
CHAPTER 2

Rectangular Systems
and

Echelon Forms

2.1 ROW ECHELON FORM AND RANK

We are now ready to analyze more general linear systems consisting of m linear
equations involving n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm,

where m may be different from n. If we do not know for sure that m and n
are the same, then the system is said to be rectangular. The case m = n is
still allowed in the discussion—statements concerning rectangular systems also
are valid for the special case of square systems.

The first goal is to extend the Gaussian elimination technique from square
systems to completely general rectangular systems. Recall that for a square sys-
tem with a unique solution, the pivotal positions are always located along the
main diagonal—the diagonal line from the upper-left-hand corner to the lower-
right-hand corner—in the coefficient matrix A so that Gaussian elimination
results in a reduction of A to a triangular matrix, such as that illustrated
below for the case n = 4:

T =



©* ∗ ∗ ∗
0 ©* ∗ ∗
0 0 ©* ∗
0 0 0 ©*


 .
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Remember that a pivot must always be a nonzero number. For square sys-
tems possessing a unique solution, it is a fact (proven later) that one can al-
ways bring a nonzero number into each pivotal position along the main diag-
onal. 8 However, in the case of a general rectangular system, it is not always
possible to have the pivotal positions lying on a straight diagonal line in the
coefficient matrix. This means that the final result of Gaussian elimination will
not be triangular in form. For example, consider the following system:

x1 + 2x2 + x3 + 3x4 + 3x5 = 5,

2x1 + 4x2 + 4x4 + 4x5 = 6,

x1 + 2x2 + 3x3 + 5x4 + 5x5 = 9,

2x1 + 4x2 + 4x4 + 7x5 = 9.

Focus your attention on the coefficient matrix

A =




1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7


 , (2.1.1)

and ignore the right-hand side for a moment. Applying Gaussian elimination to
A yields the following result:



©1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7


 −→




1 2 1 3 3
0 ©0 −2 −2 −2
0 0 2 2 2
0 0 −2 −2 1


 .

In the basic elimination process, the strategy is to move down and to the right
to the next pivotal position. If a zero occurs in this position, an interchange with
a row below the pivotal row is executed so as to bring a nonzero number into
the pivotal position. However, in this example, it is clearly impossible to bring
a nonzero number into the (2, 2) -position by interchanging the second row with
a lower row.

In order to handle this situation, the elimination process is modified as
follows.

8
This discussion is for exact arithmetic. If floating-point arithmetic is used, this may no longer
be true. Part (a) of Exercise 1.6.1 is one such example.
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Modified Gaussian Elimination
Suppose that U is the augmented matrix associated with the system
after i − 1 elimination steps have been completed. To execute the ith

step, proceed as follows:

• Moving from left to right in U , locate the first column that contains
a nonzero entry on or below the ith position—say it is U∗j .

• The pivotal position for the ith step is the (i, j) -position.

• If necessary, interchange the ith row with a lower row to bring a
nonzero number into the (i, j) -position, and then annihilate all en-
tries below this pivot.

• If row Ui∗ as well as all rows in U below Ui∗ consist entirely of
zeros, then the elimination process is completed.

Illustrated below is the result of applying this modified version of Gaussian
elimination to the matrix given in (2.1.1).

Example 2.1.1

Problem: Apply modified Gaussian elimination to the following matrix and
circle the pivot positions:

A =




1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7


 .

Solution: 

©1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7


 −→



©1 2 1 3 3
0 0 ©-2 −2 −2
0 0 2 2 2
0 0 −2 −2 1




−→



©1 2 1 3 3
0 0 ©-2 −2 −2
0 0 0 0 ©0
0 0 0 0 3


 −→



©1 2 1 3 3
0 0 ©-2 −2 −2
0 0 0 0 ©3
0 0 0 0 0


 .
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Notice that the final result of applying Gaussian elimination in the above
example is not a purely triangular form but rather a jagged or “stair-step” type
of triangular form. Hereafter, a matrix that exhibits this stair-step structure will
be said to be in row echelon form.

Row Echelon Form
An m× n matrix E with rows Ei∗ and columns E∗j is said to be in
row echelon form provided the following two conditions hold.

• If Ei∗ consists entirely of zeros, then all rows below Ei∗ are also
entirely zero; i.e., all zero rows are at the bottom.

• If the first nonzero entry in Ei∗ lies in the jth position, then all
entries below the ith position in columns E∗1,E∗2, . . . ,E∗j are zero.

These two conditions say that the nonzero entries in an echelon form
must lie on or above a stair-step line that emanates from the upper-
left-hand corner and slopes down and to the right. The pivots are the
first nonzero entries in each row. A typical structure for a matrix in row
echelon form is illustrated below with the pivots circled.



©* ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ©* ∗ ∗ ∗ ∗ ∗
0 0 0 ©* ∗ ∗ ∗ ∗
0 0 0 0 0 0 ©* ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




Because of the flexibility in choosing row operations to reduce a matrix A
to a row echelon form E, the entries in E are not uniquely determined by A.
Nevertheless, it can be proven that the “form” of E is unique in the sense that
the positions of the pivots in E (and A) are uniquely determined by the entries
in A . 9 Because the pivotal positions are unique, it follows that the number of
pivots, which is the same as the number of nonzero rows in E, is also uniquely
determined by the entries in A . This number is called the rank

10 of A, and it

9
The fact that the pivotal positions are unique should be intuitively evident. If it isn’t, take the
matrix given in (2.1.1) and try to force some different pivotal positions by a different sequence
of row operations.

10
The word “rank” was introduced in 1879 by the German mathematician Ferdinand Georg
Frobenius (p. 662), who thought of it as the size of the largest nonzero minor determinant
in A. But the concept had been used as early as 1851 by the English mathematician James
J. Sylvester (1814–1897).
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is extremely important in the development of our subject.

Rank of a Matrix
Suppose Am×n is reduced by row operations to an echelon form E.
The rank of A is defined to be the number

rank (A) = number of pivots
= number of nonzero rows in E

= number of basic columns in A,

where the basic columns of A are defined to be those columns in A
that contain the pivotal positions.

Example 2.1.2

Problem: Determine the rank, and identify the basic columns in

A =


 1 2 1 1

2 4 2 2
3 6 3 4


 .

Solution: Reduce A to row echelon form as shown below:

A =


©1 2 1 1

2 4 2 2
3 6 3 4


 −→


©1 2 1 1

0 0 0 ©0
0 0 0 1


 −→


©1 2 1 1

0 0 0 ©1
0 0 0 0


 = E.

Consequently, rank (A) = 2. The pivotal positions lie in the first and fourth
columns so that the basic columns of A are A∗1 and A∗4. That is,

Basic Columns =





 1

2
3


 ,


 1

2
4





 .

Pay particular attention to the fact that the basic columns are extracted from
A and not from the row echelon form E .
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Exercises for section 2.1

2.1.1. Reduce each of the following matrices to row echelon form, determine
the rank, and identify the basic columns.

(a)


 1 2 3 3

2 4 6 9
2 6 7 6


 (b)




1 2 3
2 6 8
2 6 0
1 2 5
3 8 6


 (c)




2 1 1 3 0 4 1
4 2 4 4 1 5 5
2 1 3 1 0 4 3
6 3 4 8 1 9 5
0 0 3 −3 0 0 3
8 4 2 14 1 13 3




2.1.2. Determine which of the following matrices are in row echelon form:

(a)


 1 2 3

0 0 4
0 1 0


 . (b)


 0 0 0 0

0 1 0 0
0 0 0 1


 .

(c)


 2 2 3 −4

0 0 7 −8
0 0 0 −1


 . (d)




1 2 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0


 .

