . ,Abn} is a spanning set for R (AB).
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4.3 LINEAR INDEPENDENCE

For a given set of vectors S = {v1,v2, . . . ,vn} there may or may not exist
dependency relationships in the sense that it may or may not be possible to
express one vector as a linear combination of the others. For example, in the set

A =





 1
−1

2


 ,


 3

0
−1


 ,


 9
−3

4





 ,

the third vector is a linear combination of the first two—i.e., v3 = 3v1 + 2v2.
Such a dependency always can be expressed in terms of a homogeneous equation
by writing

3v1 + 2v2 − v3 = 0.

On the other hand, it is evident that there are no dependency relationships in
the set

B =





 1

0
0


 ,


 0

1
0


 ,


 0

0
1







because no vector can be expressed as a combination of the others. Another way
to say this is to state that there are no solutions for α1, α2, and α3 in the
homogeneous equation

α1v1 + α2v2 + α3v3 = 0

other than the trivial solution α1 = α2 = α3 = 0. These observations are the
basis for the following definitions.

Linear Independence
A set of vectors S = {v1,v2, . . . ,vn} is said to be a linearly in-
dependent set whenever the only solution for the scalars αi in the
homogeneous equation

α1v1 + α2v2 + · · ·+ αnvn = 0 (4.3.1)

is the trivial solution α1 = α2 = · · · = αn = 0. Whenever there is a
nontrivial solution for the α ’s (i.e., at least one αi �= 0 ) in (4.3.1), the
set S is said to be a linearly dependent set. In other words, linearly
independent sets are those that contain no dependency relationships,
and linearly dependent sets are those in which at least one vector is a
combination of the others. We will agree that the empty set is always
linearly independent.
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It is important to realize that the concepts of linear independence and de-
pendence are defined only for sets—individual vectors are neither linearly inde-
pendent nor dependent. For example consider the following sets:

S1 =
{(

1
0

)
,

(
0
1

)}
, S2 =

{(
1
0

)
,

(
1
1

)}
, S3 =

{(
1
0

)
,

(
0
1

)
,

(
1
1

)}
.

It should be clear that S1 and S2 are linearly independent sets while S3 is
linearly dependent. This shows that individual vectors can simultaneously belong
to linearly independent sets as well as linearly dependent sets. Consequently, it
makes no sense to speak of “linearly independent vectors” or “linearly dependent
vectors.”

Example 4.3.1

Problem: Determine whether or not the set

S =





 1

2
1


 ,


 1

0
2


 ,


 5

6
7







is linearly independent.
Solution: Simply determine whether or not there exists a nontrivial solution
for the α ’s in the homogeneous equation

α1


 1

2
1


 + α2


 1

0
2


 + α3


 5

6
7


 =


 0

0
0




or, equivalently, if there is a nontrivial solution to the homogeneous system
 1 1 5

2 0 6
1 2 7





α1

α2

α3


 =


 0

0
0


 .

If A =
(

1 1 5
2 0 6
1 2 7

)
, then EA =

(
1 0 3
0 1 2
0 0 0

)
, and therefore there exist nontrivial

solutions. Consequently, S is a linearly dependent set. Notice that one particular
dependence relationship in S is revealed by EA because it guarantees that
A∗3 = 3A∗1 +2A∗2. This example indicates why the question of whether or not
a subset of �m is linearly independent is really a question about whether or not
the nullspace of an associated matrix is trivial. The following is a more formal
statement of this fact.
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Linear Independence and Matrices
Let A be an m× n matrix.
• Each of the following statements is equivalent to saying that the

columns of A form a linearly independent set.
� N (A) = {0}. (4.3.2)
� rank (A) = n. (4.3.3)

• Each of the following statements is equivalent to saying that the rows
of A form a linearly independent set.
� N

(
AT

)
= {0}. (4.3.4)

� rank (A) = m. (4.3.5)
• When A is a square matrix, each of the following statements is

equivalent to saying that A is nonsingular.
� The columns of A form a linearly independent set. (4.3.6)
� The rows of A form a linearly independent set. (4.3.7)

Proof. By definition, the columns of A are a linearly independent set when
the only set of α ’s satisfying the homogeneous equation

0 = α1A∗1 + α2A∗2 + · · ·+ αnA∗n =
(
A∗1 |A∗2 | · · · |A∗n

)


α1

α2
...
αn




is the trivial solution α1 = α2 = · · · = αn = 0, which is equivalent to saying
N (A) = {0}. The fact that N (A) = {0} is equivalent to rank (A) = n was
demonstrated in (4.2.10). Statements (4.3.4) and (4.3.5) follow by replacing A
by AT in (4.3.2) and (4.3.3) and by using the fact that rank (A) = rank

(
AT

)
.

Statements (4.3.6) and (4.3.7) are simply special cases of (4.3.3) and (4.3.5).

Example 4.3.2

Any set {ei1 , ei2 , . . . , ein
} consisting of distinct unit vectors is a linearly indepen-

dent set because rank
(
ei1 | ei2 | · · · | ein

)
= n. For example, the set of unit vec-

tors {e1, e2, e4} in �4 is linearly independent because rank


 1 0 0

0 1 0
0 0 0
0 0 1


 = 3.
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Example 4.3.3

Diagonal Dominance. A matrix An×n is said to be diagonally dominant
whenever

|aii| >
n∑

j=1
j �=i

|aij | for each i = 1, 2, . . . , n.

That is, the magnitude of each diagonal entry exceeds the sum of the magni-
tudes of the off-diagonal entries in the corresponding row. Diagonally dominant
matrices occur naturally in a wide variety of practical applications, and when
solving a diagonally dominant system by Gaussian elimination, partial pivoting
is never required—you are asked to provide the details in Exercise 4.3.15.

Problem: In 1900, Minkowski (p. 278) discovered that all diagonally dominant
matrices are nonsingular. Establish the validity of Minkowski’s result.

Solution: The strategy is to prove that if A is diagonally dominant, then
N (A) = {0}, so that (4.3.2) together with (4.3.6) will provide the desired
conclusion. Use an indirect argument—suppose there exists a vector x �= 0 such
that Ax = 0, and assume that xk is the entry of maximum magnitude in x.
Focus on the kth component of Ax, and write the equation Ak∗x = 0 as

akkxk = −
n∑

j=1
j �=k

akjxj .

Taking absolute values of both sides and using the triangle inequality together
with the fact that |xj | ≤ |xk| for each j produces

|akk| |xk| =
∣∣∣∣∣

n∑
j=1
j �=k

akjxj

∣∣∣∣∣ ≤
n∑

j=1
j �=k

|akjxj | =
n∑

j=1
j �=k

|akj | |xj | ≤
( n∑

j=1
j �=k

|akj |
)
|xk|.

But this implies that

|akk| ≤
n∑

j=1
j �=k

|akj |,

which violates the hypothesis that A is diagonally dominant. Therefore, the
assumption that there exists a nonzero vector in N (A) must be false, so we
may conclude that N (A) = {0}, and hence A is nonsingular.

Note: An alternate solution is given in Example 7.1.6 on p. 499.
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Example 4.3.4

Vandermonde Matrices. Matrices of the form

Vm×n =




1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
... · · ·

...
1 xm x2

m · · · xn−1
m




in which xi �= xj for all i �= j are called Vandermonde
26

matrices.

Problem: Explain why the columns in V constitute a linearly independent set
whenever n ≤ m.

Solution: According to (4.3.2), the columns of V form a linearly independent
set if and only if N (V) = {0}. If




1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
... · · ·

...
1 xm x2

m · · · xn−1
m







α0

α1
...

αn−1


 =




0
0
...
0


 , (4.3.8)

then for each i = 1, 2, . . . ,m,

α0 + xiα1 + x2
iα2 + · · ·+ xn−1

i αn−1 = 0.

This implies that the polynomial

p(x) = α0 + α1x+ α2x
2 + · · ·+ αn−1x

n−1

has m distinct roots—namely, the xi ’s. However, deg p(x) ≤ n − 1 and the
fundamental theorem of algebra guarantees that if p(x) is not the zero polyno-
mial, then p(x) can have at most n− 1 distinct roots. Therefore, (4.3.8) holds
if and only if αi = 0 for all i, and thus (4.3.2) insures that the columns of V
form a linearly independent set.

26
This is named in honor of the French mathematician Alexandre-Theophile Vandermonde (1735–
1796). He made a variety of contributions to mathematics, but he is best known perhaps for
being the first European to give a logically complete exposition of the theory of determinants.
He is regarded by many as being the founder of that theory. However, the matrix V (and
an associated determinant) named after him, by Lebesgue, does not appear in Vandermonde’s
published work. Vandermonde’s first love was music, and he took up mathematics only after
he was 35 years old. He advocated the theory that all art and music rested upon a general
principle that could be expressed mathematically, and he claimed that almost anyone could
become a composer with the aid of mathematics.
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Example 4.3.5

Problem: Given a set of m points S = {(x1, y1), (x2, y2), . . . , (xm, ym)} in
which the xi ’s are distinct, explain why there is a unique polynomial

�(t) = α0 + α1t+ α2t
2 + · · ·+ αm−1t

m−1 (4.3.9)

of degree m− 1 that passes through each point in S.
Solution: The coefficients αi must satisfy the equations

α0 + α1x1 + α2x
2
1 + · · ·+ αm−1x

m−1
1 = �(x1) = y1,

α0 + α1x2 + α2x
2
2 + · · ·+ αm−1x

m−1
2 = �(x2) = y2,

...

α0 + α1xm + α2x
2
m + · · ·+ αm−1x

m−1
m = �(xm) = ym.

Writing this m×m system as


1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2
...

...
... · · ·

...
1 xm x2

m · · · xm−1
m







α0

α1
...

αm−1


 =



y1

y2
...
ym




reveals that the coefficient matrix is a square Vandermonde matrix, so the result
of Example 4.3.4 guarantees that it is nonsingular. Consequently, the system has
a unique solution, and thus there is one and only one possible set of coefficients
for the polynomial �(t) in (4.3.9). In fact, �(t) must be given by

�(t) =
m∑

i=1


yi

∏m
j �=i(t− xj)∏m

j �=i(xi − xj)


 .

Verify this by showing that the right-hand side is indeed a polynomial of degree
m − 1 that passes through the points in S. The polynomial �(t) is known as
the Lagrange

27
interpolation polynomial of degree m− 1.

If rank (Am×n) < n, then the columns of A must be a dependent set—
recall (4.3.3). For such matrices we often wish to extract a maximal linearly
independent subset of columns—i.e., a linearly independent set containing as
many columns from A as possible. Although there can be several ways to make
such a selection, the basic columns in A always constitute one solution.

27
Joseph Louis Lagrange (1736–1813), born in Turin, Italy, is considered by many to be one
of the two greatest mathematicians of the eighteenth century—Euler is the other. Lagrange
occupied Euler’s vacated position in 1766 in Berlin at the court of Frederick the Great who
wrote that “the greatest king in Europe” wishes to have at his court “the greatest mathe-
matician of Europe.” After 20 years, Lagrange left Berlin and eventually moved to France.
Lagrange’s mathematical contributions are extremely wide and deep, but he had a particularly
strong influence on the way mathematical research evolved. He was the first of the top-class
mathematicians to recognize the weaknesses in the foundations of calculus, and he was among
the first to attempt a rigorous development.
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Maximal Independent Subsets
If rank (Am×n) = r, then the following statements hold.

• Any maximal independent subset of columns from A con-
tains exactly r columns.

(4.3.10)

• Any maximal independent subset of rows from A contains
exactly r rows.

(4.3.11)

• In particular, the r basic columns in A constitute one
maximal independent subset of columns from A.

(4.3.12)

Proof. Exactly the same linear relationships that exist among the columns of
A must also hold among the columns of EA —by (3.9.6). This guarantees that
a subset of columns from A is linearly independent if and only if the columns
in the corresponding positions in EA are an independent set. Let

C =
(
c1 | c2 | · · · | ck

)
be a matrix that contains an independent subset of columns from EA so that
rank (C) = k—recall (4.3.3). Since each column in EA is a combination of the
r basic (unit) columns in EA, there are scalars βij such that cj =

∑r
i=1 βijei

for j = 1, 2, . . . , k. These equations can be written as the single matrix equation

(
c1 | c2 | · · · | ck

)
=

(
e1 | e2 | · · · | er

)


β11 β12 · · · β1k

β21 β22 · · · β2k
...

...
. . .

...
βr1 βr2 · · · βrk




or

Cm×k =
(

Ir

0

)
Br×k =

(
Br×k

0

)
, where B = [βij ].

Consequently, r ≥ rank (C) = k, and therefore any independent subset of
columns from EA —and hence any independent set of columns from A —cannot
contain more than r vectors. Because the r basic (unit) columns in EA form
an independent set, the r basic columns in A constitute an independent set.
This proves (4.3.10) and (4.3.12). The proof of (4.3.11) follows from the fact that
rank (A) = rank

(
AT

)
—recall (3.9.11).
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Basic Facts of Independence
For a nonempty set of vectors S = {u1,u2, . . . ,un} in a space V, the
following statements are true.
• If S contains a linearly dependent subset, then S itself

must be linearly dependent.
(4.3.13)

• If S is linearly independent, then every subset of S is
also linearly independent.

(4.3.14)

• If S is linearly independent and if v ∈ V, then the ex-
tension set Sext = S∪{v} is linearly independent if and
only if v /∈ span (S) .

(4.3.15)

• If S ⊆ �m and if n > m, then S must be linearly
dependent.

(4.3.16)

Proof of (4.3.13). Suppose that S contains a linearly dependent subset, and,
for the sake of convenience, suppose that the vectors in S have been permuted
so that this dependent subset is Sdep = {u1,u2, . . . ,uk} . According to the
definition of dependence, there must be scalars α1, α2, . . . , αk, not all of which
are zero, such that α1u1 +α2u2 + · · ·+αkuk = 0. This means that we can write

α1u1 + α2u2 + · · ·+ αkuk + 0uk+1 + · · ·+ 0un = 0,

where not all of the scalars are zero, and hence S is linearly dependent.

Proof of (4.3.14). This is an immediate consequence of (4.3.13).

Proof of (4.3.15). If Sext is linearly independent, then v /∈ span (S) , for
otherwise v would be a combination of vectors from S thus forcing Sext to
be a dependent set. Conversely, suppose v /∈ span (S) . To prove that Sext is
linearly independent, consider a linear combination

α1u1 + α2u2 + · · ·+ αnun + αn+1v = 0. (4.3.17)

It must be the case that αn+1 = 0, for otherwise v would be a combination of
vectors from S. Consequently,

α1u1 + α2u2 + · · ·+ αnun = 0.

But this implies that
α1 = α2 = · · · = αn = 0

because S is linearly independent. Therefore, the only solution for the α ’s in
(4.3.17) is the trivial set, and hence Sext must be linearly independent.

Proof of (4.3.16). This follows from (4.3.3) because if the ui ’s are placed as
columns in a matrix Am×n, then rank (A) ≤ m < n.
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Example 4.3.6

Let V be the vector space of real-valued functions of a real variable, and let S =
{f1(x), f2(x), . . . , fn(x)} be a set of functions that are n−1 times differentiable.
The Wronski

28
matrix is defined to be

W(x) =




f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)


 .

Problem: If there is at least one point x = x0 such that W(x0) is nonsingular,
prove that S must be a linearly independent set.

Solution: Suppose that

0 = α1f1(x) + α2f2(x) + · · ·+ αnfn(x) (4.3.18)

for all values of x. When x = x0, it follows that

0 = α1f1(x0) + α2f2(x0) + · · ·+ αnfn(x0),

0 = α1f
′
1(x0) + α2f

′
2(x0) + · · ·+ αnf

′
n(x0),

...

0 = α1f
(n−1)
1 (x0) + α2f

(n−1)
2 (x0) + · · ·+ αnf

(n−1)
n (x0),

which means that v =




α1

α2

...
αn


 ∈ N

(
W(x0)

)
. But N

(
W(x0)

)
= {0} because

W(x0) is nonsingular, and hence v = 0. Therefore, the only solution for the
α ’s in (4.3.18) is the trivial solution α1 = α2 = · · · = αn = 0 thereby insuring
that S is linearly independent.

28
This matrix is named in honor of the Polish mathematician Jozef Maria Höené Wronski
(1778–1853), who studied four special forms of determinants, one of which was the deter-
minant of the matrix that bears his name. Wronski was born to a poor family near Poznan,
Poland, but he studied in Germany and spent most of his life in France. He is reported to have
been an egotistical person who wrote in an exhaustively wearisome style. Consequently, almost
no one read his work. Had it not been for his lone follower, Ferdinand Schweins (1780–1856)
of Heidelberg, Wronski would probably be unknown today. Schweins preserved and extended
Wronski’s results in his own writings, which in turn received attention from others. Wronski
also wrote on philosophy. While trying to reconcile Kant’s metaphysics with Leibniz’s calculus,
Wronski developed a social philosophy called “Messianism” that was based on the belief that
absolute truth could be achieved through mathematics.
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For example, to verify that the set of polynomials P =
{
1, x, x2, . . . , xn

}
is

linearly independent, observe that the associated Wronski matrix

W(x) =




1 x x2 · · · xn

0 1 2x · · · nxn−1

0 0 2 · · · n(n− 1)xn−2

...
...

...
. . .

...
0 0 0 · · · n!




is triangular with nonzero diagonal entries. Consequently, W(x) is nonsingular
for every value of x, and hence P must be an independent set.

Exercises for section 4.3

4.3.1. Determine which of the following sets are linearly independent. For those
sets that are linearly dependent, write one of the vectors as a linear
combination of the others.

(a)





 1

2
3


 ,


 2

1
0


 ,


 1

5
9





 ,

(b) {( 1 2 3 ) , ( 0 4 5 ) , ( 0 0 6 ) , ( 1 1 1 )} ,

(c)





 3

2
1


 ,


 1

0
0


 ,


 2

1
0





 ,

(d) {( 2 2 2 2 ) , ( 2 2 0 2 ) , ( 2 0 2 2 )} ,

(e)







1
2
0
4
0
3
0



,




0
2
0
4
1
3
0



,




0
2
1
4
0
3
0



,




0
2
0
4
0
3
1






.

4.3.2. Consider the matrix A =
(

2 1 1 0
4 2 1 2
6 3 2 2

)
.

(a) Determine a maximal linearly independent subset of columns
from A.

(b) Determine the total number of linearly independent subsets that
can be constructed using the columns of A.
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4.3.3. Suppose that in a population of a million children the height of each one
is measured at ages 1 year, 2 years, and 3 years, and accumulate this
data in a matrix




1 yr 2 yr 3 yr
#1 h11 h12 h13

#2 h21 h22 h23
...

...
...

...
#i hi1 hi2 hi3
...

...
...

...


 = H.

Explain why there are at most three “independent children” in the sense
that the heights of all the other children must be a combination of these
“independent” ones.

4.3.4. Consider a particular species of wildflower in which each plant has several
stems, leaves, and flowers, and for each plant let the following hold.
S = the average stem length (in inches).
L = the average leaf width (in inches).
F = the number of flowers.

Four particular plants are examined, and the information is tabulated
in the following matrix:

A =



S L F

#1 1 1 10
#2 2 1 12
#3 2 2 15
#4 3 2 17


.

For these four plants, determine whether or not there exists a linear rela-
tionship between S, L, and F. In other words, do there exist constants
α0, α1, α2, and α3 such that α0 + α1S + α2L+ α3F = 0 ?

4.3.5. Let S = {0} be the set containing only the zero vector.
(a) Explain why S must be linearly dependent.
(b) Explain why any set containing a zero vector must be linearly

dependent.

