
CHAPTER 5

Norms,
Inner Products,

and Orthogonality

5.1 VECTOR NORMS

A significant portion of linear algebra is in fact geometric in nature because
much of the subject grew out of the need to generalize the basic geometry of
�2 and �3 to nonvisual higher-dimensional spaces. The usual approach is to
coordinatize geometric concepts in �2 and �3, and then extend statements
concerning ordered pairs and triples to ordered n-tuples in �n and Cn.

For example, the length of a vector u ∈ �2 or v ∈ �3 is obtained from
the Pythagorean theorem by computing the length of the hypotenuse of a right
triangle as shown in Figure 5.1.1.
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This measure of length,

‖u‖ =
√

x2 + y2 and ‖v‖ =
√

x2 + y2 + z2,
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is called the euclidean norm in �2 and �3, and there is an obvious extension
to higher dimensions.

Euclidean Vector Norm
For a vector xn×1, the euclidean norm of x is defined to be

• ‖x‖ =
( ∑n

i=1 x
2
i

)1/2

=
√

xTx whenever x ∈ �n×1,

• ‖x‖ =
( ∑n

i=1 |xi|2
)1/2

=
√

x∗x whenever x ∈ Cn×1.

For example, if u =




0
−1

2
−2

4


 and v =




i
2

1− i
0

1 + i


, then

‖u‖ =
√∑

u2
i =

√
uTu =

√
0 + 1 + 4 + 4 + 16 = 5,

‖v‖ =
√∑

|vi|2 =
√

v∗v =
√

1 + 4 + 2 + 0 + 2 = 3.

There are several points to note. 33

• The complex version of ‖x‖ includes the real version as a special case because
|z|2 = z2 whenever z is a real number. Recall that if z = a + ib, then
z̄ = a− ib, and the magnitude of z is |z| =

√
z̄z =

√
a2 + b2. The fact that

|z|2 = z̄z = a2 + b2 is a real number insures that ‖x‖ is real even if x has
some complex components.

• The definition of euclidean norm guarantees that for all scalars α,

‖x‖ ≥ 0, ‖x‖ = 0⇐⇒ x = 0, and ‖αx‖ = |α| ‖x‖ . (5.1.1)

• Given a vector x �= 0, it’s frequently convenient to have another vector
that points in the same direction as x (i.e., is a positive multiple of x) but
has unit length. To construct such a vector, we normalize x by setting
u = x/ ‖x‖. From (5.1.1), it’s easy to see that

‖u‖ =
∥∥∥∥ x
‖x‖

∥∥∥∥ =
1
‖x‖ ‖x‖ = 1. (5.1.2)

33
By convention, column vectors are used throughout this chapter. But there is nothing special
about columns because, with the appropriate interpretation, all statements concerning columns
will also hold for rows.
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• The distance between vectors in �3 can be visualized with the aid of the
parallelogram law as shown in Figure 5.1.2, so for vectors in �n and Cn,
the distance between u and v is naturally defined to be ‖u− v‖ .
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Figure 5.1.2

Standard Inner Product
The scalar terms defined by

xTy =
n∑
i=1

xiyi ∈ � and x∗y =
n∑
i=1

x̄iyi ∈ C

are called the standard inner products for �n and Cn, respectively.

The Cauchy–Bunyakovskii–Schwarz (CBS) inequality 34 is one of the most
important inequalities in mathematics. It relates inner product to norm.

34
The Cauchy–Bunyakovskii–Schwarz inequality is named in honor of the three men who played
a role in its development. The basic inequality for real numbers is attributed to Cauchy in 1821,
whereas Schwarz and Bunyakovskii contributed by later formulating useful generalizations of
the inequality involving integrals of functions.

Augustin-Louis Cauchy (1789–1857) was a French mathematician who is generally regarded
as being the founder of mathematical analysis—including the theory of complex functions.
Although deeply embroiled in political turmoil for much of his life (he was a partisan of the
Bourbons), Cauchy emerged as one of the most prolific mathematicians of all time. He authored
at least 789 mathematical papers, and his collected works fill 27 volumes—this is on a par with
Cayley and second only to Euler. It is said that more theorems, concepts, and methods bear
Cauchy’s name than any other mathematician.

Victor Bunyakovskii (1804–1889) was a Russian professor of mathematics at St. Petersburg, and
in 1859 he extended Cauchy’s inequality for discrete sums to integrals of continuous functions.
His contribution was overlooked by western mathematicians for many years, and his name is
often omitted in classical texts that simply refer to the Cauchy–Schwarz inequality.

Hermann Amandus Schwarz (1843–1921) was a student and successor of the famous German
mathematician Karl Weierstrass at the University of Berlin. Schwarz independently generalized
Cauchy’s inequality just as Bunyakovskii had done earlier.
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Cauchy–Bunyakovskii–Schwarz (CBS) Inequality

|x∗y| ≤ ‖x‖ ‖y‖ for all x,y ∈ Cn×1. (5.1.3)

Equality holds if and only if y = αx for α = x∗y/x∗x.

Proof. Set α = x∗y/x∗x = x∗y/ ‖x‖2 (assume x �= 0 because there is nothing
to prove if x = 0) and observe that x∗(αx− y) = 0, so

0 ≤ ‖αx− y‖2 = (αx− y)∗(αx− y) = ᾱx∗(αx− y)− y∗(αx− y)

= −y∗(αx− y) = y∗y − αy∗x =
‖y‖2 ‖x‖2 − (x∗y) (y∗x)

‖x‖2
.

(5.1.4)

Since y∗x = x∗y, it follows that (x∗y) (y∗x) = |x∗y|2 , so

0 ≤ ‖y‖
2 ‖x‖2 − |x∗y|2

‖x‖2
.

Now, 0 < ‖x‖2 implies 0 ≤ ‖y‖2 ‖x‖2 − |x∗y|2 , and thus the CBS inequality
is obtained. Establishing the conditions for equality is Exercise 5.1.9.

One reason that the CBS inequality is important is because it helps to
establish that the geometry in higher-dimensional spaces is consistent with the
geometry in the visual spaces �2 and �3. In particular, consider the situation
depicted in Figure 5.1.3.
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Figure 5.1.3

Imagine traveling from the origin to the point x and then moving from x to the
point x+y. Clearly, you have traveled a distance that is at least as great as the
direct distance from the origin to x+y along the diagonal of the parallelogram.
In other words, it’s visually evident that ‖x + y‖ ≤ ‖x‖+‖y‖ . This observation
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is known as the triangle inequality. In higher-dimensional spaces we do not
have the luxury of visualizing the geometry with our eyes, and the question of
whether or not the triangle inequality remains valid has no obvious answer. The
CBS inequality is precisely what is required to prove that, in this respect, the
geometry of higher dimensions is no different than that of the visual spaces.

Triangle Inequality

‖x + y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ Cn.

Proof. Consider x and y to be column vectors, and write

‖x + y‖2 = (x + y)∗(x + y) = x∗x + x∗y + y∗x + y∗y

= ‖x‖2 + x∗y + y∗x + ‖y‖2 .
(5.1.5)

Recall that if z = a + ib, then z + z̄ = 2a = 2 Re (z) and |z|2 = a2 + b2 ≥ a2,
so that |z| ≥ Re (z) . Using the fact that y∗x = x∗y together with the CBS
inequality yields

x∗y + y∗x = 2 Re (x∗y) ≤ 2 |x∗y| ≤ 2 ‖x‖ ‖y‖ .

Consequently, we may infer from (5.1.5) that

‖x + y‖2 ≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

It’s not difficult to see that the triangle inequality can be extended to any
number of vectors in the sense that

∥∥∑
i xi

∥∥ ≤∑
i ‖xi‖ . Furthermore, it follows

as a corollary that for real or complex numbers,
∣∣ ∑

i αi
∣∣ ≤∑

i |αi| (the triangle
inequality for scalars).

Example 5.1.1

Backward Triangle Inequality. The triangle inequality produces an upper
bound for a sum, but it also yields the following lower bound for a difference:∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖ . (5.1.6)

This is a consequence of the triangle inequality because

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖ =⇒ ‖x‖ − ‖y‖ ≤ ‖x− y‖
and

‖y‖ = ‖x− y‖+ ‖x‖ =⇒ −(‖x‖ − ‖y‖) ≤ ‖x− y‖ .
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There are notions of length other than the euclidean measure. For example,
urban dwellers navigate on a grid of city blocks with one-way streets, so they are
prone to measure distances in the city not as the crow flies but rather in terms
of lengths on a directed grid. For example, instead of than saying that “it’s a
one-half mile straight-line (euclidean) trip from here to there,” they are more
apt to describe the length of the trip by saying, “it’s two blocks north on Dan
Allen Drive, four blocks west on Hillsborough Street, and five blocks south on
Gorman Street.” In other words, the length of the trip is 2 + | − 4|+ | − 5| = 11
blocks—absolute value is used to insure that southerly and westerly movement
does not cancel the effect of northerly and easterly movement, respectively. This
“grid norm” is better known as the 1-norm because it is a special case of a more
general class of norms defined below.

p-Norms

For p ≥ 1, the p-norm of x ∈ Cn is defined as ‖x‖p = (
∑n
i=1 |xi|

p)1/p.

It can be proven that the following properties of the euclidean norm are in
fact valid for all p-norms:

‖x‖p ≥ 0 and ‖x‖p = 0⇐⇒ x = 0,

‖αx‖p = |α| ‖x‖p for all scalars α,

‖x + y‖p ≤ ‖x‖p + ‖y‖p (see Exercise 5.1.13).

(5.1.7)

The generalized version of the CBS inequality (5.1.3) for p-norms is Hölder’s
inequality (developed in Exercise 5.1.12), which states that if p > 1 and q > 1
are integers such that 1/p + 1/q = 1, then

|x∗y| ≤ ‖x‖p ‖y‖q . (5.1.8)

In practice, only three of the p-norms are used, and they are

‖x‖1 =
n∑
i=1

|xi| (the grid norm), ‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

(the euclidean norm),

and

‖x‖∞ = lim
p→∞

‖x‖p = lim
p→∞

(
n∑
i=1

|xi|p
)1/p

= max
i
|xi| (the max norm).

For example, if x = (3, 4−3i, 1), then ‖x‖1 = 9, ‖x‖2 =
√

35, and ‖x‖∞ = 5.
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To see that limp→∞ ‖x‖p = maxi |xi| , proceed as follows. Relabel the en-
tries of x by setting x̃1 = maxi |xi| , and if there are other entries with this
same maximal magnitude, label them x̃2, . . . , x̃k. Label any remaining coordi-
nates as x̃k+1 · · · x̃n. Consequently, |x̃i/x̃1| < 1 for i = k + 1, . . . , n, so, as
p→∞,

‖x‖p =

(
n∑
i=1

|x̃i|p
)1/p

= |x̃1|
(
k +

∣∣∣∣ x̃k+1

x̃1

∣∣∣∣p + · · ·+
∣∣∣∣ x̃nx̃1

∣∣∣∣p
)1/p

→ |x̃1| .

Example 5.1.2

To get a feel for the 1-, 2-, and ∞-norms, it helps to know the shapes and relative
sizes of the unit p-spheres Sp = {x | ‖x‖p = 1} for p = 1, 2, ∞. As illustrated
in Figure 5.1.4, the unit 1-, 2-, and ∞-spheres in �3 are an octahedron, a ball,
and a cube, respectively, and it’s visually evident that S1 fits inside S2, which
in turn fits inside S∞. This means that ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞ for all x ∈ �3.
In general, this is true in �n (Exercise 5.1.8).

S1 S2 S∞
Figure 5.1.4

Because the p-norms are defined in terms of coordinates, their use is limited
to coordinate spaces. But it’s desirable to have a general notion of norm that
works for all vector spaces. In other words, we need a coordinate-free definition
of norm that includes the standard p-norms as a special case. Since all of the p-
norms satisfy the properties (5.1.7), it’s natural to use these properties to extend
the concept of norm to general vector spaces.

General Vector Norms
A norm for a real or complex vector space V is a function ‖�‖ mapping
V into � that satisfies the following conditions.

‖x‖ ≥ 0 and ‖x‖ = 0⇐⇒ x = 0,

‖αx‖ = |α| ‖x‖ for all scalars α,

‖x + y‖ ≤ ‖x‖+ ‖y‖ .
(5.1.9)
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Example 5.1.3

Equivalent Norms. Vector norms are basic tools for defining and analyzing
limiting behavior in vector spaces V. A sequence {xk} ⊂ V is said to converge
to x (write xk → x ) if ‖xk − x‖ → 0. This depends on the choice of the norm,
so, ostensibly, we might have xk → x with one norm but not with another.
Fortunately, this is impossible in finite-dimensional spaces because all norms are
equivalent in the following sense.

Problem: For each pair of norms, ‖�‖a , ‖�‖b , on an n-dimensional space V,
exhibit positive constants α and β (depending only on the norms) such that

α ≤ ‖x‖a‖x‖b
≤ β for all nonzero vectors in V. (5.1.10)

Solution: For Sb = {y | ‖y‖b = 1}, let µ = miny∈Sb
‖y‖a > 0, 35 and write

x
‖x‖b

∈ Sb =⇒ ‖x‖a = ‖x‖b
∥∥∥∥ x
‖x‖b

∥∥∥∥
a

≥ ‖x‖b min
y∈Sb

‖y‖a = ‖x‖b µ.

The same argument shows there is a ν > 0 such that ‖x‖b ≥ ν ‖x‖a , so
(5.1.10) is produced with α = µ and β = 1/ν. Note that (5.1.10) insures that
‖xk − x‖a → 0 if and only if ‖xk − x‖b → 0. Specific values for α and β are
given in Exercises 5.1.8 and 5.12.3.

Exercises for section 5.1

5.1.1. Find the 1-, 2-, and ∞-norms of x =


 2

1
−4
−2


 and x =


 1 + i

1− i
1
4i


.

5.1.2. Consider the euclidean norm with u =


 2

1
−4
−2


 and v =


 1
−1

1
−1


.

(a) Determine the distance between u and v.
(b) Verify that the triangle inequality holds for u and v.
(c) Verify that the CBS inequality holds for u and v.

5.1.3. Show that (α1 + α2 + · · ·+ αn)
2 ≤ n

(
α2

1 + α2
2 + · · ·+ α2

n

)
for αi ∈ �.

35
An important theorem from analysis states that a continuous function mapping a closed and
bounded subset K ⊂ V into � attains a minimum and maximum value at points in K.
Unit spheres in finite-dimensional spaces are closed and bounded, and every norm on V is
continuous (Exercise 5.1.7), so this minimum is guaranteed to exist.
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5.1.4. (a) Using the euclidean norm, describe the solid ball in �n centered
at the origin with unit radius. (b) Describe a solid ball centered at
the point c = ( ξ1 ξ2 · · · ξn ) with radius ρ.

5.1.5. If x,y ∈ �n such that ‖x− y‖2 = ‖x + y‖2 , what is xTy?

5.1.6. Explain why ‖x− y‖ = ‖y − x‖ is true for all norms.

5.1.7. For every vector norm on Cn, prove that ‖v‖ depends continuously on
the components of v in the sense that for each ε > 0, there corresponds
a δ > 0 such that

∣∣ ‖x‖− ‖y‖ ∣∣ < ε whenever |xi − yi| < δ for each i.

5.1.8. (a) For x ∈ Cn×1, explain why ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞ .

(b) For x ∈ Cn×1, show that ‖x‖i ≤ α ‖x‖j , where α is the (i, j)-
entry in the following matrix. (See Exercise 5.12.3 for a similar
statement regarding matrix norms.)




1 2 ∞
1 ∗ √

n n
2 1 ∗ √

n
∞ 1 1 ∗


.

5.1.9. For x,y ∈ Cn, x �= 0, explain why equality holds in the CBS inequality
if and only if y = αx, where α = x∗y/x∗x. Hint: Use (5.1.4).

5.1.10. For nonzero vectors x,y ∈ Cn with the euclidean norm, prove that
equality holds in the triangle inequality if and only if y = αx, where α
is real and positive. Hint: Make use of Exercise 5.1.9.

5.1.11. Use Hölder’s inequality (5.1.8) to prove that if the components of
x ∈ �n×1 sum to zero (i.e., xTe = 0 for eT = (1, 1, . . . , 1) ), then

|xTy| ≤ ‖x‖1
(
ymax − ymin

2

)
for all y ∈ �n×1.

Note: For “zero sum” vectors x, this is at least as sharp and usually
it’s sharper than (5.1.8) because (ymax − ymin)/2 ≤ maxi |yi| = ‖y‖∞.
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5.1.12. The classical form of Hölder’s inequality
36 states that if p > 1 and

q > 1 are real numbers such that 1/p + 1/q = 1, then

n∑
i=1

|xiyi| ≤
(
n∑
i=1

|xi|p
)1/p(

n∑
i=1

|yi|q
)1/q

.

Derive this inequality by executing the following steps:
(a) By considering the function f(t) = (1 − λ) + λt − tλ for 0 < λ < 1,

establish the inequality

αλβ1−λ ≤ λα + (1− λ)β

for nonnegative real numbers α and β.
(b) Let x̂ = x/ ‖x‖p and ŷ = y/ ‖x‖q , and apply the inequality of part (a)

to obtain
n∑
i=1

|x̂iŷi| ≤
1
p

n∑
i=1

|x̂i|p +
1
q

n∑
i=1

|ŷi|q = 1.

(c) Deduce the classical form of Hölder’s inequality, and then explain why
this means that

|x∗y| ≤ ‖x‖p ‖y‖q .

5.1.13. The triangle inequality ‖x + y‖p ≤ ‖x‖p + ‖y‖p for a general p-norm
is really the classical Minkowski inequality,

37 which states that for
p ≥ 1,

(
n∑
i=1

|xi + yi|p
)1/p

≤
(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

Derive Minkowski’s inequality. Hint: For p > 1, let q be the number
such that 1/q = 1− 1/p. Verify that for scalars α and β,

|α + β|p = |α + β| |α + β|p/q ≤ |α| |α + β|p/q + |β| |α + β|p/q,

and make use of Hölder’s inequality in Exercise 5.1.12.

36
Ludwig Otto Hölder (1859–1937) was a German mathematician who studied at Göttingen and
lived in Leipzig. Although he made several contributions to analysis as well as algebra, he is
primarily known for the development of the inequality that now bears his name.

37
Hermann Minkowski (1864–1909) was born in Russia, but spent most of his life in Germany
as a mathematician and professor at Königsberg and Göttingen. In addition to the inequality
that now bears his name, he is known for providing a mathematical basis for the special theory
of relativity. He died suddenly from a ruptured appendix at the age of 44.
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5.2 MATRIX NORMS

Because Cm×n is a vector space of dimension mn, magnitudes of matrices
A ∈ Cm×n can be “measured” by employing any vector norm on Cmn. For
example, by stringing out the entries of A =

(
2 1
−4 −2

)
into a four-component

vector, the euclidean norm on �4 can be applied to write

‖A‖ =
[
22 + (−1)2 + (−4)2 + (−2)2

]1/2
= 5.

This is one of the simplest notions of a matrix norm, and it is called the Frobenius
(p. 662) norm (older texts refer to it as the Hilbert–Schmidt norm or the Schur
norm). There are several useful ways to describe the Frobenius matrix norm.

Frobenius Matrix Norm
The Frobenius norm of A ∈ Cm×n is defined by the equations

‖A‖2F =
∑
i,j

|aij |2 =
∑
i

‖Ai∗‖22 =
∑
j

‖A∗j‖22 = trace (A∗A). (5.2.1)

The Frobenius matrix norm is fine for some problems, but it is not well suited
for all applications. So, similar to the situation for vector norms, alternatives need
to be explored. But before trying to develop different recipes for matrix norms, it
makes sense to first formulate a general definition of a matrix norm. The goal is
to start with the defining properties for a vector norm given in (5.1.9) on p. 275
and ask what, if anything, needs to be added to that list.

Matrix multiplication distinguishes matrix spaces from more general vector
spaces, but the three vector-norm properties (5.1.9) say nothing about products.
So, an extra property that relates ‖AB‖ to ‖A‖ and ‖B‖ is needed. The
Frobenius norm suggests the nature of this extra property. The CBS inequality
insures that ‖Ax‖22 =

∑
i |Ai∗x|2 ≤

∑
i ‖Ai∗‖

2
2 ‖x‖

2
2 = ‖A‖2F ‖x‖

2
2 . That is,

‖Ax‖2 ≤ ‖A‖F ‖x‖2 , (5.2.2)

and we express this by saying that the Frobenius matrix norm ‖�‖F and the
euclidean vector norm ‖�‖2 are compatible . The compatibility condition (5.2.2)
implies that for all conformable matrices A and B,

‖AB‖2F =
∑
j

‖[AB]∗j‖22 =
∑
j

‖AB∗j‖22 ≤
∑
j

‖A‖2F ‖B∗j‖22

= ‖A‖2F
∑
j

‖B∗j‖22 = ‖A‖2F ‖B‖
2
F =⇒ ‖AB‖F ≤ ‖A‖F ‖B‖F .

This suggests that the submultiplicative property ‖AB‖ ≤ ‖A‖ ‖B‖ should be
added to (5.1.9) to define a general matrix norm.
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General Matrix Norms
A matrix norm is a function ‖�‖ from the set of all complex matrices
(of all finite orders) into � that satisfies the following properties.

‖A‖ ≥ 0 and ‖A‖ = 0⇐⇒ A = 0.

‖αA‖ = |α| ‖A‖ for all scalars α.

‖A + B‖ ≤ ‖A‖+ ‖B‖ for matrices of the same size.
‖AB‖ ≤ ‖A‖ ‖B‖ for all conformable matrices.

(5.2.3)

The Frobenius norm satisfies the above definition (it was built that way),
but where do other useful matrix norms come from? In fact, every legitimate
vector norm generates (or induces) a matrix norm as described below.

Induced Matrix Norms
A vector norm that is defined on Cp for p = m,n induces a matrix
norm on Cm×n by setting

‖A‖ = max
‖x‖=1

‖Ax‖ for A ∈ Cm×n, x ∈ Cn×1. (5.2.4)

The footnote on p. 276 explains why this maximum value must exist.

• It’s apparent that an induced matrix norm is compatible with its
underlying vector norm in the sense that

‖Ax‖ ≤ ‖A‖ ‖x‖ . (5.2.5)

• When A is nonsingular, min
‖x‖=1

‖Ax‖ =
1

‖A−1‖ . (5.2.6)

Proof. Verifying that max‖x‖=1 ‖Ax‖ satisfies the first three conditions in
(5.2.3) is straightforward, and (5.2.5) implies ‖AB‖ ≤ ‖A‖ ‖B‖ (see Exercise
5.2.5). Property (5.2.6) is developed in Exercise 5.2.7.

In words, an induced norm ‖A‖ represents the maximum extent to which
a vector on the unit sphere can be stretched by A, and 1/

∥∥A−1
∥∥ measures the

extent to which a nonsingular matrix A can shrink vectors on the unit sphere.
Figure 5.2.1 depicts this in �3 for the induced matrix 2-norm.
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1

max
‖x‖=1

‖Ax‖ = ‖A‖

min
‖x‖=1

‖Ax‖ =
1

‖A -1‖

A

Figure 5.2.1. The induced matrix 2-norm in �3.

Intuition might suggest that the euclidean vector norm should induce the
Frobenius matrix norm (5.2.1), but something surprising happens instead.

Matrix 2-Norm

• The matrix norm induced by the euclidean vector norm is

‖A‖2 = max
‖x‖2=1

‖Ax‖2 =
√

λmax, (5.2.7)

where λmax is the largest number λ such that A∗A−λI is singular.

• When A is nonsingular,

∥∥A−1
∥∥

2
=

1
min

‖x‖2=1
‖Ax‖2

=
1√
λmin

, (5.2.8)

where λmax is the smallest number λ such that A∗A−λI is singular.

Note: If you are already familiar with eigenvalues, these say that λmax

and λmin are the largest and smallest eigenvalues of A∗A (Example
7.5.1, p. 549), while (λmax)1/2 = σ1 and (λmin)1/2 = σn are the largest
and smallest singular values of A (p. 414).

Proof. To prove (5.2.7), assume that Am×n is real (a proof for complex ma-
trices is given in Example 7.5.1 on p. 549). The strategy is to evaluate ‖A‖22 by
solving the problem

maximize f(x) = ‖Ax‖22 = xTATAx subject to g(x) = xTx = 1
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using the method of Lagrange multipliers. Introduce a new variable λ (the
Lagrange multiplier), and consider the function h(x, λ) = f(x) − λg(x). The
points at which f is maximized are contained in the set of solutions to the
equations ∂h/∂xi = 0 (i = 1, 2, . . . , n) along with g(x) = 1. Differentiating
h with respect to the xi ’s is essentially the same as described on p. 227, and
the system generated by ∂h/∂xi = 0 (i = 1, 2, . . . , n) is (ATA− λI)x = 0. In
other words, f is maximized at a vector x for which (ATA − λI)x = 0 and
‖x‖2 = 1. Consequently, λ must be a number such that ATA− λI is singular
(because x �= 0 ). Since

xTATAx = λxTx = λ,

it follows that

‖A‖2 = max
‖x‖=1

‖Ax‖ = max
‖x‖2=1

‖Ax‖ =
(

max
xT x=1

xTATAx
)1/2

=
√

λmax,

where λmax is the largest number λ for which ATA−λI is singular. A similar
argument applied to (5.2.6) proves (5.2.8). Also, an independent development of
(5.2.7) and (5.2.8) is contained in the discussion of singular values on p. 412.

Example 5.2.1

Problem: Determine the induced norm ‖A‖2 as well as ‖A−1‖2 for the non-
singular matrix

A =
1√
3

(
3 −1

0
√

8

)
.

Solution: Find the values of λ that make ATA − λI singular by applying
Gaussian elimination to produce

ATA− λI =
(

3− λ −1
−1 3− λ

)
−→

(
−1 3− λ

3− λ −1

)
−→

(
−1 3− λ
0 −1 + (3− λ)2

)
.

This shows that ATA−λI is singular when −1+(3−λ)2 = 0 or, equivalently,
when λ = 2 or λ = 4, so λmin = 2 and λmax = 4. Consequently, (5.2.7) and
(5.2.8) say that

‖A‖2 =
√

λmax = 2 and ‖A−1‖2 =
1√
λmin

=
1√
2
.

Note: As mentioned earlier, the values of λ that make ATA − λI singular
are called the eigenvalues of ATA, and they are the focus of Chapter 7 where
their determination is discussed in more detail. Using Gaussian elimination to
determine the eigenvalues is not practical for larger matrices.

Some useful properties of the matrix 2-norm are stated below.
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Properties of the 2-Norm
In addition to the properties shared by all induced norms, the 2-norm
enjoys the following special properties.

• ‖A‖2 = max
‖x‖2=1

max
‖y‖2=1

|y∗Ax|. (5.2.9)

• ‖A‖2 = ‖A∗‖2. (5.2.10)

• ‖A∗A‖2 = ‖A‖22 . (5.2.11)

•
∥∥∥(

A 0
0 B

)∥∥∥
2

= max
{
‖A‖2 , ‖B‖2

}
. (5.2.12)

• ‖U∗AV‖2 = ‖A‖2 when UU∗ = I and V∗V = I. (5.2.13)

You are asked to verify the validity of these properties in Exercise 5.2.6
on p. 285. Furthermore, some additional properties of the matrix 2-norm are
developed in Exercise 5.6.9 and on pp. 414 and 417.

Now that we understand how the euclidean vector norm induces the matrix
2-norm, let’s investigate the nature of the matrix norms that are induced by the
vector 1-norm and the vector ∞-norm.

Matrix 1-Norm and Matrix∞-Norm
The matrix norms induced by the vector 1-norm and ∞-norm are as
follows.

• ‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
j

∑
i

|aij |

= the largest absolute column sum.
(5.2.14)

• ‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
i

∑
j

|aij |

= the largest absolute row sum.
(5.2.15)

Proof of (5.2.14). For all x with ‖x‖1 = 1, the scalar triangle inequality yields

‖Ax‖1 =
∑
i

∣∣Ai∗x∣∣ =
∑
i

∣∣∣ ∑
j

aijxj

∣∣∣ ≤∑
i

∑
j

|aij | |xj | =
∑
j

(
|xj |

∑
i

|aij |
)

≤
( ∑
j

|xj |
)(

max
j

∑
i

|aij |
)

= max
j

∑
i

|aij | .
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Equality can be attained because if A∗k is the column with largest absolute sum,
set x = ek, and note that ‖ek‖1 = 1 and ‖Aek‖1 = ‖A∗k‖1 = maxj

∑
i |aij | .

Proof of (5.2.15). For all x with ‖x‖∞ = 1,

‖Ax‖∞ = max
i

∣∣∣ ∑
j

aijxj

∣∣∣ ≤ max
i

∑
j

|aij | |xj | ≤ max
i

∑
j

|aij | .

Equality can be attained because if Ak∗ is the row with largest absolute sum,
and if x is the vector such that

xj =
{ 1 if akj ≥ 0,

−1 if akj < 0,
then

{
|Ai∗x| = |

∑
j aijxj | ≤

∑
j |aij | for all i,

|Ak∗x| =
∑
j |akj | = maxi

∑
j |aij | ,

so ‖x‖∞ = 1, and ‖Ax‖∞ = maxi |Ai∗x| = maxi
∑
j |aij | .

Example 5.2.2

Problem: Determine the induced matrix norms ‖A‖1 and ‖A‖∞ for

A =
1√
3

(
3 −1
0
√

8

)
,

and compare the results with ‖A‖2 (from Example 5.2.1) and ‖A‖F .
Solution: Equation (5.2.14) says that ‖A‖1 is the largest absolute column sum
in A, and (5.2.15) says that ‖A‖∞ is the largest absolute row sum, so

‖A‖1 = 1/
√

3 +
√

8/
√

3 ≈ 2.21 and ‖A‖∞ = 4/
√

3 ≈ 2.31.

Since ‖A‖2 = 2 (Example 5.2.1) and ‖A‖F =
√

trace (ATA) =
√

6 ≈ 2.45, we
see that while ‖A‖1, ‖A‖2, ‖A‖∞, and ‖A‖F are not equal, they are all in
the same ballpark. This is true for all n× n matrices because it can be shown
that ‖A‖i ≤ α ‖A‖j , where α is the (i, j)-entry in the following matrix




1 2 ∞ F

1 ∗ √
n n

√
n

2
√
n ∗ √

n 1
∞ n

√
n ∗ √

n
F

√
n

√
n

√
n ∗




(see Exercise 5.1.8 and Exercise 5.12.3 on p. 425). Since it’s often the case that
only the order of magnitude of ‖A‖ is needed and not the exact value (e.g.,
recall the rule of thumb in Example 3.8.2 on p. 129), and since ‖A‖2 is difficult
to compute in comparison with ‖A‖1, ‖A‖∞, and ‖A‖F , you can see why any
of these three might be preferred over ‖A‖2 in spite of the fact that ‖A‖2 is
more “natural” by virtue of being induced by the euclidean vector norm.
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Exercises for section 5.2

5.2.1. Evaluate the Frobenius matrix norm for each matrix below.

A =
(

1 −2
−1 2

)
, B =


 0 1 0

0 0 1
1 0 0


 , C =


 4 −2 4
−2 1 −2

4 −2 4


 .

5.2.2. Evaluate the induced 1-, 2-, and ∞-matrix norm for each of the three
matrices given in Exercise 5.2.1.

5.2.3. (a) Explain why ‖I‖ = 1 for every induced matrix norm (5.2.4).
(b) What is ‖In×n‖F ?

5.2.4. Explain why ‖A‖F = ‖A∗‖F for Frobenius matrix norm (5.2.1).

5.2.5. For matrices A and B and for vectors x, establish the following com-
patibility properties between a vector norm defined on every Cp and
the associated induced matrix norm.

(a) Show that ‖Ax‖ ≤ ‖A‖ ‖x‖ .
(b) Show that ‖AB‖ ≤ ‖A‖ ‖B‖ .
(c) Explain why ‖A‖ = max‖x‖≤1 ‖Ax‖ .

5.2.6. Establish the following properties of the matrix 2-norm.
(a) ‖A‖2 = max

‖x‖2=1
‖y‖2=1

|y∗Ax|,

(b) ‖A‖2 = ‖A∗‖2,
(c) ‖A∗A‖2 = ‖A‖22 ,

(d)
∥∥∥(

A 0
0 B

)∥∥∥
2

= max
{
‖A‖2 , ‖B‖2

}
(take A, B to be real),

(e) ‖U∗AV‖2 = ‖A‖2 when UU∗ = I and V∗V = I.

5.2.7. Using the induced matrix norm (5.2.4), prove that if A is nonsingular,
then

‖A‖ =
1

min
‖x‖=1

∥∥A−1x
∥∥ or, equivalently,

∥∥A−1
∥∥ =

1
min
‖x‖=1

‖Ax‖ .

5.2.8. For A ∈ Cn×n and a parameter z ∈ C, the matrix R(z) = (zI−A)−1

is called the resolvent of A. Prove that if |z| > ‖A‖ for any induced
matrix norm, then

‖R(z)‖ ≤ 1
|z| − ‖A‖ .
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5.3 INNER-PRODUCT SPACES

The euclidean norm, which naturally came first, is a coordinate-dependent con-
cept. But by isolating its important properties we quickly moved to the more
general coordinate-free definition of a vector norm given in (5.1.9) on p. 275. The
goal is to now do the same for inner products. That is, start with the standard
inner product, which is a coordinate-dependent definition, and identify proper-
ties that characterize the basic essence of the concept. The ones listed below are
those that have been distilled from the standard inner product to formulate a
more general coordinate-free definition.

General Inner Product
An inner product on a real (or complex) vector space V is a function
that maps each ordered pair of vectors x,y to a real (or complex) scalar
〈x y〉 such that the following four properties hold.

〈x x〉 is real with 〈x x〉 ≥ 0, and 〈x x〉 = 0 if and only if x = 0,

〈x αy〉 = α 〈x y〉 for all scalars α, (5.3.1)
〈x y + z〉 = 〈x y〉+ 〈x z〉 ,
〈x y〉 = 〈y x〉 (for real spaces, this becomes 〈x y〉 = 〈y x〉).

Notice that for each fixed value of x, the second and third properties
say that 〈x y〉 is a linear function of y.

Any real or complex vector space that is equipped with an inner product
is called an inner-product space.

Example 5.3.1

• The standard inner products, 〈x y〉 = xTy for �n×1 and 〈x y〉 = x∗y
for Cn×1, each satisfy the four defining conditions (5.3.1) for a general inner
product—this shouldn’t be a surprise.

• If An×n is a nonsingular matrix, then 〈x y〉 = x∗A∗Ay is an inner product
for Cn×1. This inner product is sometimes called an A-inner product or
an elliptical inner product.

• Consider the vector space of m× n matrices. The functions defined by

〈A B〉 = trace
(
ATB

)
and 〈A B〉 = trace (A∗B) (5.3.2)

are inner products for �m×n and Cm×n, respectively. These are referred to
as the standard inner products for matrices. Notice that these reduce
to the standard inner products for vectors when n = 1.
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• If V is the vector space of real-valued continuous functions defined on the
interval (a, b), then

〈f |g〉 =
∫ b

a

f(t)g(t)dt

is an inner product on V.

Just as the standard inner product for Cn×1 defines the euclidean norm on
Cn×1 by ‖x‖2 =

√
x∗x, every general inner product in an inner-product space

V defines a norm on V by setting

‖�‖ =
√
〈� �〉. (5.3.3)

It’s straightforward to verify that this satisfies the first two conditions in (5.2.3)
on p. 280 that define a general vector norm, but, just as in the case of euclidean
norms, verifying that (5.3.3) satisfies the triangle inequality requires a generalized
version of CBS inequality.

General CBS Inequality
If V is an inner-product space, and if we set ‖�‖ =

√
〈� �〉, then

| 〈x y〉 | ≤ ‖x‖ ‖y‖ for all x, y ∈ V. (5.3.4)

Equality holds if and only if y = αx for α = 〈x y〉 / ‖x‖2 .

Proof. Set α = 〈x y〉 / ‖x‖2 (assume x �= 0, for otherwise there is nothing to
prove), and observe that 〈x αx− y〉 = 0, so

0 ≤ ‖αx− y‖2 = 〈αx− y αx− y〉
= ᾱ 〈x αx− y〉 − 〈y αx− y〉 (see Exercise 5.3.2)

= −〈y αx− y〉 = 〈y y〉 − α 〈y x〉 =
‖y‖2 ‖x‖2 − 〈x y〉 〈y x〉

‖x‖2
.

Since 〈y x〉 = 〈x y〉, it follows that 〈x y〉 〈y x〉 = |〈x y〉|2 , so

0 ≤ ‖y‖
2 ‖x‖2 − |〈x y〉|2

‖x‖2
=⇒ | 〈x y〉 | ≤ ‖x‖ ‖y‖ .

Establishing the conditions for equality is the same as in Exercise 5.1.9.