2.1.3. Suppose that A is an m× n matrix. Give a short explanation of why
each of the following statements is true.

(a) rank (A) ≤ min{m, n}.
(b) rank (A) < m if one row in A is entirely zero.
(c) rank (A) < m if one row in A is a multiple of another row.
(d) rank (A) < m if one row in A is a combination of other rows.
(e) rank (A) < n if one column in A is entirely zero.

2.1.4. Let A =


 .1 .2 .3

.4 .5 .6

.7 .8 .901


 .

(a) Use exact arithmetic to determine rank (A).
(b) Now use 3-digit floating-point arithmetic (without partial piv-

oting or scaling) to determine rank (A). This number might be
called the “3-digit numerical rank.”

(c) What happens if partial pivoting is incorporated?

2.1.5. How many different “forms” are possible for a 3× 4 matrix that is in
row echelon form?

2.1.6. Suppose that [A|b] is reduced to a matrix [E|c].
(a) Is [E|c] in row echelon form if E is?
(b) If [E|c] is in row echelon form, must E be in row echelon form?
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2.2 REDUCED ROW ECHELON FORM

At each step of the Gauss–Jordan method, the pivot is forced to be a 1, and then
all entries above and below the pivotal 1 are annihilated. If A is the coefficient
matrix for a square system with a unique solution, then the end result of applying
the Gauss–Jordan method to A is a matrix with 1’s on the main diagonal and
0’s everywhere else. That is,

A
Gauss–Jordan

−−−−−−−−→




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 .

But if the Gauss–Jordan technique is applied to a more general m× n matrix,
then the final result is not necessarily the same as described above. The following
example illustrates what typically happens in the rectangular case.

Example 2.2.1

Problem: Apply Gauss–Jordan elimination to the following 4× 5 matrix and
circle the pivot positions. This is the same matrix used in Example 2.1.1:

A =




1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7


 .

Solution:



©1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7


→



©1 2 1 3 3
0 0 ©-2 −2 −2
0 0 2 2 2
0 0 −2 −2 1


→



©1 2 1 3 3
0 0 ©1 1 1
0 0 2 2 2
0 0 −2 −2 1




→



©1 2 0 2 2
0 0 ©1 1 1
0 0 0 0 ©0
0 0 0 0 3


→



©1 2 0 2 2
0 0 ©1 1 1
0 0 0 0 ©3
0 0 0 0 0


→



©1 2 0 2 2
0 0 ©1 1 1
0 0 0 0 ©1
0 0 0 0 0




→



©1 2 0 2 0
0 0 ©1 1 0
0 0 0 0 ©1
0 0 0 0 0


 .
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Compare the results of this example with the results of Example 2.1.1, and
notice that the “form” of the final matrix is the same in both examples, which
indeed must be the case because of the uniqueness of “form” mentioned in the
previous section. The only difference is in the numerical value of some of the
entries. By the nature of Gauss–Jordan elimination, each pivot is 1 and all entries
above and below each pivot are 0. Consequently, the row echelon form produced
by the Gauss–Jordan method contains a reduced number of nonzero entries, so
it seems only natural to refer to this as a reduced row echelon form.

11

Reduced Row Echelon Form
A matrix Em×n is said to be in reduced row echelon form provided
that the following three conditions hold.
• E is in row echelon form.
• The first nonzero entry in each row (i.e., each pivot) is 1.
• All entries above each pivot are 0.
A typical structure for a matrix in reduced row echelon form is illustrated
below, where entries marked * can be either zero or nonzero numbers:




©1 ∗ 0 0 ∗ ∗ 0 ∗
0 0 ©1 0 ∗ ∗ 0 ∗
0 0 0 ©1 ∗ ∗ 0 ∗
0 0 0 0 0 0 ©1 ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


 .

As previously stated, if matrix A is transformed to a row echelon form
by row operations, then the “form” is uniquely determined by A, but the in-
dividual entries in the form are not unique. However, if A is transformed by
row operations to a reduced row echelon form EA, then it can be shown12 that
both the “form” as well as the individual entries in EA are uniquely determined
by A. In other words, the reduced row echelon form EA produced from A is
independent of whatever elimination scheme is used. Producing an unreduced
form is computationally more efficient, but the uniqueness of EA makes it more
useful for theoretical purposes.

11
In some of the older books this is called the Hermite normal form in honor of the French
mathematician Charles Hermite (1822–1901), who, around 1851, investigated reducing matrices
by row operations.

12
A formal uniqueness proof must wait until Example 3.9.2, but you can make this intuitively
clear right now with some experiments. Try to produce two different reduced row echelon forms
from the same matrix.
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EA Notation
For a matrix A, the symbol EA will hereafter denote the unique re-
duced row echelon form derived from A by means of row operations.

Example 2.2.2

Problem: Determine EA, deduce rank (A), and identify the basic columns of

A =




1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3


 .

Solution:

©1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3


 −→



©1 2 2 3 1
0 0 ©0 0 0
0 0 0 0 3
0 0 2 2 2


 −→



©1 2 2 3 1
0 0 ©2 2 2
0 0 0 0 3
0 0 0 0 0




−→



©1 2 2 3 1
0 0 ©1 1 1
0 0 0 0 3
0 0 0 0 0


 −→



©1 2 0 1 −1
0 0 ©1 1 1
0 0 0 0 ©3
0 0 0 0 0




−→



©1 2 0 1 −1
0 0 ©1 1 1
0 0 0 0 ©1
0 0 0 0 0


 −→



©1 2 0 1 0
0 0 ©1 1 0
0 0 0 0 ©1
0 0 0 0 0




Therefore, rank (A) = 3, and {A∗1,A∗3,A∗5} are the three basic columns.

The above example illustrates another important feature of EA and ex-
plains why the basic columns are indeed “basic.” Each nonbasic column is ex-
pressible as a combination of basic columns. In Example 2.2.2,

A∗2 = 2A∗1 and A∗4 = A∗1 + A∗3. (2.2.1)

Notice that exactly the same set of relationships hold in EA. That is,

E∗2 = 2E∗1 and E∗4 = E∗1 + E∗3. (2.2.2)

This is no coincidence—it’s characteristic of what happens in general. There’s
more to observe. The relationships between the nonbasic and basic columns in a
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general matrix A are usually obscure, but the relationships among the columns
in EA are absolutely transparent. For example, notice that the multipliers used
in the relationships (2.2.1) and (2.2.2) appear explicitly in the two nonbasic
columns in EA —they are just the nonzero entries in these nonbasic columns.
This is important because it means that EA can be used as a “map” or “key”
to discover or unlock the hidden relationships among the columns of A .

Finally, observe from Example 2.2.2 that only the basic columns to the left
of a given nonbasic column are needed in order to express the nonbasic column
as a combination of basic columns—e.g., representing A∗2 requires only A∗1
and not A∗3 or A∗5, while representing A∗4 requires only A∗1 and A∗3.
This too is typical. For the time being, we accept the following statements to be
true. A rigorous proof is given later on p. 136.

Column Relationships in A and EA

• Each nonbasic column E∗k in EA is a combination (a sum of mul-
tiples) of the basic columns in EA to the left of E∗k. That is,

E∗k = µ1E∗b1 + µ2E∗b2 + · · ·+ µjE∗bj

= µ1




1
0
...
0
...
0




+ µ2




0
1
...
0
...
0




+ · · ·+ µj




0
0
...
1
...
0




=




µ1

µ2
...

µj

...
0




,

where the E∗bi’s are the basic columns to the left of E∗k and where
the multipliers µi are the first j entries in E∗k.