4.3.6. If T is a triangular matrix in which each tii �= 0, explain why the rows
and columns of T must each be linearly independent sets.
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4.3.7. Determine whether or not the following set of matrices is a linearly
independent set:{(

1 0
0 0

)
,

(
1 1
0 0

)
,

(
1 1
1 0

)
,

(
1 1
1 1

)}
.

4.3.8. Without doing any computation, determine whether the following ma-
trix is singular or nonsingular:

A =



n 1 1 · · · 1
1 n 1 · · · 1
1 1 n · · · 1
...

...
...

. . .
...

1 1 1 · · · n




n×n

.

4.3.9. In theory, determining whether or not a given set is linearly independent
is a well-defined problem with a straightforward solution. In practice,
however, this problem is often not so well defined because it becomes
clouded by the fact that we usually cannot use exact arithmetic, and con-
tradictory conclusions may be produced depending upon the precision
of the arithmetic. For example, let

S =





 .1
.4
.7


 ,


 .2
.5
.8


 ,


 .3
.6
.901





 .

(a) Use exact arithmetic to determine whether or not S is linearly
independent.

(b) Use 3-digit arithmetic (without pivoting or scaling) to determine
whether or not S is linearly independent.

4.3.10. If Am×n is a matrix such that
∑n

j=1 aij = 0 for each i = 1, 2, . . . ,m
(i.e., each row sum is 0), explain why the columns of A are a linearly
dependent set, and hence rank (A) < n.

4.3.11. If S = {u1,u2, . . . ,un} is a linearly independent subset of �m×1, and
if Pm×m is a nonsingular matrix, explain why the set

P(S) = {Pu1,Pu2, . . . ,Pun}

must also be a linearly independent set. Is this result still true if P is
singular?



4.3 Linear Independence 193

4.3.12. Suppose that S = {u1,u2, . . . ,un} is a set of vectors from �m. Prove
that S is linearly independent if and only if the set

S ′ =

{
u1,

2∑
i=1

ui,

3∑
i=1

ui, . . . ,

n∑
i=1

ui

}

is linearly independent.

4.3.13. Which of the following sets of functions are linearly independent?
(a) {sinx, cosx, x sinx} .
(b)

{
ex, xex, x2ex

}
.

(c)
{
sin2 x, cos2 x, cos 2x

}
.

4.3.14. Prove that the converse of the statement given in Example 4.3.6 is false
by showing that S =

{
x3, |x|3

}
is a linearly independent set, but the

associated Wronski matrix W(x) is singular for all values of x.

4.3.15. If AT is diagonally dominant, explain why partial pivoting is not needed
when solving Ax = b by Gaussian elimination. Hint: If after one step
of Gaussian elimination we have

A =
(
α dT

c B

)
one step

−−−−−−−−→
(
α dT

0 B− cdT

α

)
,

show that AT being diagonally dominant implies X =
(
B − cdT

α

)T

must also be diagonally dominant.
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4.4 BASIS AND DIMENSION

Recall from §4.1 that S is a spanning set for a space V if and only if every
vector in V is a linear combination of vectors in S. However, spanning sets
can contain redundant vectors. For example, a subspace L defined by a line
through the origin in �2 may be spanned by any number of nonzero vectors
{v1,v2, . . . ,vk} in L, but any one of the vectors {vi} by itself will suffice.
Similarly, a plane P through the origin in �3 can be spanned in many different
ways, but the parallelogram law indicates that a minimal spanning set need only
be an independent set of two vectors from P. These considerations motivate the
following definition.

Basis
A linearly independent spanning set for a vector space V is called a
basis for V.

It can be proven that every vector space V possesses a basis—details for
the case when V ⊆ �m are asked for in the exercises. Just as in the case of
spanning sets, a space can possess many different bases.

Example 4.4.1

• The unit vectors S = {e1, e2, . . . , en} in �n are a basis for �n. This is
called the standard basis for �n.

• If A is an n× n nonsingular matrix, then the set of rows in A as well as
the set of columns from A constitute a basis for �n. For example, (4.3.3)
insures that the columns of A are linearly independent, and we know they
span �n because R (A) = �n —recall Exercise 4.2.5(b).

• For the trivial vector space Z = {0}, there is no nonempty linearly indepen-
dent spanning set. Consequently, the empty set is considered to be a basis
for Z.

• The set
{
1, x, x2, . . . , xn

}
is a basis for the vector space of polynomials

having degree n or less.

• The infinite set
{
1, x, x2, . . .

}
is a basis for the vector space of all polynomi-

als. It should be clear that no finite basis is possible.
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Spaces that possess a basis containing an infinite number of vectors are
referred to as infinite-dimensional spaces, and those that have a finite basis
are called finite-dimensional spaces. This is often a line of demarcation in
the study of vector spaces. A complete theoretical treatment would include the
analysis of infinite-dimensional spaces, but this text is primarily concerned with
finite-dimensional spaces over the real or complex numbers. It can be shown that,
in effect, this amounts to analyzing �n or Cn and their subspaces.

The original concern of this section was to try to eliminate redundancies
from spanning sets so as to provide spanning sets containing a minimal number
of vectors. The following theorem shows that a basis is indeed such a set.

Characterizations of a Basis
Let V be a subspace of �m, and let B = {b1,b2, . . . ,bn} ⊆ V. The
following statements are equivalent.

• B is a basis for V. (4.4.1)

• B is a minimal spanning set for V. (4.4.2)

• B is a maximal linearly independent subset of V. (4.4.3)

Proof. First argue that (4.4.1) =⇒ (4.4.2) =⇒ (4.4.1), and then show (4.4.1)
is equivalent to (4.4.3).

Proof of (4.4.1) =⇒ (4.4.2). First suppose that B is a basis for V, and
prove that B is a minimal spanning set by using an indirect argument—i.e.,
assume that B is not minimal, and show that this leads to a contradiction. If
X = {x1,x2, . . . ,xk} is a basis for V in which k < n, then each bj can be
written as a combination of the xi ’s. That is, there are scalars αij such that

bj =
k∑

i=1

αijxi for j = 1, 2, . . . , n. (4.4.4)

If the b ’s and x ’s are placed as columns in matrices

Bm×n =
(
b1 |b2 | · · · |bn

)
and Xm×k =

(
x1 |x2 | · · · |xk

)
,

then (4.4.4) can be expressed as the matrix equation

B = XA, where, Ak×n = [αij ] .

Since the rank of a matrix cannot exceed either of its size dimensions, and since
k < n, we have that rank (A) ≤ k < n, so that N (A) �= {0}—recall (4.2.10).
If z �= 0 is such that Az = 0, then Bz = 0. But this is impossible because
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the columns of B are linearly independent, and hence N (B) = {0}—recall
(4.3.2). Therefore, the supposition that there exists a basis for V containing
fewer than n vectors must be false, and we may conclude that B is indeed a
minimal spanning set.

Proof of (4.4.2) =⇒ (4.4.1). If B is a minimal spanning set, then B must
be a linearly independent spanning set. Otherwise, some bi would be a linear
combination of the other b ’s, and the set

B′ = {b1, . . . ,bi−1,bi+1, . . . ,bn}

would still span V, but B′ would contain fewer vectors than B, which is im-
possible because B is a minimal spanning set.

Proof of (4.4.3) =⇒ (4.4.1). If B is a maximal linearly independent subset
of V, but not a basis for V, then there exists a vector v ∈ V such that
v /∈ span (B) . This means that the extension set

B ∪ {v} = {b1,b2, . . . ,bn,v}

is linearly independent—recall (4.3.15). But this is impossible because B is a
maximal linearly independent subset of V. Therefore, B is a basis for V.

Proof of (4.4.1) =⇒ (4.4.3). Suppose that B is a basis for V, but not a
maximal linearly independent subset of V, and let

Y = {y1,y2, . . . ,yk} ⊆ V, where k > n

be a maximal linearly independent subset—recall that (4.3.16) insures the ex-
istence of such a set. The previous argument shows that Y must be a basis
for V. But this is impossible because we already know that a basis must be a
minimal spanning set, and B is a spanning set containing fewer vectors than Y.
Therefore, B must be a maximal linearly independent subset of V.

Although a space V can have many different bases, the preceding result
guarantees that all bases for V contain the same number of vectors. If B1 and
B2 are each a basis for V, then each is a minimal spanning set, and thus they
must contain the same number of vectors. As we are about to see, this number
is quite important.

Dimension
The dimension of a vector space V is defined to be

dim V = number of vectors in any basis for V
= number of vectors in any minimal spanning set for V
= number of vectors in any maximal independent subset of V.
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Example 4.4.2

• If Z = {0} is the trivial subspace, then dimZ = 0 because the basis for
this space is the empty set.

• If L is a line through the origin in �3, then dimL = 1 because a basis for
L consists of any nonzero vector lying along L.

• If P is a plane through the origin in �3, then dimP = 2 because a minimal
spanning set for P must contain two vectors from P.

• dim�3 = 3 because the three unit vectors
{(

1
0
0

)
,

(
0
1
0

)
,

(
0
0
1

)}
constitute

a basis for �3.

• dim�n = n because the unit vectors {e1, e2, . . . , en} in �n form a basis.

Example 4.4.3

Problem: If V is an n -dimensional space, explain why every independent
subset S = {v1,v2, . . . ,vn} ⊂ V containing n vectors must be a basis for V.
Solution: dimV = n means that every subset of V that contains more than n
vectors must be linearly dependent. Consequently, S is a maximal independent
subset of V, and hence S is a basis for V.

Example 4.4.2 shows that in a loose sense the dimension of a space is a
measure of the amount of “stuff” in the space—a plane P in �3 has more
“stuff” in it than a line L, but P contains less “stuff” than the entire space
�3. Recall from the discussion in §4.1 that subspaces of �n are generalized
versions of flat surfaces through the origin. The concept of dimension gives us a
way to distinguish between these “flat” objects according to how much “stuff”
they contain—much the same way we distinguish between lines and planes in �3.
Another way to think about dimension is in terms of “degrees of freedom.” In
the trivial space Z, there are no degrees of freedom—you can move nowhere—
whereas on a line there is one degree of freedom—length; in a plane there are
two degrees of freedom—length and width; in �3 there are three degrees of
freedom—length, width, and height; etc.

It is important not to confuse the dimension of a vector space V with the
number of components contained in the individual vectors from V. For example,
if P is a plane through the origin in �3, then dimP = 2, but the individual
vectors in P each have three components. Although the dimension of a space V
and the number of components contained in the individual vectors from V need
not be the same, they are nevertheless related. For example, if V is a subspace of
�n, then (4.3.16) insures that no linearly independent subset in V can contain
more than n vectors and, consequently, dimV ≤ n. This observation generalizes
to produce the following theorem.
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Subspace Dimension
For vector spaces M and N such that M ⊆ N , the following state-
ments are true.

• dimM≤ dimN . (4.4.5)

• If dimM = dimN , then M = N . (4.4.6)

Proof. Let dimM = m and dimN = n, and use an indirect argument to
prove (4.4.5). If it were the case that m > n, then there would exist a linearly
independent subset of N (namely, a basis for M ) containing more than n vec-
tors. But this is impossible because dimN is the size of a maximal independent
subset of N . Thus m ≤ n. Now prove (4.4.6). If m = n but M �= N , then
there exists a vector x such that x ∈ N but x /∈ M. If B is a basis for M,
then x /∈ span (B) , and the extension set E = B∪{x} is a linearly independent
subset of N —recall (4.3.15). But E contains m+ 1 = n+ 1 vectors, which is
impossible because dimN = n is the size of a maximal independent subset of
N . Hence M = N .

Let’s now find bases and dimensions for the four fundamental subspaces
of an m× n matrix A of rank r, and let’s start with R (A). The entire set
of columns in A spans R (A), but they won’t form a basis when there are
dependencies among some of the columns. However, the set of basic columns in
A is also a spanning set—recall (4.2.8)—and the basic columns always constitute
a linearly independent set because no basic column can be a combination of other
basic columns (otherwise it wouldn’t be basic). So, the set of basic columns is a
basis for R (A), and, since there are r of them, dimR (A) = r = rank (A).

Similarly, the entire set of rows in A spans R
(
AT

)
, but the set of all rows

is not a basis when dependencies exist. Recall from (4.2.7) that if U =
(

Cr×n

0

)
is any row echelon form that is row equivalent to A, then the rows of C span
R

(
AT

)
. Since rank (C) = r, (4.3.5) insures that the rows of C are linearly

independent. Consequently, the rows in C are a basis for R
(
AT

)
, and, since

there are r of them, dimR
(
AT

)
= r = rank (A). Older texts referred to

dimR
(
AT

)
as the row rank of A, while dimR (A) was called the column rank

of A, and it was a major task to prove that the row rank always agrees with the
column rank. Notice that this is a consequence of the discussion above where it
was observed that dimR

(
AT

)
= r = dimR (A).

Turning to the nullspaces, let’s first examine N
(
AT

)
. We know from

(4.2.12) that if P is a nonsingular matrix such that PA = U is in row echelon
form, then the last m − r rows in P span N

(
AT

)
. Because the set of rows

in a nonsingular matrix is a linearly independent set, and because any subset
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of an independent set is again independent—see (4.3.7) and (4.3.14)—it follows
that the last m − r rows in P are linearly independent, and hence they con-
stitute a basis for N

(
AT

)
. And this implies dimN

(
AT

)
= m − r (i.e., the

number of rows in A minus the rank of A). Replacing A by AT shows that
dimN

(
AT T

)
= dimN (A) is the number of rows in AT minus rank

(
AT

)
.

But rank
(
AT

)
= rank (A) = r, so dimN (A) = n−r. We deduced dimN (A)

without exhibiting a specific basis, but a basis for N (A) is easy to describe.
Recall that the set H containing the hi ’s appearing in the general solution
(4.2.9) of Ax = 0 spans N (A). Since there are exactly n − r vectors in H,
and since dimN (A) = n − r, H is a minimal spanning set, so, by (4.4.2), H
must be a basis for N (A). Below is a summary of facts uncovered above.

Fundamental Subspaces—Dimension and Bases
For an m× n matrix of real numbers such that rank (A) = r,

• dimR (A) = r, (4.4.7)

• dimN (A) = n− r, (4.4.8)

• dimR
(
AT

)
= r, (4.4.9)

• dimN
(
AT

)
= m− r. (4.4.10)

Let P be a nonsingular matrix such that PA = U is in row echelon
form, and let H be the set of hi ’s appearing in the general solution
(4.2.9) of Ax = 0.

• The basic columns of A form a basis for R (A). (4.4.11)

• The nonzero rows of U form a basis for R
(
AT

)
. (4.4.12)

• The set H is a basis for N (A). (4.4.13)

• The last m− r rows of P form a basis for N
(
AT

)
. (4.4.14)

For matrices with complex entries, the above statements remain valid
provided that AT is replaced with A∗.

Statements (4.4.7) and (4.4.8) combine to produce the following theorem.

Rank Plus Nullity Theorem
• dimR (A) + dimN (A) = n for all m× n matrices. (4.4.15)
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In loose terms, this is a kind of conservation law—it says that as the amount
of “stuff” in R (A) increases, the amount of “stuff” in N (A) must decrease,
and vice versa. The phrase rank plus nullity is used because dimR (A) is the
rank of A, and dimN (A) was traditionally known as the nullity of A.

Example 4.4.4

Problem: Determine the dimension as well as a basis for the space spanned by

S =





 1

2
1


 ,


 1

0
2


 ,


 5

6
7





 .

Solution 1: Place the vectors as columns in a matrix A, and reduce

A =


 1 1 5

2 0 6
1 2 7


 −→ EA =


 1 0 3

0 1 2
0 0 0


 .

Since span (S) = R (A), we have

dim
(
span (S)

)
= dimR (A) = rank (A) = 2.

The basic columns B =
{(

1
2
1

)
,

(
1
0
2

)}
are a basis for R (A) = span (S) .

Other bases are also possible. Examining EA reveals that any two vectors in S
form an independent set, and therefore any pair of vectors from S constitutes
a basis for span (S) .

Solution 2: Place the vectors from S as rows in a matrix B, and reduce B
to row echelon form:

B =


 1 2 1

1 0 2
5 6 7


 −→ U =


 1 2 1

0 −2 1
0 0 0


 .

This time we have span (S) = R
(
BT

)
, so that

dim
(
span (S)

)
= dimR

(
BT

)
= rank (B) = rank (U) = 2,

and a basis for span (S) = R
(
BT

)
is given by the nonzero rows in U.
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Example 4.4.5

Problem: If Sr = {v1,v2, . . . ,vr} is a linearly independent subset of an
n -dimensional space V, where r < n, explain why it must be possible to find
extension vectors {vr+1, . . . ,vn} from V such that

Sn = {v1, . . . ,vr,vr+1, . . . ,vn}
is a basis for V.
Solution 1: r < n means that span (Sr) �= V, and hence there exists a vector
vr+1 ∈ V such that vr+1 /∈ span (Sr) . The extension set Sr+1 = Sr∪{vr+1} is
an independent subset of V containing r+1 vectors—recall (4.3.15). Repeating
this process generates independent subsets Sr+2,Sr+3, . . . , and eventually leads
to a maximal independent subset Sn ⊂ V containing n vectors.

Solution 2: The first solution shows that it is theoretically possible to find
extension vectors, but the argument given is not much help in actually computing
them. It is easy to remedy this situation. Let {b1,b2, . . . ,bn} be any basis for
V, and place the given vi ’s along with the bi ’s as columns in a matrix

A =
(
v1 | · · · |vr |b1 | · · · |bn

)
.

Clearly, R (A) = V so that the set of basic columns from A is a basis for V.
Observe that {v1,v2, . . . ,vr} are basic columns in A because no one of these is
a combination of preceding ones. Therefore, the remaining n− r basic columns
must be a subset of {b1,b2, . . . ,bn}—say they are

{
bj1 ,bj2 , . . . ,bjn−r

}
. The

complete set of basic columns from A, and a basis for V, is the set

B =
{
v1, . . . ,vr,bj1 , . . . ,bjn−r

}
.

For example, to extend the independent set

S =







1
0
−1

2


 ,




0
0
1
−2







to a basis for �4, append the standard basis {e1, e2, e3, e4} to the vectors in
S, and perform the reduction

A =




1 0 1 0 0 0
0 0 0 1 0 0
−1 1 0 0 1 0

2 −2 0 0 0 1


 −→ EA =




1 0 1 0 0 0
0 1 1 0 0 −1/2
0 0 0 1 0 0
0 0 0 0 1 1/2


 .

This reveals that {A∗1,A∗2,A∗4,A∗5} are the basic columns in A, and there-
fore

B =







1
0
−1

2


 ,




0
0
1
−2


 ,




0
1
0
0


 ,




0
0
1
0







is a basis for �4 that contains S.
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Example 4.4.6

Rank and Connectivity. A set of points (or nodes), {N1, N2, . . . , Nm} , to-
gether with a set of paths (or edges), {E1, E2, . . . , En} , between the nodes is
called a graph. A connected graph is one in which there is a sequence of edges
linking any pair of nodes, and a directed graph is one in which each edge has been
assigned a direction. For example, the graph in Figure 4.4.1 is both connected
and directed.

E6

E5

E4

E3

E2E1

1

2

3

4

Figure 4.4.1

The connectivity of a directed graph is independent of the directions assigned
to the edges—i.e., changing the direction of an edge doesn’t change the connec-
tivity. (Exercise 4.4.20 presents another type of connectivity in which direction
matters.) On the surface, the concepts of graph connectivity and matrix rank
seem to have little to do with each other, but, in fact, there is a close relationship.
The incidence matrix associated with a directed graph containing m nodes
and n edges is defined to be the m× n matrix E whose (k, j) -entry is

ekj =




1 if edge Ej is directed toward node Nk.
−1 if edge Ej is directed away from node Nk.

0 if edge Ej neither begins nor ends at node Nk.