Let’s now complete the job of showing that ‖�‖ =
√
〈� �〉 is indeed a vector

norm as defined in (5.2.3) on p. 280.
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Norms in Inner-Product Spaces
If V is an inner-product space with an inner product 〈x y〉 , then

‖�‖ =
√
〈� �〉 defines a norm on V.

Proof. The fact that ‖�‖ =
√
〈� �〉 satisfies the first two norm properties in

(5.2.3) on p. 280 follows directly from the defining properties (5.3.1) for an inner
product. You are asked to provide the details in Exercise 5.3.3. To establish the
triangle inequality, use 〈x y〉 ≤ | 〈x y〉 | and 〈y x〉 = 〈x y〉 ≤ | 〈x y〉 | together
with the CBS inequality to write

‖x + y‖2 = 〈x + y x + y〉 = 〈x x〉+ 〈x y〉+ 〈y x〉+ 〈y y〉
≤ ‖x‖2 + 2| 〈x y〉 |+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2.

Example 5.3.2

Problem: Describe the norms that are generated by the inner products pre-
sented in Example 5.3.1.

• Given a nonsingular matrix A ∈ Cn×n, the A-norm (or elliptical norm)
generated by the A-inner product on Cn×1 is

‖x‖A =
√
〈x x〉 =

√
x∗A∗Ax = ‖Ax‖2 . (5.3.5)

• The standard inner product for matrices generates the Frobenius matrix
norm because

‖A‖ =
√
〈A A〉 =

√
trace (A∗A) = ‖A‖F . (5.3.6)

• For the space of real-valued continuous functions defined on (a, b), the norm
of a function f generated by the inner product 〈f |g〉 =

∫ b
a
f(t)g(t)dt is

‖f‖ =
√
〈f |f〉 =

(∫ b

a

f(t)2dt

)1/2

.
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Example 5.3.3

To illustrate the utility of the ideas presented above, consider the proposition

trace
(
ATB

)2 ≤ trace
(
ATA

)
trace

(
BTB

)
for all A,B ∈ �m×n.

Problem: How would you know to formulate such a proposition and, second,
how do you prove it?

Solution: The answer to both questions is the same. This is the CBS inequality
in �m×n equipped with the standard inner product 〈A B〉 = trace

(
ATB

)
and

associated norm ‖A‖F =
√
〈A A〉 =

√
trace (ATA) because CBS says

〈A B〉2 ≤ ‖A‖2F ‖B‖
2
F =⇒ trace

(
ATB

)2 ≤ trace
(
ATA

)
trace

(
BTB

)
.

The point here is that if your knowledge is limited to elementary matrix manip-
ulations (which is all that is needed to understand the statement of the propo-
sition), formulating the correct inequality might be quite a challenge to your
intuition. And then proving the proposition using only elementary matrix ma-
nipulations would be a significant task—essentially, you would have to derive a
version of CBS. But knowing the basic facts of inner-product spaces makes the
proposition nearly trivial to conjecture and prove.

Since each inner product generates a norm by the rule ‖�‖ =
√
〈� �〉, it’s

natural to ask if the reverse is also true. That is, for each vector norm ‖�‖
on a space V, does there exist a corresponding inner product on V such that√
〈� �〉 = ‖�‖2 ? If not, under what conditions will a given norm be generated by

an inner product? These are tricky questions, and it took the combined efforts
of Maurice R. Fréchet38 (1878–1973) and John von Neumann (1903–1957) to
provide the answer.

38
Maurice René Fréchet began his illustrious career by writing an outstanding Ph.D. dissertation
in 1906 under the direction of the famous French mathematician Jacques Hadamard (p. 469)
in which the concepts of a metric space and compactness were first formulated. Fréchet devel-
oped into a versatile mathematical scientist, and he served as professor of mechanics at the
University of Poitiers (1910–1919), professor of higher calculus at the University of Strasbourg
(1920–1927), and professor of differential and integral calculus and professor of the calculus of
probabilities at the University of Paris (1928–1948).

Born in Budapest, Hungary, John von Neumann was a child prodigy who could divide eight-
digit numbers in his head when he was only six years old. Due to the political unrest in
Europe, he came to America, where, in 1933, he became one of the six original professors
of mathematics at the Institute for Advanced Study at Princeton University, a position he
retained for the rest of his life. During his career, von Neumann’s genius touched mathematics
(pure and applied), chemistry, physics, economics, and computer science, and he is generally
considered to be among the best scientists and mathematicians of the twentieth century.
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Parallelogram Identity
For a given norm ‖�‖ on a vector space V, there exists an inner product
on V such that 〈� �〉 = ‖�‖2 if and only if the parallelogram identity

‖x + y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
(5.3.7)

holds for all x,y ∈ V.

Proof. Consider real spaces—complex spaces are discussed in Exercise 5.3.6. If
there exists an inner product such that 〈� �〉 = ‖�‖2 , then the parallelogram
identity is immediate because 〈x + y x + y〉+〈x− y x− y〉 = 2 〈x x〉+2 〈y y〉 .
The difficult part is establishing the converse. Suppose ‖�‖ satisfies the paral-
lelogram identity, and prove that the function

〈x y〉 =
1
4
(
‖x + y‖2 − ‖x− y‖2

)
(5.3.8)

is an inner product for V such that 〈x x〉 = ‖x‖2 for all x by showing the four
defining conditions (5.3.1) hold. The first and fourth conditions are immediate.
To establish the third, use the parallelogram identity to write

‖x + y‖2 + ‖x + z‖2 =
1
2
(
‖x + y + x + z‖2 + ‖y − z‖2

)
,

‖x− y‖2 + ‖x− z‖2 =
1
2
(
‖x− y + x− z‖2 + ‖z− y‖2

)
,

and then subtract to obtain

‖x + y‖2−‖x− y‖2+‖x + z‖2−‖x− z‖2 =
‖2x + (y + z)‖2 − ‖2x− (y + z)‖2

2
.

Consequently,

〈x y〉+ 〈x z〉 =
1
4
(
‖x + y‖2 − ‖x− y‖2 + ‖x + z‖2 − ‖x− z‖2

)
=

1
8
(
‖2x + (y + z)‖2 − ‖2x− (y + z)‖2

)
=

1
2

(∥∥∥∥x +
y + z

2

∥∥∥∥2

−
∥∥∥∥x− y + z

2

∥∥∥∥2
)

= 2
〈
x

y + z
2

〉
,

(5.3.9)

and setting z = 0 produces the statement that 〈x y〉 = 2 〈x y/2〉 for all y ∈ V.
Replacing y by y + z yields 〈x y + z〉 = 2 〈x (y + z)/2〉 , and thus (5.3.9)
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guarantees that 〈x y〉 + 〈x z〉 = 〈x y + z〉 . Now prove that 〈x αy〉 = α 〈x y〉
for all real α. This is valid for integer values of α by the result just established,
and it holds when α is rational because if β and γ are integers, then

γ2

〈
x

β

γ
y
〉

= 〈γx βy〉 = βγ 〈x y〉 =⇒
〈
x

β

γ
y
〉

=
β

γ
〈x y〉 .

Because ‖x + αy‖ and ‖x− αy‖ are continuous functions of α (Exercise
5.1.7), equation (5.3.8) insures that 〈x αy〉 is a continuous function of α. There-
fore, if α is irrational, and if {αn} is a sequence of rational numbers such that
αn → α, then 〈x αny〉 → 〈x αy〉 and 〈x αny〉 = αn 〈x y〉 → α 〈x y〉 , so
〈x αy〉 = α 〈x y〉 .

Example 5.3.4

We already know that the euclidean vector norm on Cn is generated by the stan-
dard inner product, so the previous theorem guarantees that the parallelogram
identity must hold for the 2-norm. This is easily corroborated by observing that

‖x + y‖22 + ‖x− y‖22 = (x + y)∗(x + y) + (x− y)∗(x− y)
= 2 (x∗x + y∗y) = ‖x‖2 + ‖y‖2 .

The parallelogram identity is so named because it expresses the fact that the
sum of the squares of the diagonals in a parallelogram is twice the sum of the
squares of the sides. See the following diagram.

x

y

x + y

||x||

||y
||

||x + y||

||x - y||

Example 5.3.5

Problem: Except for the euclidean norm, is any other vector p-norm generated
by an inner product?

Solution: No, because the parallelogram identity (5.3.7) doesn’t hold when
p �= 2. To see that ‖x + y‖2p + ‖x− y‖2p = 2

(
‖x‖2p + ‖y‖2p

)
is not valid for

all x,y ∈ Cn when p �= 2, consider x = e1 and y = e2. It’s apparent that
‖e1 + e2‖2p = 22/p = ‖e1 − e2‖2p , so

‖e1 + e2‖2p + ‖e1 − e2‖2p = 2(p+2)/p and 2
(
‖e1‖2p + ‖e2‖2p

)
= 4.
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Clearly, 2(p+2)/p = 4 only when p = 2. Details for the ∞-norm are asked for
in Exercise 5.3.7.

Conclusion: For applications that are best analyzed in the context of an inner-
product space (e.g., least squares problems), we are limited to the euclidean
norm or else to one of its variation such as the elliptical norm in (5.3.5).

Virtually all important statements concerning �n or Cn with the standard
inner product remain valid for general inner-product spaces—e.g., consider the
statement and proof of the general CBS inequality. Advanced or more theoretical
texts prefer a development in terms of general inner-product spaces. However,
the focus of this text is matrices and the coordinate spaces �n and Cn, so
subsequent discussions will usually be phrased in terms of �n or Cn and their
standard inner products. But remember that extensions to more general inner-
product spaces are always lurking in the background, and we will not hesitate
to use these generalities or general inner-product notation when they serve our
purpose.

Exercises for section 5.3

5.3.1. For x =
(

x1

x2

x3

)
, y =

(
y1

y2

y3

)
, determine which of the following are inner

products for �3×1.
(a) 〈x y〉 = x1y1 + x3y3,
(b) 〈x y〉 = x1y1 − x2y2 + x3y3,
(c) 〈x y〉 = 2x1y1 + x2y2 + 4x3y3,
(d) 〈x y〉 = x2

1y
2
1 + x2

2y
2
2 + x2

3y
2
3 .

5.3.2. For a general inner-product space V, explain why each of the following
statements must be true.

(a) If 〈x y〉 = 0 for all x ∈ V, then y = 0.
(b) 〈αx y〉 = α 〈x y〉 for all x,y ∈ V and for all scalars α.
(c) 〈x + y z〉 = 〈x z〉+ 〈y z〉 for all x,y, z ∈ V.

5.3.3. Let V be an inner-product space with an inner product 〈x y〉 . Explain
why the function defined by ‖�‖ =

√
〈� �〉 satisfies the first two norm

properties in (5.2.3) on p. 280.

5.3.4. For a real inner-product space with ‖�‖2 = 〈� �〉 , derive the inequality

〈x y〉 ≤ ‖x‖
2 + ‖y‖2

2
. Hint: Consider x− y.
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5.3.5. For n× n matrices A and B, explain why each of the following in-
equalities is valid.

(a) |trace (B)|2 ≤ n [trace (B∗B)] .

(b) trace
(
B2

)
≤ trace

(
BTB

)
for real matrices.

(c) trace
(
ATB

)
≤ trace

(
ATA

)
+ trace

(
BTB

)
2

for real matrices.

5.3.6. Extend the proof given on p. 290 concerning the parallelogram identity
(5.3.7) to include complex spaces. Hint: If V is a complex space with
a norm ‖�‖ that satisfies the parallelogram identity, let

〈x y〉r =
‖x + y‖2 − ‖x− y‖2

4
,

and prove that

〈x y〉 = 〈x y〉r + i 〈ix y〉r (the polarization identity) (5.3.10)

is an inner product on V.

5.3.7. Explain why there does not exist an inner product on Cn (n ≥ 2) such
that ‖�‖∞ =

√
〈� �〉.

5.3.8. Explain why the Frobenius matrix norm on Cn×n must satisfy the par-
allelogram identity.

5.3.9. For n ≥ 2, is either the matrix 1-, 2-, or ∞-norm generated by an inner
product on Cn×n?
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5.4 ORTHOGONAL VECTORS

Two vectors in �3 are orthogonal (perpendicular) if the angle between them is
a right angle (90◦). But the visual concept of a right angle is not at our disposal in
higher dimensions, so we must dig a little deeper. The essence of perpendicularity
in �2 and �3 is embodied in the classical Pythagorean theorem,

u

|| u ||

v

|| v  ||

|| u - v ||

which says that u and v are orthogonal if and only if ‖u‖2 +‖v‖2 = ‖u− v‖2 .
But 39 ‖u‖2 = uTu for all u ∈ �3, and uTv = vTu, so we can rewrite the
Pythagorean statement as

0 = ‖u‖2 + ‖v‖2 − ‖u− v‖2 = uTu + vTv − (u− v)T (u− v)

= uTu + vTv −
(
uTu− uTv − vTu + vTv

)
= 2uTv.

Therefore, u and v are orthogonal vectors in �3 if and only if uTv = 0. The
natural extension of this provides us with a definition in more general spaces.

Orthogonality
In an inner-product space V, two vectors x,y ∈ V are said to be
orthogonal (to each other) whenever 〈x y〉 = 0, and this is denoted
by writing x ⊥ y.

• For �n with the standard inner product, x ⊥ y⇐⇒ xTy = 0.

• For Cn with the standard inner product, x ⊥ y⇐⇒ x∗y = 0.

Example 5.4.1

x =


 1
−2

3
−1


 is orthogonal to y =


 4

1
−2
−4


 because xTy = 0.

39
Throughout this section, only norms generated by an underlying inner product ‖�‖2 = 〈� �〉
are used, so distinguishing subscripts on the norm notation can be omitted.
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In spite of the fact that uTv = 0, the vectors u =
(

i
3
1

)
and v =

(
i
0
1

)
are

not orthogonal because u∗v �= 0.

Now that “right angles” in higher dimensions make sense, how can more
general angles be defined? Proceed just as before, but use the law of cosines
rather than the Pythagorean theorem. Recall that

u

|| u ||

v

|| v
  |

|

|| u - v ||

θ

the law of cosines in �2 or �3 says ‖u− v‖2 = ‖u‖2+‖v‖2−2 ‖u‖ ‖v‖ cos θ.
If u and v are orthogonal, then this reduces to the Pythagorean theorem. But,
in general,

cos θ =
‖u‖2 + ‖v‖2 − ‖u− v‖2

2 ‖u‖ ‖v‖ =
uTu + vTv − (u− v)T (u− v)

2 ‖u‖ ‖v‖

=
2uTv

2 ‖u‖ ‖v‖ =
uTv

‖u‖ ‖v‖ .

This easily extends to higher dimensions because if x, y are vectors from any real
inner-product space, then the general CBS inequality (5.3.4) on p. 287 guarantees
that 〈x y〉 / ‖x‖ ‖y‖ is a number in the interval [−1, 1], and hence there is a
unique value θ in [0, π] such that cos θ = 〈x y〉 / ‖x‖ ‖y‖.

Angles
In a real inner-product space V, the radian measure of the angle be-
tween nonzero vectors x,y ∈ V is defined to be the number θ ∈ [0, π]
such that

cos θ =
〈x y〉
‖x‖ ‖y‖ . (5.4.1)
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Example 5.4.2

In �n, cos θ = xTy/ ‖x‖ ‖y‖. For example, to determine the angle between

x =


−4

2
1
2


 and y =


 1

0
2
2


, compute cos θ = 2/(5)(3) = 2/15, and use the

inverse cosine function to conclude that θ = 1.437 radians (rounded).

Example 5.4.3

Linear Correlation. Suppose that an experiment is conducted, and the result-
ing observations are recorded in two data vectors

x =




x1

x2
...
xn


 , y =




y1

y2
...
yn


 , and let e =




1
1
...
1


 .

Problem: Determine to what extent the yi ’s are linearly related to the xi ’s.
That is, measure how close y is to being a linear combination β0e + β1x.

Solution: The cosine as defined in (5.4.1) does the job. To understand how, let
µx and σx be the mean and standard deviation of the data in x. That is,

µx =
∑
i xi
n

=
eTx
n

and σx =

√∑
i(xi − µx)2

n
=
‖x− µxe‖2√

n
.

The mean is a measure of central tendency, and the standard deviation mea-
sures the extent to which the data is spread. Frequently, raw data from different
sources is difficult to compare because the units of measure are different—e.g.,
one researcher may use the metric system while another uses American units. To
compensate, data is almost always first “standardized” into unitless quantities.
The standardization of a vector x for which σx �= 0 is defined to be

zx =
x− µxe

σx
.

Entries in zx are often referred to as standard scores or z-scores. All stan-
dardized vectors have the properties that ‖z‖ =

√
n, µz = 0, and σz = 1.

Furthermore, it’s not difficult to verify that for vectors x and y such that
σx �= 0 and σy �= 0, it’s the case that

zx = zy ⇐⇒ ∃ constants β0, β1 such that y = β0e + β1x, where β1 > 0,
zx = −zy ⇐⇒ ∃ constants β0, β1 such that y = β0e + β1x, where β1 < 0.

• In other words, y = β0e+β1x for some β0 and β1 if and only if zx = ±zy,
in which case we say y is perfectly linearly correlated with x.
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Since zx varies continuously with x, the existence of a “near” linear relationship
between x and y is equivalent to zx being “close” to ±zy in some sense. The
fact that ‖zx‖ = ‖±zy‖ =

√
n means zx and ±zy differ only in orientation,

so a natural measure of how close zx is to ±zy is cos θ, where θ is the angle
between zx and zy. The number

ρxy = cos θ =
zx
T zy

‖zx‖ ‖zy‖
=

zx
T zy

n
=

(x− µxe)T (y − µye)
‖x− µxe‖ ‖y − µye‖

is called the coefficient of linear correlation, and the following facts are now
immediate.

• ρxy = 0 if and only if x and y are orthogonal, in which case we say that
x and y are completely uncorrelated.

• |ρxy| = 1 if and only if y is perfectly correlated with x. That is, |ρxy| = 1
if and only if there exists a linear relationship y = β0e + β1x.

, When β1 > 0, we say that y is positively correlated with x.

, When β1 < 0, we say that y is negatively correlated with x.

• |ρxy| measures the degree to which y is linearly related to x. In other
words, |ρxy| ≈ 1 if and only if y ≈ β0e + β1x for some β0 and β1.

, Positive correlation is measured by the degree to which ρxy ≈ 1.

, Negative correlation is measured by the degree to which ρxy ≈ −1.
If the data in x and y are plotted in �2 as points (xi, yi), then, as depicted in
Figure 5.4.1, ρxy ≈ 1 means that the points lie near a straight line with positive
slope, while ρxy ≈ −1 means that the points lie near a line with negative slope,
and ρxy ≈ 0 means that the points do not lie near a straight line.
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Positive Correlation No CorrelationNegative Correlation

ρxy ≈ 1 ρxy ≈ −1 ρxy ≈ 0

Figure 5.4.1

If |ρxy| ≈ 1, then the theory of least squares as presented in §4.6 can be used
to determine a “best-fitting” straight line.
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Orthonormal Sets
B = {u1,u2, . . . ,un} is called an orthonormal set whenever ‖ui‖ = 1
for each i, and ui ⊥ uj for all i �= j. In other words,

〈ui uj〉 =
{

1 when i = j,
0 when i �= j.

• Every orthonormal set is linearly independent. (5.4.2)
• Every orthonormal set of n vectors from an n-dimensional space V

is an orthonormal basis for V.

Proof. The second point follows from the first. To prove the first statement,
suppose B = {u1,u2, . . . ,un} is orthonormal. If 0 = α1u1 +α2u2 + · · ·+αnun,
use the properties of an inner product to write

0 = 〈ui 0〉 = 〈ui α1u1 + α2u2 + · · ·+ αnun〉
= α1 〈ui u1〉+ · · ·+ αi 〈ui ui〉+ · · ·+ αn 〈ui un〉 = αi ‖ui‖2

= αi for each i.

Example 5.4.4

The set B′ =
{
u1 =

(
1
−1

0

)
, u2 =

(
1
1
1

)
, u3 =

(−1
−1

2

)}
is a set of mutually

orthogonal vectors because uTi uj = 0 for i �= j, but B′ is not an orthonormal
set—each vector does not have unit length. However, it’s easy to convert an
orthogonal set (not containing a zero vector) into an orthonormal set by simply
normalizing each vector. Since ‖u1‖ =

√
2, ‖u2‖ =

√
3, and ‖u3‖ =

√
6, it

follows that B =
{
u1/
√

2, u2/
√

3, u3/
√

6
}

is orthonormal.

The most common orthonormal basis is S = {e1, e2, . . . , en} , the stan-
dard basis for �n and Cn, and, as illustrated below for �2 and �3, these
orthonormal vectors are directed along the standard coordinate axes.

e1

e2

x

y

e1

e2

e3

x

y

z
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Another orthonormal basis B need not be directed in the same way as S, but
that’s the only significant difference because it’s geometrically evident that B
must amount to some rotation of S. Consequently, we should expect general
orthonormal bases to provide essentially the same advantages as the standard
basis. For example, an important function of the standard basis S for �n is to
provide coordinate representations by writing

x = [x]S =




x1

x2
...
xn


 to mean x = x1e1 + x2e2 + · · ·+ xnen.

With respect to a general basis B = {u1,u2, . . . ,un} , the coordinates of x
are the scalars ξi in the representation x = ξ1u1 + ξ2u2 + · · ·+ ξnun, and, as
illustrated in Example 4.7.2, finding the ξi ’s requires solving an n× n system,
a nuisance we would like to avoid. But if B is an orthonormal basis, then the
ξi ’s are readily available because 〈ui x〉 = 〈ui ξ1u1 + ξ2u2 + · · ·+ ξnun〉 =∑n
j=1 ξj 〈ui uj〉 = ξi ‖ui‖2 = ξi. This yields the Fourier

40
expansion of x.

Fourier Expansions
If B = {u1,u2, . . . ,un} is an orthonormal basis for an inner-product
space V, then each x ∈ V can be expressed as

x = 〈u1 x〉u1 + 〈u2 x〉u2 + · · ·+ 〈un x〉un. (5.4.3)

This is called the Fourier expansion of x. The scalars ξi = 〈ui x〉
are the coordinates of x with respect to B, and they are called the
Fourier coefficients. Geometrically, the Fourier expansion resolves x
into n mutually orthogonal vectors 〈ui x〉ui, each of which represents
the orthogonal projection of x onto the space (line) spanned by ui.
(More is said in Example 5.13.1 on p. 431 and Exercise 5.13.11.)

40
Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist who,
while studying heat flow, developed expansions similar to (5.4.3). Fourier’s work dealt with
special infinite-dimensional inner-product spaces involving trigonometric functions as discussed
in Example 5.4.6. Although they were apparently used earlier by Daniel Bernoulli (1700–1782)
to solve problems concerned with vibrating strings, these orthogonal expansions became known
as Fourier series, and they are now a fundamental tool in applied mathematics. Born the son
of a tailor, Fourier was orphaned at the age of eight. Although he showed a great aptitude for
mathematics at an early age, he was denied his dream of entering the French artillery because
of his “low birth.” Instead, he trained for the priesthood, but he never took his vows. However,
his talents did not go unrecognized, and he later became a favorite of Napoleon. Fourier’s work
is now considered as marking an epoch in the history of both pure and applied mathematics.
The next time you are in Paris, check out Fourier’s plaque on the first level of the Eiffel Tower.
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Example 5.4.5

Problem: Determine the Fourier expansion of x =
(−1

2
1

)
with respect to the

standard inner product and the orthonormal basis given in Example 5.4.4

B =


u1 =

1√
2


 1
−1

0


 , u2 =

1√
3


 1

1
1


 , u3 =

1√
6


−1
−1

2





 .

Solution: The Fourier coefficients are

ξ1 = 〈u1 x〉 =
−3√

2
, ξ2 = 〈u2 x〉 =

2√
3
, ξ3 = 〈u3 x〉 =

1√
6
,

so

x = ξ1u1 + ξ2u2 + ξ3u3 =
1
2


−3

3
0


 +

1
3


 2

2
2


 +

1
6


−1
−1

2


 .

You may find it instructive to sketch a picture of these vectors in �3.

Example 5.4.6

Fourier Series. Let V be the inner-product space of real-valued functions
that are integrable on the interval (−π, π) and where the inner product and
norm are given by

〈f |g〉 =
∫ π

−π
f(t)g(t)dt and ‖f‖ =

(∫ π

−π
f2(t)dt

)1/2

.

It’s straightforward to verify that the set of trigonometric functions

B′ = {1, cos t, cos 2t, . . . , sin t, sin 2t, sin 3t, . . .}

is a set of mutually orthogonal vectors, so normalizing each vector produces the
orthonormal set

B =
{

1√
2π

,
cos t√

π
,

cos 2t√
π

, . . . ,
sin t√

π
,

sin 2t√
π

,
sin 3t√

π
, . . .

}
.

Given an arbitrary f ∈ V, we construct its Fourier expansion

F (t) = α0
1√
2π

+
∞∑
k=1

αk
cos kt√

π
+

∞∑
k=1

βk
sin kt√

π
, (5.4.4)
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where the Fourier coefficients are given by

α0 =
〈

1√
2π

f

〉
=

1√
2π

∫ π

−π
f(t)dt ,

αk =
〈

cos kt√
π

f

〉
=

1√
π

∫ π

−π
f(t) cos kt dt for k = 1, 2, 3, . . . ,

βk =
〈

sin kt√
π

f

〉
=

1√
π

∫ π

−π
f(t) sin kt dt for k = 1, 2, 3, . . . .

Substituting these coefficients in (5.4.4) produces the infinite series

F (t) =
a0

2
+

∞∑
n=1

(an cosnt + bn sinnt) , (5.4.5)

where

an =
1
π

∫ π

−π
f(t) cosnt dt and bn =

1
π

∫ π

−π
f(t) sinnt dt. (5.4.6)

The series F (t) in (5.4.5) is called the Fourier series expansion for f(t), but,
unlike the situation in finite-dimensional spaces, F (t) need not agree with the
original function f(t). After all, F is periodic, so there is no hope of agreement
when f is not periodic. However, the following statement is true.
• If f(t) is a periodic function with period 2π that is sectionally continu-

ous 41 on the interval (−π, π), then the Fourier series F (t) converges to
f(t) at each t ∈ (−π, π), where f is continuous. If f is discontinuous
at t0 but possesses left-hand and right-hand derivatives at t0, then F (t0)
converges to the average value

F (t0) =
f(t−0 ) + f(t+0 )

2
,

where f(t−0 ) and f(t+0 ) denote the one-sided limits f(t−0 ) = limt→t−0 f(t)
and f(t+0 ) = limt→t+0 f(t).

For example, the square wave function defined by

f(t) =
{
−1 when −π < t < 0,

1 when 0 < t < π,

41
A function f is sectionally continuous on (a, b) when f has only a finite number of discon-
tinuities in (a, b) and the one-sided limits exist at each point of discontinuity as well as at the
end points a and b.
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and illustrated in Figure 5.4.2, satisfies these conditions. The value of f at t = 0
is irrelevant—it’s not even necessary that f(0) be defined.

π

1

−π

−1

Figure 5.4.2

To find the Fourier series expansion for f, compute the coefficients in (5.4.6) as

an =
1
π

∫ π

−π
f(t) cosnt dt =

1
π

∫ 0

−π
− cosnt dt +

1
π

∫ π

0

cosnt dt

= 0,

bn =
1
π

∫ π

−π
f(t) sinnt dt =

1
π

∫ 0

−π
− sinnt dt +

1
π

∫ π

0

sinnt dt

=
2
nπ

(1− cosnπ) =
{

0 when n is even,
4/nπ when n is odd,

so that

F (t) =
4
π

sin t +
4
3π

sin 3t +
4
5π

sin 5t + · · · =
∞∑
n=1

4
(2n− 1)π

sin(2n− 1)t.

For each t ∈ (−π, π), except t = 0, it must be the case that F (t) = f(t), and

F (0) =
f(0−) + f(0+)

2
= 0.

Not only does F (t) agree with f(t) everywhere f is defined, but F also pro-
vides a periodic extension of f in the sense that the graph of F (t) is the entire
square wave depicted in Figure 5.4.2—the values at the points of discontinuity
(the jumps) are F (±nπ) = 0.
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Exercises for section 5.4

5.4.1. Using the standard inner product, determine which of the following pairs
are orthogonal vectors in the indicated space.

(a) x =


 1
−3

4


 and y =


−2

2
2


 in �3,

(b) x =




i
1 + i

2
1− i


 and y =




0
1 + i
−2

1− i


 in C4,

(c) x =




1
−2

3
4


 and y =




4
2
−1

1


 in �4,

(d) x =


 1 + i

1
i


 and y =


 1− i
−3
−i


 in C3,

(e) x =




0
0
...
0


 and y =




y1

y2
...
yn


 in �n.

5.4.2. Find two vectors of unit norm that are orthogonal to u =
(

3
−2

)
.

5.4.3. Consider the following set of three vectors.
x1 =




1
−1

0
2


 , x2 =




1
1
1
0


 , x3 =



−1
−1

2
0





 .

(a) Using the standard inner product in �4, verify that these vec-
tors are mutually orthogonal.

(b) Find a nonzero vector x4 such that {x1, x2, x3, x4} is a set
of mutually orthogonal vectors.

(c) Convert the resulting set into an orthonormal basis for �4.

5.4.4. Using the standard inner product, determine the Fourier expansion of
x with respect to B, where

x =


 1

0
−2


 and B =


 1√

2


 1
−1

0


 ,

1√
3


 1

1
1


 ,

1√
6


−1
−1

2





 .
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5.4.5. With respect to the inner product for matrices given by (5.3.2), verify
that the set

B =
{

1√
2

(
0 1
1 0

)
,

1√
2

(
1 0
0 −1

)
,

1
2

(
1 −1
1 1

)
,

1
2

(
1 1
−1 1

)}

is an orthonormal basis for �2×2, and then compute the Fourier expan-
sion of A =

(
1 1
1 1

)
with respect to B.

5.4.6. Determine the angle between x =
(

2
−1

1

)
and y =

(
1
1
2

)
.

5.4.7. Given an orthonormal basis B for a space V, explain why the Fourier
expansion for x ∈ V is uniquely determined by B.

5.4.8. Explain why the columns of Un×n are an orthonormal basis for Cn if
and only if U∗ = U−1. Such matrices are said to be unitary—their
properties are studied in a later section.

5.4.9. Matrices with the property A∗A = AA∗ are said to be normal. No-
tice that hermitian matrices as well as real symmetric matrices are in-
cluded in the class of normal matrices. Prove that if A is normal, then
R (A) ⊥ N (A)—i.e., every vector in R (A) is orthogonal to every vec-
tor in N (A). Hint: Recall equations (4.5.5) and (4.5.6).

5.4.10. Using the trace inner product described in Example 5.3.1, determine the
angle between the following pairs of matrices.

(a) I =
(

1 0
0 1

)
and B =

(
1 1
1 1

)
.

(b) A =
(

1 3
2 4

)
and B =

(
2 −2
2 0

)
.

5.4.11. Why is the definition for cos θ given in (5.4.1) not good for Cn? Explain
how to define cos θ so that it makes sense in Cn.

5.4.12. If {u1,u2, . . . ,un} is an orthonormal basis for an inner-product space
V, explain why

〈x y〉 =
∑
i

〈x ui〉 〈ui y〉

holds for every x,y ∈ V.
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5.4.13. Consider a real inner-product space, where ‖�‖2 = 〈� �〉 .
(a) Prove that if ‖x‖ = ‖y‖ , then (x + y) ⊥ (x− y).
(b) For the standard inner product in �2, draw a picture of this.

That is, sketch the location of x+y and x−y for two vectors
with equal norms.

5.4.14. Pythagorean Theorem. Let V be a general inner-product space in
which ‖�‖2 = 〈� �〉 .

(a) When V is a real space, prove that x ⊥ y if and only if
‖x + y‖2 = ‖x‖2 + ‖y‖2 . (Something would be wrong if this
were not true because this is where the definition of orthogonal-
ity originated.)

(b) Construct an example to show that one of the implications in
part (a) does not hold when V is a complex space.

(c) When V is a complex space, prove that x ⊥ y if and only if
‖αx + βy‖2 = ‖αx‖2 + ‖βy‖2 for all scalars α and β.

5.4.15. Let B = {u1,u2, . . . ,un} be an orthonormal basis for an inner-product
space V, and let x =

∑
i ξiui be the Fourier expansion of x ∈ V.

(a) If V is a real space, and if θi is the angle between ui and x,
explain why

ξi = ‖x‖ cos θi.
Sketch a picture of this in �2 or �3 to show why the com-
ponent ξiui represents the orthogonal projection of x onto
the line determined by ui, and thus illustrate the fact that a
Fourier expansion is nothing more than simply resolving x into
mutually orthogonal components.

(b) Derive Parseval’s identity, 42 which says
∑n
i=1 |ξi|2 = ‖x‖2 .

5.4.16. Let B = {u1,u2, . . . ,uk} be an orthonormal set in an n-dimensional
inner-product space V. Derive Bessel’s inequality, 43 which says that
if x ∈ V and ξi = 〈ui x〉 , then

k∑
i=1

|ξi|2 ≤ ‖x‖2 .

Explain why equality holds if and only if x ∈ span {u1,u2, . . . ,uk} .
Hint: Consider ‖x−

∑k
i=1 ξiui‖2.

42
This result appeared in the second of the five mathematical publications by Marc-Antoine
Parseval des Chênes (1755–1836). Parseval was a royalist who had to flee from France when
Napoleon ordered his arrest for publishing poetry against the regime.

43
This inequality is named in honor of the German astronomer and mathematician Friedrich
Wilhelm Bessel (1784–1846), who devoted his life to understanding the motions of the stars.
In the process he introduced several useful mathematical ideas.



306 Chapter 5 Norms, Inner Products, and Orthogonality

5.4.17. Construct an example using the standard inner product in �n to show
that two vectors x and y can have an angle between them that is close
to π/2 without xTy being close to 0. Hint: Consider n to be large,
and use the vector e of all 1’s for one of the vectors.

5.4.18. It was demonstrated in Example 5.4.3 that y is linearly correlated with
x in the sense that y ≈ β0e + β1x if and only if the standardization
vectors zx and zy are “close” in the sense that they are almost on the
same line in �n. Explain why simply measuring ‖zx − zy‖2 does not
always gauge the degree of linear correlation.

5.4.19. Let θ be the angle between two vectors x and y from a real inner-
product space.

(a) Prove that cos θ = 1 if and only if y = αx for α > 0.
(b) Prove that cos θ = −1 if and only if y = αx for α < 0.

Hint: Use the generalization of Exercise 5.1.9.

5.4.20. With respect to the orthonormal set

B =
{

1√
2π

,
cos t√

π
,

cos 2t√
π

, . . . ,
sin t√

π
,

sin 2t√
π

,
sin 3t√

π
, . . .

}
,

determine the Fourier series expansion of the saw-toothed function
defined by f(t) = t for −π < t < π. The periodic extension of this
function is depicted in Figure 5.4.3.

π

π

−π

−π

Figure 5.4.3
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5.5 GRAM–SCHMIDT PROCEDURE

As discussed in §5.4, orthonormal bases possess significant advantages over bases
that are not orthonormal. The spaces �n and Cn clearly possess orthonormal
bases (e.g., the standard basis), but what about other spaces? Does every finite-
dimensional space possess an orthonormal basis, and, if so, how can one be
produced? The Gram–Schmidt

44 orthogonalization procedure developed below
answers these questions.

Let B = {x1,x2, . . . ,xn} be an arbitrary basis (not necessarily orthonormal)
for an n-dimensional inner-product space S, and remember that ‖�‖ = 〈� �〉1/2.

Objective: Use B to construct an orthonormal basis O = {u1,u2, . . . ,un}
for S.

Strategy: Construct O sequentially so that Ok = {u1,u2, . . . ,uk} is an or-
thonormal basis for Sk = span {x1, x2, . . . ,xk} for k = 1, . . . , n.

For k = 1, simply take u1 = x1/ ‖x1‖. It’s clear that O1 = {u1} is an
orthonormal set whose span agrees with that of S1 = {x1} . Now reason in-
ductively. Suppose that Ok = {u1,u2, . . . ,uk} is an orthonormal basis for
Sk = span {x1, x2, . . . ,xk} , and consider the problem of finding one additional
vector uk+1 such that Ok+1 = {u1, u2, . . . ,uk, uk+1} is an orthonormal basis
for Sk+1 = span {x1, x2, . . . ,xk, xk+1} . For this to hold, the Fourier expansion
(p. 299) of xk+1 with respect to Ok+1 must be

xk+1 =
k+1∑
i=1

〈ui xk+1〉ui,

which in turn implies that

uk+1 =
xk+1 −

∑k
i=1 〈ui xk+1〉ui

〈uk+1 xk+1〉
. (5.5.1)

Since ‖uk+1‖ = 1, it follows from (5.5.1) that

| 〈uk+1 xk+1〉 | =
∥∥∥xk+1 −

k∑
i=1

〈ui xk+1〉ui
∥∥∥,

44
Jorgen P. Gram (1850–1916) was a Danish actuary who implicitly presented the essence of or-
thogonalization procedure in 1883. Gram was apparently unaware that Pierre-Simon Laplace
(1749–1827) had earlier used the method. Today, Gram is remembered primarily for his de-
velopment of this process, but in earlier times his name was also associated with the matrix
product A∗A that historically was referred to as the Gram matrix of A.