• The relationships that exist among the columns of A are exactly
the same as the relationships that exist among the columns of EA.
In particular, if A∗k is a nonbasic column in A , then

A∗k = µ1A∗b1 + µ2A∗b2 + · · ·+ µjA∗bj , (2.2.3)

where the A∗bi’s are the basic columns to the left of A∗k, and
where the multipliers µi are as described above—the first j entries
in E∗k.
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Example 2.2.3

Problem: Write each nonbasic column as a combination of basic columns in

A =


 2 −4 −8 6 3

0 1 3 2 3
3 −2 0 0 8


 .

Solution: Transform A to EA as shown below.
©2 −4 −8 6 3

0 1 3 2 3
3 −2 0 0 8


→


©1 −2 −4 3 3

2
0 1 3 2 3
3 −2 0 0 8


→


©1 −2 −4 3 3

2
0 ©1 3 2 3
0 4 12 −9 7

2


→


©1 0 2 7 15

2
0 ©1 3 2 3
0 0 0 −17 − 17

2


→


©1 0 2 7 15

2
0 ©1 3 2 3
0 0 0 ©1 1

2


→


©1 0 2 0 4

0 ©1 3 0 2
0 0 0 ©1 1

2




The third and fifth columns are nonbasic. Looking at the columns in EA reveals

E∗3 = 2E∗1 + 3E∗2 and E∗5 = 4E∗1 + 2E∗2 +
1
2
E∗4.

The relationships that exist among the columns of A must be exactly the same
as those in EA, so

A∗3 = 2A∗1 + 3A∗2 and A∗5 = 4A∗1 + 2A∗2 +
1
2
A∗4.

You can easily check the validity of these equations by direct calculation.

In summary, the utility of EA lies in its ability to reveal dependencies in
data stored as columns in an array A. The nonbasic columns in A represent
redundant information in the sense that this information can always be expressed
in terms of the data contained in the basic columns.

Although data compression is not the primary reason for introducing EA,
the application to these problems is clear. For a large array of data, it may be
more efficient to store only “independent data” (i.e., the basic columns of A )
along with the nonzero multipliers µi obtained from the nonbasic columns in
EA. Then the redundant data contained in the nonbasic columns of A can
always be reconstructed if and when it is called for.

Exercises for section 2.2

2.2.1. Determine the reduced row echelon form for each of the following matri-
ces and then express each nonbasic column in terms of the basic columns:

(a)


 1 2 3 3

2 4 6 9
2 6 7 6


 , (b)




2 1 1 3 0 4 1
4 2 4 4 1 5 5
2 1 3 1 0 4 3
6 3 4 8 1 9 5
0 0 3 −3 0 0 3
8 4 2 14 1 13 3


 .
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2.2.2. Construct a matrix A whose reduced row echelon form is

EA =




1 2 0 −3 0 0 0
0 0 1 −4 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


 .

Is A unique?

2.2.3. Suppose that A is an m× n matrix. Give a short explanation of why
rank (A) < n whenever one column in A is a combination of other
columns in A .

2.2.4. Consider the following matrix:

A =


 .1 .2 .3

.4 .5 .6

.7 .8 .901


 .

(a) Use exact arithmetic to determine EA.
(b) Now use 3-digit floating-point arithmetic (without partial piv-

oting or scaling) to determine EA and formulate a statement
concerning “near relationships” between the columns of A .

2.2.5. Consider the matrix

E =


 1 0 −1

0 1 2
0 0 0


 .

You already know that E∗3 can be expressed in terms of E∗1 and E∗2.
However, this is not the only way to represent the column dependencies
in E . Show how to write E∗1 in terms of E∗2 and E∗3 and then
express E∗2 as a combination of E∗1 and E∗3. Note: This exercise
illustrates that the set of pivotal columns is not the only set that can
play the role of “basic columns.” Taking the basic columns to be the
ones containing the pivots is a matter of convenience because everything
becomes automatic that way.
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2.3 CONSISTENCY OF LINEAR SYSTEMS

A system of m linear equations in n unknowns is said to be a consistent sys-
tem if it possesses at least one solution. If there are no solutions, then the system
is called inconsistent. The purpose of this section is to determine conditions
under which a given system will be consistent.

Stating conditions for consistency of systems involving only two or three
unknowns is easy. A linear equation in two unknowns represents a line in 2-space,
and a linear equation in three unknowns is a plane in 3-space. Consequently, a
linear system of m equations in two unknowns is consistent if and only if the m
lines defined by the m equations have at least one common point of intersection.
Similarly, a system of m equations in three unknowns is consistent if and only
if the associated m planes have at least one common point of intersection.
However, when m is large, these geometric conditions may not be easy to verify
visually, and when n > 3, the generalizations of intersecting lines or planes are
impossible to visualize with the eye.

Rather than depending on geometry to establish consistency, we use Gaus-
sian elimination. If the associated augmented matrix [A|b] is reduced by row
operations to a matrix [E|c] that is in row echelon form, then consistency—or
lack of it—becomes evident. Suppose that somewhere in the process of reduc-
ing [A|b] to [E|c] a situation arises in which the only nonzero entry in a row
appears on the right-hand side, as illustrated below:

Row i −→




∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 α
• • • • • • •
• • • • • • •


 ←− α = 0.

If this occurs in the ith row, then the ith equation of the associated system is

0x1 + 0x2 + · · ·+ 0xn = α.

For α = 0, this equation has no solution, and hence the original system must
also be inconsistent (because row operations don’t alter the solution set). The
converse also holds. That is, if a system is inconsistent, then somewhere in the
elimination process a row of the form

( 0 0 · · · 0 | α ) , α = 0 (2.3.1)

must appear. Otherwise, the back substitution process can be completed and
a solution is produced. There is no inconsistency indicated when a row of the
form (0 0 · · · 0 | 0) is encountered. This simply says that 0 = 0, and although
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this is no help in determining the value of any unknown, it is nevertheless a true
statement, so it doesn’t indicate inconsistency in the system.

There are some other ways to characterize the consistency (or inconsistency)
of a system. One of these is to observe that if the last column b in the augmented
matrix [A|b] is a nonbasic column, then no pivot can exist in the last column,
and hence the system is consistent because the situation (2.3.1) cannot occur.
Conversely, if the system is consistent, then the situation (2.3.1) never occurs
during Gaussian elimination and consequently the last column cannot be basic.
In other words, [A|b] is consistent if and only if b is a nonbasic column.

Saying that b is a nonbasic column in [A|b] is equivalent to saying that
all basic columns in [A|b] lie in the coefficient matrix A . Since the number of
basic columns in a matrix is the rank, consistency may also be characterized by
stating that a system is consistent if and only if rank[A|b] = rank (A).

Recall from the previous section the fact that each nonbasic column in [A|b]
must be expressible in terms of the basic columns. Because a consistent system
is characterized by the fact that the right-hand side b is a nonbasic column,
it follows that a system is consistent if and only if the right-hand side b is a
combination of columns from the coefficient matrix A.

Each of the equivalent 13 ways of saying that a system is consistent is sum-
marized below.

Consistency
Each of the following is equivalent to saying that [A|b] is consistent.
• In row reducing [A|b], a row of the following form never appears:

( 0 0 · · · 0 | α ) , where α = 0. (2.3.2)

• b is a nonbasic column in [A|b]. (2.3.3)
• rank[A|b] = rank (A). (2.3.4)
• b is a combination of the basic columns in A. (2.3.5)

Example 2.3.1

Problem: Determine if the following system is consistent:

x1 + x2 + 2x3 + 2x4 + x5 = 1,

2x1 + 2x2 + 4x3 + 4x4 + 3x5 = 1,

2x1 + 2x2 + 4x3 + 4x4 + 2x5 = 2,

3x1 + 5x2 + 8x3 + 6x4 + 5x5 = 3.