For example, the incidence matrix associated with the graph in Figure 4.4.1 is

E =



E1 E2 E3 E4 E5 E6

N1 1 −1 0 0 −1 0
N2 −1 0 −1 1 0 0
N3 0 0 1 0 1 1
N4 0 1 0 −1 0 −1


. (4.4.16)

Each edge in a directed graph is associated with two nodes—the nose and the tail
of the edge—so each column in E must contain exactly two nonzero entries—a
(+1) and a (−1). Consequently, all column sums are zero. In other words, if
eT = ( 1 1 · · · 1 ) , then eT E = 0, so e ∈ N

(
ET

)
, and

rank (E) = rank
(
ET

)
= m− dimN

(
ET

)
≤ m− 1. (4.4.17)

This inequality holds regardless of the connectivity of the associated graph, but
marvelously, equality is attained if and only if the graph is connected.
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Rank and Connectivity
Let G be a graph containing m nodes. If G is undirected, arbitrarily
assign directions to the edges to make G directed, and let E be the
corresponding incidence matrix.

• G is connected if and only if rank (E) = m− 1. (4.4.18)

Proof. Suppose G is connected. Prove rank (E) = m − 1 by arguing that
dimN

(
ET

)
= 1, and do so by showing e = ( 1 1 · · · 1 )T is a basis N

(
ET

)
.

To see that e spans N
(
ET

)
, consider an arbitrary x ∈ N

(
ET

)
, and focus on

any two components xi and xk in x along with the corresponding nodes Ni

and Nk in G. Since G is connected, there must exist a subset of r nodes,

{Nj1 , Nj2 , . . . , Njr} , where i = j1 and k = jr,

such that there is an edge between Njp
and Njp+1 for each p = 1, 2, . . . , r− 1.

Therefore, corresponding to each of the r − 1 pairs
(
Njp

, Njp+1

)
, there must

exist a column cp in E (not necessarily the pth column) such that components
jp and jp+1 in cp are complementary in the sense that one is (+1) while the
other is (−1) (all other components are zero). Because xT E = 0, it follows that
xT cp = 0, and hence xjp = xjp+1 . But this holds for every p = 1, 2, . . . , r − 1,
so xi = xk for each i and k, and hence x = αe for some scalar α. Thus {e}
spans N

(
ET

)
. Clearly, {e} is linearly independent, so it is a basis N

(
ET

)
,

and, therefore, dimN
(
ET

)
= 1 or, equivalently, rank (E) = m−1. Conversely,

suppose rank (E) = m−1, and prove G is connected with an indirect argument.
If G is not connected, then G is decomposable into two nonempty subgraphs
G1 and G2 in which there are no edges between nodes in G1 and nodes in G2.
This means that the nodes in G can be ordered so as to make E have the form

E =
(

E1 0
0 E2

)
,

where E1 and E2 are the incidence matrices for G1 and G2, respectively. If
G1 and G2 contain m1 and m2 nodes, respectively, then (4.4.17) insures that

rank (E)=rank

(
E1 0
0 E2

)
=rank (E1)+rank (E1)≤(m1−1)+(m2−1)=m−2.

But this contradicts the hypothesis that rank (E) = m− 1, so the supposition
that G is not connected must be false.
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Example 4.4.7

An Application to Electrical Circuits. Recall from the discussion on p. 73
that applying Kirchhoff’s node rule to an electrical circuit containing m nodes
and n branches produces m homogeneous linear equations in n unknowns (the
branch currents), and Kirchhoff’s loop rule provides a nonhomogeneous equation
for each simple loop in the circuit. For example, consider the circuit in Figure
4.4.2 along with its four nodal equations and three loop equations—this is the
same circuit appearing on p. 73, and the equations are derived there.

1

2
3

4

R1

R6

R5

R4

R3

R2

E4

E3

E2E1

I2

I4

I1

I5

I6I3

A B

C

Node 1: I1 − I2 − I5 = 0
Node 2: − I1 − I3 + I4 = 0
Node 3: I3 + I5 + I6 = 0
Node 4: I2 − I4 − I6 = 0

Loop A: I1R1 − I3R3 + I5R5 = E1 − E3

Loop B: I2R2 − I5R5 + I6R6 = E2

Loop C: I3R3 + I4R4 − I6R6 = E3 + E4

Figure 4.4.2

The directed graph and associated incidence matrix E defined by this circuit
are the same as those appearing in Example 4.4.6 in Figure 4.4.1 and equation
(4.4.16), so it’s apparent that the 4× 3 homogeneous system of nodal equations
is precisely the system Ex = 0. This observation holds for general circuits. The
goal is to compute the six currents I1, I2, . . . , I6 by selecting six independent
equations from the entire set of node and loop equations. In general, if a circuit
containing m nodes is connected in the graph sense, then (4.4.18) insures that
rank (E) = m− 1, so there are m independent nodal equations. But Example
4.4.6 also shows that 0 = eT E = E1∗ + E2∗ + · · · + Em∗, which means that
any row can be written in terms of the others, and this in turn implies that
every subset of m − 1 rows in E must be independent (see Exercise 4.4.13).
Consequently, when any nodal equation is discarded, the remaining ones are
guaranteed to be independent. To determine an n× n nonsingular system that
has the n branch currents as its unique solution, it’s therefore necessary to find
n−m+1 additional independent equations, and, as shown in §2.6, these are the
loop equations. A simple loop in a circuit is now seen to be a connected subgraph
that does not properly contain other connected subgraphs. Physics dictates that
the currents must be uniquely determined, so there must always be n −m + 1
simple loops, and the combination of these loop equations together with any
subset of m− 1 nodal equations will be a nonsingular n× n system that yields
the branch currents as its unique solution. For example, any three of the nodal
equations in Figure 4.4.2 can be coupled with the three simple loop equations to
produce a 6× 6 nonsingular system whose solution is the six branch currents.
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If X and Y are subspaces of a vector space V, then the sum of X and
Y was defined in §4.1 to be

X + Y = {x + y | x ∈ X and y ∈ Y},

and it was demonstrated in (4.1.1) that X + Y is again a subspace of V. You
were asked in Exercise 4.1.8 to prove that the intersection X ∩ Y is also a
subspace of V. We are now in a position to exhibit an important relationship
between dim (X + Y) and dim (X ∩ Y) .

Dimension of a Sum
If X and Y are subspaces of a vector space V, then

dim (X + Y) = dimX + dimY − dim (X ∩ Y) . (4.4.19)

Proof. The strategy is to construct a basis for X + Y and count the number
of vectors it contains. Let S = {z1, z2, . . . , zt} be a basis for X ∩ Y. Since
S ⊆ X and S ⊆ Y, there must exist extension vectors {x1,x2, . . . ,xm} and
{y1,y2, . . . ,yn} such that

BX = {z1, . . . , zt,x1, . . . ,xm} = a basis for X

and
BY = {z1, . . . , zt,y1, . . . ,yn} = a basis for Y.

We know from (4.1.2) that B = BX ∪BY spans X +Y, and we wish show that
B is linearly independent. If

t∑
i=1

αizi +
m∑

j=1

βjxj +
n∑

k=1

γkyk = 0, (4.4.20)

then
n∑

k=1

γkyk = −


 t∑

i=1

αizi +
m∑

j=1

βjxj


 ∈ X .

Since it is also true that
∑

k γkyk ∈ Y, we have that
∑

k γkyk ∈ X ∩ Y, and
hence there must exist scalars δi such that

n∑
k=1

γkyk =
t∑

i=1

δizi or, equivalently,
n∑

k=1

γkyk −
t∑

i=1

δizi = 0.
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Since BY is an independent set, it follows that all of the γk ’s (as well as all
δi ’s) are zero, and (4.4.20) reduces to

∑t
i=1 αizi +

∑m
j=1 βjxj = 0. But BX is

also an independent set, so the only way this can hold is for all of the αi ’s as
well as all of the βj ’s to be zero. Therefore, the only possible solution for the
α ’s, β ’s, and γ ’s in the homogeneous equation (4.4.20) is the trivial solution,
and thus B is linearly independent. Since B is an independent spanning set, it
is a basis for X + Y and, consequently,

dim (X + Y) = t+m+n = (t+m)+(t+n)−t = dimX+dimY−dim (X ∩ Y) .

Example 4.4.8

Problem: Show that rank (A + B) ≤ rank (A) + rank (B).

Solution: Observe that

R (A + B) ⊆ R (A) +R (B)

because if b ∈ R (A + B), then there is a vector x such that

b = (A + B)x = Ax + Bx ∈ R (A) +R (B).

Recall from (4.4.5) that if M and N are vector spaces such that M⊆ N , then
dimM≤ dimN . Use this together with formula (4.4.19) for the dimension of a
sum to conclude that

rank (A + B) = dimR (A + B) ≤ dim
(
R (A) +R (B)

)
= dimR (A) + dimR (B)− dim

(
R (A) ∩R (B)

)
≤ dimR (A) + dimR (B) = rank (A) + rank (B).

Exercises for section 4.4

4.4.1. Find the dimensions of the four fundamental subspaces associated with

A =


 1 2 2 3

2 4 1 3
3 6 1 4


 .

4.4.2. Find a basis for each of the four fundamental subspaces associated with

A =


 1 2 0 2 1

3 6 1 9 6
2 4 1 7 5


 .
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4.4.3. Determine the dimension of the space spanned by the set

S =







1
2
−1

3


 ,




1
0
0
2


 ,




2
8
−4

8


 ,




1
1
1
1


 ,




3
3
0
6





 .

4.4.4. Determine the dimensions of each of the following vector spaces:
(a) The space of polynomials having degree n or less.
(b) The space �m×n of m× n matrices.
(c) The space of n× n symmetric matrices.

4.4.5. Consider the following matrix and column vector:

A =


 1 2 2 0 5

2 4 3 1 8
3 6 1 5 5


 and v =



−8

1
3
3
0


 .

Verify that v ∈ N (A), and then extend {v} to a basis for N (A).

4.4.6. Determine whether or not the set

B =





 2

3
2


 ,


 1

1
−1







is a basis for the space spanned by the set

A =





 1

2
3


 ,


 5

8
7


 ,


 3

4
1





 .

4.4.7. Construct a 4× 4 homogeneous system of equations that has no zero
coefficients and three linearly independent solutions.

4.4.8. Let B = {b1,b2, . . . ,bn} be a basis for a vector space V. Prove that
each v ∈ V can be expressed as a linear combination of the bi ’s

v = α1b1 + α2b2 + · · ·+ αnbn,

in only one way—i.e., the coordinates αi are unique.
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4.4.9. For A ∈ �m×n and a subspace S of �n×1, the image

A(S) = {Ax |x ∈ S}
of S under A is a subspace of �m×1 —recall Exercise 4.1.9. Prove
that if S ∩ N (A) = 0, then dimA(S) = dim(S). Hint: Use a basis
{s1, s2, . . . , sk} for S to determine a basis for A(S).

4.4.10. Explain why
∣∣rank (A)− rank (B)

∣∣ ≤ rank (A−B).

4.4.11. If rank (Am×n) = r and rank (Em×n) = k ≤ r, explain why

r − k ≤ rank (A + E) ≤ r + k.

In words, this says that a perturbation of rank k can change the rank
by at most k.

4.4.12. Explain why every nonzero subspace V ⊆ �n must possess a basis.

4.4.13. Explain why every set of m − 1 rows in the incidence matrix E of a
connected directed graph containing m nodes is linearly independent.

4.4.14. For the incidence matrix E of a directed graph, explain why[
EET

]
ij

=
{

number of edges at node i when i = j,
−(number of edges between nodes i and j) when i �= j.

4.4.15. If M and N are subsets of a space V, explain why

dim
(
span (M∪N )

)
= dim

(
span (M)

)
+ dim

(
span (N )

)
− dim

(
span (M) ∩ span (N )

)
.

4.4.16. Consider two matrices Am×n and Bm×k.
(a) Explain why

rank (A | B) = rank (A) + rank (B)− dim
(
R (A) ∩R (B)

)
.

Hint: Recall Exercise 4.2.9.
(b) Now explain why

dimN (A | B) = dimN (A)+dimN (B)+dim
(
R (A)∩R (B)

)
.

(c) Determine dim
(
R (C)∩N (C)

)
and dim

(
R (C) +N (C)

)
for

C =



−1 1 1 −2 1
−1 0 3 −4 2
−1 0 3 −5 3
−1 0 3 −6 4
−1 0 3 −6 4


 .
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4.4.17. Suppose that A is a matrix with m rows such that the system Ax = b
has a unique solution for every b ∈ �m. Explain why this means that
A must be square and nonsingular.

4.4.18. Let S be the solution set for a consistent system of linear equations
Ax = b.

(a) If Smax = {s1, s2, . . . , st} is a maximal independent subset of
S, and if p is any particular solution, prove that

span (Smax) = span {p}+N (A).

Hint: First show that x ∈ S implies x ∈ span (Smax) , and
then demonstrate set inclusion in both directions with the aid
of Exercise 4.2.10.

(b) If b �= 0 and rank (Am×n) = r, explain why Ax = b has
n− r + 1 “independent solutions.”

4.4.19. Let rank (Am×n) = r, and suppose Ax = b with b �= 0 is a consistent
system. If H = {h1,h2, . . . ,hn−r} is a basis for N (A), and if p is a
particular solution to Ax = b, show that

Smax = {p, p + h1, p + h2, . . . , p + hn−r}

is a maximal independent set of solutions.

4.4.20. Strongly Connected Graphs. In Example 4.4.6 we started with a
graph to construct a matrix, but it’s also possible to reverse the situation
by starting with a matrix to build an associated graph. The graph of
An×n (denoted by G(A)) is defined to be the directed graph on n
nodes {N1, N2, . . . , Nn} in which there is a directed edge leading from
Ni to Nj if and only if aij �= 0. The directed graph G(A) is said to
be strongly connected provided that for each pair of nodes (Ni, Nk)
there is a sequence of directed edges leading from Ni to Nk. The matrix
A is said to be reducible if there exists a permutation matrix P such
that PT AP =

(
X Y
0 Z

)
, where X and Z are both square matrices.

Otherwise, A is said to be irreducible. Prove that G(A) is strongly
connected if and only if A is irreducible. Hint: Prove the contrapositive:
G(A) is not strongly connected if and only if A is reducible.
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4.5 MORE ABOUT RANK

Since equivalent matrices have the same rank, it follows that if P and Q are
nonsingular matrices such that the product PAQ is defined, then

rank (A) = rank (PAQ) = rank (PA) = rank (AQ).

In other words, rank is invariant under multiplication by a nonsingular matrix.
However, multiplication by rectangular or singular matrices can alter the rank,
and the following formula shows exactly how much alteration occurs.

Rank of a Product
If A is m× n and B is n× p, then

rank (AB) = rank (B)− dimN (A) ∩R (B). (4.5.1)

Proof. Start with a basis S = {x1,x2, . . . ,xs} for N (A) ∩ R (B), and no-
tice N (A) ∩ R (B) ⊆ R (B). If dimR (B) = s + t, then, as discussed in
Example 4.4.5, there exists an extension set Sext = {z1, z2, . . . , zt} such that
B = {x1, . . . ,xs, z1, . . . , zt} is a basis for R (B). The goal is to prove that
dimR (AB) = t, and this is done by showing T = {Az1,Az2, . . . ,Azt} is a
basis for R (AB). T spans R (AB) because if b ∈ R (AB), then b = ABy
for some y, but By ∈ R (B) implies By =

∑s
i=1 ξixi +

∑t
i=1 ηizi, so

b = A

(
s∑

i=1

ξixi +
t∑

i=1

ηizi

)
=

s∑
i=1

ξiAxi +
t∑

i=1

ηiAzi =
t∑

i=1

ηiAzi.

T is linearly independent because if 0 =
∑t

i=1 αiAzi = A
∑t

i=1 αizi, then∑t
i=1 αizi ∈ N (A) ∩R (B), so there are scalars βj such that

t∑
i=1

αizi =
s∑

j=1

βjxj or, equivalently,
t∑

i=1

αizi −
s∑

j=1

βjxj = 0,

and hence the only solution for the αi ’s and βi ’s is the trivial solution because
B is an independent set. Thus T is a basis for R (AB), so t = dimR (AB) =
rank (AB), and hence

rank (B) = dimR (B) = s+ t = dimN (A) ∩R (B) + rank (AB).

It’s sometimes necessary to determine an explicit basis for N (A) ∩ R (B).
In particular, such a basis is needed to construct the Jordan chains that are
associated with the Jordan form that is discussed on pp. 582 and 594. The
following example outlines a procedure for finding such a basis.
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Basis for an Intersection
If A is m× n and B is n× p, then a basis for N (A) ∩ R (B) can
be constructed by the following procedure.

� Find a basis {x1,x2, . . . ,xr} for R (B).

� Set Xn×r =
(
x1 |x2 | · · · |xr

)
.

� Find a basis {v1,v2, . . . ,vs} for N (AX).

� B = {Xv1,Xv2, . . . ,Xvs} is a basis for N (A) ∩R (B).

Proof. The strategy is to argue that B is a maximal linear independent sub-
set of N (A) ∩ R (B). Since each Xvj belongs to R (X) = R (B), and since
AXvj = 0, it’s clear that B ⊂ N (A) ∩R (B). Let Vr×s =

(
v1 |v2 | · · · |vs

)
,

and notice that V and X each have full column rank. Consequently, N (X) = 0
so, by (4.5.1),

rank (XV)n×s = rank (V)− dimN (X) ∩R (V) = rank (V) = s,

which insures that B is linearly independent. B is a maximal independent
subset of N (A) ∩R (B) because (4.5.1) also guarantees that

s = dimN (AX) = dimN (X) + dimN (A) ∩R (X) (see Exercise 4.5.10)
= dimN (A) ∩R (B).

The utility of (4.5.1) is mitigated by the fact that although rank (A) and
rank (B) are frequently known or can be estimated, the term dimN (A)∩R (B)
can be costly to obtain. In such cases (4.5.1) still provides us with useful upper
and lower bounds for rank (AB) that depend only on rank (A) and rank (B).

Bounds on the Rank of a Product
If A is m× n and B is n× p, then

• rank (AB) ≤ min {rank (A), rank (B)} , (4.5.2)

• rank (A) + rank (B)− n ≤ rank (AB). (4.5.3)
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Proof. In words, (4.5.2) says that the rank of a product cannot exceed the rank
of either factor. To prove rank (AB) ≤ rank (B), use (4.5.1) and write

rank (AB) = rank (B)− dimN (A) ∩R (B) ≤ rank (B).

This says that the rank of a product cannot exceed the rank of the right-hand
factor. To show that rank (AB) ≤ rank (A), remember that transposition does
not alter rank, and use the reverse order law for transposes together with the
previous statement to write

rank (AB) = rank (AB)T = rank
(
BT AT

)
≤ rank

(
AT

)
= rank (A).

To prove (4.5.3), notice that N (A)∩R (B) ⊆ N (A), and recall from (4.4.5) that
if M and N are spaces such that M⊆ N , then dimM≤ dimN . Therefore,

dimN (A) ∩R (B) ≤ dimN (A) = n− rank (A),

and the lower bound on rank (AB) is obtained from (4.5.1) by writing

rank (AB) = rank (B)− dimN (A) ∩R (B) ≥ rank (B) + rank (A)− n.

The products AT A and AAT and their complex counterparts A∗A and
AA∗ deserve special attention because they naturally appear in a wide variety
of applications.

Products AT A and AAT

For A ∈ �m×n, the following statements are true.

• rank
(
AT A

)
= rank (A) = rank

(
AAT

)
. (4.5.4)

• R
(
AT A

)
= R

(
AT

)
and R

(
AAT

)
= R (A). (4.5.5)

• N
(
AT A

)
= N (A) and N

(
AAT

)
= N

(
AT

)
. (4.5.6)

For A ∈ Cm×n, the transpose operation (')T must be replaced by the
conjugate transpose operation (')∗.
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Proof. First observe that N
(
AT

)
∩R (A) = {0} because

x ∈ N
(
AT

)
∩R (A) =⇒ AT x = 0 and x = Ay for some y

=⇒ xT x = yT AT x = 0 =⇒
∑

x2
i = 0

=⇒ x = 0.