Erhard Schmidt (1876–1959) was a student of Hermann Schwarz (of CBS inequality fame) and
the great German mathematician David Hilbert. Schmidt explicitly employed the orthogonal-
ization process in 1907 in his study of integral equations, which in turn led to the development
of what are now called Hilbert spaces. Schmidt made significant use of the orthogonalization
process to develop the geometry of Hilbert Spaces, and thus it came to bear Schmidt’s name.
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so 〈uk+1 xk+1〉 = eiθ
∥∥xk+1 −

∑k
i=1 〈ui xk+1〉ui

∥∥ for some 0 ≤ θ < 2π, and

uk+1 =
xk+1 −

∑k
i=1 〈ui xk+1〉ui

eiθ
∥∥∥xk+1 −

∑k
i=1 〈ui xk+1〉ui

∥∥∥ .

Since the value of θ in the scalar eiθ neither affects span {u1,u2, . . . ,uk+1} nor
the facts that ‖uk+1‖ = 1 and 〈uk+1 ui〉 = 0 for all i ≤ k, we can arbitrarily
define uk+1 to be the vector corresponding to the θ = 0 or, equivalently,
eiθ = 1. For the sake of convenience, let

νk+1 =
∥∥∥xk+1 −

k∑
i=1

〈ui xk+1〉ui
∥∥∥

so that we can write

u1 =
x1

‖x1‖
and uk+1 =

xk+1 −
∑k
i=1 〈ui xk+1〉ui
νk+1

for k > 0. (5.5.2)

This sequence of vectors is called the Gram–Schmidt sequence. A straight-
forward induction argument proves that Ok = {u1,u2, . . . ,uk} is indeed an or-
thonormal basis for span {x1,x2, . . . ,xk} for each k = 1, 2, . . . . Details are
called for in Exercise 5.5.7.

The orthogonalization procedure defined by (5.5.2) is valid for any inner-
product space, but if we concentrate on subspaces of �m or Cm with the stan-
dard inner product and euclidean norm, then we can formulate (5.5.2) in terms
of matrices. Suppose that B = {x1,x2, . . . ,xn} is a basis for an n-dimensional
subspace S of Cm×1 so that the Gram–Schmidt sequence (5.5.2) becomes

u1 =
x1

‖x1‖
and uk =

xk −
∑k−1
i=1 (u∗

ixk)ui∥∥∥xk −∑k−1
i=1 (u∗

ixk)ui
∥∥∥ for k = 2, 3, . . . , n. (5.5.3)

To express this in matrix notation, set

U1 = 0m×1 and Uk =
(
u1 |u2 | · · · |uk−1

)
m×k−1

for k > 1,

and notice that

U∗
kxk =




u∗
1xk

u∗
2xk
...

u∗
k−1xk


 and UkU∗

kxk =
k−1∑
i=1

ui (u∗
ixk) =

k−1∑
i=1

(u∗
ixk)ui.

Since

xk −
k−1∑
i=1

(u∗
ixk)ui = xk −UkU∗

kxk = (I−UkU∗
k)xk,

the vectors in (5.5.3) can be concisely written as

uk =
(I−UkU∗

k)xk
‖(I−UkU∗

k)xk‖
for k = 1, 2, . . . , n.

Below is a summary.
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Gram–Schmidt Orthogonalization Procedure
If B = {x1,x2, . . . ,xn} is a basis for a general inner-product space S,
then the Gram–Schmidt sequence defined by

u1 =
x1

‖x1‖
and uk =

xk −
∑k−1
i=1 〈ui xk〉ui∥∥∥xk −∑k−1
i=1 〈ui xk〉ui

∥∥∥ for k = 2, . . . , n

is an orthonormal basis for S. When S is an n-dimensional subspace
of Cm×1, the Gram–Schmidt sequence can be expressed as

uk =
(I−UkU∗

k)xk
‖(I−UkU∗

k)xk‖
for k = 1, 2, . . . , n (5.5.4)

in which U1 = 0m×1 and Uk =
(
u1 |u2 | · · · |uk−1

)
m×k−1

for k > 1.

Example 5.5.1

Classical Gram–Schmidt Algorithm. The following formal algorithm is the
straightforward or “classical” implementation of the Gram–Schmidt procedure.
Interpret a← b to mean that “a is defined to be (or overwritten by) b.”

For k = 1:
u1 ←

x1

‖x1‖
For k > 1:

uk ← xk −
k−1∑
i=1

(u∗
ixk)ui

uk ←
uk
‖uk‖

(See Exercise 5.5.10 for other formulations of the Gram–Schmidt algorithm.)

Problem: Use the classical formulation of the Gram–Schmidt procedure given
above to find an orthonormal basis for the space spanned by the following three
linearly independent vectors.

x1 =




1
0
0
−1


 , x2 =




1
2
0
−1


 , x3 =




3
1
1
−1


 .
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Solution:

k = 1: u1 ←
x1

‖x1‖
=

1√
2




1
0
0
−1




k = 2: u2 ← x2 − (uT1 x2)u1 =




0
2
0
0


 , u2 ←

u2

‖u2‖
=




0
1
0
0




k = 3: u3 ← x3 − (uT1 x3)u1 − (uT2 x3)u2 =




1
0
1
1


 , u3 ←

u3

‖u3‖
=

1√
3




1
0
1
1




Thus

u1 =
1√
2




1
0
0
−1


 , u2 =




0
1
0
0


 , u3 =

1√
3




1
0
1
1




is the desired orthonormal basis.

The Gram–Schmidt process frequently appears in the disguised form of a
matrix factorization. To see this, let Am×n =

(
a1 |a2 | · · · |an

)
be a matrix with

linearly independent columns. When Gram–Schmidt is applied to the columns
of A, the result is an orthonormal basis {q1,q2, . . . ,qn} for R (A), where

q1 =
a1

ν1
and qk =

ak −
∑k−1
i=1 〈qi ak〉qi
νk

for k = 2, 3, . . . , n,

where ν1 = ‖a1‖ and νk =
∥∥ak − ∑k−1

i=1 〈qi ak〉qi
∥∥ for k > 1. The above

relationships can be rewritten as

a1 = ν1q1 and ak = 〈q1 ak〉q1 + · · ·+ 〈qk−1 ak〉qk−1 + νkqk for k > 1,

which in turn can be expressed in matrix form by writing

(
a1 |a2 | · · · |an

)
=

(
q1 |q2 | · · · |qn

)



ν1 〈q1 a2〉 〈q1 a3〉 · · · 〈q1 an〉
0 ν2 〈q2 a3〉 · · · 〈q2 an〉
0 0 ν3 · · · 〈q3 an〉
...

...
...

. . .
...

0 0 0 · · · νn


 .

This says that it’s possible to factor a matrix with independent columns as
Am×n = Qm×nRn×n, where the columns of Q are an orthonormal basis for
R (A) and R is an upper-triangular matrix with positive diagonal elements.
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The factorization A = QR is called the QR factorization for A, and it is
uniquely determined by A (Exercise 5.5.8). When A and Q are not square,
some authors emphasize the point by calling A = QR the rectangular QR
factorization—the case when A and Q are square is further discussed on p. 345.
Below is a summary of the above observations.

QR Factorization
Every matrix Am×n with linearly independent columns can be uniquely
factored as A = QR in which the columns of Qm×n are an orthonor-
mal basis for R (A) and Rn×n is an upper-triangular matrix with
positive diagonal entries.

• The QR factorization is the complete “road map” of the Gram–
Schmidt process because the columns of Q =

(
q1 |q2 | · · · |qn

)
are

the result of applying the Gram–Schmidt procedure to the columns
of A =

(
a1 |a2 | · · · |an

)
and R is given by

R =




ν1 q∗
1a2 q∗

1a3 · · · q∗
1an

0 ν2 q∗
2a3 · · · q∗

2an
0 0 ν3 · · · q∗

3an
...

...
...

. . .
...

0 0 0 · · · νn




,

where ν1 = ‖a1‖ and νk =
∥∥ak −∑k−1

i=1 〈qi ak〉qi
∥∥ for k > 1.

Example 5.5.2

Problem: Determine the QR factors of

A =


 0 −20 −14

3 27 −4
4 11 −2


 .

Solution: Using the standard inner product for �n, apply the Gram–Schmidt
procedure to the columns of A by setting

q1 =
a1

ν1
and qk =

ak −
∑k−1
i=1

(
qTi ak

)
qi

νk
for k = 2, 3,

where ν1 = ‖a1‖ and νk =
∥∥ak −∑k−1

i=1

(
qTi ak

)
qi

∥∥. The computation of these
quantities can be organized as follows.
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k = 1: r11 ← ‖a1‖ = 5 and q1 ←
a1

r11
=


 0

3/5
4/5




k = 2: r12 ← qT1 a2 = 25

q2 ← a2 − r12q1 =


−20

12
−9




r22 ← ‖q2‖ = 25 and q2 ←
q2

r22
=

1
25


−20

12
−9




k = 3: r13 ← qT1 a3 = −4 and r23 ← qT2 a3 = 10

q3 ← a3 − r13q1 − r23q2 =
2
5


−15
−16

12




r33 ← ‖q3‖ = 10 and q3 ←
q3

r33
=

1
25


−15
−16

12




Therefore,

Q =
1
25


 0 −20 −15

15 12 −16
20 −9 12


 and R =


 5 25 −4

0 25 10
0 0 10


 .

We now have two important matrix factorizations, namely, the LU factor-
ization, discussed in §3.10 on p. 141 and the QR factorization. They are not the
same, but some striking analogies exist.

• Each factorization represents a reduction to upper-triangular form—LU by
Gaussian elimination, and QR by Gram–Schmidt. In particular, the LU fac-
torization is the complete “road map” of Gaussian elimination applied to a
square nonsingular matrix, whereas QR is the complete road map of Gram–
Schmidt applied to a matrix with linearly independent columns.

• When they exist, both factorizations A = LU and A = QR are uniquely
determined by A.

• Once the LU factors (assuming they exist) of a nonsingular matrix A are
known, the solution of Ax = b is easily computed—solve Ly = b by
forward substitution, and then solve Ux = y by back substitution (see
p. 146). The QR factors can be used in a similar manner. If A ∈ �n×n is
nonsingular, then QT = Q−1 (because Q has orthonormal columns), so
Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QTb, which is also a triangular
system that is solved by back substitution.
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While the LU and QR factors can be used in more or less the same way to
solve nonsingular systems, things are different for singular and rectangular cases
because Ax = b might be inconsistent, in which case a least squares solution
as described in §4.6, (p. 223) may be desired. Unfortunately, the LU factors of
A don’t exist when A is rectangular. And even if A is square and has an
LU factorization, the LU factors of A are not much help in solving the system
of normal equations ATAx = ATb that produces least squares solutions. But
the QR factors of Am×n always exist as long as A has linearly independent
columns, and, as demonstrated in the following example, the QR factors provide
the least squares solution of an inconsistent system in exactly the same way as
they provide the solution of a consistent system.

Example 5.5.3

Application to the Least Squares Problem. If Ax = b is a possibly in-
consistent (real) system, then, as discussed on p. 226, the set of all least squares
solutions is the set of solutions to the system of normal equations

ATAx = ATb. (5.5.5)

But computing ATA and then performing an LU factorization of ATA to solve
(5.5.5) is generally not advisable. First, it’s inefficient and, second, as pointed
out in Example 4.5.1, computing ATA with floating-point arithmetic can result
in a loss of significant information. The QR approach doesn’t suffer from either
of these objections. Suppose that rank (Am×n) = n (so that there is a unique
least squares solution), and let A = QR be the QR factorization. Because the
columns of Q are an orthonormal set, it follows that QTQ = In, so

ATA = (QR)T (QR) = RTQTQR = RTR. (5.5.6)

Consequently, the normal equations (5.5.5) can be written as

RTRx = RTQTb. (5.5.7)

But RT is nonsingular (it is triangular with positive diagonal entries), so (5.5.7)
simplifies to become

Rx = QTb. (5.5.8)

This is just an upper-triangular system that is efficiently solved by back substi-
tution. In other words, most of the work involved in solving the least squares
problem is in computing the QR factorization of A. Finally, notice that

x = R−1QTb =
(
ATA

)−1
ATb

is the solution of Ax = b when the system is consistent as well as the least
squares solution when the system is inconsistent (see p. 214). That is, with the
QR approach, it makes no difference whether or not Ax = b is consistent
because in both cases things boil down to solving the same equation—namely,
(5.5.8). Below is a formal summary.
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Linear Systems and the QR Factorization
If rank (Am×n) = n, and if A = QR is the QR factorization, then the
solution of the nonsingular triangular system

Rx = QTb (5.5.9)

is either the solution or the least squares solution of Ax = b depending
on whether or not Ax = b is consistent.

It’s worthwhile to reemphasize that the QR approach to the least squares prob-
lem obviates the need to explicitly compute the product ATA. But if ATA is
ever needed, it is retrievable from the factorization ATA = RTR. In fact, this
is the Cholesky factorization of ATA as discussed in Example 3.10.7, p. 154.

The Gram–Schmidt procedure is a powerful theoretical tool, but it’s not a
good numerical algorithm when implemented in the straightforward or “classi-
cal” sense. When floating-point arithmetic is used, the classical Gram–Schmidt
algorithm applied to a set of vectors that is not already close to being an orthog-
onal set can produce a set of vectors that is far from being an orthogonal set. To
see this, consider the following example.

Example 5.5.4

Problem: Using 3-digit floating-point arithmetic, apply the classical Gram–
Schmidt algorithm to the set

x1 =


 1

10−3

10−3


 , x2 =


 1

10−3

0


 , x3 =


 1

0
10−3


 .

Solution:
k = 1: fl ‖x1‖ = 1, so u1 ← x1.

k = 2: fl
(
uT1 x2

)
= 1, so

u2 ← x2 −
(
uT1 x2

)
u1 =


 0

0
−10−3


 and u2 ← fl

(
u2

‖u2‖

)
=


 0

0
−1


 .

k = 3: fl
(
uT1 x3

)
= 1 and fl

(
uT2 x3

)
= −10−3, so

u3←x3−
(
uT1 x3

)
u1−

(
uT2 x3

)
u2=


 0
−10−3

−10−3


 and u3←fl

(
u3

‖u3‖

)
=


 0
−.709
−.709


.
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Therefore, classical Gram–Schmidt with 3-digit arithmetic returns

u1 =


 1

10−3

10−3


 , u2 =


 0

0
−1


 , u3 =


 0
−.709
−.709


 , (5.5.10)

which is unsatisfactory because u2 and u3 are far from being orthogonal.

It’s possible to improve the numerical stability of the orthogonalization pro-
cess by rearranging the order of the calculations. Recall from (5.5.4) that

uk =
(I−UkU∗

k)xk
‖(I−UkU∗

k)xk‖
, where U1 = 0 and Uk =

(
u1 |u2 | · · · |uk−1

)
.

If E1 = I and Ei = I−ui−1u∗
i−1 for i > 1, then the orthogonality of the ui ’s

insures that

Ek · · ·E2E1 = I− u1u∗
1 − u2u∗

2 − · · · − uk−1u∗
k−1 = I−UkU∗

k,

so the Gram–Schmidt sequence can also be expressed as

uk =
Ek · · ·E2E1xk
‖Ek · · ·E2E1xk‖

for k = 1, 2, . . . , n.

This means that the Gram–Schmidt sequence can be generated as follows:

{x1,x2, . . . ,xn} Normalize 1-st−−−−−−−−−→ {u1,x2, . . . ,xn}
Apply E2−−−−−−−−−→ {u1, E2x2, E2x3, . . . , E2xn}

Normalize 2-nd−−−−−−−−−→ {u1,u2, E2x3, . . . , E2xn}
Apply E3−−−−−−−−−→ {u1,u2, E3E2x3, . . . , E3E2xn}

Normalize 3-rd−−−−−−−−−→ {u1,u2,u3, E3E2x4, . . . , E3E2xn} ,
etc.

While there is no theoretical difference, this “modified” algorithm is numerically
more stable than the classical algorithm when floating-point arithmetic is used.
The kth step of the classical algorithm alters only the kth vector, but the kth

step of the modified algorithm “updates” all vectors from the kth through the
last, and conditioning the unorthogonalized tail in this way makes a difference.
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Modified Gram–Schmidt Algorithm
For a linearly independent set {x1,x2, . . . ,xn} ⊂ Cm×1, the Gram–
Schmidt sequence given on p. 309 can be alternately described as

uk =
Ek · · ·E2E1xk
‖Ek · · ·E2E1xk‖

with E1 = I, Ei = I− ui−1u∗
i−1 for i > 1,

and this sequence is generated by the following algorithm.

For k = 1: u1 ← x1/ ‖x1‖ and uj ← xj for j = 2, 3, . . . , n
For k > 1: uj ← Ekuj = uj −

(
u∗
k−1uj

)
uk−1 for j = k, k + 1, . . . , n

uk ← uk/ ‖uk‖
(An alternate implementation is given in Exercise 5.5.10.)

To see that the modified version of Gram–Schmidt can indeed make a dif-
ference when floating-point arithmetic is used, consider the following example.

Example 5.5.5

Problem: Use 3-digit floating-point arithmetic, and apply the modified Gram–
Schmidt algorithm to the set given in Example 5.5.4 (p. 314), and then compare
the results of the modified algorithm with those of the classical algorithm.

Solution: x1 =


 1

10−3

10−3


 , x2 =


 1

10−3

0


 , x3 =


 1

0
10−3


 .

k = 1: fl ‖x1‖ = 1, so {u1,u2,u3} ← {x1,x2,x3} .
k = 2: fl

(
uT1 u2

)
= 1 and fl

(
uT1 u3

)
= 1, so

u2 ← u2 −
(
uT1 u2

)
u1 =


 0

0
−10−3


, u3 ← u3 −

(
uT1 u3

)
u1 =


 0
−10−3

0


,

and

u2 ←
u2

‖u2‖
=


 0

0
−1


 .

k = 3: uT2 u3 = 0, so

u3 ← u3 −
(
uT2 u3

)
u2 =


 0
−10−3

0


 and u3 ←

u3

‖u3‖
=


 0
−1

0


 .
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Thus the modified Gram–Schmidt algorithm produces

u1 =


 1

10−3

10−3


 , u2 =


 0

0
−1


 , u3 =


 0
−1

0


 , (5.5.11)

which is as good as one can expect using 3-digit arithmetic. Comparing (5.5.11)
with the result (5.5.10) obtained in Example 5.5.4 illuminates the advantage
possessed by modified Gram–Schmidt algorithm over the classical algorithm.

Below is a summary of some facts concerning the modified Gram–Schmidt
algorithm compared with the classical implementation.

Summary

• When the Gram–Schmidt procedures (classical or modified) are ap-
plied to the columns of A using exact arithmetic, each produces an
orthonormal basis for R (A).

• For computing a QR factorization in floating-point arithmetic, the
modified algorithm produces results that are at least as good as and
often better than the classical algorithm, but the modified algorithm
is not unconditionally stable—there are situations in which it fails
to produce a set of columns that are nearly orthogonal.

• For solving the least square problem with floating-point arithmetic,
the modified procedure is a numerically stable algorithm in the sense
that the method described in Example 5.5.3 returns a result that is
the exact solution of a nearby least squares problem. However, the
Householder method described on p. 346 is just as stable and needs
slightly fewer arithmetic operations.

Exercises for section 5.5

5.5.1. Let S = span


x1 =




1
1
1
−1


 , x2 =




2
−1
−1

1


 , x3 =



−1

2
2
1





 .

(a) Use the classical Gram–Schmidt algorithm (with exact arith-
metic) to determine an orthonormal basis for S.

(b) Verify directly that the Gram–Schmidt sequence produced in
part (a) is indeed an orthonormal basis for S.

(c) Repeat part (a) using the modified Gram–Schmidt algorithm,
and compare the results.
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5.5.2. Use the Gram–Schmidt procedure to find an orthonormal basis for the

four fundamental subspaces of A =
(

1 −2 3 −1
2 −4 6 −2
3 −6 9 −3

)
.

5.5.3. Apply the Gram–Schmidt procedure with the standard inner product

for C3 to
{(

i
i
i

)
,

(
0
i
i

)
,

(
0
0
i

)}
.

5.5.4. Explain what happens when the Gram–Schmidt process is applied to an
orthonormal set of vectors.

5.5.5. Explain what happens when the Gram–Schmidt process is applied to a
linearly dependent set of vectors.

5.5.6. Let A =


 1 0 −1

1 2 1
1 1 −3
0 1 1


 and b =


 1

1
1
1


.

(a) Determine the rectangular QR factorization of A.
(b) Use the QR factors from part (a) to determine the least squares

solution to Ax = b.

5.5.7. Given a linearly independent set of vectors S = {x1,x2, . . . ,xn} in an
inner-product space, let Sk = span {x1,x2, . . . ,xk} for k = 1, 2, . . . , n.
Give an induction argument to prove that if Ok = {u1,u2, . . . ,uk} is
the Gram–Schmidt sequence defined in (5.5.2), then Ok is indeed an or-
thonormal basis for Sk = span {x1,x2, . . . ,xk} for each k = 1, 2, . . . , n.

5.5.8. Prove that if rank (Am×n) = n, then the rectangular QR factorization
of A is unique. That is, if A = QR, where Qm×n has orthonormal
columns and Rn×n is upper triangular with positive diagonal entries,
then Q and R are unique. Hint: Recall Example 3.10.7, p. 154.

5.5.9. (a) Apply classical Gram–Schmidt with 3-digit floating-point arith-

metic to
{
x1 =

(
1
0

10−3

)
, x2 =

(
1
0
0

)
, x3 =

(
1

10−3

0

)}
. You may

assume that fl
(√

2
)

= 1.41.
(b) Again using 3-digit floating-point arithmetic, apply the modified

Gram–Schmidt algorithm to {x1, x2, x3} , and compare the re-
sult with that of part (a).
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5.5.10. Depending on how the inner products rij are defined, verify that the fol-
lowing code implements both the classical and modified Gram–Schmidt
algorithms applied to a set of vectors {x1,x2, . . . ,xn} .

For j = 1 to n
uj ←− xj

For i = 1 to j − 1

rij ←−
{
〈ui xj〉 (classical Gram–Schmidt)
〈ui uj〉 (modified Gram–Schmidt)

uj ←− uj − rijui
End

rjj ←− ‖uj‖
If rjj = 0

quit (because xj ∈ span {x1,x2, . . . ,xj−1} )
Else uj ←− uj/rjj

End

If exact arithmetic is used, will the inner products rij be the same for
both implementations?

5.5.11. Let V be the inner-product space of real-valued continuous functions
defined on the interval [−1, 1], where the inner product is defined by

〈f g〉 =
∫ 1

−1

f(x)g(x)dx,

and let S be the subspace of V that is spanned by the three linearly
independent polynomials q0 = 1, q1 = x, q2 = x2.

(a) Use the Gram–Schmidt process to determine an orthonormal set
of polynomials {p0, p1, p2} that spans S. These polynomials
are the first three normalized Legendre

45
polynomials.

(b) Verify that pn satisfies Legendre’s differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0

for n = 0, 1, 2. This equation and its solutions are of consider-
able importance in applied mathematics.

45
Adrien–Marie Legendre (1752–1833) was one of the most eminent French mathematicians of
the eighteenth century. His primary work in higher mathematics concerned number theory
and the study of elliptic functions. But he was also instrumental in the development of the
theory of least squares, and some people believe that Legendre should receive the credit that
is often afforded to Gauss for the introduction of the method of least squares. Like Gauss and
many other successful mathematicians, Legendre spent substantial time engaged in diligent
and painstaking computation. It is reported that in 1824 Legendre refused to vote for the
government’s candidate for Institut National, so his pension was stopped, and he died in
poverty.



320 Chapter 5 Norms, Inner Products, and Orthogonality

5.6 UNITARY AND ORTHOGONAL MATRICES

The purpose of this section is to examine square matrices whose columns (or
rows) are orthonormal. The standard inner product and the euclidean 2-norm
are the only ones used in this section, so distinguishing subscripts are omitted.

Unitary and Orthogonal Matrices

• A unitary matrix is defined to be a complex matrix Un×n whose
columns (or rows) constitute an orthonormal basis for Cn.

• An orthogonal matrix is defined to be a real matrix Pn×n whose
columns (or rows) constitute an orthonormal basis for �n.

Unitary and orthogonal matrices have some nice features, one of which is
the fact that they are easy to invert. To see why, notice that the columns of
Un×n are an orthonormal set if and only if

[U∗U]ij = (U∗i)∗U∗j =
{

1 when i = j,
0 when i �= j.

In other words, U has orthonormal columns if and only if U∗U = I, which in
turn is equivalent to saying that U−1 = U∗. Notice that because

U∗U = I⇐⇒ UU∗ = I,

the columns of U are orthonormal if and only if the rows of U are orthonormal,
and this is why the definitions of unitary and orthogonal matrices can be stated
either in terms of orthonormal columns or orthonormal rows.

Another nice feature is that multiplication by a unitary matrix does not
change the length of a vector—only the direction is altered. This is easy to see
by writing

‖Ux‖2 = (Ux)∗Ux = x∗U∗Ux = x∗x = ‖x‖2 ∀ x ∈ Cn. (5.6.1)

Conversely, if (5.6.1) holds, then U must be unitary because

‖Ux‖2 = ‖x‖2 ∀ x ∈ Cn =⇒ x∗U∗Ux = x∗x ∀ x ∈ Cn

=⇒ eTi U
∗Uej = eTi ej =

{
1 when i = j
0 when i �= j

=⇒ (U∗i)∗U∗j =
{

1 when i = j
0 when i �= j.

In the case of orthogonal matrices, everything is real so that (�)∗ can be replaced
by (�)T . Below is a summary of these observations.
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Characterizations
• The following statements are equivalent to saying that a complex

matrix Un×n is unitary.
, U has orthonormal columns.
, U has orthonormal rows.
, U−1 = U∗.

, ‖Ux‖2 = ‖x‖2 for every x ∈ Cn×1.

• The following statements are equivalent to saying that a real matrix
Pn×n is orthogonal.
, P has orthonormal columns.
, P has orthonormal rows.
, P−1 = PT .
, ‖Px‖2 = ‖x‖2 for every x ∈ �n×1.

Example 5.6.1

• The identity matrix I is an orthogonal matrix.
• All permutation matrices (products of elementary interchange matrices) are

orthogonal—recall Exercise 3.9.4.
• The matrix

P =


 1/

√
2 1/

√
3 −1/

√
6

−1/
√

2 1/
√

3 −1/
√

6
0 1/

√
3 2/

√
6




is an orthogonal matrix because PTP = PPT = I or, equivalently, because
the columns (and rows) constitute an orthonormal set.

• The matrix U = 1
2

(
1 + i −1 + i
1 + i 1− i

)
is unitary because U∗U = UU∗ = I or,

equivalently, because the columns (and rows) are an orthonormal set.
• An orthogonal matrix can be considered to be unitary, but a unitary matrix

is generally not orthogonal.

In general, a linear operator T on a vector space V with the property that
‖Tx‖ = ‖x‖ for all x ∈ V is called an isometry on V. The isometries on �n
are precisely the orthogonal matrices, and the isometries on Cn are the unitary
matrices. The term “isometry” has an advantage in that it can be used to treat
the real and complex cases simultaneously, but for clarity we will often revert
back to the more cumbersome “orthogonal” and “unitary” terminology.
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The geometrical concepts of projection, reflection, and rotation are among
the most fundamental of all linear transformations in �2 and �3 (see Example
4.7.1 for three simple examples), so pursuing these ideas in higher dimensions
is only natural. The reflector and rotator given in Example 4.7.1 are isometries
(because they preserve length), but the projector is not. We are about to see
that the same is true in more general settings.

Elementary Orthogonal Projectors
For a vector u ∈ Cn×1 such that ‖u‖ = 1, a matrix of the form

Q = I− uu∗ (5.6.2)

is called an elementary orthogonal projector. More general projec-
tors are discussed on pp. 386 and 429.

To understand the nature of elementary projectors consider the situation in
�3. Suppose that ‖u3×1‖ = 1, and let u⊥ denote the space (the plane through
the origin) consisting of all vectors that are perpendicular to u —we call u⊥ the
orthogonal complement of u (a more general definition appears on p. 403).
The matrix Q = I−uuT is the orthogonal projector onto u⊥ in the sense that
Q maps each x ∈ �3×1 to its orthogonal projection in u⊥ as shown in Figure
5.6.1.

u ⊥

x

Qx = (I - uuT)x

u

(I - Q)x = uuTx

0

Figure 5.6.1

To see this, observe that each x can be resolved into two components

x = (I−Q)x + Qx, where (I−Q)x ⊥ Qx.

The vector (I−Q)x = u(uTx) is on the line determined by u, and Qx is in
the plane u⊥ because uTQx = 0.
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The situation is exactly as depicted in Figure 5.6.1. Notice that (I−Q)x =
uuTx is the orthogonal projection of x onto the line determined by u and∥∥uuTx

∥∥ = |uTx|. This provides a nice interpretation of the magnitude of the
standard inner product. Below is a summary.

Geometry of Elementary Projectors
For vectors u,x ∈ Cn×1 such that ‖u‖ = 1,

• (I − uu∗)x is the orthogonal projection of x onto the orthogonal
complement u⊥, the space of all vectors orthogonal to u; (5.6.3)

• uu∗x is the orthogonal projection of x onto the one-dimensional
space span {u} ; (5.6.4)

• |u∗x| represents the length of the orthogonal projection of x onto
the one-dimensional space span {u} . (5.6.5)

In passing, note that elementary projectors are never isometries—they can’t
be because they are not unitary matrices in the complex case and not orthogonal
matrices in the real case. Furthermore, isometries are nonsingular but elementary
projectors are singular.

Example 5.6.2

Problem: Determine the orthogonal projection of x onto span {u} , and then

find the orthogonal projection of x onto u⊥ for x =
(

2
0
1

)
and u =

(
2
−1

3

)
.

Solution: We cannot apply (5.6.3) and (5.6.4) directly because ‖u‖ �= 1, but
this is not a problem because

∥∥∥∥ u
‖u‖

∥∥∥∥ = 1, span {u} = span

{
u
‖u‖

}
, and u⊥ =

(
u
‖u‖

)⊥
.

Consequently, the orthogonal projection of x onto span {u} is given by

(
u
‖u‖

) (
u
‖u‖

)T
x =

uuT

uTu
x =

1
2


 2
−1

3


 ,

and the orthogonal projection of x onto u⊥ is

(
I− uuT

uTu

)
x = x− uuTx

uTu
=

1
2


 2

1
−1


 .
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There is nothing special about the numbers in this example. For every nonzero
vector u ∈ Cn×1, the orthogonal projectors onto span {u} and u⊥ are

Pu =
uu∗

u∗u
and Pu⊥ = I− uu∗

u∗u
. (5.6.6)

Elementary Reflectors
For un×1 �= 0, the elementary reflector about u⊥ is defined to be

R = I− 2
uu∗

u∗u
(5.6.7)

or, equivalently,
R = I− 2uu∗ when ‖u‖ = 1. (5.6.8)

Elementary reflectors are also called Householder transformations,
46 and

they are analogous to the simple reflector given in Example 4.7.1. To understand
why, suppose u ∈ �3×1 and ‖u‖ = 1 so that Q = I − uuT is the orthogonal
projector onto the plane u⊥. For each x ∈ �3×1, Qx is the orthogonal pro-
jection of x onto u⊥ as shown in Figure 5.6.1. To locate Rx = (I − 2uuT )x,
notice that Q(Rx) = Qx. In other words, Qx is simultaneously the orthogo-
nal projection of x onto u⊥ as well as the orthogonal projection of Rx onto
u⊥. This together with ‖x−Qx‖ = |uTx| = ‖Qx−Rx‖ implies that Rx
is the reflection of x about the plane u⊥, exactly as depicted in Figure 5.6.2.
(Reflections about more general subspaces are examined in Exercise 5.13.21.)

x

Rx

Qx

|| x - Qx ||

|| Qx - Rx ||0

u ⊥u

Figure 5.6.2

46
Alston Scott Householder (1904–1993) was one of the first people to appreciate and promote
the use of elementary reflectors for numerical applications. Although his 1937 Ph.D. disserta-
tion at University of Chicago concerned the calculus of variations, Householder’s passion was
mathematical biology, and this was the thrust of his career until it was derailed by the war
effort in 1944. Householder joined the Mathematics Division of Oak Ridge National Labora-
tory in 1946 and became its director in 1948. He stayed at Oak Ridge for the remainder of his
career, and he became a leading figure in numerical analysis and matrix computations. Like
his counterpart J. Wallace Givens (p. 333) at the Argonne National Laboratory, Householder
was one of the early presidents of SIAM.
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Properties of Elementary Reflectors
• All elementary reflectors R are unitary, hermitian, and involutory

( R2 = I ). That is,
R = R∗ = R−1. (5.6.9)

• If xn×1 is a vector whose first entry is x1 �= 0, and if

u = x± µ ‖x‖ e1, where µ =
{

1 if x1 is real,
x1/|x1| if x1 is not real, (5.6.10)

is used to build the elementary reflector R in (5.6.7), then

Rx = ∓µ ‖x‖ e1. (5.6.11)

In other words, this R “reflects” x onto the first coordinate axis.
Computational Note: To avoid cancellation when using floating-
point arithmetic for real matrices, set u = x + sign(x1) ‖x‖ e1.

Proof of (5.6.9). It is clear that R = R∗, and the fact that R = R−1 is
established simply by verifying that R2 = I.

Proof of (5.6.10). Observe that R = I− 2ûû∗, where û = u/ ‖u‖ .
Proof of (5.6.11). Write Rx = x− 2uu∗x/u∗u = x− (2u∗x/u∗u)u and verify
that 2u∗x = u∗u to conclude Rx = x− u = ∓µ ‖x‖ e1.

Example 5.6.3

Problem: Given x ∈ Cn×1 such that ‖x‖ = 1, construct an orthonormal basis
for Cn that contains x.

Solution: An efficient solution is to build a unitary matrix that contains x as
its first column. Set u = x±µe1 in R = I−2(uu∗/u∗u) and notice that (5.6.11)
guarantees Rx = ∓µe1, so multiplication on the left by R (remembering that
R2 = I) produces x = ∓µRe1 = [∓µR]∗1 . Since | ∓ µ| = 1, U = ∓µR
is a unitary matrix with U∗1 = x, so the columns of U provide the desired
orthonormal basis. For example, to construct an orthonormal basis for �4 that
includes x = (1/3) (−1 2 0− 2 )T , set

u = x− e1 =
1
3



−4

2
0
−2


 and compute R = I− 2

uuT

uTu
=

1
3



−1 2 0 −2

2 2 0 1
0 0 3 0
−2 1 0 2


 .

The columns of R do the job.
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Now consider rotation, and begin with a basic problem in �2. If a nonzero
vector u = (u1, u2) is rotated counterclockwise through an angle θ to produce
v = (v1, v2), how are the coordinates of v related to the coordinates of u? To
answer this question, refer to Figure 5.6.3, and use the fact that ‖u‖ = ν = ‖v‖
(rotation is an isometry) together with some elementary trigonometry to obtain

v1 = ν cos(φ + θ) = ν(cos θ cosφ− sin θ sinφ),
v2 = ν sin(φ + θ) = ν(sin θ cosφ + cos θ sinφ).

(5.6.12)

u = ( u1 , u2 )

v = ( v1 , v2 )

θ

φ

Figure 5.6.3

Substituting cosφ = u1/ν and sinφ = u2/ν into (5.6.12) yields

v1 = (cos θ)u1 − (sin θ)u2,
v2 = (sin θ)u1 + (cos θ)u2,

or
(

v1

v2

)
=

(
cos θ − sin θ
sin θ cos θ

) (
u1

u2

)
. (5.6.13)

In other words, v = Pu, where P is the rotator (rotation operator)

P =
(

cos θ − sin θ
sin θ cos θ

)
. (5.6.14)

Notice that P is an orthogonal matrix because PTP = I. This means that if
v = Pu, then u = PTv, and hence PT is also a rotator, but in the opposite
direction of that associated with P. That is, PT is the rotator associated with
the angle −θ. This is confirmed by the fact that if θ is replaced by −θ in
(5.6.14), then PT is produced.