13
Statements P and Q are said to be equivalent when (P implies Q) as well as its converse (Q
implies P) are true statements. This is also the meaning of the phrase “P if and only if Q.”
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Solution: Apply Gaussian elimination to the augmented matrix [A|b] as shown:



©1 1 2 2 1 1
2 2 4 4 3 1
2 2 4 4 2 2
3 5 8 6 5 3


 −→



©1 1 2 2 1 1
0 ©0 0 0 1 −1
0 0 0 0 0 0
0 2 2 0 2 0




−→



©1 1 2 2 1 1
0 ©2 2 0 2 0
0 0 0 0 ©1 −1
0 0 0 0 0 0


 .

Because a row of the form ( 0 0 · · · 0 | α ) with α = 0 never emerges,
the system is consistent. We might also observe that b is a nonbasic column
in [A|b] so that rank[A|b] = rank (A). Finally, by completely reducing A to
EA, it is possible to verify that b is indeed a combination of the basic columns
{A∗1,A∗2,A∗5}.

Exercises for section 2.3

2.3.1. Determine which of the following systems are consistent.

(a)
x + 2y + z = 2,

2x + 4y = 2,

3x + 6y + z = 4.

(b)
2x + 2y + 4z = 0,

3x + 2y + 5z = 0,

4x + 2y + 6z = 0.

(c)

x− y + z = 1,

x− y − z = 2,

x + y − z = 3,

x + y + z = 4.

(d)

x− y + z = 1,

x− y − z = 2,

x + y − z = 3,

x + y + z = 2.

(e)

2w + x + 3y + 5z = 1,

4w + 4y + 8z = 0,

w + x + 2y + 3z = 0,

x + y + z = 0.

(f)

2w + x + 3y + 5z = 7,

4w + 4y + 8z = 8,

w + x + 2y + 3z = 5,

x + y + z = 3.

2.3.2. Construct a 3× 4 matrix A and 3× 1 columns b and c such that
[A|b] is the augmented matrix for an inconsistent system, but [A|c] is
the augmented matrix for a consistent system.

2.3.3. If A is an m× n matrix with rank (A) = m, explain why the system
[A|b] must be consistent for every right-hand side b .
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2.3.4. Consider two consistent systems whose augmented matrices are of the
form [A|b] and [A|c]. That is, they differ only on the right-hand side.
Is the system associated with [A | b+ c] also consistent? Explain why.

2.3.5. Is it possible for a parabola whose equation has the form y = α+βx+γx2

to pass through the four points (0, 1), (1, 3), (2, 15), and (3, 37)? Why?

2.3.6. Consider using floating-point arithmetic (without scaling) to solve the
following system:

.835x + .667y = .168,

.333x + .266y = .067.

(a) Is the system consistent when 5-digit arithmetic is used?
(b) What happens when 6-digit arithmetic is used?

2.3.7. In order to grow a certain crop, it is recommended that each square foot
of ground be treated with 10 units of phosphorous, 9 units of potassium,
and 19 units of nitrogen. Suppose that there are three brands of fertilizer
on the market— say brand X , brand Y , and brand Z . One pound of
brand X contains 2 units of phosphorous, 3 units of potassium, and 5
units of nitrogen. One pound of brand Y contains 1 unit of phosphorous,
3 units of potassium, and 4 units of nitrogen. One pound of brand Z
contains only 1 unit of phosphorous and 1 unit of nitrogen. Determine
whether or not it is possible to meet exactly the recommendation by
applying some combination of the three brands of fertilizer.

2.3.8. Suppose that an augmented matrix [A|b] is reduced by means of Gaus-
sian elimination to a row echelon form [E|c]. If a row of the form

( 0 0 · · · 0 | α ) , α = 0

does not appear in [E|c], is it possible that rows of this form could have
appeared at earlier stages in the reduction process? Why?
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2.4 HOMOGENEOUS SYSTEMS

A system of m linear equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = 0,

a21x1 + a22x2 + · · ·+ a2nxn = 0,

...
am1x1 + am2x2 + · · ·+ amnxn = 0,

in which the right-hand side consists entirely of 0’s is said to be a homogeneous
system. If there is at least one nonzero number on the right-hand side, then the
system is called nonhomogeneous. The purpose of this section is to examine
some of the elementary aspects concerning homogeneous systems.

Consistency is never an issue when dealing with homogeneous systems be-
cause the zero solution x1 = x2 = · · · = xn = 0 is always one solution regardless
of the values of the coefficients. Hereafter, the solution consisting of all zeros is
referred to as the trivial solution. The only question is, “Are there solutions
other than the trivial solution, and if so, how can we best describe them?” As
before, Gaussian elimination provides the answer.

While reducing the augmented matrix [A|0] of a homogeneous system to
a row echelon form using Gaussian elimination, the zero column on the right-
hand side can never be altered by any of the three elementary row operations.
That is, any row echelon form derived from [A|0] by means of row operations
must also have the form [E|0]. This means that the last column of 0’s is just
excess baggage that is not necessary to carry along at each step. Just reduce the
coefficient matrix A to a row echelon form E, and remember that the right-
hand side is entirely zero when you execute back substitution. The process is
best understood by considering a typical example.

In order to examine the solutions of the homogeneous system

x1 + 2x2 + 2x3 + 3x4 = 0,

2x1 + 4x2 + x3 + 3x4 = 0,

3x1 + 6x2 + x3 + 4x4 = 0,

(2.4.1)

reduce the coefficient matrix to a row echelon form.

A =


 1 2 2 3

2 4 1 3
3 6 1 4


 −→


 1 2 2 3

0 0 −3 −3
0 0 −5 −5


 −→


 1 2 2 3

0 0 −3 −3
0 0 0 0


 = E.

Therefore, the original homogeneous system is equivalent to the following reduced
homogeneous system:

x1 + 2x2 + 2x3 + 3x4 = 0,

− 3x3 − 3x4 = 0.
(2.4.2)
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Since there are four unknowns but only two equations in this reduced system,
it is impossible to extract a unique solution for each unknown. The best we can
do is to pick two “basic” unknowns—which will be called the basic variables
and solve for these in terms of the other two unknowns—whose values must
remain arbitrary or “free,” and consequently they will be referred to as the free
variables. Although there are several possibilities for selecting a set of basic
variables, the convention is to always solve for the unknowns corresponding to
the pivotal positions—or, equivalently, the unknowns corresponding to the basic
columns. In this example, the pivots (as well as the basic columns) lie in the first
and third positions, so the strategy is to apply back substitution to solve the
reduced system (2.4.2) for the basic variables x1 and x3 in terms of the free
variables x2 and x4. The second equation in (2.4.2) yields

x3 = −x4

and substitution back into the first equation produces

x1 = −2x2 − 2x3 − 3x4,

= −2x2 − 2(−x4)− 3x4,

= −2x2 − x4.

Therefore, all solutions of the original homogeneous system can be described by
saying

x1 = −2x2 − x4,

x2 is “free,”
x3 = −x4,

x4 is “free.”