Formula (4.5.1) for the rank of a product now guarantees that

rank
(
AT A

)
= rank (A)− dimN

(
AT

)
∩R (A) = rank (A),

which is half of (4.5.4)—the other half is obtained by reversing the roles of A
and AT . To prove (4.5.5) and (4.5.6), use the facts R (AB) ⊆ R (A) and
N (B) ⊆ N (AB) (see Exercise 4.2.12) to write R

(
AT A

)
⊆ R

(
AT

)
and

N (A) ⊆ N
(
AT A

)
. The first half of (4.5.5) and (4.5.6) now follows because

dimR
(
AT A

)
= rank

(
AT A

)
= rank (A) = rank

(
AT

)
= dimR

(
AT

)
,

dimN (A) = n− rank (A) = n− rank
(
AT A

)
= dimN

(
AT A

)
.

Reverse the roles of A and AT to get the second half of (4.5.5) and (4.5.6).

To see why (4.5.4)—(4.5.6) might be important, consider an m× n system
of equations Ax = b that may or may not be consistent. Multiplying on the
left-hand side by AT produces the n× n system

AT Ax = AT b

called the associated system of normal equations, which has some ex-
tremely interesting properties. First, notice that the normal equations are always
consistent, regardless of whether or not the original system is consistent because
(4.5.5) guarantees that AT b ∈ R

(
AT

)
= R

(
AT A

)
(i.e., the right-hand side is

in the range of the coefficient matrix), so (4.2.3) insures consistency. However, if
Ax = b happens to be consistent, then Ax = b and AT Ax = AT b have the
same solution set because if p is a particular solution of the original system,
then Ap = b implies AT Ap = AT b (i.e., p is also a particular solution of
the normal equations), so the general solution of Ax = b is S = p + N (A),
and the general solution of AT Ax = AT b is

p +N
(
AT A

)
= p +N (A) = S.

Furthermore, if Ax = b is consistent and has a unique solution, then the same
is true for AT Ax = AT b, and the unique solution common to both systems is

x =
(
AT A

)−1
AT b. (4.5.7)
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This follows because a unique solution (to either system) exists if and only if
0 = N (A) = N

(
AT A

)
, and this insures (AT A)n×n must be nonsingular (by

(4.2.11)), so (4.5.7) is the unique solution to both systems. Caution! When
A is not square, A−1 does not exist, and the reverse order law for inversion
doesn’t apply to

(
AT A

)−1
, so (4.5.7) cannot be further simplified.

There is one outstanding question—what do the solutions of the normal
equations AT Ax = AT b represent when the original system Ax = b is not
consistent? The answer, which is of fundamental importance, will have to wait
until §4.6, but let’s summarize what has been said so far.

Normal Equations

• For an m× n system Ax = b, the associated system of normal
equations is defined to be the n× n system AT Ax = AT b.

• AT Ax = AT b is always consistent, even when Ax = b is not
consistent.

• When Ax = b is consistent, its solution set agrees with that of
AT Ax = AT b. As discussed in §4.6, the normal equations provide
least squares solutions to Ax = b when Ax = b is inconsistent.

• AT Ax = AT b has a unique solution if and only if rank (A) = n,

in which case the unique solution is x =
(
AT A

)−1
AT b.

• When Ax = b is consistent and has a unique solution, then the
same is true for AT Ax = AT b, and the unique solution to both
systems is given by x =

(
AT A

)−1
AT b.

Example 4.5.1

Caution! Use of the product AT A or the normal equations is not recom-
mended for numerical computation. Any sensitivity to small perturbations that
is present in the underlying matrix A is magnified by forming the product
AT A. In other words, if Ax = b is somewhat ill-conditioned, then the asso-
ciated system of normal equations AT Ax = AT b will be ill-conditioned to an
even greater extent, and the theoretical properties surrounding AT A and the
normal equations may be lost in practical applications. For example, consider
the nonsingular system Ax = b, where

A =
(

3 6
1 2.01

)
and b =

(
9
3.01

)
.

If Gaussian elimination with 3-digit floating-point arithmetic is used to solve
Ax = b, then the 3-digit solution is (1, 1), and this agrees with the exact
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solution. However if 3-digit arithmetic is used to form the associated system of
normal equations, the result is(

10 20
20 40

) (
x1

x2

)
=

(
30
60.1

)
.

The 3-digit representation of AT A is singular, and the associated system of
normal equations is inconsistent. For these reasons, the normal equations are
often avoided in numerical computations. Nevertheless, the normal equations
are an important theoretical idea that leads to practical tools of fundamental
importance such as the method of least squares developed in §4.6 and §5.13.

Because the concept of rank is at the heart of our subject, it’s important to
understand rank from a variety of different viewpoints. The statement below is
one more way to think about rank. 29

Rank and the Largest Nonsingular Submatrix
The rank of a matrix Am×n is precisely the order of a maximal square
nonsingular submatrix of A. In other words, to say rank (A) = r
means that there is at least one r × r nonsingular submatrix in A,
and there are no nonsingular submatrices of larger order.

Proof. First demonstrate that there exists an r × r nonsingular submatrix in
A, and then show there can be no nonsingular submatrix of larger order. Begin
with the fact that there must be a maximal linearly independent set of r rows
in A as well as a maximal independent set of r columns, and prove that the
submatrix Mr×r lying on the intersection of these r rows and r columns is
nonsingular. The r independent rows can be permuted to the top, and the
remaining rows can be annihilated using row operations, so

A row∼
(

Ur×n

0

)
.

Now permute the r independent columns containing M to the left-hand side,
and use column operations to annihilate the remaining columns to conclude that

A row∼
(

Ur×n

0

)
col∼

(
Mr×r N

0 0

)
col∼

(
Mr×r 0

0 0

)
.

29
This is the last characterization of rank presented in this text, but historically this was the
essence of the first definition (p. 44) of rank given by Georg Frobenius (p. 662) in 1879.
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Rank isn’t changed by row or column operations, so r = rank (A) = rank (M),
and thus M is nonsingular. Now suppose that W is any other nonsingu-
lar submatrix of A, and let P and Q be permutation matrices such that
PAQ =

(
W X
Y Z

)
. If

E =
(

I 0
−YW−1 I

)
, F =

(
I −W−1X
0 I

)
, and S = Z−YW−1X,

then

EPAQF =
(

W 0
0 S

)
=⇒ A ∼

(
W 0
0 S

)
, (4.5.8)

and hence r = rank (A) = rank (W) + rank (S) ≥ rank (W) (recall Example
3.9.3). This guarantees that no nonsingular submatrix of A can have order
greater than r = rank (A).

Example 4.5.2

Problem: Determine the rank of A =
(

1 2 1
2 4 1
3 6 1

)
.

Solution: rank (A) = 2 because there is at least one 2× 2 nonsingular sub-
matrix (e.g., there is one lying on the intersection of rows 1 and 2 with columns
2 and 3), and there is no larger nonsingular submatrix (the entire matrix is sin-
gular). Notice that not all 2× 2 matrices are nonsingular (e.g., consider the one
lying on the intersection of rows 1 and 2 with columns 1 and 2).

Earlier in this section we saw that it is impossible to increase the rank by
means of matrix multiplication—i.e., (4.5.2) says rank (AE) ≤ rank (A). In
a certain sense there is a dual statement for matrix addition that says that it
is impossible to decrease the rank by means of a “small” matrix addition—i.e.,
rank (A + E) ≥ rank (A) whenever E has entries of small magnitude.

Small Perturbations Can’t Reduce Rank
If A and E are m× n matrices such that E has entries of sufficiently
small magnitude, then

rank (A + E) ≥ rank (A). (4.5.9)

The term “sufficiently small” is further clarified in Exercise 5.12.4.
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Proof. Suppose rank (A) = r, and let P and Q be nonsingular matrices
that reduce A to rank normal form—i.e., PAQ =

(
Ir 0
0 0

)
. If P and Q are

applied to E to form PEQ =
(

E11 E12

E21 E22

)
, where E11 is r × r, then

P(A + E)Q =
(

Ir + E11 E12

E21 E22

)
. (4.5.10)

If the magnitude of the entries in E are small enough to insure that Ek
11 → 0

as k → ∞, then the discussion of the Neumann series on p. 126 insures that
I + E11 is nonsingular. (Exercise 4.5.14 gives another condition on the size of
E11 to insure this.) This allows the right-hand side of (4.5.10) to be further
reduced by writing(

I 0
−E21(I + E11)−1 I

)(
I + E11 E12

E21 E22

)(
I −(I + E11)−1E12

0 I

)
=

(
I−E11 0

0 S

)
,

where S = E22 −E21 (I + E11)
−1 E12. In other words,

A + E ∼
(

I−E11 0
0 S

)
,

and therefore

rank (A + E) = rank (Ir + E11) + rank (S) (recall Example 3.9.3)
= rank (A) + rank (S)
≥ rank (A).

(4.5.11)

Example 4.5.3

A Pitfall in Solving Singular Systems. Solving Ax = b with floating-
point arithmetic produces the exact solution of a perturbed system whose coeffi-
cient matrix is A+E. If A is nonsingular, and if we are using a stable algorithm
(an algorithm that insures that the entries in E have small magnitudes), then
(4.5.9) guarantees that we are finding the exact solution to a nearby system that
is also nonsingular. On the other hand, if A is singular, then perturbations of
even the slightest magnitude can increase the rank, thereby producing a system
with fewer free variables than the original system theoretically demands, so even
a stable algorithm can result in a significant loss of information. But what are
the chances that this will actually occur in practice? To answer this, recall from
(4.5.11) that

rank (A + E) = rank (A) + rank (S), where S = E22 −E21 (I + E11)
−1 E12.
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If the rank is not to jump, then the perturbation E must be such that S = 0,
which is equivalent to saying E22 = E21 (I + E11)

−1 E12. Clearly, this requires
the existence of a very specific (and quite special) relationship among the entries
of E, and a random perturbation will almost never produce such a relation-
ship. Although rounding errors cannot be considered to be truly random, they
are random enough so as to make the possibility that S = 0 very unlikely.
Consequently, when A is singular, the small perturbation E due to roundoff
makes the possibility that rank (A + E) > rank (A) very likely. The moral is
to avoid floating-point solutions of singular systems. Singular problems can often
be distilled down to a nonsingular core or to nonsingular pieces, and these are
the components you should be dealing with.

Since no more significant characterizations of rank will be given, it is ap-
propriate to conclude this section with a summary of all of the different ways we
have developed to say “rank.”

Summary of Rank
For A ∈ �m×n, each of the following statements is true.

• rank (A) = The number of nonzero rows in any row echelon form
that is row equivalent to A.

• rank (A) = The number of pivots obtained in reducing A to a row
echelon form with row operations.

• rank (A) = The number of basic columns in A (as well as the num-
ber of basic columns in any matrix that is row equivalent
to A ).

• rank (A) = The number of independent columns in A —i.e., the size
of a maximal independent set of columns from A.

• rank (A) = The number of independent rows in A —i.e., the size of
a maximal independent set of rows from A.

• rank (A) = dimR (A).

• rank (A) = dimR
(
AT

)
.

• rank (A) = n− dimN (A).

• rank (A) = m− dimN
(
AT

)
.

• rank (A) = The size of the largest nonsingular submatrix in A.

For A ∈ Cm×n, replace (')T with (')∗.
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Exercises for section 4.5

4.5.1. Verify that rank
(
AT A

)
= rank (A) = rank

(
AAT

)
for

A =


 1 3 1 −4
−1 −3 1 0

2 6 2 −8


 .

4.5.2. Determine dimN (A) ∩R (B) for

A =


−2 1 1
−4 2 2

0 0 0


 and B =


 1 3 1 −4
−1 −3 1 0

2 6 2 −8


 .

4.5.3. For the matrices given in Exercise 4.5.2, use the procedure described
on p. 211 to determine a basis for N (A) ∩R (B).

4.5.4. If A1A2 · · ·Ak is a product of square matrices such that some Ai is
singular, explain why the entire product must be singular.

4.5.5. For A ∈ �m×n, explain why AT A = 0 implies A = 0.

4.5.6. Find rank (A) and all nonsingular submatrices of maximal order in

A =


 2 −1 1

4 −2 1
8 −4 1


 .

4.5.7. Is it possible that rank (AB) < rank (A) and rank (AB) < rank (B)
for the same pair of matrices?

4.5.8. Is rank (AB) = rank (BA) when both products are defined? Why?

4.5.9. Explain why rank (AB) = rank (A)− dimN
(
BT

)
∩R

(
AT

)
.

4.5.10. Explain why dimN (Am×nBn×p) = dimN (B) + dimR (B) ∩N (A).
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4.5.11. Sylvester’s law of nullity, given by James J. Sylvester in 1884, states
that for square matrices A and B,

max {ν(A), ν(B)} ≤ ν(AB) ≤ ν(A) + ν(B),

where ν(') = dimN (') denotes the nullity.
(a) Establish the validity of Sylvester’s law.
(b) Show Sylvester’s law is not valid for rectangular matrices be-

cause ν(A) > ν(AB) is possible. Is ν(B) > ν(AB) possible?

4.5.12. For matrices Am×n and Bn×p, prove each of the following statements:

(a) rank (AB) = rank (A) and R (AB) = R (A) if rank (B) = n.
(b) rank (AB) = rank (B) and N (AB) = N (B) if rank (A) = n.

4.5.13. Perform the following calculations using the matrices:

A =


 1 2

2 4
1 2.01


 and b =


 1

2
1.01


 .

(a) Find rank (A), and solve Ax = b using exact arithmetic.
(b) Find rank

(
AT A

)
, and solve AT Ax=AT b exactly.

(c) Find rank (A), and solve Ax = b with 3-digit arithmetic.
(d) Find AT A, AT b, and the solution of AT Ax = AT b with

3-digit arithmetic.

4.5.14. Prove that if the entries of Fr×r satisfy
∑r

j=1 |fij | < 1 for each i (i.e.,
each absolute row sum< 1), then I + F is nonsingular. Hint: Use the
triangle inequality for scalars |α+β| ≤ |α|+|β| to show N (I + F) = 0.

4.5.15. If A =
(

W X
Y Z

)
, where rank (A) = r = rank (Wr×r), show that

there are matrices B and C such that

A =
(

W WC
BW BWC

)
=

(
I
B

)
W

(
I | C

)
.

4.5.16. For a convergent sequence {Ak}∞k=1 of matrices, let A = limk→∞ Ak.
(a) Prove that if each Ak is singular, then A is singular.
(b) If each Ak is nonsingular, must A be nonsingular? Why?
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4.5.17. The Frobenius Inequality. Establish the validity of Frobenius’s 1911
result that states that if ABC exists, then

rank (AB) + rank (BC) ≤ rank (B) + rank (ABC).

Hint: If M = R (BC)∩N (A) and N = R (B)∩N (A), then M⊆ N .

4.5.18. If A is n× n, prove that the following statements are equivalent:
(a) N (A) = N

(
A2

)
.

(b) R (A) = R
(
A2

)
.

(c) R (A) ∩N (A) = {0}.

4.5.19. Let A and B be n× n matrices such that A = A2, B = B2, and
AB = BA = 0.

(a) Prove that rank (A + B) = rank (A) + rank (B). Hint: Con-
sider

(
A
B

)
(A + B)(A | B).

(b) Prove that rank (A) + rank (I−A) = n.

4.5.20. Moore–Penrose Inverse. For A ∈ �m×n such that rank (A) = r,
let A = BC be the full rank factorization of A in which Bm×r is the
matrix of basic columns from A and Cr×n is the matrix of nonzero
rows from EA (see Exercise 3.9.8). The matrix defined by

A† = CT
(
BT ACT

)−1
BT

is called the Moore–Penrose
30

inverse of A. Some authors refer to
A† as the pseudoinverse or the generalized inverse of A. A more elegant
treatment is given on p. 423, but it’s worthwhile to introduce the idea
here so that it can be used and viewed from different perspectives.

(a) Explain why the matrix BT ACT is nonsingular.
(b) Verify that x = A†b solves the normal equations AT Ax = AT b (as

well as Ax = b when it is consistent).
(c) Show that the general solution for AT Ax = AT b (as well as Ax = b

when it is consistent) can be described as

x = A†b +
(
I−A†A

)
h,

30
This is in honor of Eliakim H. Moore (1862–1932) and Roger Penrose (a famous contemporary
English mathematical physicist). Each formulated a concept of generalized matrix inversion—
Moore’s work was published in 1922, and Penrose’s work appeared in 1955. E. H. Moore is
considered by many to be America’s first great mathematician.
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where h is a “free variable” vector in �n×1.
Hint: Verify AA†A = A, and then show R

(
I−A†A

)
= N (A).

(d) If rank (A) = n, explain why A† =
(
AT A

)−1
AT .

(e) If A is square and nonsingular, explain why A† = A−1.

(f) Verify that A† = CT
(
BT ACT

)−1
BT satisfies the Penrose equations:

AA†A = A,
(
AA†)T = AA†,

A†AA† = A†,
(
A†A

)T = A†A.

Penrose originally defined A† to be the unique solution to these four
equations.



4.6 Classical Least Squares 223

4.6 CLASSICAL LEAST SQUARES

The following problem arises in almost all areas where mathematics is applied.
At discrete points ti (often points in time), observations bi of some phenomenon
are made, and the results are recorded as a set of ordered pairs

D = {(t1, b1), (t2, b2), . . . , (tm, bm)} .
On the basis of these observations, the problem is to make estimations or predic-
tions at points (times) t̂ that are between or beyond the observation points ti.
A standard approach is to find the equation of a curve y = f(t) that closely fits
the points in D so that the phenomenon can be estimated at any nonobservation
point t̂ with the value ŷ = f(t̂).

Let’s begin by fitting a straight line to the points in D. Once this is under-
stood, it will be relatively easy to see how to fit the data with curved lines.

f (t)= α+ β t

(t1 ,b1)

(
t1 ,f (t1)

)

(t2 ,b2)

(
t2 ,f (t2)

)

(tm ,bm )

(
tm ,f (tm )

)

t

b

ε1

ε2

εm

•

•

•

•

•

•

•

•

•

•

•

•

Figure 4.6.1

The strategy is to determine the coefficients α and β in the equation of the
line f(t) = α + βt that best fits the points (ti, bi) in the sense that the sum
of the squares of the vertical 31 errors ε1, ε2, . . . , εm indicated in Figure 4.6.1 is

31
We consider only vertical errors because there is a tacit assumption that only the observations
bi are subject to error or variation. The ti ’s are assumed to be errorless constants—think of
them as being exact points in time (as they often are). If the ti ’s are also subject to variation,
then horizontal as well as vertical errors have to be considered in Figure 4.6.1, and a more
complicated theory known as total least squares (not considered in this text) emerges. The
least squares line L obtained by minimizing only vertical deviations will not be the closest
line to points in D in terms of perpendicular distance, but L is the best line for the purpose
of linear estimation—see §5.14 (p. 446).
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minimal. The distance from (ti, bi) to a line f(t) = α+ βt is

εi = |f(ti)− bi| = |α+ βti − bi|,
so that the objective is to find values for α and β such that

m∑
i=1

ε2i =
m∑

i=1

(α+ βti − bi)
2 is minimal.

Minimization techniques from calculus tell us that the minimum value must
occur at a solution to the two equations

0 =
∂

(∑m
i=1 (α+ βti − bi)

2
)

∂α
= 2

m∑
i=1

(α+ βti − bi) ,

0 =
∂

(∑m
i=1 (α+ βti − bi)

2
)

∂β
= 2

m∑
i=1

(α+ βti − bi) ti.