Rotating vectors in �3 around any one of the coordinate axes is similar.
For example, consider rotation around the z-axis. Suppose that v = (v1, v2, v3)
is obtained by rotating u = (u1, u2, u3) counterclockwise 47 through an angle
θ around the z-axis. Just as before, the goal is to determine the relationship
between the coordinates of u and v. Since we are rotating around the z-axis,

47
This is from the perspective of looking down the z -axis onto the xy -plane.
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it is evident (see Figure 5.6.4) that the third coordinates are unaffected—i.e.,
v3 = u3. To see how the xy-coordinates of u and v are related, consider the
orthogonal projections

up = (u1, u2, 0) and vp = (v1, v2, 0)

of u and v onto the xy-plane.

x

y

z

v = (v1, v2, v3)

vp = (v1, v2, 0)

u = (u1, u2, u3)

up = (u1, u2, 0) θ

θ

Figure 5.6.4

It’s apparent from Figure 5.6.4 that the problem has been reduced to rotation
in the xy-plane, and we already know how to do this. Combining (5.6.13) with
the fact that v3 = u3 produces the equation

 v1

v2

v3


 =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1





u1

u2

u3


 ,

so

Pz =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1




is the matrix that rotates vectors in �3 counterclockwise around the z-axis
through an angle θ. It is easy to verify that Pz is an orthogonal matrix and
that P−1

z = PTz rotates vectors clockwise around the z-axis.
By using similar techniques, it is possible to derive orthogonal matrices that

rotate vectors around the x-axis or around the y-axis. Below is a summary of
these rotations in �3.
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Rotations in R3

A vector u ∈ �3 can be rotated counterclockwise through an angle θ
around a coordinate axis by means of a multiplication P�u in which
P� is an appropriate orthogonal matrix as described below.

Rotation around the x-Axis

Px =


 1 0 0

0 cos θ − sin θ
0 sin θ cos θ




x

y

z

θ

Rotation around the y-Axis

Py =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 θ

x

y

z

Rotation around the z-Axis

Pz =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1




x

y

z

θ

Note: The minus sign appears above the diagonal in Px and P, but
below the diagonal in Py. This is not a mistake—it’s due to the orien-
tation of the positive x-axis with respect to the yz-plane.

Example 5.6.4

3-D Rotational Coordinates. Suppose that three counterclockwise rotations
are performed on the three-dimensional solid shown in Figure 5.6.5. First rotate
the solid in View (a) 90◦ around the x-axis to obtain the orientation shown
in View (b). Then rotate View (b) 45◦ around the y-axis to produce View (c)
and, finally, rotate View (c) 60◦ around the z-axis to end up with View (d).
You can follow the process by watching how the notch, the vertex v, and the
lighter shaded face move.
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x

y

z

View (a)

π/2

v x

y

z

View (b)

π/4

v

View (c)

y

z

x

π/3

v

x

y

z

View (d)

v

Figure 5.6.5

Problem: If the coordinates of each vertex in View (a) are specified, what are
the coordinates of each vertex in View (d)?

Solution: If Px is the rotator that maps points in View (a) to corresponding
points in View (b), and if Py and Pz are the respective rotators carrying View
(b) to View (c) and View (c) to View (d), then

Px =


 1 0 0

0 0 −1
0 1 0


, Py =

1√
2


 1 0 1

0
√

2 0
−1 0 1


, Pz =


 1/2 −

√
3/2 0√

3/2 1/2 0
0 0 1


,

so

P = PzPyPx =
1

2
√

2


 1 1

√
6√

3
√

3 −
√

2
−2 2 0


 (5.6.15)

is the orthogonal matrix that maps points in View (a) to their corresponding
images in View (d). For example, focus on the vertex labeled v in View (a), and
let va, vb, vc, and vd denote its respective coordinates in Views (a), (b), (c),
and (d). If va = ( 1 1 0 )T , then vb = Pxva = ( 1 0 1 )T ,

vc = Pyvb = PyPxva=



√

2
0
0


, and vd = Pzvc = PzPyPxva=



√

2/2√
6/2
0


.
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More generally, if the coordinates of each of the ten vertices in View (a) are
placed as columns in a vertex matrix,

Va =




v1

↓
v2

↓
v10

↓
x1 x2 · · · x10

y1 y2 · · · y10

z1 z2 · · · z10


, then Vd = PzPyPxVa =




v̂1

↓
v̂2

↓
v̂10

↓
x̂1 x̂2 · · · x̂10

ŷ1 ŷ2 · · · ŷ10

ẑ1 ẑ2 · · · ẑ10




is the vertex matrix for the orientation shown in View (d). The polytope in
View (d) is drawn by identifying pairs of vertices (vi,vj) in Va that have an
edge between them, and by drawing an edge between the corresponding vertices
(v̂i, v̂j) in Vd.

Example 5.6.5

3-D Computer Graphics. Consider the problem of displaying and manipu-
lating views of a three-dimensional solid on a two-dimensional computer display
monitor. One simple technique is to use a wire-frame representation of the solid
consisting of a mesh of points (vertices) on the solid’s surface connected by
straight line segments (edges). Once these vertices and edges have been defined,
the resulting polytope can be oriented in any desired manner as described in
Example 5.6.4, so all that remains are the following problems.
Problem: How should the vertices and edges of a three-dimensional polytope
be plotted on a two-dimensional computer monitor?

Solution: Assume that the screen represents the yz-plane, and suppose the
x-axis is orthogonal to the screen so that it points toward the viewer’s eye as
shown in Figure 5.6.6.

z

y

x

Figure 5.6.6

A solid in the xyz-coordinate system appears to the viewer as the orthogonal
projection of the solid onto the yz-plane, and the projection of a polytope is
easy to draw. Just set the x-coordinate of each vertex to 0 (i.e., ignore the
x-coordinates), plot the (y, z)-coordinates on the yz-plane (the screen), and
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draw edges between appropriate vertices. For example, suppose that the vertices
of the polytope in Figure 5.6.5 are numbered as indicated below in Figure 5.6.7,

x

y

z

2
3

4

5

6 10
7

8

9

1

Figure 5.6.7

and suppose that the associated vertex matrix is

V =




v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

x 0 1 1 0 0 1 1 1 .8 0
y 0 0 1 1 0 0 .8 1 1 1
z 0 0 0 0 1 1 1 .8 1 1


.

There are 15 edges, and they can be recorded in an edge matrix

E =
( e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

1 2 3 4 1 2 3 4 5 6 7 7 8 9 10
2 3 4 1 5 6 8 10 6 7 8 9 9 10 5

)

in which the kth column represents an edge between the indicated pair of ver-
tices. To display the image of the polytope in Figure 5.6.7 on a monitor, (i) drop
the first row from V, (ii) plot the remaining yz-coordinates on the screen, (iii)
draw edges between appropriate vertices as dictated by the information in the
edge matrix E. To display the image of the polytope after it has been rotated
counterclockwise around the x-, y-, and z-axes by 90◦, 45◦, and 60◦, re-
spectively, use the orthogonal matrix P = PzPyPx determined in (5.6.15) and
compute the product

PV =


 0 .354 .707 .354 .866 1.22 1.5 1.4 1.5 1.22

0 .612 1.22 .612 −.5 .112 .602 .825 .602 .112
0 −.707 0 .707 0 −.707 −.141 0 .141 .707


 .

Now proceed as before—(i) ignore the first row of PV, (ii) plot the points in
the second and third row of PV as yz-coordinates on the monitor, (iii) draw
edges between appropriate vertices as indicated by the edge matrix E.
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Problem: In addition to rotation, how can a polytope (or its image on a com-
puter monitor) be translated?

Solution: Translation of a polytope to a different point in space is accom-
plished by adding a constant to each of its coordinates. For example, to trans-
late the polytope shown in Figure 5.6.7 to the location where vertex 1 is at
pT = (x0, y0, z0) instead of at the origin, just add p to every point. In partic-
ular, if e is the column of 1’s, the translated vertex matrix is

Vtrans = Vorig +


x0 x0 · · · x0

y0 y0 · · · y0

z0 z0 · · · z0


 = Vorig + peT (a rank-1 update).

Of course, the edge matrix is not affected by translation.

Problem: How can a polytope (or its image on a computer monitor) be scaled?

Solution: Simply multiply every coordinate by the desired scaling factor. For
example, to scale an image by a factor α, form the scaled vertex matrix

Vscaled = αVorig,

and then connect the scaled vertices with appropriate edges as dictated by the
edge matrix E.

Problem: How can the faces of a polytope that are hidden from the viewer’s
perspective be detected so that they can be omitted from the drawing on the
screen?

Solution: A complete discussion of this tricky problem would carry us too far
astray, but one clever solution relying on the cross product of vectors in �3 is
presented in Exercise 5.6.21 for the case of convex polytopes.

Rotations in higher dimensions are straightforward generalizations of rota-
tions in �3. Recall from p. 328 that rotation around any particular axis in �3

amounts to rotation in the complementary plane, and the associated 3× 3 ro-
tator is constructed by embedding a 2× 2 rotator in the appropriate position
in a 3× 3 identity matrix. For example, rotation around the y-axis is rotation
in the xz-plane, and the corresponding rotator is produced by embedding(

cos θ sin θ
− sin θ cos θ

)
in the “ xz-position” of I3×3 to form

Py =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 .

These observations directly extend to higher dimensions.
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Plane Rotations
Orthogonal matrices of the form

col i
↓

col j
↓

Pij =




1
. . .

c s
1

. . .
−s c

1
. . .

1




←− row i

←− row j

in which c2 +s2 = 1 are called plane rotation matrices because they
perform a rotation in the (i, j)-plane of �n. The entries c and s are
meant to suggest cosine and sine, respectively, but designating a rotation
angle θ as is done in �2 and �3 is not useful in higher dimensions.

Plane rotations matrices Pij are also called Givens
48

rotations. Applying
Pij to 0 �= x ∈ �n rotates the (i, j)-coordinates of x in the sense that

Pijx =




x1

...
cxi + sxj

...
−sxi + cxj

...
xn



←− i

←− j
.

If xi and xj are not both zero, and if we set

c =
xi√

x2
i + x2

j

and s =
xj√

x2
i + x2

j

, (5.6.16)

48
J. Wallace Givens, Jr. (1910–1993) pioneered the use of plane rotations in the early days
of automatic matrix computations. Givens graduated from Lynchburg College in 1928, and
he completed his Ph.D. at Princeton University in 1936. After spending three years at the
Institute for Advanced Study in Princeton as an assistant of O. Veblen, Givens accepted an
appointment at Cornell University but later moved to Northwestern University. In addition to
his academic career, Givens was the Director of the Applied Mathematics Division at Argonne
National Laboratory and, like his counterpart A. S. Householder (p. 324) at Oak Ridge National
Laboratory, Givens served as an early president of SIAM.
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then

Pijx =




x1

...√
x2

i + x2
j

...
0
...

xn



←− i

←− j

.

This means that we can selectively annihilate any component—the jth in this
case—by a rotation in the (i, j)-plane without affecting any entry except xi and
xj . Consequently, plane rotations can be applied to annihilate all components
below any particular “pivot.” For example, to annihilate all entries below the
first position in x, apply a sequence of plane rotations as follows:

P12x=




√
x2
1+x2

2
0
x3

x4

...
xn


, P13P12x=




√
x2
1+x2

2+x2
3

0
0
x4

...
xn


, . . . , P1n· · ·P13P12x=



‖x‖
0
0
0
...
0


.

The product of plane rotations is generally not another plane rotation, but
such a product is always an orthogonal matrix, and hence it is an isometry. If
we are willing to interpret “rotation in �n ” as a sequence of plane rotations,
then we can say that it is always possible to “rotate” each nonzero vector onto
the first coordinate axis. Recall from (5.6.11) that we can also do this with a
reflection. More generally, the following statement is true.

Rotations in �n

Every nonzero vector x ∈ �n can be rotated to the ith coordinate
axis by a sequence of n− 1 plane rotations. In other words, there is an
orthogonal matrix P such that

Px = ‖x‖ ei, (5.6.17)

where P has the form

P = Pin · · ·Pi,i+1Pi,i−1 · · ·Pi1.



5.6 Unitary and Orthogonal Matrices 335

Example 5.6.6

Problem: If x ∈ �n is a vector such that ‖x‖ = 1, explain how to use plane
rotations to construct an orthonormal basis for �n that contains x.

Solution: This is almost the same problem as that posed in Example 5.6.3, and,
as explained there, the goal is to construct an orthogonal matrix Q such that
Q∗1 = x. But this time we need to use plane rotations rather than an elementary
reflector. Equation (5.6.17) asserts that we can build an orthogonal matrix from
a sequence of plane rotations P = P1n · · ·P13P12 such that Px = e1. Thus
x = PTe1 = PT∗1, and hence the columns of Q = PT serve the purpose. For
example, to extend

x =
1
3



−1

2
0
−2




to an orthonormal basis for �4, sequentially annihilate the second and fourth
components of x by using (5.6.16) to construct the following plane rotations:

P12x =



−1/

√
5 2/

√
5 0 0

−2/
√

5 −1/
√

5 0 0
0 0 1 0
0 0 0 1


 1

3



−1

2
0
−2


 =

1
3



√

5
0
0
−2


 ,

P14

(
P12x

)
=



√

5/3 0 0 −2/3
0 1 0 0
0 0 1 0

2/3 0 0
√

5/3


 1

3



√

5
0
0
−2


 =




1
0
0
0


 .

Therefore, the columns of

Q = (P14P12)
T = PT12P

T
14 =



−1/3 −2/

√
5 0 −2/3

√
5

2/3 −1/
√

5 0 4/3
√

5
0 0 1 0

−2/3 0 0
√

5/3




are an orthonormal set containing the specified vector x.

Exercises for section 5.6

5.6.1. Determine which of the following matrices are isometries.

(a)


 1/

√
2 −1/

√
2 0

1/
√

6 1/
√

6 −2/
√

6
1/
√

3 1/
√

3 1/
√

3


 . (b)


 1 0 1

1 0 −1
0 1 0


 .

(c)




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


 . (d)




eiθ1 0 · · · 0
0 eiθ2 · · · 0
...

...
. . .

...
0 0 · · · eiθn


.



336 Chapter 5 Norms, Inner Products, and Orthogonality

5.6.2. Is




1 + i√
3

1 + i√
6

i√
3

−2 i√
6


 a unitary matrix?

5.6.3. (a) How many 3× 3 matrices are both diagonal and orthogonal?
(b) How many n× n matrices are both diagonal and orthogonal?
(c) How many n× n matrices are both diagonal and unitary?

5.6.4. (a) Under what conditions on the real numbers α and β will

P =
(

α + β β − α
α− β β + α

)
be an orthogonal matrix?

(b) Under what conditions on the real numbers α and β will

U =




0 α 0 iβ
α 0 iβ 0
0 iβ 0 α
iβ 0 α 0




be a unitary matrix?

5.6.5. Let U and V be two n× n unitary (orthogonal) matrices.
(a) Explain why the product UV must be unitary (orthogonal).
(b) Explain why the sum U+V need not be unitary (orthogonal).
(c) Explain why

(
Un×n 0

0 Vm×m

)
must be unitary (orthogonal).

5.6.6. Cayley Transformation. Prove, as Cayley did in 1846, that if A is
skew hermitian (or real skew symmetric), then

U = (I−A)(I + A)−1 = (I + A)−1(I−A)

is unitary (orthogonal) by first showing that (I+A)−1 exists for skew-
hermitian matrices, and (I −A)(I + A)−1 = (I + A)−1(I −A) (recall
Exercise 3.7.6). Note: There is a more direct approach, but it requires
the diagonalization theorem for normal matrices—see Exercise 7.5.5.

5.6.7. Suppose that R and S are elementary reflectors.

(a) Is
(

I 0
0 R

)
an elementary reflector?

(b) Is
(

R 0
0 S

)
an elementary reflector?
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5.6.8. (a) Explain why the standard inner product is invariant under a uni-
tary transformation. That is, if U is any unitary matrix, and if
u = Ux and v = Uy, then

u∗v = x∗y.

(b) Given any two vectors x,y ∈ �n, explain why the angle between
them is invariant under an orthogonal transformation. That is, if
u = Px and v = Py, where P is an orthogonal matrix, then

cos θu,v = cos θx,y.

5.6.9. Let Um×r be a matrix with orthonormal columns, and let Vk×n be a
matrix with orthonormal rows. For an arbitrary A ∈ Cr×k, solve the
following problems using the matrix 2-norm (p. 281) and the Frobenius
matrix norm (p. 279).

(a) Determine the values of ‖U‖2 , ‖V‖2 , ‖U‖F , and ‖V‖F .

(b) Show that ‖UAV‖2 = ‖A‖2 . (Hint: Start with ‖UA‖2 . )
(c) Show that ‖UAV‖F = ‖A‖F .

Note: In particular, these properties are valid when U and V are
unitary matrices. Because of parts (b) and (c), the 2-norm and the F -
norm are said to be unitarily invariant norms.

5.6.10. Let u =


−2

1
3
−1


 and v =


 1

4
0
−1


.

(a) Determine the orthogonal projection of u onto span {v} .
(b) Determine the orthogonal projection of v onto span {u} .
(c) Determine the orthogonal projection of u onto v⊥.
(d) Determine the orthogonal projection of v onto u⊥.

5.6.11. Consider elementary orthogonal projectors Q = I− uu∗.
(a) Prove that Q is singular.
(b) Now prove that if Q is n× n, then rank (Q) = n− 1.

Hint: Recall Exercise 4.4.10.

5.6.12. For vectors u,x ∈ Cn such that ‖u‖ = 1, let p be the orthogonal
projection of x onto span {u} . Explain why ‖p‖ ≤ ‖x‖ with equality
holding if and only if x is a scalar multiple of u.
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5.6.13. Let x = (1/3)
(

1
−2
−2

)
.

(a) Determine an elementary reflector R such that Rx lies on the
x-axis.

(b) Verify by direct computation that your reflector R is symmet-
ric, orthogonal, and involutory.

(c) Extend x to an orthonormal basis for �3 by using an elemen-
tary reflector.

5.6.14. Let R = I− 2uu∗, where ‖un×1‖ = 1. If x is a fixed point for R in
the sense that Rx = x, and if n > 1, prove that x must be orthogonal
to u, and then sketch a picture of this situation in �3.

5.6.15. Let x, y ∈ �n×1 be vectors such that ‖x‖ = ‖y‖ but x �= y. Explain
how to construct an elementary reflector R such that Rx = y.
Hint: The vector u that defines R can be determined visually in �3

by considering Figure 5.6.2.

5.6.16. Let xn×1 be a vector such that ‖x‖ = 1, and partition x as

x =
(

x1

x̃

)
, where x̃ is n− 1× 1.

(a) If the entries of x are real, and if x1 �= 1, show that

P =
(

x1 x̃T

x̃ I− αx̃x̃T

)
, where α =

1
1− x1

is an orthogonal matrix.
(b) Suppose that the entries of x are complex. If |x1| �= 1, and if

µ is the number defined in (5.6.10), show that the matrix

U =
(

x1 µ2x̃∗

x̃ µ(I− αx̃x̃∗)

)
, where α =

1
1− |x1|

is unitary. Note: These results provide an easy way to extend
a given vector to an orthonormal basis for the entire space �n
or Cn.
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5.6.17. Perform the following sequence of rotations in �3 beginning with

v0 =


 1

1
−1


 .

1. Rotate v0 counterclockwise 45◦ around the x-axis to produce v1.
2. Rotate v1 clockwise 90◦ around the y-axis to produce v2.
3. Rotate v2 counterclockwise 30◦ around the z-axis to produce v3.

Determine the coordinates of v3 as well as an orthogonal matrix Q
such that Qv0 = v3.

5.6.18. Does it matter in what order rotations in �3 are performed? For ex-
ample, suppose that a vector v ∈ �3 is first rotated counterclockwise
around the x-axis through an angle θ, and then that vector is rotated
counterclockwise around the y-axis through an angle φ. Is the result
the same as first rotating v counterclockwise around the y-axis through
an angle φ followed by a rotation counterclockwise around the x-axis
through an angle θ?

5.6.19. For each nonzero vector u ∈ Cn, prove that dim u⊥ = n− 1.

5.6.20. A matrix satisfying A2 = I is said to be an involution or an involu-
tory matrix , and a matrix P satisfying P2 = P is called a projector
or is said to be an idempotent matrix—properties of such matrices
are developed on p. 386. Show that there is a one-to-one correspondence
between the set of involutions and the set of projectors in Cn×n. Hint:
Consider the relationship between the projectors in (5.6.6) and the re-
flectors (which are involutions) in (5.6.7) on p. 324.

5.6.21. When using a computer to generate and display a three-dimensional
convex polytope such as the one in Example 5.6.4, it is desirable to not
draw those faces that should be hidden from the perspective of a viewer
positioned as shown in Figure 5.6.6. The operation of cross product in
�3 (usually introduced in elementary calculus courses) can be used to
decide which faces are visible and which are not. Recall that if

u =


u1

u2

u3


 and v =


 v1

v2

v3


 , then u× v =


u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


 ,
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and u × v is a vector orthogonal to both u and v. The direction of
u× v is determined from the so-called right-hand rule as illustrated in
Figure 5.6.8.

Figure 5.6.8

Assume the origin is interior to the polytope, and consider a particular
face and three vertices p0, p1, and p2 on the face that are positioned
as shown in Figure 5.6.9. The vector n = (p1 − p0) × (p2 − p1) is
orthogonal to the face, and it points in the outward direction.

Figure 5.6.9

Explain why the outside of the face is visible from the perspective indi-
cated in Figure 5.6.6 if and only if the first component of the outward
normal vector n is positive. In other words, the face is drawn if and
only if n1 > 0.
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5.7 ORTHOGONAL REDUCTION

We know that a matrix A can be reduced to row echelon form by elementary row
operations. This is Gaussian elimination, and, as explained on p. 143, the basic
“Gaussian transformation” is an elementary lower triangular matrix Tk whose
action annihilates all entries below the kth pivot at the kth elimination step.
But Gaussian elimination is not the only way to reduce a matrix. Elementary
reflectors Rk can be used in place of elementary lower triangular matrices Tk
to annihilate all entries below the kth pivot at the kth elimination step, or a
sequence of plane rotation matrices can accomplish the same purpose.

When reflectors are used, the process is usually called Householder re-
duction, and it proceeds as follows. For Am×n = [A∗1 |A∗2 | · · · |A∗n] , use
x = A∗1 in (5.6.10) to construct the elementary reflector

R1 = I− 2
uu∗

u∗u
, where u = A∗1 ± µ ‖A∗1‖ e1, (5.7.1)

so that

R1A∗1 = ∓µ ‖A∗1‖ e1 =




t11
0
...
0


 . (5.7.2)

Applying R1 to A yields

R1A=[R1A∗1 |R1A∗2 | · · · |R1A∗n]=




t11 t12 · · · t1n

0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗


=

(
t11 tT1
0 A2

)
,

where A2 is m− 1× n− 1. Thus all entries below the (1, 1)-position are an-
nihilated. Now apply the same procedure to A2 to construct an elementary
reflector R̂2 that annihilates all entries below the (1, 1)-position in A2. If we
set R2 =

(
1 0
0 R̂2

)
, then R2R1 is an orthogonal matrix (Exercise 5.6.5) such

that

R2R1A =
(

t11 tT1
0 R̂2A2

)
=




t11 t12 t13 · · · t1n

0 t22 t23 · · · t2n

0 0 ∗ · · · ∗
...

...
...

...
0 0 ∗ · · · ∗


 .

The result after k − 1 steps is Rk−1 · · ·R2R1A =
(

Tk−1 T̃k−1

0 Ak

)
. At step

k an elementary reflector R̂k is constructed in a manner similar to (5.7.1)
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to annihilate all entries below the (1, 1)-position in Ak, and Rk is defined

as Rk =
(

Ik−1 0

0 R̂k

)
, which is another elementary reflector (Exercise 5.6.7).

Eventually, all of the rows or all of the columns will be exhausted, so the final
result is one of the two following upper-trapezoidal forms:

Rn · · ·R2R1Am×n =




∗ ∗ · · · ∗
0 ∗ · · · ∗
...

. . .
...

0 0 · · · ∗
0 0 · · · 0
...

...
...

0 0 · · · 0





 n×n

when m > n,

Rm−1 · · ·R2R1Am×n =



∗ ∗ · · · ∗ ∗ · · · ∗
0 ∗ · · · ∗ ∗ · · · ∗
...

. . .
...

...
...

0 0 · · · ∗ ∗ · · · ∗


 when m < n.

︸ ︷︷ ︸
m×m

If m = n, then the final form is an upper-triangular matrix.
A product of elementary reflectors is not necessarily another elementary re-

flector, but a product of unitary (orthogonal) matrices is again unitary (orthogo-
nal) (Exercise 5.6.5). The elementary reflectors Ri described above are unitary
(orthogonal in the real case) matrices, so every product RkRk−1 · · ·R2R1 is a
unitary matrix, and thus we arrive at the following important conclusion.

Orthogonal Reduction
• For every A ∈ Cm×n, there exists a unitary matrix P such that

PA = T (5.7.3)

has an upper-trapezoidal form. When P is constructed as a prod-
uct of elementary reflectors as described above, the process is called
Householder reduction.

• If A is square, then T is upper triangular, and if A is real, then
the P can be taken to be an orthogonal matrix.
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Example 5.7.1

Problem: Use Householder reduction to find an orthogonal matrix P such
that PA = T is upper triangular with positive diagonal entries, where

A =


 0 −20 −14

3 27 −4
4 11 −2


 .

Solution: To annihilate the entries below the (1, 1)-position and to guarantee
that t11 is positive, equations (5.7.1) and (5.7.2) dictate that we set

u1 = A∗1 − ‖A∗1‖ e1 = A∗1 − 5e1 =


−5

3
4


 and R1 = I− 2

u1uT1
uT1 u1

.

To compute a reflector-by-matrix product RA = [RA∗1 |RA∗2 | · · · |RA∗n] ,
it’s wasted effort to actually determine the entries in R = I−2uuT /uTu. Simply
compute uTA∗j and then

RA∗j = A∗j − 2
(

uTA∗j
uTu

)
u for each j = 1, 2, . . . , n. (5.7.4)

By using this observation we obtain

R1A = [R1A∗1 |R1A∗2 |R1A∗3] =


 5 25 −4

0 0 −10
0 −25 −10


 .

To annihilate the entry below the (2, 2)-position, set

A2 =
(

0 −10
−25 −10

)
and u2 = [A2]∗1 −

∥∥∥ [A2]∗1
∥∥∥e1 = 25

(
−1
−1

)
.

If R̂2 = I− 2u2uT2 /u
T
2 u2 and R2 =

(
1 0
0 R̂2

)
(neither is explicitly computed),

then

R̂2A2 =
(

25 10
0 10

)
and R2R1A = T =


 5 25 −4

0 25 10
0 0 10


 .

If R̂k = I− 2ûûT /ûT û is an elementary reflector, then so is

Rk =
(

I 0
0 R̂k

)
= I− 2

uuT

uTu
with u =

(
0
û

)
,

and consequently the product of any sequence of these Rk ’s can be formed by
using the observation (5.7.4). In this example,

P = R2R1 =
1
25


 0 15 20
−20 12 −9
−15 −16 12


 .

You may wish to check that P really is an orthogonal matrix and PA = T.



344 Chapter 5 Norms, Inner Products, and Orthogonality

Elementary reflectors are not the only type of orthogonal matrices that can
be used to reduce a matrix to an upper-trapezoidal form. Plane rotation matrices
are also orthogonal, and, as explained on p. 334, plane rotation matrices can be
used to selectively annihilate any component in a given column, so a sequence of
plane rotations can be used to annihilate all elements below a particular pivot.
This means that a matrix A ∈ �m×n can be reduced to an upper-trapezoidal
form strictly by using plane rotations—such a process is usually called a Givens
reduction.

Example 5.7.2

Problem: Use Givens reduction (i.e., use plane rotations) to reduce the matrix

A =


 0 −20 −14

3 27 −4
4 11 −2




to upper-triangular form. Also compute an orthogonal matrix P such that
PA = T is upper triangular.

Solution: The plane rotation that uses the (1,1)-entry to annihilate the (2,1)-
entry is determined from (5.6.16) to be

P12 =


 0 1 0
−1 0 0

0 0 1


 so that P12A =


 3 27 −4

0 20 14
4 11 −2


 .

Now use the (1,1)-entry in P12A to annihilate the (3,1)-entry in P12A. The
plane rotation that does the job is again obtained from (5.6.16) to be

P13 =
1
5


 3 0 4

0 5 0
−4 0 3


 so that P13P12A =


 5 25 −4

0 20 14
0 −15 2


 .

Finally, using the (2,2)-entry in P13P12A to annihilate the (3,2)-entry produces

P23 =
1
5


 5 0 0

0 4 −3
0 3 4


 so that P23P13P12A = T =


 5 25 −4

0 25 10
0 0 10


 .

Since plane rotation matrices are orthogonal, and since the product of orthogonal
matrices is again orthogonal, it must be the case that

P = P23P13P12 =
1
25


 0 15 20
−20 12 −9
−15 −16 12




is an orthogonal matrix such that PA = T.
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Householder and Givens reductions are closely related to the results pro-
duced by applying the Gram–Schmidt process (p. 307) to the columns of A.
When A is nonsingular, Householder, Givens, and Gram–Schmidt each pro-
duce an orthogonal matrix Q and an upper-triangular matrix R such that
A = QR (Q = PT in the case of orthogonal reduction). The upper-triangular
matrix R produced by the Gram–Schmidt algorithm has positive diagonal en-
tries, and, as illustrated in Examples 5.7.1 and 5.7.2, we can also force this to be
true using the Householder or Givens reduction. This feature makes Q and R
unique.

QR Factorization
For each nonsingular A ∈ �n×n, there is a unique orthogonal matrix Q
and a unique upper-triangular matrix R with positive diagonal entries
such that

A = QR.

This “square” QR factorization is a special case of the more general
“rectangular” QR factorization discussed on p. 311.

Proof. Only uniqueness needs to be proven. If there are two QR factorizations

A = Q1R1 = Q2R2,

let U = QT2 Q1 = R2R−1
1 . The matrix R2R−1

1 is upper triangular with positive
diagonal entries (Exercises 3.5.8 and 3.7.4) while QT2 Q1 is an orthogonal matrix
(Exercise 5.6.5), and therefore U is an upper-triangular matrix whose columns
are an orthonormal set and whose diagonal entries are positive. Considering the
first column of U we see that∥∥∥∥∥∥∥∥




u11

0
...
0




∥∥∥∥∥∥∥∥ = 1 =⇒ u11 = ±1 and u11 > 0 =⇒ u11 = 1,

so that U∗1 = e1. A similar argument together with the fact that the columns
of U are mutually orthogonal produces

UT∗1U∗2 = 0 =⇒ u12 = 0 =⇒ u22 = 1 =⇒ U∗2 = e2.

Proceeding inductively establishes that U∗k = ek for each k (i.e., U = I ), and
therefore Q1 = Q2 and R1 = R2.
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Example 5.7.3

Orthogonal Reduction and Least Squares. Orthogonal reduction can be
used to solve the least squares problem associated with an inconsistent system
Ax = b in which A ∈ �m×n and m ≥ n (the most common case). If ε
denotes the difference ε = Ax − b, then, as described on p. 226, the general
least squares problem is to find a vector x that minimizes the quantity

m∑
i=1

ε2
i = εTε = ‖ε‖2 ,

where ‖�‖ is the standard euclidean vector norm. Suppose that A is reduced
to an upper-trapezoidal matrix T by an orthogonal matrix P, and write

PA = T =
(

Rn×n
0

)
and Pb =

(
cn×1

d

)
in which R is an upper-triangular matrix. An orthogonal matrix is an isometry—
recall (5.6.1)—so that

‖ε‖2 = ‖Pε‖2 = ‖P(Ax− b)‖2 =
∥∥∥∥
(

R
0

)
x−

(
c
d

)∥∥∥∥2

=
∥∥∥∥
(

Rx− c
d

)∥∥∥∥2

= ‖Rx− c‖2 + ‖d‖2 .
Consequently, ‖ε‖2 is minimized when x is a vector such that ‖Rx− c‖2 is
minimal or, in other words, x is a least squares solution for Ax = b if and only
if x is a least squares solution for Rx = c.

Full-Rank Case. In a majority of applications the coefficient matrix A has
linearly independent columns so rank (Am×n) = n. Because multiplication by
a nonsingular matrix P does not change the rank,

n = rank (A) = rank (PA) = rank (T) = rank (Rn×n).

Thus R is nonsingular, and we have established the following fact.

• If A has linearly independent columns, then the (unique) least squares so-
lution for Ax = b is obtained by solving the nonsingular triangular system
Rx = c for x.

As pointed out in Example 4.5.1, computing the matrix product ATA is to be
avoided when floating-point computation is used because of the possible loss of
significant information. Notice that the method based on orthogonal reduction
sidesteps this potential problem because the normal equations ATAx = ATb
are avoided and the product ATA is never explicitly computed. Householder
reduction (or Givens reduction for sparse problems) is a numerically stable algo-
rithm (see the discussion following this example) for solving the full-rank least
squares problem, and, if the computations are properly ordered, it is an attrac-
tive alternative to the method of Example 5.5.3 that is based on the modified
Gram–Schmidt procedure.
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We now have four different ways to reduce a matrix to an upper-triangular
(or trapezoidal) form. (1) Gaussian elimination; (2) Gram–Schmidt procedure;
(3) Householder reduction; and (4) Givens reduction. It’s natural to try to com-
pare them and to sort out the advantages and disadvantages of each.

First consider numerical stability. This is a complicated issue, but you can
nevertheless gain an intuitive feel for the situation by considering the effect of
applying a sequence of “elementary reduction” matrices to a small perturbation
of A. Let E be a matrix such that ‖E‖F is small relative to ‖A‖F (the
Frobenius norm was introduced on p. 279), and consider

Pk · · ·P2P1(A + E) = (Pk · · ·P2P1A) + (Pk · · ·P2P1E) = PA + PE.

If each Pi is an orthogonal matrix, then the product P = Pk · · ·P2P1 is also an
orthogonal matrix (Exercise 5.6.5), and consequently ‖PE‖F = ‖E‖F (Exercise
5.6.9). In other words, a sequence of orthogonal transformations cannot magnify
the magnitude of E, and you might think of E as representing the effects of
roundoff error. This suggests that Householder and Givens reductions should be
numerically stable algorithms. On the other hand, if the Pi ’s are elementary
matrices of Type I, II, or III, then the product P = Pk · · ·P2P1 can be any
nonsingular matrix—recall (3.9.3). Nonsingular matrices are not generally norm
preserving (i.e., it is possible that ‖PE‖F > ‖E‖F ), so the possibility of E
being magnified is generally present in elimination methods, and this suggests
the possibility of numerical instability.

Strictly speaking, an algorithm is considered to be numerically stable
if, under floating-point arithmetic, it always returns an answer that is the exact
solution of a nearby problem. To give an intuitive argument that the Householder
or Givens reduction is a stable algorithm for producing the QR factorization of
An×n, suppose that Q and R are the exact QR factors, and suppose that
floating-point arithmetic produces an orthogonal matrix Q + E and an upper-
triangular matrix R + F that are the exact QR factors of a different matrix

Ã = (Q + E)(R + F) = QR + QF + ER + EF = A + QF + ER + EF.

If E and F account for the roundoff errors, and if their entries are small relative
to those in A, then the entries in EF are negligible, and

Ã ≈ A + QF + ER.

But since Q is orthogonal, ‖QF‖F = ‖F‖F and ‖A‖F = ‖QR‖F = ‖R‖F ,
and this means that neither QF nor ER can contain entries that are large
relative to those in A. Hence Ã ≈ A, and this is what is required to conclude
that the algorithm is stable.

Gaussian elimination is not a stable algorithm because, as alluded to in §1.5,
problems arise due to the growth of the magnitude of the numbers that can occur
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during the process. To see this from a heuristic point of view, consider the LU
factorization of A = LU, and suppose that floating-point Gaussian elimination
with no pivoting returns matrices L + E and U + F that are the exact LU
factors of a somewhat different matrix

Ã = (L + E)(U + F) = LU + LF + EU + EF = A + LF + EU + EF.

If E and F account for the roundoff errors, and if their entries are small relative
to those in A, then the entries in EF are negligible, and

Ã ≈ A + LF + EU (using no pivoting).

However, if L or U contains entries that are large relative to those in A
(and this is certainly possible), then LF or EU can contain entries that are
significant. In other words, Gaussian elimination with no pivoting can return the
LU factorization of a matrix Ã that is not very close to the original matrix
A, and this is what it means to say that an algorithm is unstable. We saw on
p. 26 that if partial pivoting is employed, then no multiplier can exceed 1 in
magnitude, and hence no entry of L can be greater than 1 in magnitude (recall
that the subdiagonal entries of L are in fact the multipliers). Consequently,
L cannot greatly magnify the entries of F, so, if the rows of A have been
reordered according to the partial pivoting strategy, then

Ã ≈ A + EU (using partial pivoting).

Numerical stability requires that Ã ≈ A, so the issue boils down to the degree
to which U magnifies the entries in E —i.e., the issue rests on the magnitude of
the entries in U. Unfortunately, partial pivoting may not be enough to control
the growth of all entries in U. For example, when Gaussian elimination with
partial pivoting is applied to

Wn =




1 0 0 · · · 0 0 1
−1 1 0 · · · 0 0 1

−1 −1 1
. . . 0 0 1

...
...

. . . . . . . . .
...

...