(2.4.3)

As the free variables x2 and x4 range over all possible values, the above ex-
pressions describe all possible solutions. For example, when x2 and x4 assume
the values x2 = 1 and x4 = −2, then the particular solution

x1 = 0, x2 = 1, x3 = 2, x4 = −2

is produced. When x2 = π and x4 =
√

2, then another particular solution

x1 = −2π −
√

2, x2 = π, x3 = −
√

2, x4 =
√

2

is generated.
Rather than describing the solution set as illustrated in (2.4.3), future de-

velopments will make it more convenient to express the solution set by writing


x1

x2

x3

x4


 =



−2x2 − x4

x2

−x4

x4


 = x2



−2

1
0
0


 + x4



−1

0
−1

1


 (2.4.4)
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with the understanding that x2 and x4 are free variables that can range over
all possible numbers. This representation will be called the general solution
of the homogeneous system. This expression for the general solution emphasizes
that every solution is some combination of the two particular solutions

h1 =



−2

1
0
0


 and h2 =



−1

0
−1

1


 .

The fact that h1 and h2 are each solutions is clear because h1 is produced
when the free variables assume the values x2 = 1 and x4 = 0, whereas the
solution h2 is generated when x2 = 0 and x4 = 1.

Now consider a general homogeneous system [A|0] of m linear equations
in n unknowns. If the coefficient matrix is such that rank (A) = r, then it
should be apparent from the preceding discussion that there will be exactly r
basic variables—corresponding to the positions of the basic columns in A —and
exactly n − r free variables—corresponding to the positions of the nonbasic
columns in A . Reducing A to a row echelon form using Gaussian elimination
and then using back substitution to solve for the basic variables in terms of the
free variables produces the general solution, which has the form

x = xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r, (2.4.5)

where xf1 , xf2 , . . . , xfn−r
are the free variables and where h1,h2, . . . ,hn−r are

n× 1 columns that represent particular solutions of the system. As the free
variables xfi range over all possible values, the general solution generates all
possible solutions.

The general solution does not depend on which row echelon form is used
in the sense that using back substitution to solve for the basic variables in
terms of the nonbasic variables generates a unique set of particular solutions
{h1,h2, . . . ,hn−r}, regardless of which row echelon form is used. Without going
into great detail, one can argue that this is true because using back substitution
in any row echelon form to solve for the basic variables must produce exactly
the same result as that obtained by completely reducing A to EA and then
solving the reduced homogeneous system for the basic variables. Uniqueness of
EA guarantees the uniqueness of the hi ’s.

For example, if the coefficient matrix A associated with the system (2.4.1)
is completely reduced by the Gauss–Jordan procedure to EA

A =


 1 2 2 3

2 4 1 3
3 6 1 4


 −→


 1 2 0 1

0 0 1 1
0 0 0 0


 = EA,
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then we obtain the following reduced system:

x1 + 2x2 + x4 = 0,

x3 + x4 = 0.

Solving for the basic variables x1 and x3 in terms of x2 and x4 produces
exactly the same result as given in (2.4.3) and hence generates exactly the same
general solution as shown in (2.4.4).

Because it avoids the back substitution process, you may find it more con-
venient to use the Gauss–Jordan procedure to reduce A completely to EA

and then construct the general solution directly from the entries in EA. This
approach usually will be adopted in the examples and exercises.

As was previously observed, all homogeneous systems are consistent because
the trivial solution consisting of all zeros is always one solution. The natural
question is, “When is the trivial solution the only solution?” In other words,
we wish to know when a homogeneous system possesses a unique solution. The
form of the general solution (2.4.5) makes the answer transparent. As long as
there is at least one free variable, then it is clear from (2.4.5) that there will
be an infinite number of solutions. Consequently, the trivial solution is the only
solution if and only if there are no free variables. Because the number of free
variables is given by n− r, where r = rank (A), the previous statement can be
reformulated to say that a homogeneous system possesses a unique solution—the
trivial solution—if and only if rank (A) = n.

Example 2.4.1

The homogeneous system

x1 + 2x2 + 2x3 = 0,

2x1 + 5x2 + 7x3 = 0,

3x1 + 6x2 + 8x3 = 0,

has only the trivial solution because

A =


 1 2 2

2 5 7
3 6 8


 −→


 1 2 2

0 1 3
0 0 2


 = E

shows that rank (A) = n = 3. Indeed, it is also obvious from E that applying
back substitution in the system [E|0] yields only the trivial solution.

Example 2.4.2

Problem: Explain why the following homogeneous system has infinitely many
solutions, and exhibit the general solution:

x1 + 2x2 + 2x3 = 0,

2x1 + 5x2 + 7x3 = 0,

3x1 + 6x2 + 6x3 = 0.
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Solution:

A =


 1 2 2

2 5 7
3 6 6


 −→


 1 2 2

0 1 3
0 0 0


 = E

shows that rank (A) = 2 < n = 3. Since the basic columns lie in positions
one and two, x1 and x2 are the basic variables while x3 is free. Using back
substitution on [E|0] to solve for the basic variables in terms of the free variable
produces x2 = −3x3 and x1 = −2x2 − 2x3 = 4x3, so the general solution is

 x1

x2

x3


 = x3


 4
−3

1


 , where x3 is free.

That is, every solution is a multiple of the one particular solution h1 =


 4
−3

1


 .

Summary
Let Am×n be the coefficient matrix for a homogeneous system of m
linear equations in n unknowns, and suppose rank (A) = r.

• The unknowns that correspond to the positions of the basic columns
(i.e., the pivotal positions) are called the basic variables, and the
unknowns corresponding to the positions of the nonbasic columns
are called the free variables.

• There are exactly r basic variables and n− r free variables.
• To describe all solutions, reduce A to a row echelon form using

Gaussian elimination, and then use back substitution to solve for
the basic variables in terms of the free variables. This produces the
general solution that has the form

x = xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r,

where the terms xf1 , xf2 , . . . , xfn−r are the free variables and where
h1,h2, . . . ,hn−r are n× 1 columns that represent particular solu-
tions of the homogeneous system. The hi ’s are independent of which
row echelon form is used in the back substitution process. As the free
variables xfi

range over all possible values, the general solution gen-
erates all possible solutions.

• A homogeneous system possesses a unique solution (the trivial solu-
tion) if and only if rank (A) = n —i.e., if and only if there are no
free variables.
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Exercises for section 2.4

2.4.1. Determine the general solution for each of the following homogeneous
systems.

(a)
x1 + 2x2 + x3 + 2x4 = 0,

2x1 + 4x2 + x3 + 3x4 = 0,

3x1 + 6x2 + x3 + 4x4 = 0.

(b)

2x + y + z = 0,

4x + 2y + z = 0,

6x + 3y + z = 0,

8x + 4y + z = 0.

(c)

x1 + x2 + 2x3 = 0,

3x1 + 3x3 + 3x4 = 0,

2x1 + x2 + 3x3 + x4 = 0,

x1 + 2x2 + 3x3 − x4 = 0.

(d)

2x + y + z = 0,

4x + 2y + z = 0,

6x + 3y + z = 0,

8x + 5y + z = 0.

2.4.2. Among all solutions that satisfy the homogeneous system

x + 2y + z = 0,

2x + 4y + z = 0,

x + 2y − z = 0,

determine those that also satisfy the nonlinear constraint y − xy = 2z.

2.4.3. Consider a homogeneous system whose coefficient matrix is

A =




1 2 1 3 1
2 4 −1 3 8
1 2 3 5 7
2 4 2 6 2
3 6 1 7 −3


 .

First transform A to an unreduced row echelon form to determine the
general solution of the associated homogeneous system. Then reduce A
to EA, and show that the same general solution is produced.

2.4.4. If A is the coefficient matrix for a homogeneous system consisting of
four equations in eight unknowns and if there are five free variables,
what is rank (A)?
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2.4.5. Suppose that A is the coefficient matrix for a homogeneous system of
four equations in six unknowns and suppose that A has at least one
nonzero row.

(a) Determine the fewest number of free variables that are possible.
(b) Determine the maximum number of free variables that are pos-

sible.