Rearranging terms produces two equations in the two unknowns α and β(
m∑

i=1

1

)
α+

(
m∑

i=1

ti

)
β =

m∑
i=1

bi,(
m∑

i=1

ti

)
α+

(
m∑

i=1

t2i

)
β =

m∑
i=1

tibi.

(4.6.1)

By setting

A =




1 t1
1 t2
...

...
1 tm


 , b =



b1
b2
...
bm


 , and x =

(
α
β

)
,

we see that the two equations (4.6.1) have the matrix form AT Ax = AT b.
In other words, (4.6.1) is the system of normal equations associated with the
system Ax = b (see p. 213). The ti ’s are assumed to be distinct numbers,
so rank (A) = 2, and (4.5.7) insures that the normal equations have a unique
solution given by

x =
(
AT A

)−1
AT b

=
1

m
∑
t2i − (

∑
ti)

2

( ∑
t2i −

∑
ti

−
∑
ti m

) ( ∑
bi∑
tibi

)

=
1

m
∑
t2i − (

∑
ti)

2

( ∑
t2i

∑
bi −

∑
ti

∑
tibi

m
∑
tibi −

∑
ti

∑
bi

)
=

(
α
β

)
.

Finally, notice that the total sum of squares of the errors is given by
m∑

i=1

ε2i =
m∑

i=1

(α+ βti − bi)
2 = (Ax− b)T (Ax− b).
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Example 4.6.1

Problem: A small company has been in business for four years and has recorded
annual sales (in tens of thousands of dollars) as follows.

Year 1 2 3 4

Sales 23 27 30 34

When this data is plotted as shown in Figure 4.6.2, we see that although the
points do not exactly lie on a straight line, there nevertheless appears to be a
linear trend. Predict the sales for any future year if this trend continues.

0

22

23

24

25

26

27

28

29

30

31

32

33

34

4321 Year

Sa
le

s

Figure 4.6.2

Solution: Determine the line f(t) = α+ βt that best fits the data in the sense
of least squares. If

A =




1 1
1 2
1 3
1 4


 , b =




23
27
30
34


 , and x =

(
α
β

)
,

then the previous discussion guarantees that x is the solution of the normal
equations AT Ax = AT b. That is,(

4 10
10 30

) (
α
β

)
=

(
114
303

)
.

The solution is easily found to be α = 19.5 and β = 3.6, so we predict that the
sales in year t will be f(t) = 19.5 + 3.6t. For example, the estimated sales for
year five is $375,000. To get a feel for how close the least squares line comes to
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passing through the data points, let ε = Ax− b, and compute the sum of the
squares of the errors to be

m∑
i=1

ε2i = εT ε = (Ax− b)T (Ax− b) = .2.

General Least Squares Problem
For A ∈ �m×n and b ∈ �m, let ε = ε(x) = Ax − b. The general
least squares problem is to find a vector x that minimizes the quantity

m∑
i=1

ε2i = εT ε = (Ax− b)T (Ax− b).

Any vector that provides a minimum value for this expression is called
a least squares solution.

• The set of all least squares solutions is precisely the set of solutions
to the system of normal equations AT Ax = AT b.

• There is a unique least squares solution if and only if rank (A) = n,

in which case it is given by x =
(
AT A

)−1
AT b.

• If Ax = b is consistent, then the solution set for Ax = b is the
same as the set of least squares solutions.

Proof.32 First prove that if x minimizes εT ε, then x must satisfy the normal
equations. Begin by using xT AT b = bT Ax (scalars are symmetric) to write

m∑
i=1

ε2i = εT ε = (Ax− b)T (Ax− b) = xT AT Ax− 2xT AT b + bT b. (4.6.2)

To determine vectors x that minimize the expression (4.6.2), we will again use
minimization techniques from calculus and differentiate the function

f(x1, x2, . . . , xn) = xT AT Ax− 2xT AT b + bT b (4.6.3)

with respect to each xi. Differentiating matrix functions is similar to differ-
entiating scalar functions (see Exercise 3.5.9) in the sense that if U = [uij ],
then[
∂U
∂x

]
ij

=
∂uij

∂x
,

∂[U + V]
∂x

=
∂U
∂x

+
∂V
∂x

, and
∂[UV]
∂x

=
∂U
∂x

V + U
∂V
∂x

.

32
A more modern development not relying on calculus is given in §5.13 on p. 437, but the more
traditional approach is given here because it’s worthwhile to view least squares from both
perspectives.
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Applying these rules to the function in (4.6.3) produces

∂f

∂xi
=
∂xT

∂xi
AT Ax + xT AT A

∂x
∂xi

− 2
∂xT

∂xi
AT b.

Since ∂x/∂xi = ei (the ith unit vector), we have

∂f

∂xi
= eT

i AT Ax + xT AT Aei − 2eT
i AT b = 2eT

i AT Ax− 2eT
i AT b.

Using eT
i AT =

(
AT

)
i∗ and setting ∂f/∂xi = 0 produces the n equations(

AT
)
i∗Ax =

(
AT

)
i∗b for i = 1, 2, . . . , n,

which can be written as the single matrix equation AT Ax = AT b. Calculus
guarantees that the minimum value of f occurs at some solution of this system.
But this is not enough—we want to know that every solution of AT Ax = AT b
is a least squares solution. So we must show that the function f in (4.6.3) attains
its minimum value at each solution to AT Ax = AT b. Observe that if z is a
solution to the normal equations, then f(z) = bT b − zT AT b. For any other
y ∈ �n×1, let u = y − z, so y = z + u, and observe that

f(y) = f(z) + vT v, where v = Au.

Since vT v =
∑

i v
2
i ≥ 0, it follows that f(z) ≤ f(y) for all y ∈ �n×1, and

thus f attains its minimum value at each solution of the normal equations. The
remaining statements in the theorem follow from the properties established on
p. 213.

The classical least squares problem discussed at the beginning of this sec-
tion and illustrated in Example 4.6.1 is part of a broader topic known as linear
regression, which is the study of situations where attempts are made to express
one variable y as a linear combination of other variables t1, t2, . . . , tn. In prac-
tice, hypothesizing that y is linearly related to t1, t2, . . . , tn means that one
assumes the existence of a set of constants {α0, α1, . . . , αn} (called parameters)
such that

y = α0 + α1t1 + α2t2 + · · ·+ αntn + ε,

where ε is a “random function” whose values “average out” to zero in some
sense. Practical problems almost always involve more variables than we wish to
consider, but it is frequently fair to assume that the effect of variables of lesser
significance will indeed “average out” to zero. The random function ε accounts
for this assumption. In other words, a linear hypothesis is the supposition that
the expected (or mean) value of y at each point where the phenomenon can be
observed is given by a linear equation

E(y) = α0 + α1t1 + α2t2 + · · ·+ αntn.
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To help seat these ideas, consider the problem of predicting the amount of
weight that a pint of ice cream loses when it is stored at very low temperatures.
There are many factors that may contribute to weight loss—e.g., storage tem-
perature, storage time, humidity, atmospheric pressure, butterfat content, the
amount of corn syrup, the amounts of various gums (guar gum, carob bean gum,
locust bean gum, cellulose gum), and the never-ending list of other additives and
preservatives. It is reasonable to believe that storage time and temperature are
the primary factors, so to predict weight loss we will make a linear hypothesis of
the form

y = α0 + α1t1 + α2t2 + ε,

where y = weight loss (grams), t1 = storage time (weeks), t2 = storage tem-
perature ( oF ), and ε is a random function to account for all other factors. The
assumption is that all other factors “average out” to zero, so the expected (or
mean) weight loss at each point (t1, t2) is

E(y) = α0 + α1t1 + α2t2. (4.6.4)

Suppose that we conduct an experiment in which values for weight loss are
measured for various values of storage time and temperature as shown below.

Time (weeks) 1 1 1 2 2 2 3 3 3

Temp (oF ) −10 −5 0 −10 −5 0 −10 −5 0

Loss (grams) .15 .18 .20 .17 .19 .22 .20 .23 .25

If

A =




1 1 −10
1 1 −5
1 1 0
1 2 −10
1 2 −5
1 2 0
1 3 −10
1 3 −5
1 3 0



, x =


α0

α1

α2


 , and b =




.15

.18

.20

.17

.19

.22

.20

.23

.25



,

and if we were lucky enough to exactly observe the mean weight loss each time
(i.e., if bi = E(yi) ), then equation (4.6.4) would insure that Ax = b is a
consistent system, so we could solve for the unknown parameters α0, α1, and
α2. However, it is virtually impossible to observe the exact value of the mean
weight loss for a given storage time and temperature, and almost certainly the
system defined by Ax = b will be inconsistent—especially when the number
of observations greatly exceeds the number of parameters. Since we can’t solve
Ax = b to find exact values for the αi ’s, the best we can hope for is a set of
“good estimates” for these parameters.
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The famous Gauss–Markov theorem (developed on p. 448) states that under
certain reasonable assumptions concerning the random error function ε, the
“best” estimates for the αi ’s are obtained by minimizing the sum of squares
(Ax− b)T (Ax− b). In other words, the least squares estimates are the “best”
way to estimate the αi ’s.

Returning to our ice cream example, it can be verified that b /∈ R (A), so, as
expected, the system Ax = b is not consistent, and we cannot determine exact
values for α0, α1, and α2. The best we can do is to determine least squares esti-
mates for the αi ’s by solving the associated normal equations AT Ax = AT b,
which in this example are


 9 18 −45

18 42 −90
−45 −90 375





α0

α1

α2


 =


 1.79

3.73
−8.2


 .

The solution is 
α0

α1

α2


 =


 .174
.025
.005


 ,

and the estimating equation for mean weight loss becomes

ŷ = .174 + .025t1 + .005t2.

For example, the mean weight loss of a pint of ice cream that is stored for nine
weeks at a temperature of −35oF is estimated to be

ŷ = .174 + .025(9) + .005(−35) = .224 grams.

Example 4.6.2

Least Squares Curve Fitting Problem: Find a polynomial

p(t) = α0 + α1t+ α2t
2 + · · ·+ αn−1t

n−1

with a specified degree that comes as close as possible in the sense of least squares
to passing through a set of data points

D = {(t1, b1), (t2, b2), . . . , (tm, bm)} ,

where the ti ’s are distinct numbers, and n ≤ m.
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p(t)

(t1 ,b1)

(t2 ,b2)

(
t2 ,p (t2)

)

(
t1 ,p (t1)

)

(tm ,bm )

(
tm ,p (tm )

)

t

b

ε1

ε2

εm

•

•

•

•

•

••

•

•

•
•

•

Figure 4.6.3

Solution: For the εi ’s indicated in Figure 4.6.3, the objective is to minimize
the sum of squares

m∑
i=1

ε2i =
m∑

i=1

(p(ti)− bi)
2 = (Ax− b)T (Ax− b),

where

A =




1 t1 t21 · · · tn−1
1

1 t2 t22 · · · tn−1
2

...
...

... · · ·
...

1 tm t2m · · · tn−1
m


 , x =




α0

α1
...

αn−1


 , and b =



b1
b2
...
bm


 .

In other words, the least squares polynomial of degree n−1 is obtained from the
least squares solution associated with the system Ax = b. Furthermore, this
least squares polynomial is unique because Am×n is the Vandermonde matrix
of Example 4.3.4 with n ≤ m, so rank (A) = n, and Ax = b has a unique
least squares solution given by x =

(
AT A

)−1
AT b.

Note: We know from Example 4.3.5 on p. 186 that the Lagrange interpolation
polynomial �(t) of degree m−1 will exactly fit the data—i.e., it passes through
each point in D. So why would one want to settle for a least squares fit when
an exact fit is possible? One answer stems from the fact that in practical work
the observations bi are rarely exact due to small errors arising from imprecise
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measurements or from simplifying assumptions. For this reason, it is the trend
of the observations that needs to be fitted and not the observations themselves.
To hit the data points, the interpolation polynomial �(t) is usually forced to
oscillate between or beyond the data points, and as m becomes larger the oscil-
lations can become more pronounced. Consequently, �(t) is generally not useful
in making estimations concerning the trend of the observations—Example 4.6.3
drives this point home. In addition to exactly hitting a prescribed set of data
points, an interpolation polynomial called the Hermite polynomial (p. 607) can
be constructed to have specified derivatives at each data point. While this helps,
it still is not as good as least squares for making estimations on the basis of
observations.

Example 4.6.3

A missile is fired from enemy territory, and its position in flight is observed by
radar tracking devices at the following positions.

Position down range (miles) 0 250 500 750 1000

Height (miles) 0 8 15 19 20

Suppose our intelligence sources indicate that enemy missiles are programmed
to follow a parabolic flight path—a fact that seems to be consistent with the
diagram obtained by plotting the observations on the coordinate system shown
in Figure 4.6.4.

10007505002500

0

5

10

15

20

t = Range

b 
=

 H
ei

gh
t

Figure 4.6.4

Problem: Predict how far down range the missile will land.
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Solution: Determine the parabola f(t) = α0 + α1t + α2t
2 that best fits the

observed data in the least squares sense. Then estimate where the missile will
land by determining the roots of f (i.e., determine where the parabola crosses
the horizontal axis). As it stands, the problem will involve numbers having rela-
tively large magnitudes in conjunction with relatively small ones. Consequently,
it is better to first scale the data by considering one unit to be 1000 miles. If

A =




1 0 0
1 .25 .0625
1 .5 .25
1 .75 .5625
1 1 1


 , x =


α0

α1

α2


 , and b =




0
.008
.015
.019
.02


 ,

and if ε = Ax − b, then the object is to find a least squares solution x that
minimizes

5∑
i=1

ε2i = εT ε = (Ax− b)T (Ax− b).

We know that such a least squares solution is given by the solution to the system
of normal equations AT Ax = AT b, which in this case is

 5 2.5 1.875
2.5 1.875 1.5625
1.875 1.5625 1.3828125





α0

α1

α2


 =


 .062
.04375
.0349375


 .

The solution (rounded to four significant digits) is

x =


−2.286× 10−4

3.983× 10−2

−1.943× 10−2


 ,

and the least squares parabola is

f(t) = −.0002286 + .03983t− .01943t2.

To estimate where the missile will land, determine where this parabola crosses
the horizontal axis by applying the quadratic formula to find the roots of f(t)
to be t = .005755 and t = 2.044. Therefore, we estimate that the missile will
land 2044 miles down range. The sum of the squares of the errors associated with
the least squares solution is

5∑
i=1

ε2i = εT ε = (Ax− b)T (Ax− b) = 4.571× 10−7.
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Least Squares vs. Lagrange Interpolation. Instead of using least squares,
fit the observations exactly with the fourth-degree Lagrange interpolation poly-
nomial

�(t) =
11
375

t+
17

750000
t2 − 1

18750000
t3 +

1
46875000000

t4

described in Example 4.3.5 on p. 186 (you can verify that �(ti) = bi for each
observation). As the graph in Figure 4.6.5 indicates, �(t) has only one real
nonnegative root, so it is worthless for predicting where the missile will land.
This is characteristic of Lagrange interpolation.

y = �(t)

Figure 4.6.5

Computational Note: Theoretically, the least squares solutions of Ax = b
are exactly the solutions of the normal equations AT Ax = AT b, but form-
ing and solving the normal equations to compute least squares solutions with
floating-point arithmetic is not recommended. As pointed out in Example 4.5.1
on p. 214, any sensitivities to small perturbations that are present in the under-
lying problem are magnified by forming the normal equations. In other words, if
the underlying problem is somewhat ill-conditioned, then the system of normal
equations will be ill-conditioned to an even greater extent. Numerically stable
techniques that avoid the normal equations are presented in Example 5.5.3 on
p. 313 and Example 5.7.3 on p. 346.

Epilogue

While viewing a region in the Taurus constellation on January 1, 1801, Giuseppe
Piazzi, an astronomer and director of the Palermo observatory, observed a small
“star” that he had never seen before. As Piazzi and others continued to watch
this new “star”—which was really an asteroid—they noticed that it was in fact
moving, and they concluded that a new “planet” had been discovered. However,
their new “planet” completely disappeared in the autumn of 1801. Well-known
astronomers of the time joined the search to relocate the lost “planet,” but all
efforts were in vain.
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In September of 1801 Carl F. Gauss decided to take up the challenge of
finding this lost “planet.” Gauss allowed for the possibility of an elliptical or-
bit rather than constraining it to be circular—which was an assumption of the
others—and he proceeded to develop the method of least squares. By December
the task was completed, and Gauss informed the scientific community not only
where the lost “planet” was located, but he also predicted its position at fu-
ture times. They looked, and it was exactly where Gauss had predicted it would
be! The asteroid was named Ceres, and Gauss’s contribution was recognized by
naming another minor asteroid Gaussia.

This extraordinary feat of locating a tiny and distant heavenly body from
apparently insufficient data astounded the scientific community. Furthermore,
Gauss refused to reveal his methods, and there were those who even accused
him of sorcery. These events led directly to Gauss’s fame throughout the entire
European community, and they helped to establish his reputation as a mathe-
matical and scientific genius of the highest order.

Gauss waited until 1809, when he published his Theoria Motus Corporum
Coelestium In Sectionibus Conicis Solem Ambientium, to systematically develop
the theory of least squares and his methods of orbit calculation. This was in
keeping with Gauss’s philosophy to publish nothing but well-polished work of
lasting significance. When criticized for not revealing more motivational aspects
in his writings, Gauss remarked that architects of great cathedrals do not obscure
the beauty of their work by leaving the scaffolds in place after the construction
has been completed. Gauss’s theory of least squares approximation has indeed
proven to be a great mathematical cathedral of lasting beauty and significance.

Exercises for section 4.6

4.6.1. Hooke’s law says that the displacement y of an ideal spring is propor-
tional to the force x that is applied—i.e., y = kx for some constant k.
Consider a spring in which k is unknown. Various masses are attached,
and the resulting displacements shown in Figure 4.6.6 are observed. Us-
ing these observations, determine the least squares estimate for k.

x (lb) y (in)

5 11.1
7 15.4
8 17.5
10 22.0
12 26.3

x

y

Figure 4.6.6
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4.6.2. Show that the slope of the line that passes through the origin in �2 and
comes closest in the least squares sense to passing through the points
{(x1, y1), (x2, y2), . . . , (xn, yn)} is given by m =

∑
i xiyi/

∑
i x

2
i .

4.6.3. A small company has been in business for three years and has recorded
annual profits (in thousands of dollars) as follows.

Year 1 2 3

Sales 7 4 3

Assuming that there is a linear trend in the declining profits, predict the
year and the month in which the company begins to lose money.

4.6.4. An economist hypothesizes that the change (in dollars) in the price of a
loaf of bread is primarily a linear combination of the change in the price
of a bushel of wheat and the change in the minimum wage. That is, if B
is the change in bread prices, W is the change in wheat prices, and M
is the change in the minimum wage, then B = αW +βM. Suppose that
for three consecutive years the change in bread prices, wheat prices, and
the minimum wage are as shown below.

Year 1 Year 2 Year 3

B +$1 +$1 +$1

W +$1 +$2 0$

M +$1 0$ −$1

Use the theory of least squares to estimate the change in the price of
bread in Year 4 if wheat prices and the minimum wage each fall by $1.

4.6.5. Suppose that a researcher hypothesizes that the weight loss of a pint of
ice cream during storage is primarily a linear function of time. That is,

y = α0 + α1t+ ε,

where y = the weight loss in grams, t = the storage time in weeks, and
ε is a random error function whose mean value is 0. Suppose that an
experiment is conducted, and the following data is obtained.