−1 −1 −1
. . . 1 0 1

−1 −1 −1 · · · −1 1 1
−1 −1 −1 · · · −1 −1 1




,

the largest entry in U is unn = 2n−1. However, if complete pivoting is used on
Wn, then no entry in the process exceeds 2 in magnitude (Exercises 1.5.7 and
1.5.8). In general, it has been proven that if complete pivoting is used on a well-
scaled matrix An×n for which max |aij | = 1, then no entry of U can exceed
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γ = n1/2
(
2131/241/3 · · ·n1/n−1

)1/2
in magnitude. Since γ is a slow growing

function of n, the entries in U won’t greatly magnify the entries of E, so

Ã ≈ A (using complete pivoting).

In other words, Gaussian elimination with complete pivoting is stable, but Gaus-
sian elimination with partial pivoting is not. Fortunately, in practical work it is
rare to encounter problems such as the matrix Wn in which partial pivoting
fails to control the growth in the U factor, so scaled partial pivoting is generally
considered to be a “practically stable” algorithm.

Algorithms based on the Gram–Schmidt procedure are more complicated.
First, the Gram–Schmidt algorithms differ from Householder and Givens reduc-
tions in that the Gram–Schmidt procedures are not a sequential application of
elementary orthogonal transformations. Second, as an algorithm to produce the
QR factorization even the modified Gram–Schmidt technique can return a Q
factor that is far from being orthogonal, and the intuitive stability argument
used earlier is not valid. As an algorithm to return the QR factorization of A,
the modified Gram–Schmidt procedure has been proven to be unstable, but as
an algorithm used to solve the least squares problem (see Example 5.5.3), it is
stable—i.e., stability of modified Gram–Schmidt is problem dependent.

Summary of Numerical Stability
• Gaussian elimination with scaled partial pivoting is theoretically un-

stable, but it is “practically stable”—i.e., stable for most practical
problems.

• Complete pivoting makes Gaussian elimination unconditionally sta-
ble.

• For the QR factorization, the Gram–Schmidt procedure (classical
or modified) is not stable. However, the modified Gram–Schmidt
procedure is a stable algorithm for solving the least squares problem.

• Householder and Givens reductions are unconditionally stable algo-
rithms for computing the QR factorization.

For the algorithms under consideration, the number of multiplicative oper-
ations is about the same as the number of additive operations, so computational
effort is gauged by counting only multiplicative operations. For the sake of com-
parison, lower-order terms are not significant, and when they are neglected the
following approximations are obtained.
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Summary of Computational Effort
The approximate number of multiplications/divisions required to reduce
an n× n matrix to an upper-triangular form is as follows.
• Gaussian elimination (scaled partial pivoting) ≈ n3/3.

• Gram–Schmidt procedure (classical and modified) ≈ n3.

• Householder reduction ≈ 2n3/3.

• Givens reduction ≈ 4n3/3.

It’s not surprising that the unconditionally stable methods tend to be more
costly—there is no free lunch. No one triangularization technique can be con-
sidered optimal, and each has found a place in practical work. For example, in
solving unstructured linear systems, the probability of Gaussian elimination with
scaled partial pivoting failing is not high enough to justify the higher cost of using
the safer Householder or Givens reduction, or even complete pivoting. Although
much the same is true for the full-rank least squares problem, Householder re-
duction or modified Gram–Schmidt is frequently used as a safeguard against
sensitivities that often accompany least squares problems. For the purpose of
computing an orthonormal basis for R (A) in which A is unstructured and
dense (not many zeros), Householder reduction is preferred—the Gram–Schmidt
procedures are unstable for this purpose and Givens reduction is too costly.
Givens reduction is useful when the matrix being reduced is highly structured
or sparse (many zeros).

Example 5.7.4

Reduction to Hessenberg Form. For reasons alluded to in §4.8 and §4.9, it
is often desirable to triangularize a square matrix A by means of a similarity
transformation—i.e., find a nonsingular matrix P such that P−1AP = T is
upper triangular. But this is a computationally difficult task, so we will try to do
the next best thing, which is to find a similarity transformation that will reduce
A to a matrix in which all entries below the first subdiagonal are zero. Such a
matrix is said to be in upper-Hessenberg form—illustrated below is a 5× 5
Hessenberg form.

H =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


 .
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Problem: Reduce A ∈ �n×n to upper-Hessenberg form by means of an orthog-
onal similarity transformation—i.e., construct an orthogonal matrix P such that
PTAP = H is upper Hessenberg.

Solution: At each step, use Householder reduction on entries below the main
diagonal. Begin by letting Â∗1 denote the entries of the first column that are
below the (1,1)-position—this is illustrated below for n = 5:

A =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


 =

(
a11 Â1∗

Â∗1 A1

)
.

If R̂1 is an elementary reflector determined according to (5.7.1) for which

R̂1Â∗1 =


 ∗0

0
0


, then R1 =

(
1 0
0 R̂1

)
is an orthogonal matrix such that

R1AR1 =
(

1 0

0 R̂1

) (
a11 Â1∗

Â∗1 A1

)(
1 0

0 R̂1

)

=

(
a11 Â1∗R̂1

R̂1Â∗1 R̂1A1R̂1

)
=



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


 .

At the second step, repeat the process on A2 = R̂1A1R̂1 to obtain an orthogo-

nal matrix R̂2 such that R̂2A2R̂2 =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


. Matrix R2 =

(
I2 0
0 R̂2

)
is an orthogonal matrix such that

R2R1AR1R2 =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗


 .

After n − 2 of these steps, the product P = R1R2 · · ·Rn−2 is an orthogonal
matrix such that PTAP = H is in upper-Hessenberg form.
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Note: If A is a symmetric matrix, then HT = (PTAP)T = PTATP = H,
so H is symmetric. But as illustrated below for n = 5, a symmetric Hessenberg
form is a tridiagonal matrix,

H = PTAP =



∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


 ,

so the following useful corollary is obtained.
• Every real-symmetric matrix is orthogonally similar to a tridiagonal matrix,

and Householder reduction can be used to compute this tridiagonal matrix.
However, the Lanczos technique discussed on p. 651 can be much more effi-
cient.

Example 5.7.5

Problem: Compute the QR factors of a nonsingular upper-Hessenberg matrix
H ∈ �n×n.
Solution: Due to its smaller multiplication count, Householder reduction is
generally preferred over Givens reduction. The exception is for matrices that
have a zero pattern that can be exploited by the Givens method but not by
the Householder method. A Hessenberg matrix H is such an example. The
first step of Householder reduction completely destroys most of the zeros in
H, but applying plane rotations does not. This is illustrated below for a 5× 5
Hessenberg form—remember that the action of Pk,k+1 affects only the kth and
(k + 1)st rows.



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


 P12−−−→



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


 P23−−−→



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




P34−−−→



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗


 P45−−−→



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗


 .

In general, Pn−1,n · · ·P23P12H = R is upper triangular in which all diagonal
entries, except possibly the last, are positive—the last diagonal can be made pos-
itive by the technique illustrated in Example 5.7.2. Thus we obtain an orthogonal
matrix P such that PH = R, or H = QR in which Q = PT .
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Example 5.7.6

Jacobi Reduction.49 Given a real-symmetric matrix A, the result of Example
5.7.4 shows that Householder reduction can be used to construct an orthogonal
matrix P such that PTAP = T is tridiagonal. Can we do better?—i.e., can we
construct an orthogonal matrix P such that PTAP = D is a diagonal matrix?
Indeed we can, and much of the material in Chapter 7 concerning eigenvalues and
eigenvectors is devoted to this problem. But in the present context, this fact can
be constructively established by means of Jacobi’s diagonalization algorithm.

Jacobi’s Idea. If A ∈ �n×n is symmetric, then a plane rotation matrix can
be applied to reduce the magnitude of the off-diagonal entries. In particular,
suppose that aij �= 0 is the off-diagonal entry of maximal magnitude, and let
A′ denote the matrix obtained by setting each akk = 0. If Pij is the plane
rotation matrix described on p. 333 in which c = cos θ and s = sin θ, where
cot 2θ = (aii − ajj)/2aij , and if B = PTijAPij , then

(1) bij = bji = 0 (i.e., aij is annihilated),

(2) ‖B′‖2F = ‖A′‖2F − 2a2
ij ,

(3) ‖B′‖2F ≤
(

1− 2
n2 − n

)
‖A′‖2F .

Proof. The entries of B = PTijAPij that lay on the intersection of the ith and
jth rows with the ith and jth columns can be described by

B̂ =
(

bii bij
bji bjj

)
=

(
cos θ sin θ

− sin θ cos θ

) (
aii aij
aij ajj

) (
cos θ − sin θ
sin θ cos θ

)
= PT ÂP.

Use the identities cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 cos θ sin θ to verify
bij = bji = 0, and recall that ‖B̂‖F = ‖PT ÂP‖F = ‖Â‖F (recall Exercise

49
Karl Gustav Jacob Jacobi (1804–1851) first presented this method in 1846, and it was popular
for a time. But the twentieth-century development of electronic computers sparked tremendous
interest in numerical algorithms for diagonalizing symmetric matrices, and Jacobi’s method
quickly fell out of favor because it could not compete with newer procedures—at least on the
traditional sequential machines. However, the emergence of multiprocessor parallel computers
has resurrected interest in Jacobi’s method because of the inherent parallelism in the algorithm.
Jacobi was born in Potsdam, Germany, educated at the University of Berlin, and employed as
a professor at the University of Königsberg. During his prolific career he made contributions
that are still important facets of contemporary mathematics. His accomplishments include the
development of elliptic functions; a systematic development and presentation of the theory
of determinants; contributions to the theory of rotating liquids; and theorems in the areas of
differential equations, calculus of variations, and number theory. In contrast to his great con-
temporary Gauss, who disliked teaching and was anything but inspiring, Jacobi was regarded
as a great teacher (the introduction of the student seminar method is credited to him), and
he advocated the view that “the sole end of science is the honor of the human mind, and that
under this title a question about numbers is worth as much as a question about the system
of the world.” Jacobi once defended his excessive devotion to work by saying that “Only cab-
bages have no nerves, no worries. And what do they get out of their perfect wellbeing?” Jacobi
suffered a breakdown from overwork in 1843, and he died at the relatively young age of 46.
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5.6.9) to produce the conclusion b2ii + b2jj = a2
ii + 2a2

ij + a2
jj . Now use the fact

that bkk = akk for all k �= i, j together with ‖B‖F = ‖A‖F to write

‖B′‖2F = ‖B‖2F −
∑
k

b2kk = ‖B‖2F −
∑
k =i,j

b2kk −
(
b2ii + b2jj

)
= ‖A‖2F −

∑
k =i,j

a2
kk −

(
a2
ii + 2a2

ij + a2
jj

)
= ‖A‖2F −

∑
k

a2
kk − 2a2

ij

= ‖A′‖2F − 2a2
ij .

Furthermore, since a2
pq ≤ a2

ij for all p �= q,

‖A′‖2F =
∑
p=q

a2
pq ≤

∑
p=q

a2
ij = (n2 − n)a2

ij =⇒ −a2
ij ≤ −

‖A′‖2F
n2 − n

,

so

‖B′‖2F = ‖A′‖2F − 2a2
ij ≤ ‖A′‖2F − 2

‖A′‖2F
n2 − n

=
(

1− 2
n2 − n

)
‖A′‖2F .

Jacobi’s Diagonalization Algorithm. Start with A0 = A, and produce a
sequence of matrices Ak = PTkAk−1Pk, where at the kth step Pk is a plane
rotation constructed to annihilate the maximal off-diagonal entry in Ak−1. In
particular, if aij is the entry of maximal magnitude in Ak−1, then Pk is the
rotator in the (i, j)-plane defined by setting

s =
1√

1 + σ2
and c =

σ√
1 + σ2

=
√

1− s2, where σ =
(aii − ajj)

2aij
.

For n > 2 we have

‖A′
k‖

2
F ≤

(
1− 2

n2 − n

)k
‖A′‖2F → 0 as k →∞.

Therefore, if P(k) is the orthogonal matrix defined by P(k) = P1P2 · · ·Pk, then

lim
k→∞

P(k)TAP(k) = lim
k→∞

Ak = D

is a diagonal matrix.

Exercises for section 5.7

5.7.1. (a) Using Householder reduction, compute the QR factors of

A =


 1 19 −34
−2 −5 20

2 8 37


 .

(b) Repeat part (a) using Givens reduction.
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5.7.2. For A ∈ �m×n, suppose that rank (A) = n, and let P be an orthog-
onal matrix such that

PA = T =
(

Rn×n
0

)
,

where R is an upper-triangular matrix. If PT is partitioned as

PT = [Xm×n |Y] ,

explain why the columns of X constitute an orthonormal basis for
R (A).

5.7.3. By using Householder reduction, find an orthonormal basis for R (A),
where

A =




4 −3 4
2 −14 −3
−2 14 0

1 −7 15


 .

5.7.4. Use Householder reduction to compute the least squares solution for
Ax = b, where

A =




4 −3 4
2 −14 −3
−2 14 0

1 −7 15


 and b =




5
−15

0
30


 .

Hint: Make use of the factors you computed in Exercise 5.7.3.

5.7.5. If A = QR is the QR factorization for A, explain why ‖A‖F = ‖R‖F ,
where ‖�‖F is the Frobenius matrix norm introduced on p. 279.

5.7.6. Find an orthogonal matrix P such that PTAP = H is in upper-
Hessenberg form, where

A =


−2 3 −4

3 −25 50
−4 50 25


 .

5.7.7. Let H be an upper-Hessenberg matrix, and suppose that H = QR,
where R is a nonsingular upper-triangular matrix. Prove that Q as
well as the product RQ must also be in upper-Hessenberg form.

5.7.8. Approximately how many multiplications are needed to reduce an n× n
nonsingular upper-Hessenberg matrix to upper-triangular form by using
plane rotations?
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5.8 DISCRETE FOURIER TRANSFORM

For a positive integer n, the complex numbers
{
1, ω, ω2, . . . , ωn−1

}
, where

ω = e2πi/n = cos
2π
n

+ i sin
2π
n

are called the n throots of unity because they represent all solutions to zn = 1.
Geometrically, they are the vertices of a regular polygon of n sides as depicted
in Figure 5.8.1 for n = 3 and n = 6.

11

ωω ω2

ω2

ω3

ω4 ω5

n = 6n = 3

Figure 5.8.1

The roots of unity are cyclic in the sense that if k ≥ n, then ωk = ωk (mod n),
where k (mod n) denotes the remainder when k is divided by n—for example,
when n = 6, ω6 = 1, ω7 = ω, ω8 = ω2, ω9 = ω3, . . . .

The numbers
{
1, ξ, ξ2, . . . , ξn−1

}
, where

ξ = e−2πi/n = cos
2π
n
− i sin

2π
n

= ω

are also the nth roots of unity, but, as depicted in Figure 5.8.2 for n = 3 and
n = 6, they are listed in clockwise order around the unit circle rather than
counterclockwise.

1

ξ5ξ4

ξ3

ξ2 ξ

n = 6

1

ξ2

ξ

n = 3

Figure 5.8.2

The following identities will be useful in our development. If k is an integer,
then 1 = |ξk|2 = ξkξk implies that

ξ−k = ξk = ωk. (5.8.1)
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Furthermore, the fact that

ξk
(
1 + ξk + ξ2k + · · ·+ ξ(n−2)k + ξ(n−1)k

)
= ξk + ξ2k + · · ·+ ξ(n−1)k + 1

implies
(
1 + ξk + ξ2k + · · ·+ ξ(n−1)k

) (
1− ξk

)
= 0 and, consequently,

1 + ξk + ξ2k + · · ·+ ξ(n−1)k = 0 whenever ξk �= 1. (5.8.2)

Fourier Matrix
The n× n matrix whose (j, k)-entry is ξjk = ω−jk for 0 ≤ j, k ≤ n−1
is called the Fourier matrix of order n, and it has the form

Fn =




1 1 1 · · · 1
1 ξ ξ2 · · · ξn−1

1 ξ2 ξ4 · · · ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 · · · ξ



n×n

.

When the context makes it clear, the subscript n on Fn is omitted.

The Fourier matrix50 is a special case of the Vandermonde matrix introduced
in Example 4.3.4. Using (5.8.1) and (5.8.2), we see that the inner product of any
two columns in Fn, say, the rth and sth, is

F∗
∗rF∗s =

n−1∑
j=0

ξjrξjs =
n−1∑
j=0

ξ−jrξjs =
n−1∑
j=0

ξj(s−r) = 0.

In other words, the columns in Fn are mutually orthogonal. Furthermore, each
column in Fn has norm

√
n because

‖F∗k‖22 =
n−1∑
j=0

|ξjk|2 =
n−1∑
j=0

1 = n,

50
Some authors define the Fourier matrix using powers of ω rather than powers of ξ, and some

include a scalar multiple 1/n or 1/
√

n. These differences are superficial, and they do not
affect the basic properties. Our definition is the discrete counterpart of the integral operator

F (f) =
∫ ∞
−∞ x(t)e−i2πftdt that is usually taken as the definition of the continuous Fourier

transform.
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and consequently every column of Fn can be normalized by multiplying by the
same scalar—namely, 1/

√
n. This means that (1/

√
n )Fn is a unitary matrix.

Since it is also true that FTn = Fn, we have

(
1√
n
Fn

)−1

=
(

1√
n
Fn

)∗
=

1√
n
Fn,

and therefore F−1
n = Fn/n. But (5.8.1) says that ξk = ωk, so it must be the

case that

F−1
n =

1
n
Fn =

1
n




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ωn−2

...
...

...
. . .

...
1 ωn−1 ωn−2 · · · ω



n×n

.

Example 5.8.1

The Fourier matrices of orders 2 and 4 are given by

F2 =
(

1 1
1 −1

)
and F4 =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


 ,

and their inverses are

F−1
2 =

1
2
F2 =

1
2

(
1 1
1 −1

)
and F−1

4 =
1
4
F4 =

1
4




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 .

Discrete Fourier Transform
Given a vector xn×1, the product Fnx is called the discrete Fourier
transform of x, and F−1

n x is called the inverse transform of x.
The kth entries in Fnx and F−1

n x are given by

[Fnx]k =
n−1∑
j=0

xjξ
jk and [F−1

n x]k =
1
n

n−1∑
j=0

xjω
jk. (5.8.3)
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Example 5.8.2

Problem: Computing the Inverse Transform. Explain why any algorithm
or program designed to compute the discrete Fourier transform of a vector x
can also be used to compute the inverse transform of x.

Solution: Call such an algorithm FFT (see p. 373 for a specific example). The
fact that

F−1
n x =

Fnx
n

=
Fnx
n

means that FFT will return the inverse transform of x by executing the following
three steps:

(1) x←− x (compute x ).

(2) x←− FFT(x) (compute Fnx ).

(3) x←− (1/n)x (compute n−1Fnx = F−1
n x ).

For example, computing the inverse transform of x = ( i 0 −i 0 )T is ac-
complished as follows—recall that F4 was given in Example 5.8.1.

x =



−i
0
i
0


 , F4x =




0
−2i

0
−2i


 ,

1
4
F4x =

1
4




0
2i
0
2i


 = F−1

4 x.

You may wish to check that this answer agrees with the result obtained by
directly multiplying F−1

4 times x, where F−1
4 is given in Example 5.8.1.

Example 5.8.3

Signal Processing. Suppose that a microphone is placed under a hovering
helicopter, and suppose that Figure 5.8.3 represents the sound signal that is
recorded during 1 second of time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-4

-2

0
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4

6

Figure 5.8.3
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It seems reasonable to expect that the signal should have oscillatory components
together with some random noise contamination. That is, we expect the signal
to have the form

y(τ) =

(∑
k

αk cos 2πfkτ + βk sin 2πfkτ

)
+ Noise.

But due to the noise contamination, the oscillatory nature of the signal is only
barely apparent—the characteristic “chop-a chop-a chop-a” is not completely
clear. To reveal the oscillatory components, the magic of the Fourier transform
is employed. Let x be the vector obtained by sampling the signal at n equally
spaced points between time τ = 0 and τ = 1 ( n = 512 in our case), and let

y = (2/n)Fnx = a+ ib, where a = (2/n)Re (Fnx) and b = (2/n)Im (Fnx) .

Using only the first n/2 = 256 entries in a and ib, we plot the points in

{(0, a0), (1, a1), . . . , (255, a255)} and {(0, ib0), (1, ib1), . . . , (255, ib255)}

to produce the two graphs shown in Figure 5.8.4.
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Now there are some obvious characteristics—the plot of a in the top graph of
Figure 5.8.4 has a spike of height approximately 1 at entry 80, and the plot of
ib in the bottom graph has a spike of height approximately −2 at entry 50.
These two spikes indicate that the signal is made up primarily of two oscillatory
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components—the spike in the real vector a indicates that one of the oscillatory
components is a cosine of frequency 80 Hz (or period = 1/80 ) whose amplitude
is approximately 1, and the spike in the imaginary vector ib indicates there is a
sine component with frequency 50 Hz and amplitude of about 2. In other words,
the Fourier transform indicates that the signal is

y(τ) = cos 2π(80τ) + 2 sin 2π(50τ) + Noise.

In truth, the data shown in Figure 5.8.3 was artificially generated by contami-
nating the function y(τ) = cos 2π(80τ) + 2 sin 2π(50τ) with some normally dis-
tributed zero-mean noise, and therefore the plot of (2/n)Fnx shown in Figure
5.8.4 does indeed accurately reflect the true nature of the signal. To understand
why Fn reveals the hidden frequencies, let cos 2πft and sin 2πft denote the
discrete cosine and discrete sine vectors

cos 2πft =




cos
(
2πf · 0n

)
cos

(
2πf · 1n

)
cos

(
2πf · 2n

)
...

cos
(
2πf · n−1

n

)


 and sin 2πft =




sin
(
2πf · 0n

)
sin

(
2πf · 1n

)
sin

(
2πf · 2n

)
...

sin
(
2πf · n−1

n

)


 ,

where t = ( 0/n 1/n 2/n · · · n−1/n )T is the discrete time vector. If
the discrete exponential vectors ei2πft and e−i2πft are defined in the natural
way as ei2πft = cos 2πft + i sin 2πft and e−i2πft = cos 2πft − i sin 2πft, and
if 0 ≤ f < n is an integer frequency, 51 then

ei2πft =




ω0f

ω1f

ω2f

...
ω(n−1)f


 = n

[
F−1
n

]
∗f = nF−1

n ef ,

where ef is the n× 1 unit vector with a 1 in the f th component—remember
that components of vectors are indexed from 0 to n−1 throughout this section.
Similarly, the fact that

ξkf = ω−kf = 1ω−kf = ωknω−kf = ωk(n−f) for k = 0, 1, 2, . . .

allows us to conclude that if 0 ≤ n− f < n, then

e−i2πft =




ξ0f

ξ1f

ξ2f

...
ξ(n−1)f


 =




ω0(n−f)

ω1(n−f)

ω2(n−f)
...

ω(n−1)(n−f)


 = n

[
F−1
n

]
∗n−f = nF−1

n en−f .

51
The assumption that frequencies are integers is not overly harsh because the Fourier series for
a periodic function requires only integer frequencies—recall Example 5.4.6.
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Therefore, if 0 < f < n, then

Fnei2πft = nef and Fne−i2πft = nen−f . (5.8.4)

Because cos θ = (eiθ+e−iθ)/2 and sin θ = (eiθ−e−iθ)/2i, it follows from (5.8.4)
that for any scalars α and β,

Fn(α cos 2πft) = αFn

(
ei2πft + e−i2πft

2

)
=

nα

2
(ef + en−f )

and

Fn(β sin 2πft) = βFn

(
ei2πft − e−i2πft

2i

)
=

nβ

2i
(ef − en−f ) ,

so that
2
n
Fn(α cos 2πft) = αef + αen−f (5.8.5)

and
2
n
Fn(β sin 2πft) = −βief + βien−f . (5.8.6)

The trigonometric functions α cos 2πfτ and β sin 2πfτ have amplitudes α and
β, respectively, and their frequency is f (their period is 1/f ). The discrete
vectors α cos 2πft and β sin 2πft are obtained by evaluating α cos 2πfτ and
β sin 2πfτ at the discrete points in t = ( 0 1/n 2/n · · · (n− 1)/n )T . As
depicted in Figure 5.8.5 for n = 32 and f = 4, the vectors αef and αen−f
are interpreted as two pulses of magnitude α at frequencies f and n− f.

284 32168 24

α

Frequency

 n = 32      f = 4

0

(1/16)F( )

Time
-α

0

α

1

αcos πt

αcos πt

Figure 5.8.5
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The vector α cos 2πft is said to be in the time domain, while the pulses
αef and αen−f are said to be in the frequency domain. The situation for
β sin 2πft is similarly depicted in Figure 5.8.6 in which −βief and βien−f are
considered two pulses of height −β and β, respectively.

1

Time
-β

0

β

28

4

32168 24

β

- βi

i

Frequency

 n = 32      f = 4

0

(1/16)F( )

sin πtβ

sin πtβ

Figure 5.8.6

Therefore, if a waveform is given by a finite sum

x(τ) =
∑
k

(αk cos 2πfkτ + βk sin 2πfkτ)

in which the fk ’s are integers, and if x is the vector containing the values of
x(τ) at n equally spaced points between time τ = 0 and τ = 1, then, provided
that n is sufficiently large,

2
n
Fnx =

2
n
Fn

(∑
k

αk cos 2πfkt + βk sin 2πfkt

)

=
∑
k

2
n
Fn (αk cos 2πfkt) +

∑
k

2
n
Fn (βk sin 2πfkt)

=
∑
k

αk (efk
+ en−fk

) + i
∑
k

βk (−efk
+ en−fk

) ,

(5.8.7)

and this exposes the frequency and amplitude of each of the components. If n is
chosen so that max{fk} < n/2, then the pulses represented by ef and en−f are
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symmetric about the point n/2 in the frequency domain, and the information in
just the first (or second) half of the frequency domain completely characterizes
the original waveform—this is why only 128/2=64 points are plotted in the
graphs shown in Figure 5.8.4. In other words, if

y =
2
n
Fnx =

∑
k

αk (efk
+ en−fk

) + i
∑
k

βk (−efk
+ en−fk

) , (5.8.8)

then the information in

yn/2 =
∑
k

αkefk
− i

∑
k

βkefk
(the first half of y )

is enough to reconstruct the original waveform. For example, the equation of the
waveform shown in Figure 5.8.7 is

x(τ) = 3 cos 2πτ + 5 sin 2πτ, (5.8.9)
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and it is completely determined by the four values in

x =




x(0)
x(1/4)
x(1/2)
x(3/4)


 =




3
5
−3
−5


 .

To capture equation (5.8.9) from these four values, compute the vector y defined
by (5.8.8) to be

y =
2
4
F4x =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







3
5
−3
−5


 =




0
3− 5i

0
3 + 5i




=




0
3
0
3


 + i




0
−5

0
5


 = 3(e1 + e3) + 5i(−e1 + e3).
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The real part of y tells us there is a cosine component with amplitude = 3 and
frequency = 1, while the imaginary part of y says there is a sine component
with amplitude = 5 and frequency = 1. This is depicted in the frequency
domain shown in Figure 5.8.8.
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Putting this information together allows us to conclude that the equation of the
waveform must be x(τ) = 3 cos 2πτ + 5 sin 2πτ. Since

1 = max{fk} <
n

2
=

4
2

= 2,

the information in just the first half of y

yn/2 =
(

0
3

)
+ i

(
0
−5

)
= 3e1 − 5ie1

suffices to completely characterize x(τ).
These elementary ideas help explain why applying F to a sample from a

signal can reveal the oscillatory components of the signal. But there is still a
significant amount of theory that is well beyond the scope of this example. The
purpose here is to just hint at how useful the discrete Fourier transform is and
why it is so important in analyzing the nature of complicated waveforms.
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If

a =




α0

α1
...

αn−1



n×1

and b =




β0

β1
...

βn−1



n×1

,

then the vector

a% b=




α0β0

α0β1 + α1β0

α0β2 + α1β1 + α2β0
...

αn−2βn−1 + αn−1βn−2

αn−1βn−1

0



2n×1

(5.8.10)

is called the convolution of a and b. The 0 in the last position is for con-
venience only—it makes the size of the convolution twice the size of the origi-
nal vectors, and this provides a balance in some of the formulas involving con-
volution. Furthermore, it is sometimes convenient to pad a and b with n
additional zeros to consider them to be vectors with 2n components. Setting
αn = · · · = α2n−1 = βn = · · · = β2n−1 = 0 allows us to write the kth entry in
a% b as

[a% b]k =
k∑
j=0

αjβk−j for k = 0, 1, 2, . . . , 2n− 1.

A visual way to form a % b is to “slide” the reversal of b “against” a as
depicted in Figure 5.8.9, and then sum the resulting products.
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×

βn−1

...
β1

β0

α0
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αn−1

×
×

βn−1
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β1

β0

α0

α1

α2
...

αn−1

×
×
×

βn−1

...
β2

β1

β0

· · ·

α0
...

αn−2

αn−1

×
×

βn−1

βn−2

...
β0

α0
...

αn−2

αn−1×βn−1

βn−2

...
β0

Figure 5.8.9

The convolution operation is a natural occurrence in a variety of situations,
and polynomial multiplication is one such example.
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Example 5.8.4

Polynomial Multiplication. For p(x) =
∑n−1
k=0 αkx

k, q(x) =
∑n−1
k=0 βkx

k, let
a = (α0 α1 · · · αn−1 )T and b = (β0 β1 · · · βn−1 )T . The product
p(x)q(x) = γ0 + γ1x+ γ2x

2 + · · ·+ γ2n−2x
2n−2 is a polynomial of degree 2n− 2

in which γk is simply the kth component of the convolution a% b because

p(x)q(x) =
2n−2∑
k=0


 k∑
j=0

αjβk−j


xk =

2n−2∑
k=0

[a% b]kxk. (5.8.11)

In other words, polynomial multiplication and convolution are equivalent opera-
tions, so if we can devise an efficient way to perform a convolution, then we can
efficiently multiply two polynomials, and conversely.

There are two facets involved in efficiently performing a convolution. The
first is the realization that the discrete Fourier transform has the ability to
convert a convolution into an ordinary product, and vice versa. The second is
the realization that it’s possible to devise a fast algorithm to compute a discrete
Fourier transform. These two facets are developed below.

Convolution Theorem
Let a× b denote the entry-by-entry product

a× b =




α0

α1
...

αn−1


×




β0

β1
...

βn−1


 =




α0β0

α1β1
...

αn−1βn−1



n×1

,

and let â and b̂ be the padded vectors

â =




α0
...

αn−1

0
...
0



2n×1

and b̂ =




β0
...

βn−1

0
...
0



2n×1

.

If F = F2n is the Fourier matrix of order 2n, then

F(a% b) = (Fâ)× (Fb̂) and a% b = F−1
[
(Fâ)× (Fb̂)

]
. (5.8.12)
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Proof. Observe that the tth component in F∗j × F∗k is

[F∗j × F∗k]t = ξtjξtk = ξt(j+k) = [F∗j+k]t ,

so that the columns of F have the property that

F∗j × F∗k = F∗j+k for each j, k = 0, 1, . . . , (n− 1).

This means that if Fâ, Fb̂, and F(a % b) are expressed as combinations of
columns of F as indicated below,

Fâ =
n−1∑
k=0

αkF∗k, Fb̂ =
n−1∑
k=0

βkF∗k, and F(a% b) =
2n−2∑
k=0

[a% b]kF∗k,

then the computation of (Fâ)×(Fb̂) is exactly the same as forming the product
of two polynomials in the sense that

(Fâ)× (Fb̂) =

(
n−1∑
k=0

αkF∗k

) (
n−1∑
k=0

βkF∗k

)
=

2n−2∑
k=0


 k∑
j=0

αjβk−j


F∗k

=
2n−2∑
k=0

[a% b]kF∗k = F(a% b).

According to the convolution theorem, the convolution of two n× 1 vectors
can be computed by executing three discrete Fourier transforms of order 2n

an×1 % bn×1 = F−1
2n

[
(F2nâ)× (F2nb̂)

]
. (5.8.13)

The fact that one of them is an inverse transform is not a source of difficulty—
recall Example 5.8.2. But it is still not clear that much has been accomplished.
Performing a convolution by following the recipe called for in definition (5.8.10)
requires n2 scalar multiplications (you are asked to verify this in the exercises).
Performing a discrete Fourier transform of order 2n by standard matrix–vector
multiplication requires 4n2 scalar multiplications, so using matrix–vector multi-
plication to perform the computations on the right-hand side of (5.8.13) requires
at least 12 times the number of scalar multiplications demanded by the definition
of convolution. So, if there is an advantage to be gained by using the convolution
theorem, then it is necessary to be able to perform a discrete Fourier transform
in far fewer scalar multiplications than that required by standard matrix–vector
multiplication. It was not until 1965 that this hurdle was overcome. Two Ameri-
cans, J. W. Cooley and J. W. Tukey, introduced a fast Fourier transform (FFT)
algorithm that requires only on the order of (n/2) log2 n scalar multiplications
to compute Fnx. Using the FFT together with the convolution theorem requires
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only about 3n log2 n multiplications to perform a convolution of two n× 1 vec-
tors, and when n is large, this is significantly less than the n2 factor demanded
by the definition of convolution.

The magic of the fast Fourier transform algorithm emanates from the fact
that if n is a power of 2, then a discrete Fourier transform of order n can be
executed by performing two transforms of order n/2. To appreciate exactly how
this comes about, observe that when n = 2r we have

(
ξj

)n =
(
ξ2j

)n/2
, so{

1, ξ, ξ2, ξ3, . . . , ξn−1
}

= the nth roots of unity

if and only if{
1, ξ2, ξ4, ξ6, . . . , ξn−2

}
= the (n/2)th roots of unity.

This means that the (j, k)-entries in the Fourier matrices Fn and Fn/2 are

[Fn]jk = ξjk and [Fn/2]jk = (ξ2)jk = ξ2jk. (5.8.14)

If the columns of Fn are permuted so that columns with even subscripts are
listed before those with odd subscripts, and if PTn is the corresponding permu-
tation matrix, then we can partition FnPTn as

FnPTn = [F∗0 F∗2 · · · F∗n−2 |F∗1 F∗3 · · · F∗n−1] =

(
An

2×n
2

Bn
2×n

2

Cn
2×n

2
Gn

2×n
2

)
.

By using (5.8.14) together with the facts that

ξnk = 1 and ξn/2 = cos
2π(n/2)

n
− i sin

2π(n/2)
n

= −1,

we see that the entries in A, B, C, and G are

Ajk = Fj,2k = ξ2jk = [Fn/2]jk,

Bjk = Fj,2k+1 = ξj(2k+1) = ξjξ2jk = ξj [Fn/2]jk,

Cjk = Fn
2 +j, 2k = ξ( n

2 +j)2k = ξnkξ2jk = ξ2jk = [Fn/2]jk,

Gjk = Fn
2 +j, 2k+1 = ξ( n

2 +j)(2k+1) = ξnkξn/2ξjξ2jk = −ξjξ2jt = −ξj [Fn/2]jk.

In other words, if Dn/2 is the diagonal matrix

Dn/2 =




1
ξ

ξ2

. . .
ξ

n
2 −1


 ,

then

FnPTn =

(
A(n/2)×(n/2) B(n/2)×(n/2)

C(n/2)×(n/2) G(n/2)×(n/2)

)
=

(
Fn/2 Dn/2Fn/2

Fn/2 −Dn/2Fn/2

)
.

This fundamental feature of the discrete Fourier transform is summarized below.
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Decomposing the Fourier Matrix
If n = 2r, then

Fn =

(
Fn/2 Dn/2Fn/2

Fn/2 −Dn/2Fn/2

)
Pn, (5.8.15)

where

Dn/2 =




1
ξ

ξ2

. . .
ξ

n
2 −1




contains half of the nth roots of unity and Pn is the “even–odd” per-
mutation matrix defined by

PTn = [e0 e2 e4 · · · en−2 | e1 e3 e5 · · · en−1] .

The decomposition (5.8.15) says that a discrete Fourier transform of order
n = 2r can be accomplished by two Fourier transforms of order n/2 = 2r−1, and
this leads to the FFT algorithm. To get a feel for how the FFT works, consider
the case when n = 8, and proceed to “divide and conquer.” If

x8 =




x0

x1

x2

x3

x4

x5

x6

x7




, then P8x8 =




x0

x2

x4

x6

x1

x3

x5

x7




=


x(0)

4

x(1)
4


 ,

so

F8x8 =

(
F4 D4F4

F4 −D4F4

)
x(0)

4

x(1)
4


 =


F4x

(0)
4 + D4F4x

(1)
4

F4x
(0)
4 −D4F4x

(1)
4


 . (5.8.16)

But

P4x
(0)
4 =




x0

x4

x2

x6


 =


x(0)

2

x(1)
2


 and P4x

(1)
4 =




x1

x5

x3

x7


 =


x(2)

2

x(3)
2


 ,
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so

F4x
(0)
4 =

(
F2 D2F2

F2 −D2F2

)
x(0)

2

x(1)
2


 =


F2x

(0)
2 + D2F2x

(1)
2

F2x
(0)
2 −D2F2x

(1)
2




and (5.8.17)

F4x
(1)
4 =

(
F2 D2F2

F2 −D2F2

)
x(2)

2

x(3)
2


 =


F2x

(2)
2 + D2F2x

(3)
2

F2x
(2)
2 −D2F2x

(3)
2


 .