2.4.6. Explain why a homogeneous system of m equations in n unknowns
where m < n must always possess an infinite number of solutions.

2.4.7. Construct a homogeneous system of three equations in four unknowns
that has

x2



−2

1
0
0


 + x4



−3

0
2
1




as its general solution.

2.4.8. If c1 and c2 are columns that represent two particular solutions of
the same homogeneous system, explain why the sum c1 + c2 must also
represent a solution of this system.
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2.5 NONHOMOGENEOUS SYSTEMS

Recall that a system of m linear equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm,

is said to be nonhomogeneous whenever bi = 0 for at least one i. Unlike
homogeneous systems, a nonhomogeneous system may be inconsistent and the
techniques of §2.3 must be applied in order to determine if solutions do indeed
exist. Unless otherwise stated, it is assumed that all systems in this section are
consistent.

To describe the set of all possible solutions of a consistent nonhomogeneous
system, construct a general solution by exactly the same method used for homo-
geneous systems as follows.

• Use Gaussian elimination to reduce the associated augmented matrix [A|b]
to a row echelon form [E|c].

• Identify the basic variables and the free variables in the same manner de-
scribed in §2.4.

• Apply back substitution to [E|c] and solve for the basic variables in terms
of the free variables.

• Write the result in the form

x = p + xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r, (2.5.1)

where xf1 , xf2 , . . . , xfn−r
are the free variables and p,h1,h2, . . . ,hn−r are

n× 1 columns. This is the general solution of the nonhomogeneous system.

As the free variables xfi range over all possible values, the general solu-
tion (2.5.1) generates all possible solutions of the system [A|b]. Just as in the
homogeneous case, the columns hi and p are independent of which row eche-
lon form [E|c] is used. Therefore, [A|b] may be completely reduced to E[A|b]

by using the Gauss–Jordan method thereby avoiding the need to perform back
substitution. We will use this approach whenever it is convenient.

The difference between the general solution of a nonhomogeneous system
and the general solution of a homogeneous system is the column p that appears
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in (2.5.1). To understand why p appears and where it comes from, consider the
nonhomogeneous system

x1 + 2x2 + 2x3 + 3x4 = 4,

2x1 + 4x2 + x3 + 3x4 = 5,

3x1 + 6x2 + x3 + 4x4 = 7,

(2.5.2)

in which the coefficient matrix is the same as the coefficient matrix for the
homogeneous system (2.4.1) used in the previous section. If [A|b] is completely
reduced by the Gauss–Jordan procedure to E[A|b]

[A|b] =


 1 2 2 3 4

2 4 1 3 5
3 6 1 4 7


 −→


 1 2 0 1 2

0 0 1 1 1
0 0 0 0 0


 = E[A|b],

then the following reduced system is obtained:

x1 + 2x2 + x4 = 2,

x3 + x4 = 1.

Solving for the basic variables, x1 and x3, in terms of the free variables, x2

and x4, produces
x1 = 2− 2x2 − x4,

x2 is “free,”
x3 = 1− x4,

x4 is “free.”

The general solution is obtained by writing these statements in the form




x1

x2

x3

x4


 =




2− 2x2 − x4

x2

1− x4

x4


 =




2
0
1
0


 + x2



−2

1
0
0


 + x4



−1

0
−1

1


 . (2.5.3)

As the free variables x2 and x4 range over all possible numbers, this generates
all possible solutions of the nonhomogeneous system (2.5.2). Notice that the

column




2
0
1
0


 in (2.5.3) is a particular solution of the nonhomogeneous system

(2.5.2)—it is the solution produced when the free variables assume the values
x2 = 0 and x4 = 0.
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Furthermore, recall from (2.4.4) that the general solution of the associated
homogeneous system

x1 + 2x2 + 2x3 + 3x4 = 0,

2x1 + 4x2 + x3 + 3x4 = 0,

3x1 + 6x2 + x3 + 4x4 = 0,

(2.5.4)

is given by 

−2x2 − x4

x2

−x4

x4


 = x2



−2

1
0
0


 + x4



−1

0
−1

1


 .

That is, the general solution of the associated homogeneous system (2.5.4) is a
part of the general solution of the original nonhomogeneous system (2.5.2).

These two observations can be combined by saying that the general solution
of the nonhomogeneous system is given by a particular solution plus the general
solution of the associated homogeneous system. 14

To see that the previous statement is always true, suppose [A|b] represents
a general m× n consistent system where rank (A) = r. Consistency guarantees
that b is a nonbasic column in [A|b], and hence the basic columns in [A|b] are
in the same positions as the basic columns in [A|0] so that the nonhomogeneous
system and the associated homogeneous system have exactly the same set of basic
variables as well as free variables. Furthermore, it is not difficult to see that

E[A|0] = [EA|0] and E[A|b] = [EA|c],

where c is some column of the form c =




ξ1
...
ξr

0
...
0




. This means that if you solve

the ith equation in the reduced homogeneous system for the ith basic variable
xbi in terms of the free variables xfi , xfi+1 , . . . , xfn−r to produce

xbi
= αixfi

+ αi+1xfi+1 + · · ·+ αn−rxfn−r
, (2.5.5)

then the solution for the ith basic variable in the reduced nonhomogeneous
system must have the form

xbi
= ξi + αixfi

+ αi+1xfi+1 + · · ·+ αn−rxfn−r
. (2.5.6)

14
For those students who have studied differential equations, this statement should have a familiar
ring. Exactly the same situation holds for the general solution to a linear differential equation.
This is no accident—it is due to the inherent linearity in both problems. More will be said
about this issue later in the text.
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That is, the two solutions differ only in the fact that the latter contains the
constant ξi. Consider organizing the expressions (2.5.5) and (2.5.6) so as to
construct the respective general solutions. If the general solution of the homoge-
neous system has the form

x = xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r,

then it is apparent that the general solution of the nonhomogeneous system must
have a similar form

x = p + xf1h1 + xf2h2 + · · ·+ xfn−rhn−r (2.5.7)

in which the column p contains the constants ξi along with some 0’s—the ξi ’s
occupy positions in p that correspond to the positions of the basic columns, and
0’s occupy all other positions. The column p represents one particular solution
to the nonhomogeneous system because it is the solution produced when the free
variables assume the values xf1 = xf2 = · · · = xfn−r

= 0.

Example 2.5.1

Problem: Determine the general solution of the following nonhomogeneous sys-
tem and compare it with the general solution of the associated homogeneous
system:

x1 + x2 + 2x3 + 2x4 + x5 = 1,

2x1 + 2x2 + 4x3 + 4x4 + 3x5 = 1,

2x1 + 2x2 + 4x3 + 4x4 + 2x5 = 2,

3x1 + 5x2 + 8x3 + 6x4 + 5x5 = 3.

Solution: Reducing the augmented matrix [A|b] to E[A|b] yields

A =




1 1 2 2 1 1
2 2 4 4 3 1
2 2 4 4 2 2
3 5 8 6 5 3


 −→




1 1 2 2 1 1
0 0 0 0 1 −1
0 0 0 0 0 0
0 2 2 0 2 0




−→




1 1 2 2 1 1
0 2 2 0 2 0
0 0 0 0 1 −1
0 0 0 0 0 0


 −→




1 1 2 2 1 1
0 1 1 0 1 0
0 0 0 0 1 −1
0 0 0 0 0 0




−→




1 0 1 2 0 1
0 1 1 0 1 0
0 0 0 0 1 −1
0 0 0 0 0 0


 −→




1 0 1 2 0 1
0 1 1 0 0 1
0 0 0 0 1 −1
0 0 0 0 0 0


 = E[A|b].
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Observe that the system is indeed consistent because the last column is nonbasic.
Solve the reduced system for the basic variables x1, x2, and x5 in terms of the
free variables x3 and x4 to obtain

x1 = 1− x3 − 2x4,

x2 = 1− x3,

x3 is “free,”
x4 is “free,”
x5 = −1.