Time (t) 1 2 3 4 5 6 7 8

Loss (y) .15 .21 .30 .41 .49 .59 .72 .83

(a) Determine the least squares estimates for the parameters α0

and α1.
(b) Predict the mean weight loss for a pint of ice cream that is stored

for 20 weeks.
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4.6.6. After studying a certain type of cancer, a researcher hypothesizes that
in the short run the number (y) of malignant cells in a particular tissue
grows exponentially with time (t). That is, y = α0e

α1t. Determine least
squares estimates for the parameters α0 and α1 from the researcher’s
observed data given below.

t (days) 1 2 3 4 5

y (cells) 16 27 45 74 122

Hint: What common transformation converts an exponential function
into a linear function?

4.6.7. Using least squares techniques, fit the following data

x −5 −4 −3 −2 −1 0 1 2 3 4 5

y 2 7 9 12 13 14 14 13 10 8 4

with a line y = α0 + α1x and then fit the data with a quadratic y =
α0 +α1x+α2x

2. Determine which of these two curves best fits the data
by computing the sum of the squares of the errors in each case.

4.6.8. Consider the time (T ) it takes for a runner to complete a marathon (26
miles and 385 yards). Many factors such as height, weight, age, previous
training, etc. can influence an athlete’s performance, but experience has
shown that the following three factors are particularly important:

x1 = Ponderal index =
height (in.)

[weight (lbs.)]
1
3
,

x2 = Miles run the previous 8 weeks,
x3 = Age (years).

A linear model hypothesizes that the time T (in minutes) is given by
T = α0 + α1x1 + α2x2 + α3x3 + ε, where ε is a random function
accounting for all other factors and whose mean value is assumed to
be zero. On the basis of the five observations given below, estimate the
expected marathon time for a 43-year-old runner of height 74 in., weight
180 lbs., who has run 450 miles during the previous eight weeks.

T x1 x2 x3

181 13.1 619 23
193 13.5 803 42
212 13.8 207 31
221 13.1 409 38
248 12.5 482 45

What is your personal predicted mean marathon time?
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4.6.9. For A ∈ �m×n and b ∈ �m, prove that x2 is a least squares solution
for Ax = b if and only if x2 is part of a solution to the larger system(

Im×m A

AT 0n×n

) (
x1

x2

)
=

(
b

0

)
. (4.6.5)

Note: It is not uncommon to encounter least squares problems in which
A is extremely large but very sparse (mostly zero entries). For these
situations, the system (4.6.5) will usually contain significantly fewer
nonzero entries than the system of normal equations, thereby helping to
overcome the memory requirements that plague these problems. Using
(4.6.5) also eliminates the undesirable need to explicitly form the prod-
uct AT A —recall from Example 4.5.1 that forming AT A can cause
loss of significant information.

4.6.10. In many least squares applications, the underlying data matrix Am×n

does not have independent columns—i.e., rank (A) < n—so the corre-
sponding system of normal equations AT Ax = AT b will fail to have
a unique solution. This means that in an associated linear estimation
problem of the form

y = α1t1 + α2t2 + · · ·+ αntn + ε

there will be infinitely many least squares estimates for the parameters
αi, and hence there will be infinitely many estimates for the mean value
of y at any given point (t1, t2, . . . , tn) —which is clearly an undesirable
situation. In order to remedy this problem, we restrict ourselves to mak-
ing estimates only at those points (t1, t2, . . . , tn) that are in the row
space of A. If

t =



t1
t2
...
tn


 ∈ R

(
AT

)
, and if x =



α̂1

α̂2
...
α̂n




is any least squares solution (i.e., AT Ax = AT b ), prove that the esti-
mate defined by

ŷ = tT x =
n∑

i=1

tiα̂i

is unique in the sense that ŷ is independent of which least squares
solution x is used.
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4.7 LINEAR TRANSFORMATIONS

The connection between linear functions and matrices is at the heart of our sub-
ject. As explained on p. 93, matrix algebra grew out of Cayley’s observation that
the composition of two linear functions can be represented by the multiplication
of two matrices. It’s now time to look deeper into such matters and to formalize
the connections between matrices, vector spaces, and linear functions defined on
vector spaces. This is the point at which linear algebra, as the study of linear
functions on vector spaces, begins in earnest.

Linear Transformations
Let U and V be vector spaces over a field F (� or C for us).
• A linear transformation from U into V is defined to be a linear

function T mapping U into V. That is,

T(x + y) = T(x) + T(y) and T(αx) = αT(x) (4.7.1)
or, equivalently,

T(αx + y) = αT(x) + T(y) for all x,y ∈ U , α ∈ F . (4.7.2)

• A linear operator on U is defined to be a linear transformation
from U into itself—i.e., a linear function mapping U back into U .

Example 4.7.1

• The function 0(x) = 0 that maps all vectors in a space U to the zero
vector in another space V is a linear transformation from U into V, and,
not surprisingly, it is called the zero transformation.

• The function I(x) = x that maps every vector from a space U back to itself
is a linear operator on U . I is called the identity operator on U .

• For A ∈ �m×n and x ∈ �n×1, the function T(x) = Ax is a linear
transformation from �n into �m because matrix multiplication satisfies
A(αx + y) = αAx + Ay. T is a linear operator on �n if A is n× n.

• If W is the vector space of all functions from � to �, and if V is the space
of all differentiable functions from � to �, then the mapping D(f) = df/dx
is a linear transformation from V into W because

d(αf + g)
dx

= α
df

dx
+
dg

dx
.

• If V is the space of all continuous functions from � into �, then the
mapping defined by T(f) =

∫ x

0
f(t)dt is a linear operator on V because∫ x

0

[αf(t) + g(t)] dt = α

∫ x

0

f(t)dt+
∫ x

0

g(t)dt.
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• The rotator Q that rotates vectors u in �2 counterclockwise through an
angle θ, as shown in Figure 4.7.1, is a linear operator on �2 because the
“action” of Q on u can be described by matrix multiplication in the sense
that the coordinates of the rotated vector Q(u) are given by

Q(u) =
(
x cos θ − y sin θ
x sin θ + y cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
.

• The projector P that maps each point v = (x, y, z) ∈ �3 to its orthogonal
projection (x, y, 0) in the xy -plane, as depicted in Figure 4.7.2, is a linear
operator on �3 because if u = (u1, u2, u3) and v = (v1, v2, v3), then

P(αu + v)=(αu1+v1, αu2+v2, 0)=α(u1, u2, 0)+(v1, v2, 0)=αP(u)+P(v).

• The reflector R that maps each vector v = (x, y, z) ∈ �3 to its reflection
R(v) = (x, y,−z) about the xy -plane, as shown in Figure 4.7.3, is a linear
operator on �3.

θ

Q(u) = (x cos θ  -  y sin θ,  x sin θ  +  y cos θ)

u = (x, y)

y =
 x

P(v)

v v = (x, y, z)

R(v) = (x, y, -z)

Figure 4.7.1 Figure 4.7.2 Figure 4.7.3

• Just as the rotator Q is represented by a matrix [Q] =
(

cos θ − sin θ
sin θ cos θ

)
, the

projector P and the reflector R can be represented by matrices

[P] =


 1 0 0

0 1 0
0 0 0


 and [R] =


 1 0 0

0 1 0
0 0 −1




in the sense that the “action” of P and R on v = (x, y, z) can be accom-
plished with matrix multiplication using [P] and [R] by writing

 1 0 0
0 1 0
0 0 0





x
y
z


 =


x
y
0


 and


 1 0 0

0 1 0
0 0 −1





x
y
z


 =


 x

y
−z


 .
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It would be wrong to infer from Example 4.7.1 that all linear transformations
can be represented by matrices (of finite size). For example, the differential and
integral operators do not have matrix representations because they are defined
on infinite-dimensional spaces. But linear transformations on finite-dimensional
spaces will always have matrix representations. To see why, the concept of “co-
ordinates” in higher dimensions must first be understood.

Recall that if B = {u1,u2, . . . ,un} is a basis for a vector space U , then
each v ∈ U can be written as v = α1u1 +α2u2 + · · ·+αnun. The αi ’s in this
expansion are uniquely determined by v because if v =

∑
i αiui =

∑
i βiui,

then 0 =
∑

i(αi − βi)ui, and this implies αi − βi = 0 (i.e., αi = βi) for each
i because B is an independent set.

Coordinates of a Vector
Let B = {u1,u2, . . . ,un} be a basis for a vector space U , and let v ∈ U .
The coefficients αi in the expansion v = α1u1 +α2u2 + · · ·+αnun are
called the coordinates of v with respect to B, and, from now on,
[v]B will denote the column vector

[v]B =



α1

α2
...
αn


 .

Caution! Order is important. If B′ is a permutation of B, then [v]B′

is the corresponding permutation of [v]B.

From now on, S = {e1, e2, . . . , en} will denote the standard basis of unit
vectors (in natural order) for �n (or Cn). If no other basis is explicitly men-
tioned, then the standard basis is assumed. For example, if no basis is mentioned,
and if we write

v =


 8

7
4


 ,

then it is understood that this is the representation with respect to S in the
sense that v = [v]S = 8e1 + 7e2 + 4e3. The standard coordinates of a vector
are its coordinates with respect to S. So, 8, 7, and 4 are the standard coordinates
of v in the above example.

Example 4.7.2

Problem: If v is a vector in �3 whose standard coordinates are
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v =


 8

7
4


 ,

determine the coordinates of v with respect to the basis

B =


u1 =


 1

1
1


 ,u2 =


 1

2
2


 ,u3 =


 1

2
3





 .

Solution: The object is to find the three unknowns α1, α2, and α3 such that
α1u1 + α2u2 + α3u3 = v. This is simply a 3× 3 system of linear equations

 1 1 1
1 2 2
1 2 3





α1

α2

α3


 =


 8

7
4


 =⇒ [v]B =


α1

α2

α3


 =


 9

2
−3


 .

The general rule for making a change of coordinates is given on p. 252.

Linear transformations possess coordinates in the same way vectors do be-
cause linear transformations from U to V also form a vector space.

Space of Linear Transformations
• For each pair of vector spaces U and V over F , the set L(U ,V) of

all linear transformations from U to V is a vector space over F .
• Let B = {u1,u2, . . . ,un} and B′ = {v1,v2, . . . ,vm} be bases for U

and V, respectively, and let Bji be the linear transformation from
U into V defined by Bji(u) = ξjvi, where (ξ1, ξ2, . . . , ξn)T = [u]B.
That is, pick off the jth coordinate of u, and attach it to vi.

� BL = {Bji}i=1...m
j=1...n is a basis for L(U ,V).

� dimL(U ,V) = (dimU) (dimV) .

Proof. L(U ,V) is a vector space because the defining properties on p. 160 are
satisfied—details are omitted. Prove BL is a basis by demonstrating that it is a
linearly independent spanning set for L(U ,V). To establish linear independence,
suppose

∑
j,i ηjiBji = 0 for scalars ηji, and observe that for each uk ∈ B,

Bji(uk)=
{

vi if j = k
0 if j �= k

=⇒ 0=
( ∑

j,i

ηjiBji

)
(uk)=

∑
j,i

ηjiBji(uk)=
m∑

i=1

ηkivi.

For each k, the independence of B′ implies that ηki = 0 for each i, and thus
BL is linearly independent. To see that BL spans L(U ,V), let T ∈ L(U ,V),
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and determine the action of T on any u ∈ U by using u =
∑n

j=1 ξjuj and
T(uj) =

∑m
i=1 αijvi to write

T(u) = T

(
n∑

j=1

ξjuj

)
=

n∑
j=1

ξjT(uj) =
n∑

j=1

ξj

m∑
i=1

αijvi

=
∑
i,j

αijξjvi =
∑
i,j

αijBji(u).
(4.7.3)

This holds for all u ∈ U , so T =
∑

i,j αijBji, and thus BL spans L(U ,V).

It now makes sense to talk about the coordinates of T ∈ L(U ,V) with
respect to the basis BL. In fact, the rule for determining these coordinates is
contained in the proof above, where it was demonstrated that T =

∑
i,j αijBji

in which the coordinates αij are precisely the scalars in

T(uj) =
m∑

i=1

αijvi or, equivalently, [T(uj)]B′ =



α1j

α2j

...
αmj


 , j = 1, 2, . . . , n.

This suggests that rather than listing all coordinates αij in a single column
containing mn entries (as we did with coordinate vectors), it’s more logical to
arrange the αij ’s as an m× n matrix in which the jth column contains the
coordinates of T(uj) with respect to B′. These ideas are summarized below.

Coordinate Matrix Representations
Let B = {u1,u2, . . . ,un} and B′ = {v1,v2, . . . ,vm} be bases for U
and V, respectively. The coordinate matrix of T ∈ L(U ,V) with
respect to the pair (B,B′) is defined to be the m× n matrix

[T]BB′ =
(
[T(u1)]B′

∣∣∣ [T(u2)]B′

∣∣∣ · · · ∣∣∣ [T(un)]B′

)
. (4.7.4)

In other words, if T(uj) = α1jv1 + α2jv2 + · · ·+ αmjvm, then

[T(uj)]B′ =



α1j

α2j

...
αmj


 and [T]BB′ =



α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn


 . (4.7.5)

When T is a linear operator on U , and when there is only one basis
involved, [T]B is used in place of [T]BB to denote the (necessarily
square) coordinate matrix of T with respect to B.
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Example 4.7.3

Problem: If P is the projector defined in Example 4.7.1 that maps each point
v = (x, y, z) ∈ �3 to its orthogonal projection P(v) = (x, y, 0) in the xy -plane,
determine the coordinate matrix [P]B with respect to the basis

B =


u1 =


 1

1
1


 ,u2 =


 1

2
2


 ,u3 =


 1

2
3





 .

Solution: According to (4.7.4), the jth column in [P]B is [P(uj)]B. Therefore,

P(u1) =


 1

1
0


 = 1u1 + 1u2 − 1u3 =⇒ [P(u1)]B =


 1

1
−1


 ,

P(u2) =


 1

2
0


 = 0u1 + 3u2 − 2u3 =⇒ [P(u2)]B =


 0

3
−2


 ,

P(u3) =


 1

2
0


 = 0u1 + 3u2 − 2u3 =⇒ [P(u3)]B =


 0

3
−2


 ,

so that [P]B =


 1 0 0

1 3 3
−1 −2 −2


 .

Example 4.7.4

Problem: Consider the same problem given in Example 4.7.3, but use different
bases—say,

B =


u1 =


 1

0
0


 , u2 =


 1

1
0


 , u3 =


 1

1
1







and

B′ =


v1 =


−1

0
0


 , v2 =


 0

1
0


 , v3 =


 0

1
−1





 .

For the projector defined by P(x, y, z) = (x, y, 0), determine [P]BB′ .

Solution: Determine the coordinates of each P(uj) with respect to B′, as
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shown below:

P(u1) =


 1

0
0


 = −1v1 + 0v2 + 0v3 =⇒ [P(u1)]B′ =


−1

0
0


 ,

P(u2) =


 1

1
0


 = −1v1 + 1v2 + 0v3 =⇒ [P(u2)]B′ =


−1

1
0


 ,

P(u3) =


 1

1
0


 = −1v1 + 1v2 + 0v3 =⇒ [P(u3)]B′ =


−1

1
0


 .

Therefore, according to (4.7.4), [P]BB′ =
(−1 −1 −1

0 1 1
0 0 0

)
.

At the heart of linear algebra is the realization that the theory of finite-
dimensional linear transformations is essentially the same as the theory of ma-
trices. This is due primarily to the fundamental fact that the action of a linear
transformation T on a vector u is precisely matrix multiplication between the
coordinates of T and the coordinates of u.

Action as Matrix Multiplication
Let T ∈ L(U ,V), and let B and B′ be bases for U and V, respectively.
For each u ∈ U , the action of T on u is given by matrix multiplication
between their coordinates in the sense that

[T(u)]B′ = [T]BB′ [u]B. (4.7.6)

Proof. Let B = {u1,u2, . . . ,un} and B′ = {v1,v2, . . . ,vm} . If u =
∑n

j=1 ξjuj

and T(uj) =
∑m

i=1 αijvi, then

[u]B =



ξ1
ξ2
...
ξn


 and [T]BB′ =



α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn


 ,

so, according to (4.7.3),

T(u) =
∑
i,j

αijξjvi =
m∑

i=1

(
n∑

j=1

αijξj

)
vi.
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In other words, the coordinates of T(u) with respect to B′ are the terms∑n
j=1 αijξj for i = 1, 2, . . . ,m, and therefore

[T(u)]B′ =




∑
j α1jξj∑
j α2jξj

...∑
j αmjξj


 =



α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn






ξ1
ξ2
...
ξn


 = [T]BB′ [u]B.

Example 4.7.5

Problem: Show how the action of the operator D
(
p(t)

)
= dp/dt on the space

P3 of polynomials of degree three or less is given by matrix multiplication.

Solution: The coordinate matrix of D with respect to the basis B = {1, t, t2, t3}
is

[D]B =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


 .

If p = p(t) = α0 + α1t+ α2t
2 + α3t

3, then D(p) = α1 + 2α2t+ 3α3t
2 so that

[p]B =



α0

α1

α2

α3


 and [D(p)]B =




α1

2α2

3α3

0


 .

The action of D is accomplished by means of matrix multiplication because

[D(p)]B =




α1

2α2

3α3

0


 =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0






α0

α1

α2

α3


 = [D]B[p]B.

For T ∈ L(U ,V) and L ∈ L(V,W), the composition of L with T is
defined to be the function C : U → W such that C(x) = L

(
T(x)

)
, and this

composition, denoted by C = LT, is also a linear transformation because
C(αx + y) = L

(
T(αx + y)

)
= L

(
αT(x) + T(y)

)
= αL

(
T(x)

)
+ L

(
T(y)

)
= αC(x) + C(y).

Consequently, if B, B′, and B′′ are bases for U , V, and W, respectively,
then C must have a coordinate matrix representation with respect to (B,B′′),
so it’s only natural to ask how [C]BB′′ is related to [L]B′B′′ and [T]BB′ . Re-
call that the motivation behind the definition of matrix multiplication given on
p. 93 was based on the need to represent the composition of two linear trans-
formations, so it should be no surprise to discover that [C]BB′′ = [L]B′B′′ [T]BB′ .
This, along with the other properties given below, makes it clear that studying
linear transformations on finite-dimensional spaces amounts to studying matrix
algebra.
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Connections with Matrix Algebra

• If T,L ∈ L(U ,V), and if B and B′ are bases for U and V, then

� [αT]BB′ = α[T]BB′ for scalars α, (4.7.7)

� [T + L]BB′ = [T]BB′ + [L]BB′ . (4.7.8)

• If T ∈ L(U ,V) and L ∈ L(V,W), and if B, B′, and B′′ are bases
for U , V, and W, respectively, then LT ∈ L(U ,W), and

� [LT]BB′′ = [L]B′B′′ [T]BB′ . (4.7.9)

• If T ∈ L(U ,U) is invertible in the sense that TT−1 = T−1T = I
for some T−1 ∈ L(U ,U), then for every basis B of U ,

� [T−1]B = [T]−1
B . (4.7.10)

Proof. The first three properties (4.7.7)–(4.7.9) follow directly from (4.7.6). For
example, to prove (4.7.9), let u be any vector in U , and write

[LT]BB′′ [u]B=
[
LT(u)

]
B′′ =

[
L

(
T(u)

)]
B′′ =[L]B′B′′

[
T(u)

]
B′ =[L]B′B′′ [T]BB′ [u]B.

This is true for all u ∈ U , so [LT]BB′′ = [L]B′B′′ [T]BB′ (see Exercise 3.5.5).
Proving (4.7.7) and (4.7.8) is similar—details are omitted. To prove (4.7.10),
note that if dimU = n, then [I]B = In for all bases B, so property (4.7.9)
implies In = [I]B = [TT−1]B = [T]B[T−1]B, and thus [T−1]B = [T]−1

B .