Now, since F2 =
(

1 1
1 −1

)
, it is a trivial matter to compute the terms

F2x
(0)
2 , F2x

(1)
2 , F2x

(2)
2 , F2x

(3)
2 .

Of course, to actually carry out the computation, we need to work backward
through the preceding sequence of steps. That is, we start with

x̃8 =




x(0)
2

x(1)
2

x(2)
2

x(3)
2




=




x0

x4

x2

x6

x1

x5

x3

x7




, (5.8.18)

and use (5.8.17) followed by (5.8.16) to work downward in the following tree.

F2x
(0)
2 F2x

(1)
2

↘ ↙
F4x

(0)
4

↘
↘

F2x
(2)
2 F2x

(3)
2

↘ ↙
F4x

(1)
4

↙
↙

F8x8

But there appears to be a snag. In order to work downward through this
tree, we cannot start directly with x8—we must start with the permutation x̃8

shown in (5.8.18). So how is this initial permutation determined? Looking back
reveals that the entries in x̃8 were obtained by first sorting the xj ’s into two
groups—the entries in the even positions were separated from those in the odd
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positions. Then each group was broken into two more groups by again separating
the entries in the even positions from those in the odd positions.(

0 1 2 3 4 5 6 7
)

↙ ↘(
0 2 4 6

) (
1 3 5 7

)
↙ ↘ ↙ ↘(

0 4
) (

2 6
) (

1 5
) (

3 7
)

(5.8.19)

In general, this even–odd sorting process (sometimes called a perfect shuffle)
produces the permutation necessary to initiate the algorithm. A clever way to
perform a perfect shuffle is to use binary representations and observe that the
first level of sorting in (5.8.19) is determined according to whether the least
significant bit is 0 or 1, the second level of sorting is determined by the second
least significant bit, and so on—this is illustrated in Table 5.8.1 for n = 8.

Table 5.8.1

Natural order First level Second level

0↔ 000 0↔ 000 0↔ 000
1↔ 001 2↔ 010 4↔ 100
2↔ 010 4↔ 100 2↔ 010
3↔ 011 6↔ 110 6↔ 110
4↔ 100 1↔ 001 1↔ 001
5↔ 101 3↔ 011 5↔ 101
6↔ 110 5↔ 101 3↔ 011
7↔ 111 7↔ 111 7↔ 111

But all intermediate levels in this sorting process can be eliminated because
something very nice occurs. Examination of the last column in Table 5.8.1 reveals
that the binary bits in the perfect shuffle ordering are exactly the reversal of the
binary bits in the natural ordering. In other words,

• to generate the perfect shuffle of the numbers 0, 1, 2, . . . , n−1, simply reverse
the bits in the binary representation of each number.

We can summarize the fast Fourier transform by the following implementa-
tion that utilizes array operations. 52

52
There are a variety of different ways to implement the FFT, and choosing a practical imple-
mentation frequently depends on the hardware being used as well as the application under
consideration. The FFT ranks high on the list of useful algorithms because it provides an ad-
vantage in a large variety of applications, and there are many more facets of the FFT than
those presented here (e.g., FFT when n is not a power of 2). In fact, there are entire texts
devoted to these issues, so the interested student need only go as far as the nearest library to
find more details.
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Fast Fourier Transform
For a given input vector x containing n = 2r components, the discrete
Fourier transform Fnx is the result of successively creating the following
arrays.

X1×n ←− rev(x) (bit reverse the subscripts)
For j = 0, 1, 2, 3, . . . , r − 1

D←−




1
e−πi/2

j

e−2πi/2j

e−3πi/2j

...
e−(2j−1)πi/2j



j+1×1

(Half of the (2j+1)th roots of 1,
perhaps from a lookup table)

X(0) ←−
(
X∗0 X∗2 X∗4 · · · X∗2r−j−2

)
2j×2r−j−1

X(1) ←−
(
X∗1 X∗3 X∗5 · · · X∗2r−j−1

)
2j×2r−j−1

X←−
(

X(0) + D×X(1)

X(0) −D×X(1)

)
2j+1×2r−j−1

(× denotes entry-
by-entry product

)

Example 5.8.5

Problem: Perform the FFT on x =


 x0

x1

x2

x3


.

Solution: Start with X←− rev(x) = (x0 x2 x1 x3 ) .

For j = 0 :

D←− (1) (Half of the square roots of 1)

X(0) ←− (x0 x1 )

X(1) ←− (x2 x3 ) and D×X(1) ←− (x2 x3 )

X←−
(

X(0) + D×X(1)

X(0) −D×X(1)

)
=

(
x0 + x2 x1 + x3

x0 − x2 x1 − x3

)
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For j = 1 :

D←−
(

1
−i

)
(Half of the 4th roots of 1)

X(0) ←−
(

x0 + x2

x0 − x2

)

X(1) ←−
(

x1 + x3

x1 − x3

)
and D×X(1) ←−

(
x1 + x3

−ix1 + ix3

)

X←−
(

X(0) + D×X(1)

X(0) −D×X(1)

)
=




x0 + x2 + x1 + x3

x0 − x2 − ix1 + ix3

x0 + x2 − x1 − x3

x0 − x2 + ix1 − ix3


 = F4x

Notice that this agrees with the result obtained by using direct matrix–vector
multiplication with F4 given in Example 5.8.1.

To understand why it is called the “fast” Fourier transform, simply count
the number of multiplications the FFT requires. Observe that the jth iteration
requires 2j multiplications for each column in X(1), and there are 2r−j−1

columns, so 2r−1 multiplications are used for each iteration.53 Since r iterations
are required, the total number of multiplications used by the FFT does not exceed
2r−1r = (n/2) log2 n.

FFT Multiplication Count
If n is a power of 2, then applying the FFT to a vector of n components
requires at most (n/2) log2 n multiplications.

The (n/2) log2 n count represents a tremendous advantage over the n2

factor demanded by a direct matrix–vector product. To appreciate the magnitude
of the difference between n2 and (n/2) log2 n, look at Figure 5.8.10.

53
Actually, we can get by with slightly fewer multiplications if we take advantage of the fact that
the first entry in D is always 1 and if we observe that no multiplications are necessary when
j = 0. But when n is large, these savings are relatively insignificant, so they are ignored in
the multiplication count.
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f(n) = n2

5122561280
0

100000

200000

300000

n

f(n) = (n/2) log2n

Figure 5.8.10

The small dark portion at the bottom of the graph is the area under the curve
f(n) = (n/2) log2 n—it is tiny in comparison to the area under f(n) = n2.
For example, if n = 512, then n2 = 262, 144, but (n/2) log2 n = 2304. In
other words, for n = 512, the FFT is on the order of 100 times faster than
straightforward matrix–vector multiplication, and for larger values of n, the
gap is even wider—Figure 5.8.10 illustrates just how fast the difference between
n2 and (n/2) log2 n grows as n increases. Since Cooley and Tukey introduced
the FFT in 1965, it has risen to a position of fundamental importance. The FFT
and the convolution theorem are extremely powerful tools, and they have been
principal components of the computational revolution that now touches our lives
countless times each day.

Example 5.8.6

Problem: Fast Integer Multiplication. Consider two positive integers whose
base-b representations are

c = (γn−1γn−2 · · · γ1γ0)b and d = (δn−1δn−2 · · · δ1δ0)b.

Use the convolution theorem together with the FFT to compute the product cd.

Solution: If we let

p(x) =
n−1∑
k=0

γkx
k, q(x) =

n−1∑
k=0

δkx
k, c =




γ0

γ1
...

γn−1


 , and d =




δ0
δ1
...

δn−1


 ,
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then
c = γn−1b

n−1 + γn−2b
n−2 + · · ·+ γ1b

1 + γ0b
0 = p(b),

d = δn−1b
n−1 + δn−2b

n−2 + · · ·+ δ1b
1 + δ0b

0 = q(b),

and it follows from (5.8.11) that the product cd is given by

cd = p(b)q(b) = [c%d]2n−2b
2n−2 +[c%d]2n−3b

2n−3 + · · ·+[c%d]1b1 +[c%d]0b0.

It looks as though the convolution c%d provides the base-b representation for
cd, but this is not quite the case because it is possible to have some [c%d]k ≥ b.
For example, if c = 20110 and d = 42510, then

c% d =


 1

0
2


%


 5

2
4


 =




5
2

14
4
8
0


 ,

so

cd = (8×104) + (4×103) + (14×102) + (2×101) + (5×100). (5.8.20)

But when numbers like 14 (i.e., greater than or equal to the base) appear in c%d,
it is relatively easy to decompose them by writing 14 = (1×101) + (4×100), so

14×102 =
[
(1×101) + (4×100)

]
×102 = (1×103) + (4×102).

Substituting this in (5.8.20) and combining coefficients of like powers produces
the base-10 representation of the product

cd = (8×104) + (5×103) + (4×102) + (2×101) + (5×100) = 8542510.

Computing c % d directly demands n2 multiplications, but using the FFT in
conjunction with the convolution theorem requires only about 3n log2 n mul-
tiplications, which is considerably less than n2 for large values of n. Thus it
is possible to multiply very long base-b integers much faster than by using di-
rect methods. Most digital computers have binary integer multiplication (usually
64-bit multiplication not requiring the FFT) built into their hardware, but for
ultra-high-precision multiplication or for more general base-b multiplication, the
FFT is a viable tool.

Exercises for section 5.8

5.8.1. Evaluate the following convolutions.

(a)


 1

2
3


%


 4

5
6


 . (b)


−1

0
1


%


 1

0
−1


 . (c)


 1

1
1


%


α0

α1

α2


 .
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5.8.2. (a) Evaluate the discrete Fourier transform of




1
−i
−1

i


 .

(b) Evaluate the inverse transform of




1
i

−1
−i


 .

5.8.3. Verify directly that F4 =
(

F2 D2F2

F2 −D2F2

)
P4, where the F4, P4, and

D2, are as defined in (5.8.15).

5.8.4. Use the following vectors to perform the indicated computations:

a =
(

α0

α1

)
, b =

(
β0

β1

)
, â =




α0

α1

0
0


 , b̂ =




β0

β1

0
0


 .

(a) Compute a% b, F4(a% b), and (F4â)× (F4b̂).
(b) By using F−1

4 as given in Example 5.8.1, compute

F−1
4

[
(F4â)× (F4b̂)

]
.

Compare this with the results guaranteed by the convolution
theorem.

5.8.5. For p(x) = 2x − 3 and q(x) = 3x − 4, compute the product p(x)q(x)
by using the convolution theorem.

5.8.6. Use convolutions to form the following products.
(a) 4310 × 2110. (b) 1238 × 6018. (c) 10102 × 11012.

5.8.7. Let a and b be n× 1 vectors, where n is a power of 2.
(a) Show that the number of multiplications required to form a%b

by using the definition of convolution is n2.
Hint: 1 + 2 + · · ·+ k = k(k + 1)/2.

(b) Show that the number of multiplications required to form a%b
by using the FFT in conjunction with the convolution theorem
is 3n log2 n+7n. Sketch a graph of 3n log2 n (the 7n factor is
dropped because it is not significant), and compare it with the
graph of n2 to illustrate why the FFT in conjunction with the
convolution theorem provides such a big advantage.
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5.8.8. A waveform given by a finite sum

x(τ) =
∑
k

(αk cos 2πfkτ + βk sin 2πfkτ)

in which the fk ’s are integers and max{fk} ≤ 3 is sampled at eight
equally spaced points between τ = 0 and τ = 1. Let

x =




x(0/8)
x(1/8)
x(2/8)
x(3/8)
x(4/8)
x(5/8)
x(6/8)
x(7/8)




, and suppose that y =
1
4
F8x =




0
−5i
1− 3i

4
0
4

1 + 3i
5i




.

What is the equation of the waveform?

5.8.9. Prove that a % b = b % a for all a, b ∈ Cn—i.e., convolution is a
commutative operation.

5.8.10. For p(x) =
∑n−1
k=0 αkx

k and the nth roots of unity ξk, let

a = (α0 α1 α2 · · ·αn−1 )T and p = ( p(1) p(ξ) p(ξ2) · · · p(ξn−1) )T .

Explain why Fna = p and a = F−1
n p. This says that the discrete

Fourier transform allows us to go from the representation of a polynomial
p in terms of its coefficients αk to the representation of p in terms of its
values p(ξk), and the inverse transform takes us in the other direction.

5.8.11. For two polynomials p(x) =
∑n−1
k=0 αkx

k and q(x) =
∑n−1
k=0 βkx

k, let

p =




p(1)
p(ξ)

...
p(ξ2n−1)


 and q =




q(1)
q(ξ)

...
q(ξ2n−1)


 ,

where
{
1, ξ, ξ2, . . . , ξ2n−1

}
are now the 2nth roots of unity. Explain

why the coefficients in the product
p(x)q(x) = γ0 + γ1x + γ2x

2 + · · ·+ γ2n−2x
2n−2

must be given by 


γ0

γ1

γ2
...


 = F−1

2n




p(1)q(1)
p(ξ)q(ξ)
p(ξ2)q(ξ2)

...


 .

This says that the product p(x)q(x) is completely determined by the
values of p(x) and q(x) at the 2nth roots of unity.
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5.8.12. A circulant matrix is defined to be a square matrix that has the form

C =




c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 · · · c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0



n×n

.

In other words, the entries in each column are the same as the previous
column, but they are shifted one position downward and wrapped around
at the top—the (j, k)-entry in C can be described as cjk = cj−k (mod n).

(Some authors use CT rather than C as the definition—it doesn’t
matter.)

(a) If Q is the circulant matrix defined by

Q =




0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



n×n

,

and if p(x) = c0 + c1x + · · ·+ cn−1x
n−1, verify that

C = p(Q) = c0I + c1Q + · · ·+ cn−1Qn−1.

(b) Explain why the Fourier matrix of order n diagonalizes Q in
the sense that

FQF−1 = D =




1 0 · · · 0
0 ξ · · · 0
...

...
. . .

...
0 0 · · · ξn−1


,

where the ξk ’s are the nth roots of unity.
(c) Prove that the Fourier matrix of order n diagonalizes every

n× n circulant in the sense that

FCF−1 =




p(1) 0 · · · 0
0 p(ξ) · · · 0
...

...
. . .

...
0 0 · · · p(ξn−1)


,

where p(x) = c0 + c1x + · · ·+ cn−1x
n−1.

(d) If C1 and C2 are any pair of n× n circulants, explain why
C1C2 = C2C1—i.e., all circulants commute with each other.
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5.8.13. For a nonsingular circulant Cn×n, explain how to use the FFT algo-
rithm to efficiently perform the following operations.

(a) Solve a system Cx = b.
(b) Compute C−1.
(c) Multiply two circulants C1C2.

5.8.14. For the vectors

a=




α0

α1
...

αn−1


, b=




β0

β1
...

βn−1


, â=




α0
...

αn−1

0
...
0



2n×1

, and b̂=




β0
...

βn−1

0
...
0



2n×1

,

let C be the 2n× 2n circulant matrix (see Exercise 5.8.12) whose first
column is â.

(a) Show that the convolution operation can be described as a
matrix–vector product by demonstrating that

a% b = Cb̂.

(b) Use this relationship to give an alternate proof of the convolu-
tion theorem. Hint: Use the diagonalization result of Exercise
5.8.12 together with the result of Exercise 5.8.10.

5.8.15. The Kronecker product of two matrices Am×n and Bp×q is defined
to be the mp× nq matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


 .

This is also known as the tensor product or the direct product. Al-
though there is an extensive list of properties that the tensor product
satisfies, this exercise requires only the following two elementary facts
(which you need not prove unless you feel up to it). The complete list of
properties is given in Exercise 7.8.11 (p. 597) along with remarks about
Kronecker, and another application appears in Exercise 7.6.10 (p. 573).

A⊗ (B⊗C) = (A⊗B)⊗C.
(A⊗B)(C⊗D) = AC⊗BD (if AC and BD exist).
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(a) If n = 2r, and if Pn is the even–odd permutation matrix
described in (5.8.15), explain why

Rn = (I2r−1 ⊗P21)(I2r−2 ⊗P22) · · · (I21 ⊗P2r−1)(I20 ⊗P2r )

is the permutation matrix associated with the bit reversing (or
perfect shuffle) permutation described in (5.8.19) and Table
5.8.1. Hint: Work it out for n = 8 by showing

R8




x0

x1

x2

x3

x4

x5

x6

x7




=




x0

x4

x2

x6

x1

x5

x3

x7




,

and you will see why it holds in general.
(b) Suppose n = 2r, and set

Bn =

(
In/2 Dn/2

In/2 −Dn/2

)
.

According to (5.8.15), the Fourier matrix can be written as

Fn = Bn(I2 ⊗ Fn/2)Pn.

Expand on this idea by proving that Fn can be factored as

Fn = LnRn
in which

Ln = (I20 ⊗B2r )(I21 ⊗B2r−1) · · · (I2r−2 ⊗B22)(I2r−1 ⊗B21),

and where Rn is the bit reversing permutation

Rn = (I2r−1 ⊗P21)(I2r−2 ⊗P22) · · · (I21 ⊗P2r−1)(I20 ⊗P2r ).

Notice that this says Fnx = LnRnx, so the discrete Fourier
transform of x is obtained by first performing the bit revers-
ing permutation to x followed by r applications of the terms
(I2r−k ⊗ B2k) from Ln. This in fact is the FFT algorithm in
factored form. Hint: Define two sequences by the rules

L2k = (I2r−k ⊗B2k)L2k−1 and R2k = R2k−1 (I2r−k ⊗P2k) ,

where
L1 = 1, R1 = In, B2 = F2, P2 = I2,

and use induction on k to prove that

I2r−k ⊗ F2k = L2kR2k for k = 1, 2, . . . , r.
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5.8.16. For p(x) = α0 + α1x + α2x
2 + · · ·+ αn−1x

n−1, prove that

1
n

n−1∑
k=0

∣∣p(ξk)∣∣2 = |α0|2 + |α1|2 + · · ·+ |αn−1|2,

where
{
1, ξ, ξ2, . . . , ξn−1

}
are the nth roots of unity.

5.8.17. Consider a waveform that is given by the finite sum

x(τ) =
∑
k

(αk cos 2πfkτ + βk sin 2πfkτ)

in which the fk ’s are distinct integers, and let

x =
∑
k

(αk cos 2πfkt + βk sin 2πfkt)

be the vector containing the values of x(τ) at n > 2 max{fk} equally
spaced points between τ = 0 and τ = 1 as described in Example 5.8.3.
Use the discrete Fourier transform to prove that

‖x‖22 =
n

2

∑
k

(
α2
k + β2

k

)
.

5.8.18. Let η be an arbitrary scalar, and let

c =




1
η
η2

...
η2n−1


 and a =




α0

α1
...

αn−1


 .

Prove that cT (a% a) =
(
cT â

)2
.

5.8.19. Apply the FFT algorithm to the vector x8 =




x0

x1

..

.
x7


, and then verify

that your answer agrees with the result obtained by computing F8x8

directly.
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5.9 COMPLEMENTARY SUBSPACES

The sum of two subspaces X and Y of a vector space V was defined on p. 166
to be the set X + Y = {x + y | x ∈ X and y ∈ Y}, and it was established that
X + Y is another subspace of V. For example, consider the two subspaces of
�3 shown in Figure 5.9.1 in which X is a plane through the origin, and Y is a
line through the origin.

Figure 5.9.1

Notice that X and Y are disjoint in the sense that X ∩ Y = 0. The paral-
lelogram law for vector addition makes it clear that X + Y = �3 because each
vector in �3 can be written as “something from X plus something from Y. ”
Thus �3 is resolved into a pair of disjoint components X and Y. These ideas
generalize as described below.

Complementary Subspaces
Subspaces X , Y of a space V are said to be complementary whenever

V = X + Y and X ∩ Y = 0, (5.9.1)

in which case V is said to be the direct sum of X and Y, and this is
denoted by writing V = X ⊕ Y.
• For a vector space V with subspaces X ,Y having respective bases
BX and BY , the following statements are equivalent.
, V = X ⊕ Y. (5.9.2)
, For each v ∈ V there are unique vectors x ∈ X and y ∈ Y

such that v = x + y. (5.9.3)
, BX ∩ BY = φ and BX ∪ BY is a basis for V. (5.9.4)
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Prove these by arguing (5.9.2) =⇒ (5.9.3) =⇒ (5.9.4) =⇒ (5.9.2).
Proof of (5.9.2) =⇒ (5.9.3). First recall from (4.4.19) that

dimV = dim (X + Y) = dimX + dimY − dim (X ∩ Y) .

If V = X ⊕ Y, then X ∩ Y = 0, and thus dimV = dimX + dimY. To prove
(5.9.3), suppose there are two ways to represent a vector v ∈ V as “something
from X plus something from Y. ” If v = x1 +y1 = x2 +y2, where x1,x2 ∈ X
and y1,y2 ∈ Y, then

x1 − x2 = y2 − y1 =⇒




x1 − x2 ∈ X
and

x1 − x2 ∈ Y


 =⇒ x1 − x2 ∈ X ∩ Y.

But X ∩ Y = 0, so x1 = x2 and y1 = y2.

Proof of (5.9.3) =⇒ (5.9.4). The hypothesis insures that V = X +Y, and we
know from (4.1.2) that BX ∪BY spans X +Y, so BX ∪BY must be a spanning
set for V. To prove BX ∪BY is linearly independent, let BX = {x1,x2, . . . ,xr}
and BY = {y1,y2, . . . ,ys} , and suppose that

0 =
r∑
i=1

αixi +
s∑
j=1

βjyj .

This is one way to express 0 as “something from X plus something from Y, ”
while 0 = 0 + 0 is another way. Consequently, (5.9.3) guarantees that

r∑
i=1

αixi = 0 and
s∑
j=1

βjyj = 0,

and hence α1 = α2 = · · · = αr = 0 and β1 = β2 = · · · = βs = 0 because
BX and BY are both linearly independent. Therefore, BX ∪ BY is linearly
independent, and hence it is a basis for V.
Proof of (5.9.4) =⇒ (5.9.2). If BX ∪BY is a basis for V, then BX ∪BY is a
linearly independent set. This together with the fact that BX ∪BY always spans
X + Y means BX ∪ BY is a basis for X + Y as well as for V. Consequently,
V = X + Y, and hence

dimX + dimY = dimV = dim(X + Y) = dimX + dimY − dim (X ∩ Y) ,

so dim (X ∩ Y) = 0 or, equivalently, X ∩ Y = 0.

If V = X ⊕ Y, then (5.9.3) says there is one and only one way to resolve
each v ∈ V into an “X -component” and a “Y -component” so that v = x + y.
These two components of v have a definite geometrical interpretation. Look
back at Figure 5.9.1 in which �3 = X ⊕Y, where X is a plane and Y is a line
outside the plane, and notice that x (the X -component of v ) is the result of
projecting v onto X along a line parallel to Y, and y (the Y -component of
v ) is obtained by projecting v onto Y along a line parallel to X . This leads
to the following formal definition of a projection.
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Projection
Suppose that V = X ⊕ Y so that for each v ∈ V there are unique
vectors x ∈ X and y ∈ Y such that v = x + y.

• The vector x is called the projection of v onto X along Y.
• The vector y is called the projection of v onto Y along X .

It’s clear that if X ⊥ Y in Figure 5.9.1, then this notion of projection
agrees with the concept of orthogonal projection that was discussed on p. 322.
The phrase “oblique projection” is sometimes used to emphasize the fact that
X and Y are not orthogonal subspaces. In this text the word “projection” is
synonymous with the term “oblique projection.” If it is known that X ⊥ Y, then
we explicitly say “orthogonal projection.” Orthogonal projections are discussed
in detail on p. 429.

Given a pair of complementary subspaces X and Y of �n and an arbitrary
vector v ∈ �n = X ⊕ Y, how can the projection of v onto X be computed?
One way is to build a projector (a projection operator) that is a matrix Pn×n
with the property that for each v ∈ �n, the product Pv is the projection of
v onto X along Y. Let BX = {x1,x2, . . . ,xr} and BY = {y1,y2, . . . ,yn−r}
be respective bases for X and Y so that BX ∪ BY is a basis for �n—recall
(5.9.4). This guarantees that if the xi ’s and yi ’s are placed as columns in

Bn×n =
[
x1 x2 · · ·xr |y1 y2 · · ·yn−r

]
=

[
Xn×r |Yn×(n−r)

]
,

then B is nonsingular. If Pn×n is to have the property that Pv is the pro-
jection of v onto X along Y for every v ∈ �n, then (5.9.3) implies that
Pxi = xi, i = 1, 2, . . . , r and Pyj = 0, j = 1, 2, . . . , n− r, so

PB = P
[
X |Y

]
=

[
PX |PY

]
=

[
X |0

]
and, consequently,

P =
[
X |0

]
B−1 = B

(
Ir 0
0 0

)
B−1. (5.9.5)

To argue that Pv is indeed the projection of v onto X along Y, set x = Pv
and y = (I−P)v and observe that v = x + y, where

x = Pv =
[
X |0

]
B−1v ∈ R (X) = X (5.9.6)

and

y = (I−P)v = B
(

0 0
0 In−r

)
B−1v =

[
0 |Y

]
B−1v ∈ R (Y) = Y. (5.9.7)
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Is it possible that there can be more than one projector onto X along
Y ? No, P is unique because if P1 and P2 are two such projectors, then for
i = 1, 2, we have PiB = Pi

[
X |Y

]
=

[
PiX |PiY

]
=

[
X |0

]
, and this implies

P1B = P2B, which means P1 = P2. Therefore, (5.9.5) is the projector onto
X along Y, and this formula for P is independent of which pair of bases for X
and Y is selected. Notice that the argument involving (5.9.6) and (5.9.7) also
establishes that the complementary projector—the projector onto Y along
X —must be given by

Q = I−P =
[
0 |Y

]
B−1 = B

(
0 0
0 In−r

)
B−1.

Below is a summary of the basic properties of projectors.

Projectors
Let X and Y be complementary subspaces of a vector space V so that
each v ∈ V can be uniquely resolved as v = x + y, where x ∈ X and
y ∈ Y. The unique linear operator P defined by Pv = x is called the
projector onto X along Y, and P has the following properties.

• P2 = P ( P is idempotent). (5.9.8)

• I−P is the complementary projector onto Y along X . (5.9.9)

• R (P) = {x |Px = x} (the set of “fixed points” for P ). (5.9.10)

• R (P) = N (I−P) = X and R (I−P) = N (P) = Y. (5.9.11)

• If V = �n or Cn, then P is given by

P =
[
X |0

][
X |Y

]−1 =
[
X |Y

](
I 0
0 0

) [
X |Y

]−1
, (5.9.12)

where the columns of X and Y are respective bases for X and Y.
Other formulas for P are given on p. 634.

Proof. Some of these properties have already been derived in the context of
�n. But since the concepts of projections and projectors are valid for all vector
spaces, more general arguments that do not rely on properties of �n will be
provided. Uniqueness is evident because if P1 and P2 both satisfy the defining
condition, then P1v = P2v for every v ∈ V, and thus P1 = P2. The linearity
of P follows because if v1 = x1 +y1 and v2 = x2 +y2, where x1,x2 ∈ X and
y1,y2 ∈ Y, then P(αv1 + v2) = αx1 + x2 = αPv1 + Pv2. To prove that P is
idempotent, write

P2v = P(Pv) = Px = x = Pv for every v ∈ V =⇒ P2 = P.
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The validity of (5.9.9) is established by observing that v = x + y = Pv + y
implies y = v − Pv = (I − P)v. The properties in (5.9.11) and (5.9.10) are
immediate consequences of the definition. Formula (5.9.12) is the result of the
arguments that culminated in (5.9.5), but it can be more elegantly derived by
making use of the material in §4.7 and §4.8. If BX and BY are bases for X
and Y, respectively, then B = BX ∪ BY = {x1,x2, . . . ,xr,y1,y2, . . . ,yn−r} is
a basis for V, and (4.7.4) says that the matrix of P with respect to B is

[P]B =
[
[Px1]B

∣∣∣ · · · ∣∣∣ [Pxr]B
∣∣∣ [Py1]B

∣∣∣ · · · ∣∣∣ [Pyn−r]B
]

=
[
[x1]B

∣∣∣ · · · ∣∣∣ [xr]B
∣∣∣ [0]B

∣∣∣ · · · ∣∣∣ [0]B
]

=
[
e1

∣∣∣ · · · ∣∣∣ er
∣∣∣ 0

∣∣∣ · · · ∣∣∣ 0
]

=
(

Ir 0
0 0

)
.

If S is the standard basis, then (4.8.5) says that [P]B = B−1[P]SB in which

B = [I]BS =
[

[x1]S
∣∣∣ · · · ∣∣∣ [xr]S

∣∣∣ [y1]S · · ·
∣∣∣ [yn−r]S

]
=

[
X |Y

]
,

and therefore [P]S = B[P]BB−1 =
[
X |Y

]( Ir 0
0 0

)[
X |Y

]−1
.

In the language of §4.8, statement (5.9.12) says that P is similar to the
diagonal matrix

(
I 0
0 0

)
. In the language of §4.9, this means that P must be

the matrix representation of the linear operator that when restricted to X is
the identity operator and when restricted to Y is the zero operator.

Statement (5.9.8) says that if P is a projector, then P is idempotent
( P2 = P ). But what about the converse—is every idempotent linear operator
necessarily a projector? The following theorem says, “Yes.”

Projectors and Idempotents
A linear operator P on V is a projector if and only if P2 = P. (5.9.13)

Proof. The fact that every projector is idempotent was proven in (5.9.8). The
proof of the converse rests on the fact that

P2 = P =⇒ R (P) and N (P) are complementary subspaces. (5.9.14)

To prove this, observe that V = R (P) + N (P) because for each v ∈ V,

v = Pv + (I−P)v, where Pv ∈ R (P) and (I−P)v ∈ N (P). (5.9.15)
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Furthermore, R (P) ∩N (P) = 0 because

x ∈ R (P) ∩N (P) =⇒ x = Py and Px = 0 =⇒ x = Py = P2y = 0,

and thus (5.9.14) is established. Now that we know R (P) and N (P) are com-
plementary, we can conclude that P is a projector because each v ∈ V can be
uniquely written as v = x + y, where x ∈ R (P) and y ∈ N (P), and (5.9.15)
guarantees Pv = x.

Notice that there is a one-to-one correspondence between the set of idem-
potents (or projectors) defined on a vector space V and the set of all pairs of
complementary subspaces of V in the following sense.
• Each idempotent P defines a pair of complementary spaces—namely, R (P)

and N (P).
• Every pair of complementary subspaces X and Y defines an idempotent—

namely, the projector onto X along Y.
Example 5.9.1

Problem: Let X and Y be the subspaces of �3 that are spanned by

BX =





 1
−1
−1


 ,


 0

1
−2





 and BY =





 1
−1

0





 ,

respectively. Explain why X and Y are complementary, and then determine
the projector onto X along Y. What is the projection of v = (−2 1 3 )T

onto X along Y? What is the projection of v onto Y along X ?

Solution: BX and BY are linearly independent, so they are bases for X and
Y, respectively. The spaces X and Y are complementary because

rank [X |Y] = rank


 1 0 1
−1 1 −1
−1 −2 0


 = 3

insures that BX ∪ BY is a basis for �3—recall (5.9.4). The projector onto X
along Y is obtained from (5.9.12) as

P=
[
X |0

][
X |Y

]−1 =


 1 0 0
−1 1 0
−1 −2 0





−2 −2 −1

1 1 0
3 2 1


 =


−2 −2 −1

3 3 1
0 0 1


.

You may wish to verify that P is indeed idempotent. The projection of v onto
X along Y is Pv, and, according to (5.9.9), the projection of v onto Y along
X is (I−P)v.
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Example 5.9.2

Angle between Complementary Subspaces. The angle between nonzero
vectors u and v in �n was defined on p. 295 to be the number 0 ≤ θ ≤
π/2 such that cos θ = vTu/ ‖v‖2 ‖u‖2 . It’s natural to try to extend this idea
to somehow make sense of angles between subspaces of �n. Angles between
completely general subspaces are presently out of our reach—they are discussed
in §5.15—but the angle between a pair of complementary subspaces is within
our grasp. When �n = R⊕N with R �= 0 �= N , the angle (also known as the
minimal angle) between R and N is defined to be the number 0 < θ ≤ π/2
that satisfies

cos θ = max
u∈R
v∈N

vTu
‖v‖2 ‖u‖2

= max
u∈R,v∈N

‖u‖2=‖v‖2=1

vTu. (5.9.16)

While this is a good definition, it’s not easy to use—especially if one wants to
compute the numerical value of cos θ. The trick in making θ more accessible
is to think in terms of projections and sin θ = (1 − cos2 θ)1/2. Let P be the
projector such that R (P) = R and N (P) = N , and recall that the matrix
2-norm (p. 281) of P is

‖P‖2 = max
‖x‖2=1

‖Px‖2 . (5.9.17)

In other words, ‖P‖2 is the length of a longest vector in the image of the unit
sphere under transformation by P. To understand how sin θ is related to ‖P‖2 ,
consider the situation in �3. The image of the unit sphere under P is obtained
by projecting the sphere onto R along lines parallel to N . As depicted in
Figure 5.9.2, the result is an ellipse in R.

x

v
θγ θγ

=max
‖x‖=1

‖Px ‖ ‖P=‖ ‖v ‖

Figure 5.9.2

The norm of a longest vector v on this ellipse equals the norm of P. That is,
‖v‖2 = max‖x‖2=1 ‖Px‖2 = ‖P‖2 , and it is apparent from the right triangle in
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Figure 5.9.2 that

sin θ =
‖x‖2
‖v‖2

=
1
‖v‖2

=
1
‖P‖2

. (5.9.18)

A little reflection on the geometry associated with Figure 5.9.2 should convince
you that in �3 a number θ satisfies (5.9.16) if and only if θ satisfies (5.9.18)—a
completely rigorous proof validating this fact in �n is given in §5.15.

Note: Recall from p. 281 that ‖P‖2 =
√
λmax, where λmax is the largest

number λ such that PTP− λI is a singular matrix. Consequently,

sin θ =
1
‖P‖2

=
1√
λmax

.

Numbers λ such that PTP − λI is singular are called eigenvalues of PTP
(they are the main topic of discussion in Chapter 7, p. 489), and the numbers√
λ are the singular values of P discussed on p. 411.

Exercises for section 5.9

5.9.1. Let X and Y be subspaces of �3 whose respective bases are

BX =





 1

1
1


 ,


 1

2
2





 and BY =





 1

2
3





 .

(a) Explain why X and Y are complementary subspaces of �3.
(b) Determine the projector P onto X along Y as well as the

complementary projector Q onto Y along X .

(c) Determine the projection of v =
(

2
−1

1

)
onto Y along X .

(d) Verify that P and Q are both idempotent.
(e) Verify that R (P) = X = N (Q) and N (P) = Y = R (Q).

5.9.2. Construct an example of a pair of nontrivial complementary subspaces
of �5, and explain why your example is valid.

5.9.3. Construct an example to show that if V = X +Y but X ∩Y �= 0, then
a vector v ∈ V can have two different representations as

v = x1 + y1 and v = x2 + y2,

where x1,x2 ∈ X and y1,y2 ∈ Y, but x1 �= x2 and y1 �= y2.
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5.9.4. Explain why �n×n = S ⊕ K, where S and K are the subspaces of
n× n symmetric and skew-symmetric matrices, respectively. What is

the projection of A =
(

1 2 3
4 5 6
7 8 9

)
onto S along K? Hint: Recall

Exercise 3.2.6.

5.9.5. For a general vector space, let X and Y be two subspaces with respec-
tive bases BX = {x1,x2, . . . ,xm} and BY = {y1,y2, . . . ,yn} .

(a) Prove that X ∩ Y = 0 if and only if {x1, . . . ,xm,y1, . . . ,yn}
is a linearly independent set.

(b) Does BX ∪ BY being linear independent imply X ∩ Y = 0?
(c) If BX ∪BY is a linearly independent set, does it follow that X

and Y are complementary subspaces? Why?

5.9.6. Let P be a projector defined on a vector space V. Prove that (5.9.10)
is true—i.e., prove that the range of a projector is the set of its “fixed
points” in the sense that R (P) = {x ∈ V |Px = x}.

5.9.7. Suppose that V = X ⊕ Y, and let P be the projector onto X along
Y. Prove that (5.9.11) is true—i.e., prove

R (P) = N (I−P) = X and R (I−P) = N (P) = Y.

5.9.8. Explain why ‖P‖2 ≥ 1 for every projector P �= 0. When is ‖P‖2 = 1?

5.9.9. Explain why ‖I−P‖2 = ‖P‖2 for all projectors that are not zero and
not equal to the identity.

5.9.10. Prove that if u,v ∈ �n×1 are vectors such that vTu = 1, then∥∥I− uvT
∥∥

2
=

∥∥uvT
∥∥

2
= ‖u‖2 ‖v‖2 =

∥∥uvT
∥∥
F
,

where ‖�‖F is the Frobenius matrix norm defined in (5.2.1) on p. 279.