The general solution to the nonhomogeneous system is

x =




x1

x2

x3

x4

x5


 =




1− x3 − 2x4

1− x3

x3

x4

−1


 =




1
1
0
0
−1


 + x3



−1
−1

1
0
0


 + x4



−2

0
0
1
0


 .

The general solution of the associated homogeneous system is

x =




x1

x2

x3

x4

x5


 =



−x3 − 2x4

−x3

x3

x4

0


 = x3



−1
−1

1
0
0


 + x4



−2

0
0
1
0


 .

You should verify for yourself that

p =




1
1
0
0
−1




is indeed a particular solution to the nonhomogeneous system and that

h3 =



−1
−1

1
0
0


 and h4 =



−2

0
0
1
0




are particular solutions to the associated homogeneous system.
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Now turn to the question, “When does a consistent system have a unique
solution?” It is known from (2.5.7) that the general solution of a consistent
m× n nonhomogeneous system [A|b] with rank (A) = r is given by

x = p + xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r,

where

xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r

is the general solution of the associated homogeneous system. Consequently, it
is evident that the nonhomogeneous system [A|b] will have a unique solution
(namely, p ) if and only if there are no free variables—i.e., if and only if r = n
(= number of unknowns)—this is equivalent to saying that the associated ho-
mogeneous system [A|0] has only the trivial solution.

Example 2.5.2

Consider the following nonhomogeneous system:

2x1 + 4x2 + 6x3 = 2,

x1 + 2x2 + 3x3 = 1,

x1 + x3 = −3,

2x1 + 4x2 = 8.

Reducing [A|b] to E[A|b] yields

[A|b] =




2 4 6 2
1 2 3 1
1 0 1 −3
2 4 0 8


 −→




1 0 0 −2
0 1 0 3
0 0 1 −1
0 0 0 0


 = E[A|b].

The system is consistent because the last column is nonbasic. There are several
ways to see that the system has a unique solution. Notice that

rank (A) = 3 = number of unknowns,

which is the same as observing that there are no free variables. Furthermore,
the associated homogeneous system clearly has only the trivial solution. Finally,
because we completely reduced [A|b] to E[A|b], it is obvious that there is only

one solution possible and that it is given by p =


−2

3
−1


 .
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Summary
Let [A|b] be the augmented matrix for a consistent m× n nonhomo-
geneous system in which rank (A) = r.

• Reducing [A|b] to a row echelon form using Gaussian elimination
and then solving for the basic variables in terms of the free variables
leads to the general solution

x = p + xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r.

As the free variables xfi
range over all possible values, this general

solution generates all possible solutions of the system.

• Column p is a particular solution of the nonhomogeneous system.

• The expression xf1h1 + xf2h2 + · · ·+ xfn−r
hn−r is the general so-

lution of the associated homogeneous system.

• Column p as well as the columns hi are independent of the row
echelon form to which [A|b] is reduced.

• The system possesses a unique solution if and only if any of the
following is true.
� rank (A) = n = number of unknowns.
� There are no free variables.
� The associated homogeneous system possesses only the trivial

solution.

Exercises for section 2.5

2.5.1. Determine the general solution for each of the following nonhomogeneous
systems.

(a)
x1 + 2x2 + x3 + 2x4 = 3,

2x1 + 4x2 + x3 + 3x4 = 4,

3x1 + 6x2 + x3 + 4x4 = 5.

(b)

2x + y + z = 4,

4x + 2y + z = 6,

6x + 3y + z = 8,

8x + 4y + z = 10.

(c)

x1 + x2 + 2x3 = 1,

3x1 + 3x3 + 3x4 = 6,

2x1 + x2 + 3x3 + x4 = 3,

x1 + 2x2 + 3x3 − x4 = 0.

(d)

2x + y + z = 2,

4x + 2y + z = 5,

6x + 3y + z = 8,

8x + 5y + z = 8.
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2.5.2. Among the solutions that satisfy the set of linear equations

x1 + x2 + 2x3 + 2x4 + x5 = 1,

2x1 + 2x2 + 4x3 + 4x4 + 3x5 = 1,

2x1 + 2x2 + 4x3 + 4x4 + 2x5 = 2,

3x1 + 5x2 + 8x3 + 6x4 + 5x5 = 3,

find all those that also satisfy the following two constraints:

(x1 − x2)2 − 4x2
5 = 0,

x2
3 − x2

5 = 0.

2.5.3. In order to grow a certain crop, it is recommended that each square foot
of ground be treated with 10 units of phosphorous, 9 units of potassium,
and 19 units of nitrogen. Suppose that there are three brands of fertilizer
on the market—say brand X , brand Y, and brand Z. One pound of
brand X contains 2 units of phosphorous, 3 units of potassium, and 5
units of nitrogen. One pound of brand Y contains 1 unit of phosphorous,
3 units of potassium, and 4 units of nitrogen. One pound of brand Z
contains only 1 unit of phosphorous and 1 unit of nitrogen.

(a) Take into account the obvious fact that a negative number of
pounds of any brand can never be applied, and suppose that
because of the way fertilizer is sold only an integral number of
pounds of each brand will be applied. Under these constraints,
determine all possible combinations of the three brands that can
be applied to satisfy the recommendations exactly.

(b) Suppose that brand X costs $1 per pound, brand Y costs $6
per pound, and brand Z costs $3 per pound. Determine the
least expensive solution that will satisfy the recommendations
exactly as well as the constraints of part (a).

2.5.4. Consider the following system:

2x + 2y + 3z = 0,

4x + 8y + 12z = −4,

6x + 2y + αz = 4.

(a) Determine all values of α for which the system is consistent.
(b) Determine all values of α for which there is a unique solution,

and compute the solution for these cases.
(c) Determine all values of α for which there are infinitely many

different solutions, and give the general solution for these cases.
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2.5.5. If columns s1 and s2 are particular solutions of the same nonhomo-
geneous system, must it be the case that the sum s1 + s2 is also a
solution?

2.5.6. Suppose that [A|b] is the augmented matrix for a consistent system of
m equations in n unknowns where m ≥ n. What must EA look like
when the system possesses a unique solution?

2.5.7. Construct a nonhomogeneous system of three equations in four un-
knowns that has 


1
0
1
0


 + x2



−2

1
0
0


 + x4



−3

0
2
1




as its general solution.

2.5.8. Consider using floating-point arithmetic (without partial pivoting or
scaling) to solve the system represented by the following augmented
matrix: 

 .835 .667 .5 .168
.333 .266 .1994 .067
1.67 1.334 1.1 .436


 .

(a) Determine the 4-digit general solution.
(b) Determine the 5-digit general solution.
(c) Determine the 6-digit general solution.
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2.6 ELECTRICAL CIRCUITS

The theory of electrical circuits is an important application that naturally gives
rise to rectangular systems of linear equations. Because the underlying mathe-
matics depends on several of the concepts discussed in the preceding sections,
you may find it interesting and worthwhile to make a small excursion into the
elementary mathematical analysis of electrical circuits. However, the continuity
of the text is not compromised by omitting this section.

In a direct current circuit containing resistances and sources of electromo-
tive force (abbreviated EMF) such as batteries, a point at which three or more
conductors are joined is called a node or branch point of the circuit, and a
closed conduction path is called a loop. Any part of a circuit between two ad-
joining nodes is called a branch of the circuit. The circuit shown in Figure 2.6.1
is a typical example that contains four nodes, seven loops, and six branches.