Example 4.7.6

Problem: Form the composition C = LT of the two linear transformations
T : �3 → �2 and L : �2 → �2 defined by

T(x, y, z) = (x+ y, y − z) and L(u, v) = (2u− v, u),

and then verify (4.7.9) and (4.7.10) using the standard bases S2 and S3 for �2

and �3, respectively.

Solution: The composition C : �3 → �2 is the linear transformation

C(x, y, z) = L
(
T(x, y, z)

)
= L(x+ y, y − z) = (2x+ y + z, x+ y).

The coordinate matrix representations of C, L, and T are

[C]S3S2 =
(

2 1 1
1 1 0

)
, [L]S2 =

(
2 −1
1 0

)
, and [T]S3S2 =

(
1 1 0
0 1 −1

)
.
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Property (4.7.9) is verified because [LT]S3S2 = [C]S3S2 = [L]S2 [T]S3S2 . Find
L−1 by looking for scalars βij in L−1(u, v) = (β11u+ β12v, β21u+ β22v) such
that LL−1 = L−1L = I or, equivalently,

L
(
L−1(u, v)

)
= L−1

(
L(u, v)

)
= (u, v) for all (u, v) ∈ �2.

Computation reveals L−1(u, v) = (v, 2v−u), and (4.7.10) is verified by noting

[L−1]S2 =
(

0 1
−1 2

)
=

(
2 −1
1 0

)−1

= [L]−1
S2
.

Exercises for section 4.7

4.7.1. Determine which of the following functions are linear operators on �2.

(a) T(x, y) = (x, 1 + y), (b) T(x, y) = (y, x),
(c) T(x, y) = (0, xy), (d) T(x, y) = (x2, y2),
(e) T(x, y) = (x, sin y), (f) T(x, y) = (x+ y, x− y).

4.7.2. For A ∈ �n×n, determine which of the following functions are linear
transformations.

(a) T(Xn×n) = AX−XA, (b) T(xn×1) = Ax + b for b �= 0,
(c) T(A) = AT , (d) T(Xn×n) = (X + XT )/2.

4.7.3. Explain why T(0) = 0 for every linear transformation T.

4.7.4. Determine which of the following mappings are linear operators on Pn,
the vector space of polynomials of degree n or less.

(a) T = ξkDk + ξk−1Dk−1 + · · · + ξ1D + ξ0I, where Dk is the
kth-order differentiation operator (i.e., Dkp(t) = dkp/dtk).

(b) T
(
p(t)

)
= tnp′(0) + t.

4.7.5. Let v be a fixed vector in �n×1 and let T : �n×1 → � be the mapping
defined by T(x) = vTx (i.e., the standard inner product).

(a) Is T a linear operator?
(b) Is T a linear transformation?

4.7.6. For the operator T : �2 → �2 defined by T(x, y) = (x+ y, −2x+ 4y),
determine [T]B, where B is the basis B =

{(
1
1

)
,

(
1
2

)}
.
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4.7.7. Let T : �2 → �3 be the linear transformation defined by
T(x, y) = (x+ 3y, 0, 2x− 4y).

(a) Determine [T]SS′ , where S and S ′ are the standard bases for
�2 and �3, respectively.

(b) Determine [T]SS′′ , where S ′′ is the basis for �3 obtained by
permuting the standard basis according to S ′′ = {e3, e2, e1}.

4.7.8. Let T be the operator on �3 defined by T(x, y, z) = (x−y, y−x, x−z)
and consider the vector

v =


 1

1
2


 and the basis B =





 1

0
1


 ,


 0

1
1


 ,


 1

1
0





 .

(a) Determine [T]B and [v]B.
(b) Compute [T(v)]B, and then verify that [T]B[v]B = [T(v)]B.

4.7.9. For A ∈ �n×n, let T be the linear operator on �n×1 defined by
T(x) = Ax. That is, T is the operator defined by matrix multiplica-
tion. With respect to the standard basis S, show that [T]S = A.

4.7.10. If T is a linear operator on a space V with basis B, explain why
[Tk]B = [T]kB for all nonnegative integers k.

4.7.11. Let P be the projector that maps each point v ∈ �2 to its orthogonal
projection on the line y = x as depicted in Figure 4.7.4.

y =
 x

P(v)

v

Figure 4.7.4

(a) Determine the coordinate matrix of P with respect to the stan-
dard basis.

(b) Determine the orthogonal projection of v =
(

α
β

)
onto the line

y = x.



4.7 Linear Transformations 249

4.7.12. For the standard basis S =
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
of �2×2, determine the matrix representation [T]S for each of the fol-
lowing linear operators on �2×2, and then verify [T(U)]S = [T]S [U]S
for U =

(
a b
c d

)
.

(a) T(X2×2) =
X + XT

2
.

(b) T(X2×2) = AX−XA, where A =
(

1 1
−1 −1

)
.

4.7.13. For P2 and P3 (the spaces of polynomials of degrees less than or
equal to two and three, respectively), let S : P2 → P3 be the linear
transformation defined by S(p) =

∫ t

0
p(x)dx. Determine [S]BB′ , where

B = {1, t, t2} and B′ = {1, t, t2, t3}.

4.7.14. Let Q be the linear operator on �2 that rotates each point counter-
clockwise through an angle θ, and let R be the linear operator on �2

that reflects each point about the x -axis.
(a) Determine the matrix of the composition [RQ]S relative to the

standard basis S.
(b) Relative to the standard basis, determine the matrix of the lin-

ear operator that rotates each point in �2 counterclockwise
through an angle 2θ.

4.7.15. Let P : U → V and Q : U → V be two linear transformations, and let
B and B′ be arbitrary bases for U and V, respectively.

(a) Provide the details to explain why [P+Q]BB′ = [P]BB′+[Q]BB′ .
(b) Provide the details to explain why [αP]BB′ = α[P]BB′ , where

α is an arbitrary scalar.

4.7.16. Let I be the identity operator on an n -dimensional space V.
(a) Explain why

[I]B =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




regardless of the choice of basis B.
(b) Let B = {xi}n

i=1 and B′ = {yi}n
i=1 be two different bases for

V, and let T be the linear operator on V that maps vectors
from B′ to vectors in B according to the rule T(yi) = xi for
i = 1, 2, . . . , n. Explain why

[I]BB′ = [T]B = [T]B′ =
(

[x1]B′

∣∣∣ [x2]B′

∣∣∣ · · · ∣∣∣ [xn]B′

)
.
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(c) When V = �3, determine [I]BB′ for

B =





 1

0
0


 ,


 0

1
0


 ,


 0

0
1





 , B′ =





 1

0
0


 ,


 1

1
0


 ,


 1

1
1





 .

4.7.17. Let T : �3 → �3 be the linear operator defined by

T(x, y, z) = (2x− y, −x+ 2y − z, z − y).

(a) Determine T−1(x, y, z).
(b) Determine [T−1]S , where S is the standard basis for �3.

4.7.18. Let T be a linear operator on an n -dimensional space V. Show that
the following statements are equivalent.

(1) T−1 exists.
(2) T is a one-to-one mapping (i.e., T(x) = T(y) =⇒ x = y ).
(3) N (T) = {0}.
(4) T is an onto mapping (i.e., for each v ∈ V, there is an x ∈ V

such that T(x) = v ).
Hint: Show that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (2),
and then show (2) and (4) =⇒ (1).

4.7.19. Let V be an n -dimensional space with a basis B = {ui}n
i=1.

(a) Prove that a set of vectors {x1,x2, . . . ,xr} ⊆ V is linearly
independent if and only if the set of coordinate vectors{

[x1]B, [x2]B, . . . , [xr]B
}
⊆ �n×1

is a linearly independent set.
(b) If T is a linear operator on V, then the range of T is the set

R (T) = {T(x) | x ∈ V}.

Suppose that the basic columns of [T]B occur in positions
b1, b2, . . . , br. Explain why

{
T(ub1),T(ub2), . . . ,T(ubr )

}
is a

basis for R (T).
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4.8 CHANGE OF BASIS AND SIMILARITY

By their nature, coordinate matrix representations are basis dependent. However,
it’s desirable to study linear transformations without reference to particular bases
because some bases may force a coordinate matrix representation to exhibit
special properties that are not present in the coordinate matrix relative to other
bases. To divorce the study from the choice of bases it’s necessary to somehow
identify properties of coordinate matrices that are invariant among all bases—
these are properties intrinsic to the transformation itself, and they are the ones
on which to focus. The purpose of this section is to learn how to sort out these
basis-independent properties.

The discussion is limited to a single finite-dimensional space V and to linear
operators on V. Begin by examining how the coordinates of v ∈ V change as
the basis for V changes. Consider two different bases

B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} .

It’s convenient to regard B as an old basis for V and B′ as a new basis for V.
Throughout this section T will denote the linear operator such that

T(yi) = xi for i = 1, 2, . . . , n. (4.8.1)

T is called the change of basis operator because it maps the new basis vectors
in B′ to the old basis vectors in B. Notice that [T]B = [T]B′ = [I]BB′ . To see
this, observe that

xi =
n∑

j=1

αjyj =⇒ T(xi) =
n∑

j=1

αjT(yj) =
n∑

j=1

αjxj ,

which means [xi]B′ = [T(xi)]B , so, according to (4.7.4),

[T]B =
(

[T(x1)]B [T(x2)]B · · · [T(xn)]B
)

=
(

[x1]B′ [x2]B′ · · · [xn]B′

)
= [T]B′ .

The fact that [I]BB′ = [T]B follows because [I(xi)]B′ = [xi]B′ . The matrix

P = [I]BB′ = [T]B = [T]B′ (4.8.2)

will hereafter be referred to as a change of basis matrix. Caution! [I]BB′ is
not necessarily the identity matrix—see Exercise 4.7.16—and [I]BB′ �= [I]B′B.

We are now in a position to see how the coordinates of a vector change as
the basis for the underlying space changes.
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Changing Vector Coordinates
Let B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} be bases for V,
and let T and P be the associated change of basis operator and change
of basis matrix, respectively—i.e., T(yi) = xi, for each i, and

P = [T]B = [T]B′ = [I]BB′ =
(

[x1]B′

∣∣∣ [x2]B′

∣∣∣ · · · ∣∣∣ [xn]B′

)
. (4.8.3)

• [v]B′ = P[v]B for all v ∈ V. (4.8.4)

• P is nonsingular.

• No other matrix can be used in place of P in (4.8.4).

Proof. Use (4.7.6) to write [v]B′ = [I(v)]B′ = [I]BB′ [v]B = P[v]B, which is
(4.8.4). P is nonsingular because T is invertible (in fact, T−1(xi) = yi), and
because (4.7.10) insures [T−1]B = [T]−1

B = P−1. P is unique because if W is
another matrix satisfying (4.8.4) for all v ∈ V, then (P −W)[v]B = 0 for all
v. Taking v = xi yields (P−W)ei = 0 for each i, so P−W = 0.

If we think of B as the old basis and B′ as the new basis, then the change
of basis operator T acts as

T(new basis) = old basis,

while the change of basis matrix P acts as

new coordinates = P(old coordinates).

For this reason, T should be referred to as the change of basis operator from
B′ to B, while P is called the change of basis matrix from B to B′.

Example 4.8.1

Problem: For the space P2 of polynomials of degree 2 or less, determine the
change of basis matrix P from B to B′, where

B = {1, t, t2} and B′ = {1, 1 + t, 1 + t+ t2},

and then find the coordinates of q(t) = 3 + 2t+ 4t2 relative to B′.

Solution: According to (4.8.3), the change of basis matrix from B to B′ is

P =
(

[x1]B′

∣∣∣ [x2]B′

∣∣∣ [x3]B′

)
.
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In this case, x1 = 1, x2 = t, and x3 = t2, and y1 = 1, y2 = 1 + t, and
y3 = 1 + t+ t2, so the coordinates [xi]B′ are computed as follows:

1 = 1(1) + 0(1 + t) + 0(1 + t+ t2) = 1y1 + 0y2 + 0y3,

t =− 1(1) + 1(1 + t) + 0(1 + t+ t2) = −1y1 + 1y2 + 0y3,

t2 = 0(1) − 1(1 + t) + 1(1 + t+ t2) = 0y1 − 1y2 + 1y3.

Therefore,

P =
(

[x1]B′

∣∣∣ [x2]B′

∣∣∣ [x3]B′

)
=


 1 −1 0

0 1 −1
0 0 1


 ,

and the coordinates of q = q(t) = 3 + 2t+ 4t2 with respect to B′ are

[q]B′ = P[q]B =


 1 −1 0

0 1 −1
0 0 1





 3

2
4


 =


 1
−2

4


 .

To independently check that these coordinates are correct, simply verify that

q(t) = 1(1) − 2(1 + t) + 4(1 + t+ t2).

It’s now rather easy to describe how the coordinate matrix of a linear oper-
ator changes as the underlying basis changes.

Changing Matrix Coordinates
Let A be a linear operator on V, and let B and B′ be two bases for
V. The coordinate matrices [A]B and [A]B′ are related as follows.

[A]B = P−1[A]B′P, where P = [I]BB′ (4.8.5)

is the change of basis matrix from B to B′. Equivalently,

[A]B′ = Q−1[A]BQ, where Q = [I]B′B = P−1 (4.8.6)

is the change of basis matrix from B′ to B.
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Proof. Let B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} , and observe that
for each j, (4.7.6) can be used to write[

A(xj)
]
B′

= [A]B′ [xj ]B′ = [A]B′P∗j =
[
[A]B′P

]
∗j
.

Now use the change of coordinates rule (4.8.4) together with the fact that[
A(xj)

]
B =

[
[A]B

]
∗j

(see (4.7.4)) to write

[
A(xj)

]
B′

= P
[
A(xj)

]
B

= P
[
[A]B

]
∗j

=
[
P[A]B

]
∗j
.

Consequently,
[
[A]B′P

]
∗j

=
[
P[A]B

]
∗j

for each j, so [A]B′P = P[A]B. Since
the change of basis matrix P is nonsingular, it follows that [A]B = P−1[A]B′P,
and (4.8.5) is proven. Setting Q = P−1 in (4.8.5) yields [A]B′ = Q−1[A]BQ.
The matrix Q = P−1 is the change of basis matrix from B′ to B because if T
is the change of basis operator from B′ to B (i.e., T(yi) = xi ), then T−1 is
the change of basis operator from B to B′ (i.e., T−1(xi) = yi ), and according
to (4.8.3), the change of basis matrix from B′ to B is

[I]B′B =
(

[y1]B
∣∣∣ [y2]B

∣∣∣ · · · ∣∣∣ [yn]B
)

= [T−1]B = [T]−1
B = P−1 = Q.

Example 4.8.2

Problem: Consider the linear operator A(x, y) = (y, −2x+ 3y) on �2 along
with the two bases

S =
{(

1
0

)
,

(
0
1

)}
and S ′ =

{(
1
1

)
,

(
1
2

)}
.

First compute the coordinate matrix [A]S as well as the change of basis matrix
Q from S ′ to S, and then use these two matrices to determine [A]S′ .

Solution: The matrix of A relative to S is obtained by computing

A(e1) =A(1, 0) = (0, −2) = (0)e1 + (−2)e2,

A(e2) =A(0, 1) = (1, 3) = (1)e1 + (3)e2,

so that [A]S =
(

[A(e1)]S
∣∣ [A(e2)]S

)
=

(
0 1
−2 3

)
. According to (4.8.6), the

change of basis matrix from S ′ to S is

Q =
(

[y1]S
∣∣∣ [y2]S

)
=

(
1 1
1 2

)
,
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and the matrix of A with respect to S ′ is

[A]S′ = Q−1[A]SQ =
(

2 −1
−1 1

) (
0 1
−2 3

) (
1 1
1 2

)
=

(
1 0
0 2

)
.

Notice that [A]S′ is a diagonal matrix, whereas [A]S is not. This shows that
the standard basis is not always the best choice for providing a simple matrix
representation. Finding a basis so that the associated coordinate matrix is as
simple as possible is one of the fundamental issues of matrix theory. Given an
operator A, the solution to the general problem of determining a basis B so
that [A]B is diagonal is summarized on p. 520.

Example 4.8.3

Problem: Consider a matrix Mn×n to be a linear operator on �n by defining
M(v) = Mv (matrix–vector multiplication). If S is the standard basis for �n,
and if S ′ = {q1,q2, . . . ,qn} is any other basis, describe [M]S and [M]S′ .

Solution: The jth column in [M]S is [Mej ]S = [M∗j ]S = M∗j , and hence
[M]S = M. That is, the coordinate matrix of M with respect to S is M itself.
To find [M]S′ , use (4.8.6) to write [M]S′ = Q−1[M]SQ = Q−1MQ, where

Q = [I]S′S =
(

[q1]S
∣∣ [q2]S

∣∣ · · · ∣∣ [qn]S
)

=
(
q1

∣∣q2

∣∣ · · · ∣∣qn

)
.

Conclusion: The matrices M and Q−1MQ represent the same linear operator
(namely, M), but with respect to two different bases (namely, S and S ′). So,
when considering properties of M (as a linear operator), it’s legitimate to replace
M by Q−1MQ. Whenever the structure of M obscures its operator properties,
look for a basis S ′ = {Q∗1,Q∗2, . . . ,Q∗n} (or, equivalently, a nonsingular matrix
Q) such that Q−1MQ has a simpler structure. This is an important theme
throughout linear algebra and matrix theory.

For a linear operator A, the special relationships between [A]B and [A]B′

that are given in (4.8.5) and (4.8.6) motivate the following definitions.

Similarity

• Matrices Bn×n and Cn×n are said to be similar matrices when-
ever there exists a nonsingular matrix Q such that B = Q−1CQ.
We write B - C to denote that B and C are similar.

• The linear operator f : �n×n → �n×n defined by f(C) = Q−1CQ
is called a similarity transformation.
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Equations (4.8.5) and (4.8.6) say that any two coordinate matrices of a
given linear operator must be similar. But must any two similar matrices be
coordinate matrices of the same linear operator? Yes, and here’s why. Suppose
C = Q−1BQ, and let A(v) = Bv be the linear operator defined by matrix–
vector multiplication. If S is the standard basis, then it’s straightforward to see
that [A]S = B (Exercise 4.7.9). If B′ = {Q∗1,Q∗2, . . . ,Q∗n} is the basis con-
sisting of the columns of Q, then (4.8.6) insures that [A]B′ = [I]−1

B′S [A]S [I]B′S ,
where

[I]B′S =
(

[Q∗1]S
∣∣∣ [Q∗2]S

∣∣∣ · · · ∣∣∣ [Q∗n]S
)

= Q.

Therefore, B = [A]S and C = Q−1BQ = Q−1[A]SQ = [A]B′ , so B and
C are both coordinate matrix representations of A. In other words, similar
matrices represent the same linear operator.

As stated at the beginning of this section, the goal is to isolate and study
coordinate-independent properties of linear operators. They are the ones de-
termined by sorting out those properties of coordinate matrices that are ba-
sis independent. But, as (4.8.5) and (4.8.6) show, all coordinate matrices for a
given linear operator must be similar, so the coordinate-independent properties
are exactly the ones that are similarity invariant (invariant under similarity
transformations). Naturally, determining and studying similarity invariants is an
important part of linear algebra and matrix theory.

Example 4.8.4

Problem: The trace of a square matrix C was defined in Example 3.3.1 to be
the sum of the diagonal entries

trace (C) =
∑

i

cii.