5.9.11. Suppose that X and Y are complementary subspaces of �n, and let
B = [X |Y] be a nonsingular matrix in which the columns of X and
Y constitute respective bases for X and Y. For an arbitrary vector
v ∈ �n×1, explain why the projection of v onto X along Y can be
obtained by the following two-step process.

(1) Solve the system Bz = v for z.

(2) Partition z as z =
(

z1

z2

)
, and set p = Xz1.
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5.9.12. Let P and Q be projectors.
(a) Prove R (P) = R (Q) if and only if PQ = Q and QP = P.

(b) Prove N (P) = N (Q) if and only if PQ = P and QP = Q.

(c) Prove that if E1,E2, . . . ,Ek are projectors with the same range,
and if α1, α2, . . . , αk are scalars such that

∑
j αj = 1, then∑

j αjEj is a projector.

5.9.13. Prove that rank (P) = trace (P) for every projector P defined on �n.
Hint: Recall Example 3.6.5 (p. 110).

5.9.14. Let {Xi}ki=1 be a collection of subspaces from a vector space V, and
let Bi denote a basis for Xi. Prove that the following statements are
equivalent.

(i) V = X1 + X2 + · · · + Xk and Xj ∩ (X1 + · · · + Xj−1) = 0 for
each j = 2, 3, . . . , k.

(ii) For each vector v ∈ V, there is one and only one way to write
v = x1 + x2 + · · ·+ xk, where xi ∈ Xi.

(iii) B = B1 ∪ B2 ∪ · · · ∪ Bk with Bi ∩ Bj = φ for i �= j is a basis
for V.

Whenever any one of the above statements is true, V is said to be the
direct sum of the Xi ’s, and we write V = X1 ⊕X2 ⊕ · · · ⊕ Xk. Notice
that for k = 2, (i) and (5.9.1) say the same thing, and (ii) and (iii)
reduce to (5.9.3) and (5.9.4), respectively.

5.9.15. For complementary subspaces X and Y of �n, let P be the projec-
tor onto X along Y, and let Q = [X |Y] in which the columns of
X and Y constitute bases for X and Y, respectively. Prove that if
Q−1An×nQ is partitioned as Q−1AQ =

(
A11 A12

A21 A22

)
, then

Q
(

A11 0
0 0

)
Q−1=PAP, Q

(
0 A12

0 0

)
Q−1 = PA(I−P),

Q
(

0 0
A21 0

)
Q−1= (I−P)AP, Q

(
0 0
0 A12

)
Q−1=(I−P)A(I−P).

This means that if A is considered as a linear operator on �n, and if
B = BX ∪ BY , where BX and BY are the respective bases for X and
Y defined by the columns of X and Y, then, in the context of §4.8, the
matrix representation of A with respect to B is [A]B =

(
A11 A12

A21 A22

)
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in which the blocks are matrix representations of restricted operators as
shown below.

A11 =
[
PAP/X

]
BX

. A12 =
[
PA(I−P)/Y

]
BYBX

.

A21 =
[
(I−P)AP/X

]
BXBY

. A22 =
[
(I−P)A(I−P)/Y

]
BY

.

5.9.16. Suppose that �n = X ⊕ Y, where dimX = r, and let P be the
projector onto X along Y. Explain why there exist matrices Xn×r
and Ar×n such that P = XA, where rank (X) = rank (A) = r and
AX = Ir. This is a full-rank factorization for P (recall Exercise 3.9.8).

5.9.17. For either a real or complex vector space, let E be the projector onto
X1 along Y1, and let F be the projector onto X2 along Y2. Prove
that E + F is a projector if and only if EF = FE = 0, and under this
condition, prove that R (E + F) = X1 ⊕X2 and N (E + F) = Y1 ∩Y2.

5.9.18. For either a real or complex vector space, let E be the projector onto
X1 along Y1, and let F be the projector onto X2 along Y2. Prove
that E−F is a projector if and only if EF = FE = F, and under this
condition, prove that R (E− F) = X1 ∩ Y2 and N (E− F) = Y1 ⊕X2.
Hint: P is a projector if and only if I−P is a projector.

5.9.19. For either a real or complex vector space, let E be the projector onto
X1 along Y1, and let F be the projector onto X2 along Y2. Prove that
if EF = P = FE, then P is the projector onto X1∩X2 along Y1+Y2.

5.9.20. An inner pseudoinverse for Am×n is a matrix Xn×m such that
AXA = A, and an outer pseudoinverse for A is a matrix X satis-
fying XAX = X. When X is both an inner and outer pseudoinverse,
X is called a reflexive pseudoinverse.

(a) If Ax = b is a consistent system of m equations in n un-
knowns, and if A− is any inner pseudoinverse for A, explain
why the set of all solutions to Ax = b can be expressed as

A−b + R
(
I−A−A

)
= {A−b + (I−A−A)h |h ∈ �n}.

(b) Let M and L be respective complements of R (A) and N (A)
so that Cm = R (A) ⊕M and Cn = L ⊕ N (A). Prove that
there is a unique reflexive pseudoinverse X for A such that
R (X) = L and N (X) = M. Show that X = QA−P, where
A− is any inner pseudoinverse for A, P is the projector onto
R (A) along M, and Q is the projector onto L along N (A).
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5.10 RANGE-NULLSPACE DECOMPOSITION

Since there are infinitely many different pairs of complementary subspaces in
�n (or Cn ), 54 is some pair more “natural” than the rest? Without reference to
anything else the question is hard to answer. But if we start with a given matrix
An×n, then there is a very natural direct sum decomposition of �n defined
by fundamental subspaces associated with powers of A. The rank plus nullity
theorem on p. 199 says that dimR (A)+dimN (A) = n, so it’s reasonable to ask
about the possibility of R (A) and N (A) being complementary subspaces. If A
is nonsingular, then it’s trivially true that R (A) and N (A) are complementary,
but when A is singular, this need not be the case because R (A) and N (A)
need not be disjoint. For example,

A =
(

0 1
0 0

)
=⇒

(
1
0

)
∈ R (A) ∩N (A).

But all is not lost if we are willing to consider powers of A.

Range-Nullspace Decomposition
For every singular matrix An×n, there exists a positive integer k such
that R

(
Ak

)
and N

(
Ak

)
are complementary subspaces. That is,

�n = R
(
Ak

)
⊕N

(
Ak

)
. (5.10.1)

The smallest positive integer k for which (5.10.1) holds is called the
index of A. For nonsingular matrices we define index(A) = 0.

Proof. First observe that as A is powered the nullspaces grow and the ranges
shrink—recall Exercise 4.2.12.

N
(
A0

)
⊆ N (A) ⊆ N

(
A2

)
⊆ · · · ⊆ N

(
Ak

)
⊆ N

(
Ak+1

)
⊆ · · ·

R
(
A0

)
⊇ R (A) ⊇ R

(
A2

)
⊇ · · · ⊇ R

(
Ak

)
⊇ R

(
Ak+1

)
⊇ · · · .

(5.10.2)

The proof of (5.10.1) is attained by combining the four following properties.
Property 1. There is equality at some point in each of the chains (5.10.2).

Proof. If there is strict containment at each link in the nullspace chain in
(5.10.2), then the sequence of inequalities

dimN
(
A0

)
< dimN (A) < dimN

(
A2

)
< dimN

(
A3

)
< · · ·

54
All statements and arguments in this section are phrased in terms of �n, but everything we
say has a trivial extension to Cn.
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holds, and this forces n < dimN
(
An+1

)
, which is impossible. A similar

argument proves equality exists somewhere in the range chain.
Property 2. Once equality is attained, it is maintained throughout the rest of
both chains in (5.10.2). In other words,

N
(
A0

)
⊂ N (A) ⊂ · · · ⊂ N

(
Ak

)
= N

(
Ak+1

)
= N

(
Ak+2

)
= · · ·

R
(
A0

)
⊃ R (A) ⊃ · · · ⊃ R

(
Ak

)
= R

(
Ak+1

)
= R

(
Ak+2

)
= · · · .

(5.10.3)

To prove this for the range chain, observe that if k is the smallest nonneg-
ative integer such that R

(
Ak

)
= R

(
Ak+1

)
, then for all i ≥ 1,

R
(
Ai+k

)
= R

(
AiAk

)
= AiR

(
Ak

)
= AiR

(
Ak+1

)
= R

(
Ai+k+1

)
.

The nullspace chain stops growing at exactly the same place the ranges
stop shrinking because the rank plus nullity theorem (p. 199) insures that
dimN (Ap) = n− dimR (Ap).

Property 3. If k is the value at which the ranges stop shrinking and the
nullspaces stop growing in (5.10.3), then R

(
Ak

)
∩N

(
Ak

)
= 0.

Proof. If x ∈ R
(
Ak

)
∩ N

(
Ak

)
, then Aky = x for some y ∈ �n, and

Akx = 0. Hence A2ky = Akx = 0⇒ y ∈ N
(
A2k

)
= N

(
Ak

)
⇒ x = 0.

Property 4. If k is the value at which the ranges stop shrinking and the
nullspaces stop growing in (5.10.3), then R

(
Ak

)
+ N

(
Ak

)
= �n.

Proof. Use Property 3 along with (4.4.19), (4.4.15), and (4.4.6), to write

dim
[
R

(
Ak

)
+ N

(
Ak

)]
= dimR

(
Ak

)
+ dimN

(
Ak

)
− dimR

(
Ak

)
∩N

(
Ak

)
= dimR

(
Ak

)
+ dimN

(
Ak

)
= n

=⇒ R
(
Ak

)
+ N

(
Ak

)
= �n.

Below is a summary of our observations concerning the index of a square matrix.

Index
The index of a square matrix A is the smallest nonnegative integer k
such that any one of the three following statements is true.
• rank

(
Ak

)
= rank

(
Ak+1

)
.

• R
(
Ak

)
= R

(
Ak+1

)
—i.e., the point where R

(
Ak

)
stops shrinking.

• N
(
Ak

)
= N

(
Ak+1

)
—i.e., the point where N

(
Ak

)
stops growing.

For nonsingular matrices, index (A) = 0. For singular matrices,
index (A) is the smallest positive integer k such that either of the fol-
lowing two statements is true.
• R

(
Ak

)
∩N

(
Ak

)
= 0. (5.10.4)

• �n = R
(
Ak

)
⊕N

(
Ak

)
.
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Example 5.10.1

Problem: Determine the index of A =
(

2 0 0
0 1 1
0 −1 −1

)
.

Solution: A is singular (because rank (A) = 2), so index(A) > 0. Since

A2 =


 4 0 0

0 0 0
0 0 0


 and A3 =


 8 0 0

0 0 0
0 0 0


 ,

we see that rank (A) > rank
(
A2

)
= rank

(
A3

)
, so index(A) = 2. Alternately,

R (A) = span





 2

0
0


 ,


 0

1
−1





 , R

(
A2

)
= span


 4

0
0


 , R

(
A3

)
= span


 8

0
0


 ,

so R (A) ⊃ R
(
A2

)
= R

(
A3

)
implies index(A) = 2.

Nilpotent Matrices
• Nn×n is said to be nilpotent whenever Nk = 0 for some positive

integer k.

• k = index(N) is the smallest positive integer such that Nk = 0.
(Some authors refer to index(N) as the index of nilpotency.)

Proof. To prove that k = index(N) is the smallest positive integer such that
Nk = 0, suppose p is a positive integer such that Np = 0, but Np−1 �= 0.
We know from (5.10.3) that R

(
N0

)
⊃ R (N) ⊃ · · · ⊃ R

(
Nk

)
= R

(
Nk+1

)
=

R
(
Nk+2

)
= · · · , and this makes it clear that it’s impossible to have p < k or

p > k, so p = k is the only choice.

Example 5.10.2

Problem: Verify that

N =


 0 1 0

0 0 1
0 0 0




is a nilpotent matrix, and determine its index.

Solution: Computing the powers

N2 =


 0 0 1

0 0 0
0 0 0


 and N3 =


 0 0 0

0 0 0
0 0 0


 ,

reveals that N is indeed nilpotent, and it shows that index(N) = 3 because
N3 = 0, but N2 �= 0.



5.10 Range-Nullspace Decomposition 397

Anytime �n can be written as the direct sum of two complementary sub-
spaces such that one of them is an invariant subspace for a given square matrix A
we have a block-triangular representation for A according to formula (4.9.9) on
p. 263. And if both complementary spaces are invariant under A, then (4.9.10)
says that this block-triangular representation is actually block diagonal.

Herein lies the true value of the range-nullspace decomposition (5.10.1) be-
cause it turns out that if k = index(A), then R

(
Ak

)
and N

(
Ak

)
are both

invariant subspaces under A. R
(
Ak

)
is invariant under A because

A
(
R

(
Ak

))
= R

(
Ak+1

)
= R

(
Ak

)
,

and N
(
Ak

)
is invariant because

x ∈ A
(
N

(
Ak

))
=⇒ x = Aw for some w ∈ N

(
Ak

)
= N

(
Ak+1

)
=⇒ Akx = Ak+1w = 0 =⇒ x ∈ N

(
Ak

)
=⇒ A

(
N

(
Ak

))
⊆ N

(
Ak

)
.

This brings us to a matrix decomposition that is an important building
block for developments that culminate in the Jordan form on p. 590.

Core-Nilpotent Decomposition
If A is an n× n singular matrix of index k such that rank

(
Ak

)
= r,

then there exists a nonsingular matrix Q such that

Q−1AQ =
(

Cr×r 0
0 N

)
(5.10.5)

in which C is nonsingular, and N is nilpotent of index k. In other
words, A is similar to a 2× 2 block-diagonal matrix containing a non-
singular “core” and a nilpotent component. The block-diagonal matrix
in (5.10.5) is called a core-nilpotent decomposition of A.

Note: When A is nonsingular, k = 0 and r = n, so N is not present,
and we can set Q = I and C = A (the nonsingular core is everything).
So (5.10.5) says absolutely nothing about nonsingular matrices.

Proof. Let Q =
(
X |Y

)
, where the columns of Xn×r and Yn×n−r constitute

bases for R
(
Ak

)
and N

(
Ak

)
, respectively. Equation (4.9.10) guarantees that

Q−1AQ must be block diagonal in form, and thus (5.10.5) is established. To see
that N is nilpotent, let

Q−1 =

(
U

V

)
,
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and write(
Ck 0
0 Nk

)
= Q−1AkQ =

(
U

V

)
Ak

(
X |Y

)
=

(
UAkX 0
VAkX 0

)
.

Therefore, Nk = 0 and Q−1AkQ =
(

Ck 0
0 0

)
. Since Ck is r × r and r =

rank
(
Ak

)
= rank

(
Q−1AkQ

)
= rank

(
Ck

)
, it must be the case that Ck is

nonsingular, and hence C is nonsingular. Finally, notice that index(N) = k
because if index(N) �= k, then Nk−1 = 0, so

rank
(
Ak−1

)
=rank

(
Q−1Ak−1Q

)
=rank

(
Ck−1 0

0 Nk−1

)
=rank

(
Ck−1 0

0 0

)
= rank

(
Ck−1

)
= r = rank

(
Ak

)
,

which is impossible because index(A) = k is the smallest integer for which there
is equality in ranks of powers.

Example 5.10.3

Problem: Let An×n be a rank-r matrix of index k, and let

Q−1AQ =
(

Cr×r 0
0 N

)
with Q =

(
Xn×r |Y

)
and Q−1 =

(
Ur×n

V

)

be the core-nilpotent decomposition described in (5.10.5). Explain why

Q
(

Ir 0
0 0

)
Q−1 = XU = the projector onto R

(
Ak

)
along N

(
Ak

)
and

Q
(

0 0
0 In−r

)
Q−1 = YV = the projector onto N

(
Ak

)
along R

(
Ak

)
.

Solution: Because R
(
Ak

)
and N

(
Ak

)
are complementary subspaces, and

because the columns of X and Y constitute respective bases for these spaces,
it follows from the discussion concerning projectors on p. 386 that

P =
(
X |Y

) (
I 0
0 0

) (
X |Y

)−1 = Q
(

Ir 0
0 0

)
Q−1 = XU

must be the projector onto R
(
Ak

)
along N

(
Ak

)
, and

I−P =
(
X |Y

) (
0 0
0 I

) (
X |Y

)−1 = Q
(

0 0
0 In−r

)
Q−1 = YV

is the complementary projector onto N
(
Ak

)
along R

(
Ak

)
.
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Example 5.10.4

Problem: Explain how each noninvertible linear operator defined on an n-
dimensional vector space V can be decomposed as the “direct sum” of an in-
vertible operator and a nilpotent operator.

Solution: Let T be a linear operator of index k defined on V = R ⊕ N ,
where R = R

(
Tk

)
and N = N

(
Tk

)
, and let E = T/R and F = T/N be

the restriction operators as described in §4.9. Since R and N are invariant
subspaces for T, we know from the discussion of matrix representations on
p. 263 that the right-hand side of the core-nilpotent decomposition in (5.10.5)
must be the matrix representation of T with respect to a basis BR∪BN , where
BR and BN are respective bases for R and N . Furthermore, the nonsingular
matrix C and the nilpotent matrix N are the matrix representations of E and
F with respect to BR and BN , respectively. Consequently, E is an invertible
operator on R, and F is a nilpotent operator on N . Since V = R⊕N , each
x ∈ V can be expressed as x = r + n with r ∈ R and n ∈ N . This allows
us to formulate the concept of the direct sum of E and F by defining E⊕F
to be the linear operator on V such that (E ⊕ F)(x) = E(r) + F(n) for each
x ∈ V. Therefore,

T(x) = T(r + n) = T(r) + T(n) = (T/R)(r) + (T/N )(n)

= E(r) + F(n) = (E⊕ F)(x) for each x ∈ V.

In other words, T = E ⊕ F in which E = T/R is invertible and F = T/N is
nilpotent.

Example 5.10.5

Drazin Inverse. Inverting the nonsingular core C and neglecting the nilpo-
tent part N in the core-nilpotent decomposition (5.10.5) produces a natural
generalization of matrix inversion. More precisely, if

A = Q
(

C 0
0 N

)
Q−1, then AD = Q

(
C−1 0
0 0

)
Q−1 (5.10.6)

defines the Drazin inverse of A. Even though the components in a core-
nilpotent decomposition are not uniquely defined by A, it can be proven that
AD is unique and has the following properties.

• AD = A−1 when A is nonsingular (the nilpotent part is not present).

• ADAAD = AD, AAD = ADA, Ak+1AD = Ak, where k = index(A).55

55
These three properties served as Michael P. Drazin’s original definition in 1968. Initially,
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• If Ax = b is a consistent system of linear equations in which b ∈ R
(
Ak

)
,

then x = ADb is the unique solution that belongs to R
(
Ak

)
(Exercise

5.10.9).

• AAD is the projector onto R
(
Ak

)
along N

(
Ak

)
, and I −AAD is the

complementary projector onto N
(
Ak

)
along R

(
Ak

)
(Exercise 5.10.10).

• If A is considered as a linear operator on �n, then, with respect to a basis
BR for R

(
Ak

)
, C is the matrix representation for the restricted operator

A/R(Ak)
(see p. 263). Thus A/R(Ak)

is invertible. Moreover,

[
AD/R(Ak)

]
BR

=C−1 =
[(

A/R(Ak)

)−1
]
BR

, so AD/R(Ak)
=

(
A/R(Ak)

)−1

.

In other words, AD is the inverse of A on R
(
Ak

)
, and AD is the zero

operator on N
(
Ak

)
, so, in the context of Example 5.10.4,

A = A/R(Ak)
⊕ A/N(Ak)

and AD =
(
A/R(Ak)

)−1

⊕ 0/N(Ak)
.

Exercises for section 5.10

5.10.1. If A is a square matrix of index k > 0, prove that index(Ak) = 1.

5.10.2. If A is a nilpotent matrix of index k, describe the components in a
core-nilpotent decomposition of A.

5.10.3. Prove that if A is a symmetric matrix, then index(A) ≤ 1.

5.10.4. A ∈ Cn×n is said to be a normal matrix whenever AA∗ = A∗A.
Prove that if A is normal, then index(A) ≤ 1.
Note: All symmetric matrices are normal, so the result of this exercise
includes the result of Exercise 5.10.3 as a special case.

Drazin’s concept attracted little interest—perhaps due to Drazin’s abstract algebraic pre-
sentation. But eventually Drazin’s generalized inverse was recognized to be a useful tool for
analyzing nonorthogonal types of problems involving singular matrices. In this respect, the
Drazin inverse is complementary to the Moore–Penrose pseudoinverse discussed in Exercise
4.5.20 and on p. 423 because the Moore–Penrose pseudoinverse is more useful in applications
where orthogonality is somehow wired in (e.g., least squares).
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5.10.5. Find a core-nilpotent decomposition and the Drazin inverse of

A =


−2 0 −4

4 2 4
3 2 2


 .

5.10.6. For a square matrix A, any scalar λ that makes A − λI singular
is called an eigenvalue for A. The index of an eigenvalue λ is de-
fined to be the index of the associated matrix A− λI. In other words,
index(λ) = index(A− λI). Determine the eigenvalues and the index of
each eigenvalue for the following matrices:

(a) J =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2


 . (b) J =




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2


 .

5.10.7. Let P be a projector different from the identity.
(a) Explain why index(P) = 1. What is the index of I?
(b) Determine the core-nilpotent decomposition for P.

5.10.8. Let N be a nilpotent matrix of index k, and suppose that x is a vector
such that Nk−1x �= 0. Prove that the set

C = {x, Nx, N2x, . . . , Nk−1x}

is a linearly independent set. C is sometimes called a Jordan chain or
a Krylov sequence.

5.10.9. Let A be a square matrix of index k, and let b ∈ R
(
Ak

)
.

(a) Explain why the linear system Ax = b must be consistent.
(b) Explain why x = ADb is the unique solution in R

(
Ak

)
.

(c) Explain why the general solution is given by ADb + N (A).

5.10.10. Suppose that A is a square matrix of index k, and let AD be the
Drazin inverse of A as defined in Example 5.10.5. Explain why AAD

is the projector onto R
(
Ak

)
along N

(
Ak

)
. What does I − AAD

project onto and along?
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5.10.11. An algebraic group is a set G together with an associative operation
between its elements such that G is closed with respect to this operation;
G possesses an identity element E (which can be proven to be unique);
and every member A ∈ G has an inverse A# (which can be proven to
be unique). These are essentially the axioms (A1), (A2), (A4), and (A5)
in the definition of a vector space given on p. 160. A matrix group is
a set of square matrices that forms an algebraic group under ordinary
matrix multiplication.

(a) Show that the set of n× n nonsingular matrices is a matrix
group.

(b) Show that the set of n× n unitary matrices is a subgroup of
the n× n nonsingular matrices.

(c) Show that the set G =
{(

α α
α α

) ∣∣∣α �= 0
}

is a matrix group.
In particular, what does the identity element E ∈ G look like,
and what does the inverse A# of A ∈ G look like?

5.10.12. For singular matrices, prove that the following statements are equivalent.
(a) A is a group matrix (i.e., A belongs to a matrix group).
(b) R (A) ∩N (A) = 0.
(c) R (A) and N (A) are complementary subspaces.
(d) index(A) = 1.
(e) There are nonsingular matrices Qn×n and Cr×r such that

Q−1AQ =
(

Cr×r 0
0 0

)
, where r = rank (A).

5.10.13. Let A ∈ G for some matrix group G.
(a) Show that the identity element E ∈ G is the projector onto

R (A) along N (A) by arguing that E must be of the form

E = Q
(

Ir×r 0
0 0

)
Q−1.

(b) Show that the group inverse of A (the inverse of A in G )
must be of the form

A# = Q
(

C−1 0
0 0

)
Q−1.
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5.11 ORTHOGONAL DECOMPOSITION

The orthogonal complement of a single vector x was defined on p. 322 to be the
set of all vectors orthogonal to x. Below is the natural extension of this idea.

Orthogonal Complement
For a subset M of an inner-product space V, the orthogonal com-
plement M⊥ (pronounced “M perp”) of M is defined to be the set
of all vectors in V that are orthogonal to every vector in M. That is,

M⊥ =
{
x ∈ V

∣∣ 〈m x〉 = 0 for all m ∈M
}
.

For example, if M = {x} is a single vector in �2, then, as illustrated in
Figure 5.11.1, M⊥ is the line through the origin that is perpendicular to x. If
M is a plane through the origin in �3, then M⊥ is the line through the origin
that is perpendicular to the plane.

Figure 5.11.1

Notice that M⊥ is a subspace of V even if M is not a subspace because M⊥ is
closed with respect to vector addition and scalar multiplication (Exercise 5.11.4).
But if M is a subspace, then M and M⊥ decompose V as described below.

Orthogonal Complementary Subspaces
If M is a subspace of a finite-dimensional inner-product space V, then

V =M⊕M⊥. (5.11.1)

Furthermore, if N is a subspace such that V = M⊕N and N ⊥ M
(every vector in N is orthogonal to every vector in M ), then

N =M⊥. (5.11.2)
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Proof. Observe that M∩M⊥ = 0 because if x ∈ M and x ∈ M⊥, then
x must be orthogonal to itself, and 〈x x〉 = 0 implies x = 0. To prove that
M⊕M⊥ = V, suppose that BM and BM⊥ are orthonormal bases for M
and M⊥, respectively. Since M and M⊥ are disjoint, BM ∪ BM⊥ is an
orthonormal basis for some subspace S = M ⊕M⊥ ⊆ V. If S �= V, then
the basis extension technique of Example 4.4.5 followed by the Gram–Schmidt
orthogonalization procedure of §5.5 yields a nonempty set of vectors E such that
BM ∪ BM⊥ ∪ E is an orthonormal basis for V. Consequently,

E ⊥ BM =⇒ E ⊥M =⇒ E ⊆M⊥ =⇒ E ⊆ span (BM⊥) .

But this is impossible because BM∪BM⊥∪E is linearly independent. Therefore,
E is the empty set, and thus V = M ⊕M⊥. To prove statement (5.11.2),
note that N ⊥ M implies N ⊆ M⊥, and coupling this with the fact that
M⊕M⊥ = V =M⊕N together with (4.4.19) insures

dimN = dimV − dimM = dimM⊥.

Example 5.11.1

Problem: Let Um×m =
(
U1 |U2

)
be a partitioned orthogonal matrix. Explain

why R (U1) and R (U2) must be orthogonal complements of each other.

Solution: Statement (5.9.4) insures that �m = R (U1)⊕R (U2), and we know
that R (U1) ⊥ R (U2) because the columns of U are an orthonormal set.
Therefore, (5.11.2) guarantees that R (U2) = R (U1)

⊥
.

Perp Operation
If M is a subspace of an n-dimensional inner-product space, then the
following statements are true.
• dimM⊥ = n− dimM. (5.11.3)

• M⊥⊥
=M. (5.11.4)

Proof. Property (5.11.3) follows from the fact that M and M⊥ are comple-
mentary subspaces—recall (4.4.19). To prove (5.11.4), first show that M⊥⊥ ⊆
M. If x ∈ M⊥⊥

, then (5.11.1) implies x = m + n, where m ∈ M and
n ∈M⊥, so

0 = 〈n x〉 = 〈n m + n〉 = 〈n m〉+ 〈n n〉 = 〈n n〉 =⇒ n = 0 =⇒ x ∈M,

and thus M⊥⊥ ⊆M. We know from (5.11.3) that dimM⊥ = n− dimM and
dimM⊥⊥

= n−dimM⊥, so dimM⊥⊥
= dimM. Therefore, (4.4.6) guarantees

that M⊥⊥
=M.
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We are now in a position to understand why the four fundamental subspaces
associated with a matrix A ∈ �m×n are indeed “fundamental.” First consider
R (A)⊥, and observe that for all y ∈ �n,

x ∈ R (A)⊥ ⇐⇒ 〈Ay x〉 = 0 ⇐⇒ yTATx = 0

⇐⇒
〈
y ATx

〉
= 0 ⇐⇒ ATx = 0 (Exercise 5.3.2)

⇐⇒ x ∈ N
(
AT

)
.

Therefore, R (A)⊥ = N
(
AT

)
. Perping both sides of this equation and replac-

ing 56 A by AT produces R
(
AT

)
= N (A)⊥. Combining these observations

produces one of the fundamental theorems of linear algebra.

Orthogonal Decomposition Theorem
For every A ∈ �m×n,

R (A)⊥ = N
(
AT

)
and N (A)⊥ = R

(
AT

)
. (5.11.5)

In light of (5.11.1), this means that every matrix A ∈ �m×n produces
an orthogonal decomposition of �m and �n in the sense that

�m = R (A)⊕R (A)⊥ = R (A)⊕N
(
AT

)
, (5.11.6)

and
�n = N (A)⊕N (A)⊥ = N (A)⊕R

(
AT

)
. (5.11.7)

Theorems without hypotheses tend to be extreme in the sense that they
either say very little or they reveal a lot. The orthogonal decomposition theorem
has no hypothesis—it holds for all matrices—so, does it really say something
significant? Yes, it does, and here’s part of the reason why.

In addition to telling us how to decompose �m and �n in terms of the
four fundamental subspaces of A, the orthogonal decomposition theorem also
tells us how to decompose A itself into more basic components. Suppose that
rank (A) = r, and let

BR(A) = {u1,u2, . . . ,ur} and B
N(AT ) = {ur+1,ur+2, . . . ,um}

be orthonormal bases for R (A) and N
(
AT

)
, respectively, and let

B
R(AT ) = {v1,v2, . . . ,vr} and BN(A) = {vr+1,vr+2, . . . ,vn}

56
Here, as well as throughout the rest of this section, (�)T can be replaced by (�)∗ whenever

�m×n is replaced by Cm×n.
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be orthonormal bases for R
(
AT

)
and N (A), respectively. It follows that

BR(A) ∪ BN(AT ) and B
R(AT ) ∪ BN(A) are orthonormal bases for �m and �n,

respectively, and hence

Um×m =
(
u1 |u2 | · · · |um

)
and Vn×n =

(
v1 |v2 | · · · |vn

)
(5.11.8)

are orthogonal matrices. Now consider the product R = UTAV, and notice
that rij = uTi Avj . However, uTi A = 0 for i = r + 1, . . . ,m and Avj = 0 for
j = r + 1, . . . , n, so

R = UTAV =




uT1 Av1 · · · uT1 Avr 0 · · · 0
...

. . .
...

...
...

uTrAv1 · · · uTrAvr 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0




. (5.11.9)

In other words, A can be factored as

A = URVT = U
(

Cr×r 0
0 0

)
VT . (5.11.10)

Moreover, C is nonsingular because it is r × r and

rank (C) = rank

(
C 0
0 0

)
= rank

(
UTAV

)
= rank (A) = r.

For lack of a better name, we will refer to (5.11.10) as a URV factorization.
We have just observed that every set of orthonormal bases for the four

fundamental subspaces defines a URV factorization. The situation is also re-
versible in the sense that every URV factorization of A defines an orthonor-
mal basis for each fundamental subspace. Starting with orthogonal matrices
U =

(
U1 |U2

)
and V =

(
V1 |V2

)
together with a nonsingular matrix Cr×r

such that (5.11.10) holds, use the fact that right-hand multiplication by a non-
singular matrix does not alter the range (Exercise 4.5.12) to observe

R (A) = R (UR) = R (U1C |0) = R (U1C) = R (U1).

By (5.11.5) and Example 5.11.1, N
(
AT

)
= R (A)⊥ = R (U1)

⊥ = R (U2).
Similarly, left-hand multiplication by a nonsingular matrix does not change the
nullspace, so the second equation in (5.11.5) along with Example 5.11.1 yields

N (A) = N
(
RVT

)
= N

(
CVT1

0

)
= N

(
CVT1

)
= N

(
VT1

)
= R (V1)

⊥= R (V2),

and R
(
AT

)
= N (A)⊥ = R (V2)

⊥ = R (V1). A summary is given below.
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URV Factorization
For each A ∈ �m×n of rank r, there are orthogonal matrices Um×m
and Vn×n and a nonsingular matrix Cr×r such that

A = URVT = U
(

Cr×r 0
0 0

)
m×n
VT . (5.11.11)

• The first r columns in U are an orthonormal basis for R (A).
• The last m−r columns of U are an orthonormal basis for N

(
AT

)
.

• The first r columns in V are an orthonormal basis for R
(
AT

)
.

• The last n− r columns of V are an orthonormal basis for N (A).
Each different collection of orthonormal bases for the four fundamental
subspaces of A produces a different URV factorization of A. In the
complex case, replace (�)T by (�)∗ and “orthogonal” by “unitary.”

Example 5.11.2

Problem: Explain how to make C lower triangular in (5.11.11).

Solution: Apply Householder (or Givens) reduction to produce an orthogonal
matrix Pm×m such that PA =

(
B
0

)
, where B is r × n of rank r. House-

holder (or Givens) reduction applied to BT results in an orthogonal matrix
Qn×n and a nonsingular upper-triangular matrix T such that

QBT =
(

Tr×r
0

)
=⇒ B =

(
TT |0

)
Q =⇒

(
B
0

)
=

(
TT 0
0 0

)
Q,

so A = PT
(

B
0

)
= PT

(
TT 0
0 0

)
Q is a URV factorization.

Note: C can in fact be made diagonal—see (p. 412).

Have you noticed the duality that has emerged concerning the use of fun-
damental subspaces of A to decompose �n (or Cn )? On one hand there is
the range-nullspace decomposition (p. 394), and on the other is the orthogo-
nal decomposition theorem (p. 405). Each produces a decomposition of A. The
range-nullspace decomposition of �n produces the core-nilpotent decomposition
of A (p. 397), and the orthogonal decomposition theorem produces the URV
factorization. In the next section, the URV factorization specializes to become
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the singular value decomposition (p. 412), and in a somewhat parallel manner,
the core-nilpotent decomposition paves the way to the Jordan form (p. 590).
These two parallel tracks constitute the backbone for the theory of modern linear
algebra, so it’s worthwhile to take a moment and reflect on them.

The range-nullspace decomposition decomposes �n with square matrices
while the orthogonal decomposition theorem does it with rectangular matrices.
So does this mean that the range-nullspace decomposition is a special case of,
or somehow weaker than, the orthogonal decomposition theorem? No! Even for
square matrices they are not very comparable because each says something that
the other doesn’t. The core-nilpotent decomposition (and eventually the Jordan
form) is obtained by a similarity transformation, and, as discussed in §§4.8–4.9,
similarity is the primary mechanism for revealing characteristics of A that are
independent of bases or coordinate systems. The URV factorization has little
to say about such things because it is generally not a similarity transforma-
tion. Orthogonal decomposition has the advantage whenever orthogonality is
naturally built into a problem—such as least squares applications. And, as dis-
cussed in §5.7, orthogonal methods often produce numerically stable algorithms
for floating-point computation, whereas similarity transformations are generally
not well suited for numerical computations. The value of similarity is mainly on
the theoretical side of the coin.

So when do we get the best of both worlds—i.e., when is a URV factoriza-
tion also a core-nilpotent decomposition? First, A must be square and, second,
(5.11.11) must be a similarity transformation, so U = V. Surprisingly, this
happens for a rather large class of matrices described below.

Range Perpendicular to Nullspace
For rank (An×n) = r, the following statements are equivalent:
• R (A) ⊥ N (A), (5.11.12)
• R (A) = R

(
AT

)
, (5.11.13)

• N (A) = N
(
AT

)
, (5.11.14)

• A = U
(

Cr×r 0
0 0

)
UT (5.11.15)

in which U is orthogonal and C is nonsingular. Such matrices will
be called RPN matrices, short for“range perpendicular to nullspace.”
Some authors call them range-symmetric or EP matrices. Nonsingular
matrices are trivially RPN because they have a zero nullspace. For com-
plex matrices, replace (�)T by (�)∗ and “orthogonal” by “unitary.”

Proof. The fact that (5.11.12)⇐⇒ (5.11.13)⇐⇒ (5.11.14) is a direct conse-
quence of (5.11.5). It suffices to prove (5.11.15)⇐⇒ (5.11.13). If (5.11.15) is a
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URV factorization with V = U =
(
U1 |U2), then R (A) = R (U1) = R (V1) =

R
(
AT

)
. Conversely, if R (A) = R

(
AT

)
, perping both sides and using equation

(5.11.5) produces N (A) = N
(
AT

)
, so (5.11.8) yields a URV factorization with

U = V.

Example 5.11.3

A ∈ Cn×n is called a normal matrix whenever AA∗ = A∗A. As illustrated
in Figure 5.11.2, normal matrices fill the niche between hermitian and (complex)
RPN matrices in the sense that real-symmetric⇒ hermitian⇒ normal⇒ RPN,
with no implication being reversible—details are called for in Exercise 5.11.13.

RPN

Normal

Hermitian

Real-Symmetric Nonsingular

Figure 5.11.2

Exercises for section 5.11

5.11.1. Verify the orthogonal decomposition theorem for A=
(

2 1 1
−1 −1 0
−2 −1 −1

)
.