1

2
3

4

R1

R6

R5

R4

R3

R2

E4

E3

E2E1

I2

I4

I1

I5

I6I3

A B

C

Figure 2.6.1

The problem is to relate the currents Ik in each branch to the resistances Rk

and the EMFs Ek.
15 This is accomplished by using Ohm’s law in conjunction

with Kirchhoff’s rules to produce a system of linear equations.

Ohm’s Law
Ohm’s law states that for a current of I amps, the voltage drop (in
volts) across a resistance of R ohms is given by V = IR.

Kirchhoff’s rules—formally stated below—are the two fundamental laws
that govern the study of electrical circuits.

15
For an EMF source of magnitude E and a current I, there is always a small internal resistance
in the source, and the voltage drop across it is V = E−I×(internal resistance). But internal
source resistance is usually negligible, so the voltage drop across the source can be taken as
V = E. When internal resistance cannot be ignored, its effects may be incorporated into
existing external resistances, or it can be treated as a separate external resistance.
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Kirchhoff’s Rules
NODE RULE: The algebraic sum of currents toward each node is zero.

That is, the total incoming current must equal the total
outgoing current. This is simply a statement of conser-
vation of charge.

LOOP RULE: The algebraic sum of the EMFs around each loop must
equal the algebraic sum of the IR products in the same
loop. That is, assuming internal source resistances have
been accounted for, the algebraic sum of the voltage
drops over the sources equals the algebraic sum of the
voltage drops over the resistances in each loop. This is
a statement of conservation of energy.

Kirchhoff’s rules may be used without knowing the directions of the currents
and EMFs in advance. You may arbitrarily assign directions. If negative values
emerge in the final solution, then the actual direction is opposite to that assumed.
To apply the node rule, consider a current to be positive if its direction is toward
the node—otherwise, consider the current to be negative. It should be clear that
the node rule will always generate a homogeneous system. For example, applying
the node rule to the circuit in Figure 2.6.1 yields four homogeneous equations in
six unknowns—the unknowns are the Ik ’s:

Node 1: I1 − I2 − I5 = 0,

Node 2: − I1 − I3 + I4 = 0,

Node 3: I3 + I5 + I6 = 0,

Node 4: I2 − I4 − I6 = 0.

To apply the loop rule, some direction (clockwise or counterclockwise) must
be chosen as the positive direction, and all EMFs and currents in that direction
are considered positive and those in the opposite direction are negative. It is
possible for a current to be considered positive for the node rule but considered
negative when it is used in the loop rule. If the positive direction is considered
to be clockwise in each case, then applying the loop rule to the three indicated
loops A, B, and C in the circuit shown in Figure 2.6.1 produces the three non-
homogeneous equations in six unknowns—the Ik ’s are treated as the unknowns,
while the Rk ’s and Ek ’s are assumed to be known.

Loop A: I1R1 − I3R3 + I5R5 = E1 − E3,

Loop B: I2R2 − I5R5 + I6R6 = E2,

Loop C: I3R3 + I4R4 − I6R6 = E3 + E4.
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There are 4 additional loops that also produce loop equations thereby mak-
ing a total of 11 equations (4 nodal equations and 7 loop equations) in 6 un-
knowns. Although this appears to be a rather general 11× 6 system of equations,
it really is not. If the circuit is in a state of equilibrium, then the physics of the
situation dictates that for each set of EMFs Ek, the corresponding currents
Ik must be uniquely determined. In other words, physics guarantees that the
11× 6 system produced by applying the two Kirchhoff rules must be consistent
and possess a unique solution.

Suppose that [A|b] represents the augmented matrix for the 11× 6 system
generated by Kirchhoff’s rules. From the results in §2.5, we know that the system
has a unique solution if and only if

rank (A) = number of unknowns = 6.

Furthermore, it was demonstrated in §2.3 that the system is consistent if and
only if

rank[A|b] = rank (A).

Combining these two facts allows us to conclude that

rank[A|b] = 6

so that when [A|b] is reduced to E[A|b], there will be exactly 6 nonzero rows
and 5 zero rows. Therefore, 5 of the original 11 equations are redundant in the
sense that they can be “zeroed out” by forming combinations of some particular
set of 6 “independent” equations. It is desirable to know beforehand which of
the 11 equations will be redundant and which can act as the “independent” set.

Notice that in using the node rule, the equation corresponding to node 4
is simply the negative sum of the equations for nodes 1, 2, and 3, and that the
first three equations are independent in the sense that no one of the three can
be written as a combination of any other two. This situation is typical. For a
general circuit with n nodes, it can be demonstrated that the equations for
the first n − 1 nodes are independent, and the equation for the last node is
redundant.

The loop rule also can generate redundant equations. Only simple loops—
loops not containing smaller loops—give rise to independent equations. For ex-
ample, consider the loop consisting of the three exterior branches in the circuit
shown in Figure 2.6.1. Applying the loop rule to this large loop will produce
no new information because the large loop can be constructed by “adding” the
three simple loops A, B, and C contained within. The equation associated
with the large outside loop is

I1R1 + I2R2 + I4R4 = E1 + E2 + E4,

which is precisely the sum of the equations that correspond to the three compo-
nent loops A, B, and C. This phenomenon will hold in general so that only
the simple loops need to be considered when using the loop rule.
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The point of this discussion is to conclude that the more general 11× 6
rectangular system can be replaced by an equivalent 6× 6 square system that
has a unique solution by dropping the last nodal equation and using only the
simple loop equations. This is characteristic of practical work in general. The
physics of a problem together with natural constraints can usually be employed
to replace a general rectangular system with one that is square and possesses a
unique solution.

One of the goals in our study is to understand more clearly the notion of
“independence” that emerged in this application. So far, independence has been
an intuitive idea, but this example helps make it clear that independence is a
fundamentally important concept that deserves to be nailed down more firmly.
This is done in §4.3, and the general theory for obtaining independent equations
from electrical circuits is developed in Examples 4.4.6 and 4.4.7.

Exercises for section 2.6

2.6.1. Suppose that Ri = i ohms and Ei = i volts in the circuit shown in
Figure 2.6.1.

(a) Determine the six indicated currents.
(b) Select node number 1 to use as a reference point and fix its

potential to be 0 volts. With respect to this reference, calculate
the potentials at the other three nodes. Check your answer by
verifying the loop rule for each loop in the circuit.

2.6.2. Determine the three currents indicated in the following circuit.

5Ω 8Ω

1Ω1Ω

10Ω

9 volts12 volts

I1I2

I3

2.6.3. Determine the two unknown EMFs in the following circuit.

1 amp

2 amps

20 volts

E1

E2

6Ω

4Ω

2Ω
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2.6.4. Consider the circuit shown below and answer the following questions.

R1

R2 R3

R4

R5

R6

I E

(a) How many nodes does the circuit contain?
(b) How many branches does the circuit contain?
(c) Determine the total number of loops and then determine the

number of simple loops.
(d) Demonstrate that the simple loop equations form an “indepen-

dent” system of equations in the sense that there are no redun-
dant equations.

(e) Verify that any three of the nodal equations constitute an “in-
dependent” system of equations.

(f) Verify that the loop equation associated with the loop containing
R1, R2, R3, and R4 can be expressed as the sum of the two
equations associated with the two simple loops contained in the
larger loop.

(g) Determine the indicated current I if R1 = R2 = R3 = R4 = 1
ohm, R5 = R6 = 5 ohms, and E = 5 volts.
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Life is good for only two things, discovering
mathematics and teaching mathematics.

— Siméon D. Poisson (1781–1840)
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