Show that trace is a similarity invariant, and explain why it makes sense to talk
about the trace of a linear operator without regard to any particular basis. Then
determine the trace of the linear operator on �2 that is defined by

A(x, y) = (y, −2x+ 3y). (4.8.7)

Solution: As demonstrated in Example 3.6.5, trace (BC) = trace (CB), when-
ever the products are defined, so

trace
(
Q−1CQ

)
= trace

(
CQQ−1

)
= trace (C),

and thus trace is a similarity invariant. This allows us to talk about the trace of
a linear operator A without regard to any particular basis because trace ([A]B)
is the same number regardless of the choice of B. For example, two coordinate
matrices of the operator A in (4.8.7) were computed in Example 4.8.2 to be

[A]S =
(

0 1
−2 3

)
and [A]S′ =

(
1 0
0 2

)
,

and it’s clear that trace ([A]S) = trace ([A]S′) = 3. Since trace ([A]B) = 3 for
all B, we can legitimately define trace (A) = 3.
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Exercises for section 4.8

4.8.1. Explain why rank is a similarity invariant.

4.8.2. Explain why similarity is transitive in the sense that A - B and B - C
implies A - C.

4.8.3. A(x, y, z) = (x+ 2y − z, −y, x+ 7z) is a linear operator on �3.
(a) Determine [A]S , where S is the standard basis.
(b) Determine [A]S′ as well as the nonsingular matrix Q such that

[A]S′ = Q−1[A]SQ for S ′ =
{(

1
0
0

)
,

(
1
1
0

)
,

(
1
1
1

)}
.

4.8.4. Let A =
(

1 2 0
3 1 4
0 1 5

)
and B =

{(
1
1
1

)
,

(
1
2
2

)
,

(
1
2
3

)}
. Consider A

as a linear operator on �n×1 by means of matrix multiplication A(x) =
Ax, and determine [A]B.

4.8.5. Show that C =
(

4 6
3 4

)
and B =

(
−2 −3

6 10

)
are similar matrices, and

find a nonsingular matrix Q such that C = Q−1BQ. Hint: Consider
B as a linear operator on �2, and compute [B]S and [B]S′ , where S
is the standard basis, and S ′ =

{(
2
−1

)
,

(
−3

2

)}
.

4.8.6. Let T be the linear operator T(x, y) = (−7x − 15y, 6x + 12y). Find
a basis B such that [T]B =

(
2 0
0 3

)
, and determine a matrix Q such

that [T]B = Q−1[T]SQ, where S is the standard basis.

4.8.7. By considering the rotator P(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ)
described in Example 4.7.1 and Figure 4.7.1, show that the matrices

R =
(

cos θ − sin θ
sin θ cos θ

)
and D =

(
eiθ 0
0 e−iθ

)

are similar over the complex field. Hint: In case you have forgotten (or
didn’t know), eiθ = cos θ + i sin θ.
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4.8.8. Let λ be a scalar such that (C− λI)n×n is singular.
(a) If B - C, prove that (B− λI) is also singular.
(b) Prove that (B− λiI) is singular whenever Bn×n is similar to

D =



λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 .

4.8.9. If A - B, show that Ak - Bk for all nonnegative integers k.

4.8.10. Suppose B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} are bases for
an n -dimensional subspace V ⊆ �m×1, and let Xm×n and Ym×n be
the matrices whose columns are the vectors from B and B′, respectively.

(a) Explain why YT Y is nonsingular, and prove that the change
of basis matrix from B to B′ is P =

(
YT Y

)−1
YT X.

(b) Describe P when m = n.

4.8.11. (a) N is nilpotent of index k when Nk = 0 but Nk−1 �= 0. If N
is a nilpotent operator of index n on �n, and if Nn−1(y) �= 0,
show B =

{
y,N(y),N2(y), . . . ,Nn−1(y)

}
is a basis for �n,

and then demonstrate that

[N]B = J =




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 .

(b) If A and B are any two n× n nilpotent matrices of index n,
explain why A - B.

(c) Explain why all n× n nilpotent matrices of index n must have
a zero trace and be of rank n− 1.

4.8.12. E is idempotent when E2 = E. For an idempotent operator E on �n,
let X = {xi}r

i=1 and Y = {yi}n−r
i=1 be bases for R (E) and N (E),

respectively.
(a) Prove that B = X ∪Y is a basis for �n. Hint: Show Exi = xi

and use this to deduce that B is linearly independent.
(b) Show that [E]B =

(
Ir 0
0 0

)
.

(c) Explain why two n× n idempotent matrices of the same rank
must be similar.

(d) If F is an idempotent matrix, prove that rank (F) = trace (F).
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4.9 INVARIANT SUBSPACES

For a linear operator T on a vector space V, and for X ⊆ V,
T(X ) = {T(x) | x ∈ X}

is the set of all possible images of vectors from X under the transformation T.
Notice that T(V) = R (T). When X is a subspace of V, it follows that T(X )
is also a subspace of V, but T(X ) is usually not related to X . However, in
some special cases it can happen that T(X ) ⊆ X , and such subspaces are the
focus of this section.

Invariant Subspaces
• For a linear operator T on V, a subspace X ⊆ V is said to be an

invariant subspace under T whenever T(X ) ⊆ X .
• In such a situation, T can be considered as a linear operator on X

by forgetting about everything else in V and restricting T to act
only on vectors from X . Hereafter, this restricted operator will
be denoted by T/X .

Example 4.9.1

Problem: For

A =


 4 4 4
−2 −2 −5

1 2 5


 , x1 =


 2
−1

0


 , and x2 =


−1

2
−1


 ,

show that the subspace X spanned by B = {x1, x2} is an invariant subspace
under A. Then describe the restriction A/X and determine the coordinate
matrix of A/X relative to B.

Solution: Observe that Ax1 = 2x1 ∈ X and Ax2 = x1 + 2x2 ∈ X , so the
image of any x = αx1 + βx2 ∈ X is back in X because

Ax = A(αx1+βx2) = αAx1+βAx2 = 2αx1+β(x1+2x2) = (2α+β)x1+2βx2.

This equation completely describes the action of A restricted to X , so

A/X (x) = (2α+ β)x1 + 2βx2 for each x = αx1 + βx2 ∈ X .

Since A/X (x1) = 2x1 and A/X (x2) = x1 + 2x2, we have

[
A/X

]
B

=

([
A/X (x1)

]
B

∣∣∣∣∣
[
A/X (x2)

]
B

)
=

(
2 1
0 2

)
.
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The invariant subspaces for a linear operator T are important because they
produce simplified coordinate matrix representations of T. To understand how
this occurs, suppose X is an invariant subspace under T, and let

BX = {x1,x2, . . . ,xr}

be a basis for X that is part of a basis

B = {x1,x2, . . . ,xr,y1,y2, . . . ,yq}

for the entire space V. To compute [T]B, recall from the definition of coordinate
matrices that

[T]B =
(

[T(x1)]B
∣∣∣ · · · ∣∣∣ [T(xr)]B

∣∣∣ [T(y1)]B
∣∣∣ · · · ∣∣∣ [T(yq)]B

)
. (4.9.1)

Because each T(xj) is contained in X , only the first r vectors from B are
needed to represent each T(xj), so, for j = 1, 2, . . . , r,

T(xj) =
r∑

i=1

αijxi and [T(xj)]B =




α1j

...
αrj

0
...
0



. (4.9.2)

The space
Y = span {y1,y2, . . . ,yq} (4.9.3)

may not be an invariant subspace for T, so all the basis vectors in B may be
needed to represent the T(yj) ’s. Consequently, for j = 1, 2, . . . , q,

T(yj) =
r∑

i=1

βijxi +
q∑

i=1

γijyi and [T(yj)]B =




β1j

...
βrj

γ1j

...
γqj



. (4.9.4)

Using (4.9.2) and (4.9.4) in (4.9.1) produces the block-triangular matrix

[T]B =




α11 · · · α1r β11 · · · β1q

...
. . .

...
...

. . .
...

αr1 · · · αrr βr1 · · · βrq

0 · · · 0 γ11 · · · γ1q

...
. . .

...
...

. . .
...

0 · · · 0 γq1 · · · γqq



. (4.9.5)
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The equations T(xj) =
∑r

i=1 αijxi in (4.9.2) mean that

[
T/X (xj)

]
BX

=



α1j

α2j

...
αrj


 , so

[
T/X

]
BX

=



α11 α12 · · · α1r

α21 α22 · · · α2r
...

...
. . .

...
αr1 αr2 · · · αrr


 ,

and thus the matrix in (4.9.5) can be written as

[T]B =

([
T/X

]
BX

Br×q

0 Cq×q

)
. (4.9.6)

In other words, (4.9.6) says that the matrix representation for T can be made
to be block triangular whenever a basis for an invariant subspace is available.

The more invariant subspaces we can find, the more tools we have to con-
struct simplified matrix representations. For example, if the space Y in (4.9.3)
is also an invariant subspace for T, then T(yj) ∈ Y for each j = 1, 2, . . . , q,
and only the yi ’s are needed to represent T(yj) in (4.9.4). Consequently, the
βij ’s are all zero, and [T]B has the block-diagonal form

[T]B =
(

Ar×r 0
0 Cq×q

)
=




[
T/X

]
Bx

0

0
[
T/Y

]
By


 .

This notion easily generalizes in the sense that if B = BX∪BY∪· · ·∪BZ is a basis
for V, where BX ,BY , . . . ,BZ are bases for invariant subspaces under T that
have dimensions r1, r2, . . . , rk, respectively, then [T]B has the block-diagonal
form

[T]B =




Ar1×r1 0 · · · 0
0 Br2×r2 · · · 0
...

...
. . .

...
0 0 · · · Crk×rk


 ,

where
A =

[
T/X

]
Bx

, B =
[
T/Y

]
By

, . . . , C =
[
T/Z

]
Bz

.

The situations discussed above are also reversible in the sense that if the
matrix representation of T has a block-triangular form

[T]B =
(

Ar×r Br×q

0 Cq×q

)
relative to some basis

B = {u1,u2, . . . ,ur,w1,w2, . . . ,wq},
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then the r -dimensional subspace U = span {u1,u2, . . . ,ur} spanned by the
first r vectors in B must be an invariant subspace under T. Furthermore, if
the matrix representation of T has a block-diagonal form

[T]B =
(

Ar×r 0
0 Cq×q

)
relative to B, then both

U = span {u1,u2, . . . ,ur} and W = span {w1,w2, . . . ,wq}

must be invariant subspaces for T. The details are left as exercises.
The general statement concerning invariant subspaces and coordinate ma-

trix representations is given below.

Invariant Subspaces and Matrix Representations
Let T be a linear operator on an n-dimensional space V, and let
X ,Y, . . . ,Z be subspaces of V with respective dimensions r1, r2, . . . , rk

and bases BX ,BY , . . . ,BZ . Furthermore, suppose that
∑

i ri = n and
B = BX ∪ BY ∪ · · · ∪ BZ is a basis for V.

• The subspace X is an invariant subspace under T if and only if
[T]B has the block-triangular form

[T]B =
(

Ar1×r1 B
0 C

)
, in which case A =

[
T/X

]
BX

. (4.9.7)

• The subspaces X ,Y, . . . ,Z are all invariant under T if and only if
[T]B has the block-diagonal form

[T]B =




Ar1×r1 0 · · · 0
0 Br2×r2 · · · 0
...

...
. . .

...
0 0 · · · Crk×rk


 , (4.9.8)

in which case

A =
[
T/X

]
Bx

, B =
[
T/Y

]
By

, . . . , C =
[
T/Z

]
Bz

.

An important corollary concerns the special case in which the linear operator
T is in fact an n× n matrix and T(v) = Tv is a matrix–vector multiplication.
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Triangular and Diagonal Block Forms
When T is an n× n matrix, the following two statements are true.

• Q is a nonsingular matrix such that

Q−1TQ =
(

Ar×r Br×q

0 Cq×q

)
(4.9.9)

if and only if the first r columns in Q span an invariant subspace
under T.

• Q is a nonsingular matrix such that

Q−1TQ =




Ar1×r1 0 · · · 0
0 Br2×r2 · · · 0
...

...
. . .

...
0 0 · · · Crk×rk


 (4.9.10)

if and only if Q =
(
Q1

∣∣Q2

∣∣ · · · ∣∣Qk

)
in which Qi is n× ri, and

the columns of each Qi span an invariant subspace under T.

Proof. We know from Example 4.8.3 that if B = {q1,q2, . . . ,qn} is a basis for
�n, and if Q =

(
q1

∣∣q2

∣∣ · · · ∣∣qn

)
is the matrix containing the vectors from B

as its columns, then [T]B = Q−1TQ. Statements (4.9.9) and (4.9.10) are now
direct consequences of statements (4.9.7) and (4.9.8), respectively.

Example 4.9.2

Problem: For

T =



−1 −1 −1 −1

0 −5 −16 −22
0 3 10 14
4 8 12 14


 , q1 =




2
−1

0
0


 , and q2 =



−1

2
−1

0


 ,

verify that X = span {q1,q2} is an invariant subspace under T, and then find
a nonsingular matrix Q such that Q−1TQ has the block-triangular form

Q−1TQ =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 .
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Solution: X is invariant because Tq1 = q1+3q2 and Tq2 = 2q1+4q2 insure
that for all α and β, the images

T(αq1 + βq2) = (α+ 2β)q1 + (3α+ 4β)q2

lie in X . The desired matrix Q is constructed by extending {q1,q2} to a basis
B = {q1,q2,q3,q4} for �4. If the extension technique described in Solution 2
of Example 4.4.5 is used, then

q3 =




1
0
0
0


 and q4 =




0
0
0
1


 ,

and

Q =
(
q1

∣∣ q2

∣∣ q3

∣∣ q4

)
=




2 −1 1 0
−1 2 0 0

0 −1 0 0
0 0 0 1


 .

Since the first two columns of Q span a space that is invariant under T, it
follows from (4.9.9) that Q−1TQ must be in block-triangular form. This is easy
to verify by computing

Q−1 =




0 −1 −2 0
0 0 −1 0
1 2 3 0
0 0 0 1


 and Q−1TQ =




1 2 0 −6
3 4 0 −14

0 0 −1 −3
0 0 4 14


 .

In passing, notice that the upper-left-hand block is[
T/X

]
{q1,q2}

=
(

1 2
3 4

)
.

Example 4.9.3

Consider again the matrices of Example 4.9.2:

T =



−1 −1 −1 −1

0 −5 −16 −22
0 3 10 14
4 8 12 14


 , q1 =




2
−1

0
0


 , and q2 =



−1

2
−1

0


 .

There are infinitely many extensions of {q1,q2} to a basis B = {q1,q2,q3,q4}
for �4 —the extension used in Example 4.9.2 is only one possibility. Another
extension is

q3 =




0
−1

2
−1


 and q4 =




0
0
−1

1


 .
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This extension might be preferred over that of Example 4.9.2 because the spaces
X = span {q1,q2} and Y = span {q3,q4} are both invariant under T, and
therefore it follows from (4.9.10) that Q−1TQ is block diagonal. Indeed, it is
not difficult to verify that

Q−1TQ =




1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4






−1 −1 −1 −1

0 −5 −16 −22
0 3 10 14
4 8 12 14







2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1




=




1 2 0 0
3 4 0 0

0 0 5 6
0 0 7 8


 .

Notice that the diagonal blocks must be the matrices of the restrictions in the
sense that(

1 2
3 4

)
=

[
T/X

]
{q1,q2}

and
(

5 6
7 8

)
=

[
T/Y

]
{q3,q4}

.

Example 4.9.4

Problem: Find all subspaces of �2 that are invariant under

A =
(

0 1
−2 3

)
.

Solution: The trivial subspace {0} is the only zero-dimensional invariant sub-
space, and the entire space �2 is the only two-dimensional invariant subspace.
The real problem is to find all one-dimensional invariant subspaces. If M is a
one-dimensional subspace spanned by x �= 0 such that A(M) ⊆M, then

Ax ∈M =⇒ there is a scalar λ such that Ax = λx =⇒ (A− λI)x = 0.

In other words, M⊆ N (A− λI) . Since dimM = 1, it must be the case that
N (A− λI) �= {0}, and consequently λ must be a scalar such that (A− λI) is
a singular matrix. Row operations produce

A− λI =
(
−λ 1
−2 3− λ

)
−→

(
−2 3− λ
−λ 1

)
−→

(
−2 3− λ

0 1 + (λ2 − 3λ)/2

)
,

and it is clear that (A− λI) is singular if and only if 1+ (λ2−3λ)/2 = 0 —i.e.,
if and only if λ is a root of

λ2 − 3λ+ 2 = 0.
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Thus λ = 1 and λ = 2, and straightforward computation yields the two one-
dimensional invariant subspaces

M1 = N (A− I) = span

{(
1
1

)}
and M2 = N (A− 2I) = span

{(
1
2

)}
.

In passing, notice that B =
{(

1
1

)
,
(

1
2

)}
is a basis for �2, and

[A]B = Q−1AQ =
(

1 0
0 2

)
, where Q =

(
1 1
1 2

)
.

In general, scalars λ for which (A− λI) is singular are called the eigenvalues
of A, and the nonzero vectors in N (A− λI) are known as the associated
eigenvectors for A. As this example indicates, eigenvalues and eigenvectors
are of fundamental importance in identifying invariant subspaces and reducing
matrices by means of similarity transformations. Eigenvalues and eigenvectors
are discussed at length in Chapter 7.

Exercises for section 4.9

4.9.1. Let T be an arbitrary linear operator on a vector space V.
(a) Is the trivial subspace {0} invariant under T?
(b) Is the entire space V invariant under T?

4.9.2. Describe all of the subspaces that are invariant under the identity oper-
ator I on a space V.

4.9.3. Let T be the linear operator on �4 defined by

T(x1, x2, x3, x4) = (x1 + x2 + 2x3 − x4, x2 + x4, 2x3 − x4, x3 + x4),

and let X = span {e1, e2} be the subspace that is spanned by the first
two unit vectors in �4.

(a) Explain why X is invariant under T.
(b) Determine

[
T/X

]
{e1,e2}.

(c) Describe the structure of [T]B, where B is any basis obtained
from an extension of {e1, e2} .
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4.9.4. Let T and Q be the matrices

T =



−2 −1 −5 −2
−9 0 −8 −2

2 3 11 5
3 −5 −13 −7


 and Q =




1 0 0 −1
1 1 3 −4
−2 0 1 0

3 −1 −4 3


 .

(a) Explain why the columns of Q are a basis for �4.
(b) Verify that X = span {Q∗1,Q∗2} and Y = span {Q∗3,Q∗4}

are each invariant subspaces under T.
(c) Describe the structure of Q−1TQ without doing any compu-

tation.
(d) Now compute the product Q−1TQ to determine[

T/X

]
{Q∗1,Q∗2}

and
[
T/Y

]
{Q∗3,Q∗4}

.

4.9.5. Let T be a linear operator on a space V, and suppose that

B = {u1, . . . ,ur, w1, . . . ,wq}
is a basis for V such that [T]B has the block-diagonal form

[T]B =
(

Ar×r 0
0 Cq×q

)
.

Explain why U = span {u1, . . . ,ur} and W = span {w1, . . . ,wq} must
each be invariant subspaces under T.

4.9.6. If Tn×n and Pn×n are matrices such that

P−1TP =
(

Ar×r 0
0 Cq×q

)
,

explain why

U = span {P∗1, . . . ,P∗r} and W = span {P∗r+1, . . . ,P∗n}
are each invariant subspaces under T.

4.9.7. If A is an n× n matrix and λ is a scalar such that (A− λI) is
singular (i.e., λ is an eigenvalue), explain why the associated space of
eigenvectors N (A− λI) is an invariant subspace under A.

4.9.8. Consider the matrix A =
(
−9 4
−24 11

)
.

(a) Determine the eigenvalues of A.
(b) Identify all subspaces of �2 that are invariant under A.
(c) Find a nonsingular matrix Q such that Q−1AQ is a diagonal

matrix.
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We share a philosophy about linear algebra: we think basis-free,
but when the chips are down we close the office door

and compute with matrices like fury.
— Irving Kaplansky (1917–) speaking about Paul Halmos (1916–)
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