5.11.2. For an inner-product space V, what is V⊥? What is 0⊥?

5.11.3. Find a basis for the orthogonal complement ofM=span




 1

2
0
3


,


 2

4
1
6




.

5.11.4. For every inner-product space V, prove that if M ⊆ V, then M⊥ is
a subspace of V.

5.11.5. If M and N are subspaces of an n-dimensional inner-product space,
prove that the following statements are true.

(a) M⊆ N =⇒ N⊥ ⊆M⊥.
(b) (M+N )⊥ =M⊥ ∩N⊥.
(c) (M∩N )⊥ =M⊥ +N⊥.
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5.11.6. Explain why the rank plus nullity theorem on p. 199 is a corollary of the
orthogonal decomposition theorem.

5.11.7. Suppose A = URVT is a URV factorization of an m× n matrix of
rank r, and suppose U is partitioned as U =

(
U1 |U2

)
, where U1

is m× r. Prove that P = U1UT1 is the projector onto R (A) along
N

(
AT

)
. In this case, P is said to be an orthogonal projector because its

range is orthogonal to its nullspace. What is the orthogonal projector
onto N

(
AT

)
along R (A)? (Orthogonal projectors are discussed in

more detail on p. 429.)

5.11.8. Use the Householder reduction method as described in Example 5.11.2
to compute a URV factorization as well as orthonormal bases for the

four fundamental subspaces of A =
(−4 −2 −4 −2

2 −2 2 1
−4 1 −4 −2

)
.

5.11.9. Compute a URV factorization for the matrix given in Exercise 5.11.8 by
using elementary row operations together with Gram–Schmidt orthogo-
nalization. Are the results the same as those of Exercise 5.11.8?

5.11.10. For the matrix A of Exercise 5.11.8, find vectors x ∈ R (A) and
y ∈ N

(
AT

)
such that v = x + y, where v = ( 3 3 3 )T . Is there

more than one choice for x and y?

5.11.11. Construct a square matrix such that R (A)∩N (A) = 0, but R (A) is
not orthogonal to N (A).

5.11.12. For An×n singular, explain why R (A) ⊥ N (A) implies index(A) = 1,
but not conversely.

5.11.13. Prove that real-symmetric matrix ⇒ hermitian ⇒ normal ⇒ (com-
plex) RPN. Construct examples to show that none of the implications
is reversible.

5.11.14. Let A be a normal matrix.
(a) Prove that R (A− λI) ⊥ N (A− λI) for every scalar λ.

(b) Let λ and µ be scalars such that A − λI and A − µI are
singular matrices—such scalars are called eigenvalues of A.
Prove that if λ �= µ, then N (A− λI) ⊥ N (A− µI).
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5.12 SINGULAR VALUE DECOMPOSITION

For an m× n matrix A of rank r, Example 5.11.2 shows how to build a URV
factorization

A = URVT = U
(

Cr×r 0
0 0

)
m×n
VT

in which C is triangular. The purpose of this section is to prove that it’s possible
to do even better by showing that C can be made to be diagonal . To see how,
let σ1 = ‖A‖2 = ‖C‖2 (Exercise 5.6.9), and recall from the proof of (5.2.7) on
p. 281 that ‖C‖2 = ‖Cx‖2 for some vector x such that

(CTC− λI)x = 0, where ‖x‖2 = 1 and λ = xTCTCx = σ2
1 . (5.12.1)

Set y = Cx/‖Cx‖2 = Cx/σ1, and let Ry =
(
y |Y

)
and Rx =

(
x |X

)
be

elementary reflectors having y and x as their first columns, respectively—recall
Example 5.6.3. Reflectors are orthogonal matrices, so xTX = 0 and YTy = 0,
and these together with (5.12.1) yield

yTCX =
xTCTCX

σ1
=

λxTX
σ1

= 0 and YTCx = σ1YTy = 0.

Coupling these facts with yTCx = yT (σ1y) = σ1 and Ry = RTy produces

RyCRx =

(
yT

YT

)
C

(
x |X

)
=

(
yTCx yTCX
YTCx YTCX

)
=

(
σ1 0
0 C2

)
with σ1 ≥ ‖C2‖2 (because σ1 = ‖C‖2 = max{σ1, ‖C2‖} by (5.2.12)). Repeat-
ing the process on C2 yields reflectors Sy, Sx such that

SyC2Sx =
(

σ2 0
0 C3

)
, where σ2 ≥ ‖C3‖2 .

If P2 and Q2 are the orthogonal matrices

P2 =
(

1 0
0 Sy

)
Ry, Q2 = Rx

(
1 0
0 Sx

)
, then P2CQ2 =


σ1 0 0

0 σ2 0
0 0 C3




in which σ1 ≥ σ2 ≥ ‖C3‖2 . Continuing for r − 1 times produces orthogonal
matrices Pr−1 and Qr−1 such that Pr−1CQr−1 = diag (σ1, σ2, . . . , σr) = D,
where σ1 ≥ σ2 ≥ · · · ≥ σr. If ŨT and Ṽ are the orthogonal matrices

ŨT =
(

Pr−1 0
0 I

)
UT and Ṽ = V

(
Qr−1 0

0 I

)
, then ŨTAṼ =

(
D 0
0 0

)
,

and thus the singular value decomposition (SVD) is derived. 57

57
The SVD has been independently discovered and rediscovered several times. Those credited
with the early developments include Eugenio Beltrami (1835–1899) in 1873, M. E. Camille
Jordan (1838–1922) in 1875, James J. Sylvester (1814–1897) in 1889, L. Autonne in 1913, and
C. Eckart and G. Young in 1936.
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Singular Value Decomposition
For each A ∈ �m×n of rank r, there are orthogonal matrices Um×m,
Vn×n and a diagonal matrix Dr×r = diag (σ1, σ2, . . . , σr) such that

A = U
(

D 0
0 0

)
m×n
VT with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (5.12.2)

The σi ’s are called the nonzero singular values of A. When
r < p = min{m,n}, A is said to have p − r additional zero singular
values. The factorization in (5.12.2) is called a singular value decom-
position of A, and the columns in U and V are called left-hand and
right-hand singular vectors for A, respectively.

While the constructive method used to derive the SVD can be used as an
algorithm, more sophisticated techniques exist, and all good matrix computation
packages contain numerically stable SVD implementations. However, the details
of a practical SVD algorithm are too complicated to be discussed at this point.

The SVD is valid for complex matrices when (�)T is replaced by (�)∗, and
it can be shown that the singular values are unique, but the singular vectors
are not. In the language of Chapter 7, the σ2

i ’s are the eigenvalues of ATA,
and the singular vectors are specialized sets of eigenvectors for ATA—see the
summary on p. 555. In fact, the practical algorithm for computing the SVD is
an implementation of the QR iteration (p. 535) that is cleverly applied to ATA
without ever explicitly computing ATA.

Singular values reveal something about the geometry of linear transforma-
tions because the singular values σ1 ≥ σ2 ≥ · · · ≥ σn of a matrix A tell us how
much distortion can occur under transformation by A. They do so by giving us
an explicit picture of how A distorts the unit sphere. To develop this, suppose
that A ∈ �n×n is nonsingular (Exercise 5.12.5 treats the singular and rectangu-
lar case), and let S2 = {x | ‖x‖2 = 1} be the unit 2-sphere in �n. The nature
of the image A(S2) is revealed by considering the singular value decompositions

A = UDVT and A−1 = VD−1UT with D = diag (σ1, σ2, . . . , σn) ,

where U and V are orthogonal matrices. For each y ∈ A(S2) there is an
x ∈ S2 such that y = Ax, so, with w = UTy,

1 = ‖x‖22 =
∥∥A−1Ax

∥∥2

2
=

∥∥A−1y
∥∥2

2
=

∥∥VD−1UTy
∥∥2

2
=

∥∥D−1UTy
∥∥2

2

=
∥∥D−1w

∥∥2

2
=

w2
1

σ2
1

+
w2

2

σ2
2

+ · · ·+ w2
r

σ2
r

.

(5.12.3)
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This means that UTA(S2) is an ellipsoid whose kth semiaxis has length
σk. Because orthogonal transformations are isometries (length preserving trans-
formations), UT can only affect the orientation of A(S2) , so A(S2) is also an
ellipsoid whose kth semiaxis has length σk. Furthermore, (5.12.3) implies that
the ellipsoid UTA(S2) is in standard position—i.e., its axes are directed along
the standard basis vectors ek. Since U maps UTA(S2) to A(S2), and since
Uek = U∗k, it follows that the axes of A(S2) are directed along the left-hand
singular vectors defined by the columns of U. Therefore, the kth semiaxis of
A(S2) is σkU∗k. Finally, since AV = UD implies AV∗k = σkU∗k, the right-
hand singular vector V∗k is a point on S2 that is mapped to the kth semiaxis
vector on the ellipsoid A(S2). The picture in �3 looks like Figure 5.12.1.

1

A

σ1U∗1

σ2U∗2

σ3U∗3

V∗1
V∗2

V∗3

Figure 5.12.1

The degree of distortion of the unit sphere under transformation by A
is therefore measured by κ2 = σ1/σn, the ratio of the largest singular value
to the smallest singular value. Moreover, from the discussion of induced ma-
trix norms (p. 280) and the unitary invariance of the 2-norm (Exercise 5.6.9),

max
‖x‖2=1

‖Ax‖2 = ‖A‖2 =
∥∥UDVT

∥∥
2

= ‖D‖2 = σ1

and

min
‖x‖2=1

‖Ax‖2 =
1

‖A−1‖2
=

1
‖VD−1UT ‖2

=
1

‖D−1‖2
= σn.

In other words, longest and shortest vectors on A(S2) have respective lengths
σ1 = ‖A‖2 and σn = 1/

∥∥A−1
∥∥

2
(this justifies Figure 5.2.1 on p. 281), so

κ2 = ‖A‖2
∥∥A−1

∥∥
2
. This is called the 2-norm condition number of A. Differ-

ent norms result in condition numbers with different values but with more or
less the same order of magnitude as κ2 (see Exercise 5.12.3), so the qualitative
information about distortion is the same. Below is a summary.
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Image of the Unit Sphere
For a nonsingular An×n having singular values σ1 ≥ σ2 ≥ · · · ≥ σn
and an SVD A = UDVT with D = diag (σ1, σ2, . . . , σn) , the image
of the unit 2-sphere is an ellipsoid whose kth semiaxis is given by σkU∗k
(see Figure 5.12.1). Furthermore, V∗k is a point on the unit sphere such
that AV∗k = σkU∗k. In particular,
• σ1 = ‖AV∗1‖2 = max

‖x‖2=1
‖Ax‖2 = ‖A‖2, (5.12.4)

• σn = ‖AV∗n‖2 = min
‖x‖2=1

‖Ax‖2 = 1/‖A−1‖2. (5.12.5)

The degree of distortion of the unit sphere under transformation by A
is measured by the 2-norm condition number

• κ2 =
σ1

σn
= ‖A‖2

∥∥A−1
∥∥

2
≥ 1. (5.12.6)

Notice that κ2 = 1 if and only if A is an orthogonal matrix.

The amount of distortion of the unit sphere under transformation by A
determines the degree to which uncertainties in a linear system Ax = b can be
magnified. This is explained in the following example.

Example 5.12.1

Uncertainties in Linear Systems. Systems of linear equations Ax = b aris-
ing in practical work almost always come with built-in uncertainties due to mod-
eling errors (because assumptions are almost always necessary), data collection
errors (because infinitely precise gauges don’t exist), and data entry errors (be-
cause numbers like

√
2, π, and 2/3 can’t be entered exactly). In addition,

roundoff error in floating-point computation is a prevalent source of uncertainty.
In all cases it’s important to estimate the degree of uncertainty in the solution
of Ax = b. This is not difficult when A is known exactly and all uncertainty
resides in the right-hand side. Even if this is not the case, it’s sometimes possible
to aggregate uncertainties and shift all of them to the right-hand side.
Problem: Let Ax = b be a nonsingular system in which A is known exactly
but b is subject to an uncertainty e, and consider Ax̃ = b− e = b̃. Estimate
the relative uncertainty 58 ‖x− x̃‖ / ‖x‖ in x in terms of the relative uncertainty
‖b − b̃‖/ ‖b‖ = ‖e‖ / ‖b‖ in b. Use any vector norm and its induced matrix
norm (p. 280).

58
Knowing the absolute uncertainty ‖x− x̃‖ by itself may not be meaningful. For example, an
absolute uncertainty of a half of an inch might be fine when measuring the distance between
the earth and the moon, but it’s not good in the practice of eye surgery.



5.12 Singular Value Decomposition 415

Solution: Use ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ with x− x̃ = A−1e to write

‖x− x̃‖
‖x‖ =

∥∥A−1e
∥∥

‖x‖ ≤ ‖A‖
∥∥A−1

∥∥ ‖e‖
‖b‖ = κ

‖e‖
‖b‖ , (5.12.7)

where κ = ‖A‖
∥∥A−1

∥∥ is a condition number as discussed earlier (κ = σ1/σn
if the 2-norm is used). Furthermore, ‖e‖ = ‖A(x− x̃)‖ ≤ ‖A‖ ‖(x− x̃)‖ and
‖x‖ ≤

∥∥A−1
∥∥ ‖b‖ imply

‖x− x̃‖
‖x‖ ≥ ‖e‖

‖A‖ ‖x‖ ≥
‖e‖

‖A‖ ‖A−1‖ ‖b‖ =
1
κ

‖e‖
‖b‖ .

This with (5.12.7) yields the following bounds on the relative uncertainty:

κ−1 ‖e‖
‖b‖ ≤

‖x− x̃‖
‖x‖ ≤ κ

‖e‖
‖b‖ , where κ = ‖A‖

∥∥A−1
∥∥ . (5.12.8)

In other words, when A is well conditioned (i.e., when κ is small—see the rule
of thumb in Example 3.8.2 to get a feeling of what “small” and “large” might
mean), (5.12.8) insures that small relative uncertainties in b cannot greatly
affect the solution, but when A is ill conditioned (i.e., when κ is large), a
relatively small uncertainty in b might result in a relatively large uncertainty
in x. To be more sure, the following problem needs to be addressed.
Problem: Can equality be realized in each bound in (5.12.8) for every nonsin-
gular A, and if so, how?

Solution: Use the 2-norm, and let A = UDVT be an SVD so AV∗k = σkU∗k
for each k. If b and e are directed along left-hand singular vectors associated
with σ1 and σn, respectively—say, b = βU∗1 and e = εU∗n, then

x = A−1b = A−1(βU∗1) =
βV∗1
σ1

and x−x̃ = A−1e = A−1(εU∗n) =
εV∗n
σn

,

so

‖x− x̃‖2
‖x‖2

=
(

σ1

σn

) |ε|
|β| = κ2

‖e‖2
‖b‖2

when b = βU∗1 and e = εU∗n.

Thus the upper bound (the worst case) in (5.12.8) is attainable for all A. The
lower bound (the best case) is realized in the opposite situation when b and e
are directed along U∗n and U∗1, respectively. If b = βU∗n and e = εU∗1,
then the same argument yields x = σ−1

n βV∗n and x− x̃ = σ−1
1 εV∗1, so

‖x− x̃‖2
‖x‖2

=
(
σn
σ1

) |ε|
|β| = κ−1

2

‖e‖2
‖b‖2

when b = βU∗n and e = εU∗1.
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Therefore, if A is well conditioned, then relatively small uncertainties in b can’t
produce relatively large uncertainties in x. But when A is ill conditioned, it’s
possible for relatively small uncertainties in b to have relatively large effects on
x, and it’s also possible for large uncertainties in b to have almost no effect on
x. Since the direction of e is almost always unknown, we must guard against the
worst case and proceed with caution when dealing with ill-conditioned matrices.
Problem: What if there are uncertainties in both sides of Ax = b?

Solution: Use calculus to analyze the situation by considering the entries of
A = A(t) and b = b(t) to be differentiable functions of a variable t, and
compute the relative size of the derivative of x = x(t) by differentiating b = Ax
to obtain b′ = (Ax)′ = A′x + Ax′ (with �′ denoting d � /dt ), so

‖x′‖ =
∥∥A−1b′ −A−1A′x

∥∥ ≤ ∥∥A−1b′∥∥ +
∥∥A−1A′x

∥∥
≤

∥∥A−1
∥∥ ‖b′‖+

∥∥A−1
∥∥ ‖A′‖ ‖x‖ .

Consequently,
‖x′‖
‖x‖ ≤

∥∥A−1
∥∥ ‖b′‖
‖x‖ +

∥∥A−1
∥∥ ‖A′‖

≤ ‖A‖
∥∥A−1

∥∥ ‖b′‖
‖A‖ ‖x‖ + ‖A‖

∥∥A−1
∥∥ ‖A′‖
‖A‖

≤ κ
‖b′‖
‖b‖ + κ

‖A′‖
‖A‖ = κ

(‖b′‖
‖b‖ +

‖A′‖
‖A‖

)
.

In other words, the relative sensitivity of the solution is the sum of the relative
sensitivities of A and b magnified by κ = ‖A‖

∥∥A−1
∥∥ . A discrete analog of

the above inequality is developed in Exercise 5.12.12.
Conclusion: In all cases, the credibility of the solution to Ax = b in the face
of uncertainties must be gauged in relation to the condition of A.

As the next example shows, the condition number is pivotal also in deter-
mining whether or not the residual r = b − Ax̃ is a reliable indicator of the
accuracy of an approximate solution x̃.

Example 5.12.2

Checking an Answer. Suppose that x̃ is a computed (or otherwise approxi-
mate) solution for a nonsingular system Ax = b, and suppose the accuracy of
x̃ is “checked” by computing the residual r = b − Ax̃. If r = 0, exactly,
then x̃ must be the exact solution. But if r is not exactly zero—say, ‖r‖2 is
zero to t significant digits—are we guaranteed that x̃ is accurate to roughly t
significant figures? This question was briefly examined in Example 1.6.3, but it’s
worth another look.
Problem: To what extent does the size of the residual reflect the accuracy of
an approximate solution?
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Solution: Without realizing it, we answered this question in Example 5.12.1.
To bound the accuracy of x̃ relative to the exact solution x, write r = b−Ax̃
as Ax̃ = b− r, and apply (5.12.8) with e = r to obtain

κ−1 ‖r‖2
‖b‖2

≤ ‖x− x̃‖
‖x‖ ≤ κ

‖r‖2
‖b‖2

, where κ = ‖A‖2
∥∥A−1

∥∥
2
. (5.12.9)

Therefore, for a well-conditioned A, the residual r is relatively small if and
only if x̃ is relatively accurate. However, as demonstrated in Example 5.12.1,
equality on either side of (5.12.9) is possible, so, when A is ill conditioned, a
very inaccurate approximation x̃ can produce a small residual r, and a very
accurate approximation can produce a large residual.
Conclusion: Residuals are reliable indicators of accuracy only when A is well
conditioned—if A is ill conditioned, residuals are nearly meaningless.

In addition to measuring the distortion of the unit sphere and gauging the
sensitivity of linear systems, singular values provide a measure of how close A
is to a matrix of lower rank.

Distance to Lower-Rank Matrices
If σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of Am×n, then
for each k < r, the distance from A to the closest matrix of rank k is

σk+1 = min
rank(B)=k

‖A−B‖2. (5.12.10)

Proof. Suppose rank (Bm×n) = k, and let A = U
(

D 0
0 0

)
VT be an SVD

for A with D = diag (σ1, σ2, . . . , σr) . Define S = diag (σ1, . . . , σk+1), and
partition V =

(
Fn×k+1 |G

)
. Since rank (BF) ≤ rank (B) = k (by (4.5.2)),

dimN (BF) = k+1−rank (BF) ≥ 1, so there is an x ∈ N (BF) with ‖x‖2 = 1.
Consequently, BFx = 0 and

AFx = U
(

D 0
0 0

)
VTFx = U


S 0 0

0 � 0
0 0 0





x

0
0


 = U


Sx

0
0


 .

Since ‖A−B‖2 = max‖y‖2=1 ‖(A−B)y‖2 , and since ‖Fx‖2 = ‖x‖2 = 1
(recall (5.2.4), p. 280, and (5.2.13), p. 283),

‖A−B‖22 ≥ ‖(A−B)Fx‖22 = ‖Sx‖22 =
k+1∑
i=1

σ2
i x

2
i ≥ σ2

k+1

k+1∑
i=1

x2
i = σ2

k+1.

Equality holds for Bk = U
(

Dk 0
0 0

)
VT with Dk = diag (σ1, . . . , σk), and thus

(5.12.10) is proven.
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Example 5.12.3

Filtering Noisy Data. The SVD can be a useful tool in applications involving
the need to sort through noisy data and lift out relevant information. Suppose
that Am×n is a matrix containing data that are contaminated with a certain
level of noise—e.g., the entries A might be digital samples of a noisy video or
audio signal such as that in Example 5.8.3 (p. 359). The SVD resolves the data
in A into r mutually orthogonal components by writing

A = U
(

Dr×r 0
0 0

)
VT =

r∑
i=1

σiuivTi =
r∑
i=1

σiZi, (5.12.11)

where Zi = uivTi and σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The matrices {Z1,Z2, . . . ,Zr}
constitute an orthonormal set because

〈Zi Zj〉 = trace
(
ZT
i Zj

)
=

{
0 if i �= j,
1 if i = j.

In other words, the SVD (5.12.11) can be regarded as a Fourier expansion as
described on p. 299 and, consequently, σi = 〈Zi A〉 can be interpreted as the
proportion of A lying in the “direction” of Zi. In many applications the noise
contamination in A is random (or nondirectional) in the sense that the noise
is distributed more or less uniformly across the Zi’s. That is, there is about as
much noise in the “direction” of one Zi as there is in the “direction” of any
other. Consequently, we expect each term σiZi to contain approximately the
same level of noise. This means that if SNR(σiZi) denotes the signal-to-noise
ratio in σiZi, then

SNR(σ1Z1) ≥ SNR(σ2Z2) ≥ · · · ≥ SNR(σrZr),

more or less. If some of the singular values, say, σk+1, . . . , σr, are small relative to
(total noise)/r, then the terms σk+1Zk+1, . . . , σrZr have small signal-to-noise
ratios. Therefore, if we delete these terms from (5.12.11), then we lose a small part
of the total signal, but we remove a disproportionately large component of the
total noise in A. This explains why a truncated SVD Ak =

∑k
i=1 σiZi can, in

many instances, filter out some of the noise without losing significant information
about the signal in A. Determining the best value of k often requires empirical
techniques that vary from application to application, but looking for obvious
gaps between large and small singular values is usually a good place to start.
The next example presents an interesting application of this idea to building an
Internet search engine.
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Example 5.12.4

Search Engines. The filtering idea presented in Example 5.12.3 is widely used,
but a particularly novel application is the method of latent semantic indexing
used in the areas of information retrieval and text mining. You can think of
this in terms of building an Internet search engine. Start with a dictionary of
terms T1, T2, . . . , Tm. Terms are usually single words, but sometimes a term
may contain more that one word such as “landing gear.” It’s up to you to decide
how extensive your dictionary should be, but even if you use the entire English
language, you probably won’t be using more than a few hundred-thousand terms,
and this is within the capacity of existing computer technology. Each document
(or web page) Dj of interest is scanned for key terms (this is called indexing the
document), and an associated document vector dj = (freq1j , freq2j , . . . , freqmj)T

is created in which

freqij = number of times term Ti occurs in document Dj .

(More sophisticated search engines use weighted frequency strategies.) After a
collection of documents D1, D2, . . . , Dn has been indexed, the associated docu-
ment vectors dj are placed as columns in a term-by-document matrix

Am×n =
(
d1 |d2 · · · |dn

)
=




D1 D2 · · · Dn

T1 freq11 freq12 · · · freq1n

T2 freq21 freq22 · · · freq2n
...

...
...

...
Tm freqm1 freqm2 · · · freqmn


.

Naturally, most entries in each document vector dj will be zero, so A is a
sparse matrix—this is good because it means that sparse matrix technology can
be applied. When a query composed of a few terms is submitted to the search
engine, a query vector qT = (q1, q2, . . . , qn) is formed in which

qi =
{ 1 if term Ti appears in the query,

0 otherwise.

(The qi ’s might also be weighted.) To measure how well a query q matches a
document Dj , we check how close q is to dj by computing the magnitude of

cos θj =
qTdj

‖q‖2 ‖dj‖2
=

qTAej
‖q‖2 ‖Aej‖2

. (5.12.12)

If | cos θj | ≥ τ for some threshold tolerance τ, then document Dj is con-
sidered relevant and is returned to the user. Selecting τ is part art and part
science that’s based on experimentation and desired performance criteria. If the
columns of A along with q are initially normalized to have unit length, then
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|qTA| =
(
| cos θ1|, | cos θ2|, . . . , | cos θn|

)
provides the information that allows

the search engine to rank the relevance of each document relative to the query.
However, due to things like variation and ambiguity in the use of vocabulary,
presentation style, and even the indexing process, there is a lot of “noise” in
A, so the results in |qTA| are nowhere near being an exact measure of how
well query q matches the various documents. To filter out some of this noise,
the techniques of Example 5.12.3 are employed. An SVD A =

∑r
i=1 σiuiv

T
i is

judiciously truncated, and

Ak = UkDkVTk =
(
u1 | · · · |uk

) 
σ1

. . .
σk





vT1

...
vTk


 =

k∑
i=1

σiuivTi

is used in place of A in (5.12.12). In other words, instead of using cos θj , query
q is compared with document Dj by using the magnitude of

cosφj =
qTAkej

‖q‖2 ‖Akej‖2
.

To make this more suitable for computation, set Sk = DkVTk =
(
s1 | s2 | · · · | sk

)
,

and use
‖Akej‖2 =

∥∥UkDkVTk ej
∥∥

2
= ‖Uksj‖2 = ‖sj‖2

to write

cosφj =
qTUksj
‖q‖2 ‖sj‖2

. (5.12.13)

The vectors in Uk and Sk only need to be computed once (and they can be
determined without computing the entire SVD), so (5.12.13) requires very little
computation to process each new query. Furthermore, we can be generous in the
number of SVD components that are dropped because variation in the use of
vocabulary and the ambiguity of many words produces significant noise in A.
Coupling this with the fact that numerical accuracy is not an important issue
(knowing a cosine to two or three significant digits is sufficient) means that we
are more than happy to replace the SVD of A by a low-rank truncation Ak,
where k is significantly less than r.

Alternate Query Matching Strategy. An alternate way to measuring how
close a given query q is to a document vector dj is to replace the query vector
q in (5.12.12) by the projected query q̃ = PR(A)q, where PR(A) = UrUTr is the
orthogonal projector onto R (A) along R (A)⊥ (Exercise 5.12.15) to produce

cos θ̃j =
q̃TAej

‖q̃‖2 ‖Aej‖2
. (5.12.14)
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It’s proven on p. 435 that q̃ = PR(A)q is the vector in R (A) (the document
space) that is closest to q, so using q̃ in place of q has the effect of using the
best approximation to q that is a linear combination of the document vectors
di. Since q̃TA = qTA and ‖q̃‖2 ≤ ‖q‖2 , it follows that cos θ̃j ≥ cos θj , so
more documents are deemed relevant when the projected query is used. Just as
in the unprojected query matching strategy, the noise is filtered out by replacing
A in (5.12.14) with a truncated SVD Ak =

∑k
i=1 σiuiv

T
i . The result is

cos φ̃j =
qTUksj∥∥UTk q∥∥

2
‖sj‖2

and, just as in (5.12.13), cos φ̃j is easily and quickly computed for each new
query q because Uk and sj need only be computed once.

The next example shows why singular values are the primary mechanism
for numerically determining the rank of a matrix.

Example 5.12.5

Perturbations and Numerical Rank. For A ∈ �m×n with p = min{m,n},
let {σ1, σ2, . . . , σp} and {β1, β2, . . . , βp} be all singular values (nonzero as well
as any zero ones) for A and A + E, respectively.
Problem: Prove that

|σk − βk| ≤ ‖E‖2 for each k = 1, 2, . . . , p. (5.12.15)

Solution: If the SVD for A given in (5.12.2) is written in the form

A =
p∑
i=1

σiuivTi , and if we set Ak−1 =
k−1∑
i=1

σiuivTi ,

then
σk = ‖A−Ak−1‖2 = ‖A + E−Ak−1 −E‖2
≥ ‖A + E−Ak−1‖2 − ‖E‖2 (recall (5.1.6) on p. 273)

≥ βk − ‖E‖2 by (5.12.10).

Couple this with the observation that

σk = min
rank(B)=k−1

‖A−B‖2 = min
rank(B)=k−1

‖A + E−B−E‖2

≤ min
rank(B)=k−1

‖A + E−B‖2 + ‖E‖2 = βk + ‖E‖2

to conclude that |σk − βk| ≤ ‖E‖2.
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Problem: Explain why this means that computing the singular values of A
with any stable algorithm (one that returns the exact singular values βk of a
nearby matrix A + E) is a good way to compute rank (A).

Solution: If rank (A) = r, then p − r of the σk ’s are exactly zero, so the
perturbation result (5.12.15) guarantees that p−r of the computed βk ’s cannot
be larger than ‖E‖2. So if

β1 ≥ · · · ≥ βr̃ > ‖E‖2 ≥ βr̃+1 ≥ · · · ≥ βp,

then it’s reasonable to consider r̃ to be the numerical rank of A. For most
algorithms, ‖E‖2 is not known exactly, but adequate estimates of ‖E‖2 often
can be derived. Considerable effort has gone into the development of stable al-
gorithms for computing singular values, but such algorithms are too involved
to discuss here—consult an advanced book on matrix computations. Gener-
ally speaking, good SVD algorithms have ‖E‖2 ≈ 5 × 10−t‖A‖2 when t-digit
floating-point arithmetic is used.

Just as the range-nullspace decomposition was used in Example 5.10.5 to
define the Drazin inverse of a square matrix, a URV factorization or an SVD
can be used to define a generalized inverse for rectangular matrices. For a URV
factorization

Am×n = U
(

C 0
0 0

)
m×n
VT , we define A†

n×m = V
(

C−1 0
0 0

)
n×m
UT

to be the Moore–Penrose inverse (or the pseudoinverse) of A. (Replace
(�)T by (�)∗ when A ∈ Cm×n. ) Although the URV factors are not uniquely
defined by A, it can be proven that A† is unique by arguing that A† is the
unique solution to the four Penrose equations

AA†A = A, A†AA† = A†,(
AA†)T= AA†,

(
A†A

)T= A†A,

so A† is the same matrix defined in Exercise 4.5.20. Since it doesn’t matter
which URV factorization is used, we can use the SVD (5.12.2), in which case
C = D = diag (σ1, . . . , σr). Some “inverselike” properties that relate A† to
solutions and least squares solutions for linear systems are given in the following
summary. Other useful properties appear in the exercises.
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Moore–Penrose Pseudoinverse
• In terms of URV factors, the Moore–Penrose pseudoinverse of

Am×n= U
(

Cr×r 0
0 0

)
VT is A†

n×m= V
(

C−1 0
0 0

)
UT . (5.12.16)

• When Ax = b is consistent, x = A†b is the solution
of minimal euclidean norm.

(5.12.17)

• When Ax = b is inconsistent, x = A†b is the least
squares solution of minimal euclidean norm.

(5.12.18)

• When an SVD is used, C = D = diag (σ1, . . . , σr), so

A† = V
(

D−1 0
0 0

)
UT =

r∑
i=1

viuTi
σi

and A†b =
r∑
i=1

(
uTi b

)
σi

vi.

Proof. To prove (5.12.17), suppose Ax0 = b, and replace A by AA†A to
write b = Ax0 = AA†Ax0 = AA†b. Thus A†b solves Ax = b when it is
consistent. To see that A†b is the solution of minimal norm, observe that the
general solution is A†b+N (A) (a particular solution plus the general solution of
the homogeneous equation), so every solution has the form z = A†b+n, where
n ∈ N (A). It’s not difficult to see that A†b ∈ R

(
A†) = R

(
AT

)
(Exercise

5.12.16), so A†b ⊥ n. Therefore, by the Pythagorean theorem (Exercise 5.4.14),

‖z‖22 =
∥∥A†b + n

∥∥2

2
=

∥∥A†b
∥∥2

2
+ ‖n‖22 ≥

∥∥A†b
∥∥2

2
.

Equality is possible if and only if n = 0, so A†b is the unique minimum
norm solution. When Ax = b is inconsistent, the least squares solutions are the
solutions of the normal equations ATAx = ATb, and it’s straightforward to
verify that A†b is one such solution (Exercise 5.12.16(c)). To prove that A†b
is the least squares solution of minimal norm, apply the same argument used in
the consistent case to the normal equations.

Caution! Generalized inverses are useful in formulating theoretical statements
such as those above, but, just as in the case of the ordinary inverse, generalized
inverses are not practical computational tools. In addition to being computation-
ally inefficient, serious numerical problems result from the fact that A† need
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not be a continuous function of the entries of A. For example,

A(x) =
(

1 0
0 x

)
=⇒ A†(x) =




(
1 0
0 1/x

)
for x �= 0,(

1 0
0 0

)
for x = 0.

Not only is A†(x) discontinuous in the sense that limx→0 A†(x) �= A†(0), but
it is discontinuous in the worst way because as A(x) comes closer to A(0) the
matrix A†(x) moves farther away from A†(0). This type of behavior translates
into insurmountable computational difficulties because small errors due to round-
off (or anything else) can produce enormous errors in the computed A†, and as
errors in A become smaller the resulting errors in A† can become greater. This
diabolical fact is also true for the Drazin inverse (p. 399). The inherent numeri-
cal problems coupled with the fact that it’s extremely rare for an application to
require explicit knowledge of the entries of A† or AD constrains them to being
theoretical or notational tools. But don’t underestimate this role—go back and
read Laplace’s statement quoted in the footnote on p. 81.

Example 5.12.6

Another way to view the URV or SVD factorizations in relation to the Moore–
Penrose inverse is to consider A/R(AT )

and A†
/R(A)

, the restrictions of A and

A† to R
(
AT

)
and R (A), respectively. Begin by making the straightforward

observations that R
(
A†) = R

(
AT

)
and N

(
A†) = N

(
AT

)
(Exercise 5.12.16).

Since �n = R
(
AT

)
⊕ N (A) and �m = R (A) ⊕ N

(
AT

)
, it follows that

R (A) = A(�n) = A(R
(
AT

)
) and R

(
AT

)
= R

(
A†) = A†(�m) = A†(R (A)).

In other words, A/R(AT )
and A†

/R(A)
are linear transformations such that

A/R(AT )
: R

(
AT

)
→ R (A) and A†

/R(A)
: R (A)→ R

(
AT

)
.

If B = {u1,u2, . . . ,ur} and B′ = {v1,v2, . . . ,vr} are the first r columns
from U =

(
U1 |U2

)
and V =

(
V1 |V2

)
in (5.11.11), then AV1 = U1C and

A†U1 = V1C−1 implies (recall (4.7.4)) that

[
A/R(AT )

]
B′B

= C and
[
A†

/R(A)

]
BB′

= C−1. (5.12.19)

If left-hand and right-hand singular vectors from the SVD (5.12.2) are used in
B and B′, respectively, then C = D = diag (σ1, . . . , σr). Thus (5.12.19) reveals
the exact sense in which A and A† are “inverses.” Compare these results with
the analogous statements for the Drazin inverse in Example 5.10.5 on p. 399.
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Exercises for section 5.12

5.12.1. Following the derivation in the text, find an SVD for

C =
(
−4 −6

3 −8

)
.

5.12.2. If σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of A, then it can
be shown that the function νk(A) =

(
σ2

1 + σ2
2 + · · ·+ σ2

k

)1/2
defines a

unitarily invariant norm (recall Exercise 5.6.9) for �m×n (or Cm×n)
for each k = 1, 2, . . . , r. Explain why the 2-norm and the Frobenius
norm (p. 279) are the extreme cases in the sense that ‖A‖22 = σ2

1 and
‖A‖2F = σ2

1 + σ2
2 + · · ·+ σ2

r .

5.12.3. Each of the four common matrix norms can be bounded above and below
by a constant multiple of each of the other matrix norms. To be precise,
‖A‖i ≤ α ‖A‖j , where α is the (i, j)-entry in the following matrix.




1 2 ∞ F

1 ∗ √
n n

√
n

2
√
n ∗ √

n 1
∞ n

√
n ∗ √

n
F

√
n

√
n

√
n ∗


.

For analyzing limiting behavior, it therefore makes no difference which
of these norms is used, so they are said to be equivalent matrix norms. (A
similar statement for vector norms was given in Exercise 5.1.8.) Explain
why the (2, F ) and the (F, 2) entries are correct.

5.12.4. Prove that if σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of a
rank r matrix A, and if ‖E‖2 < σr, then rank (A + E) ≥ rank (A).
Note: This clarifies the meaning of the term “sufficiently small” in the
assertion on p. 216 that small perturbations can’t reduce rank.

5.12.5. Image of the Unit Sphere. Extend the result on p. 414 concerning
the image of the unit sphere to include singular and rectangular matrices
by showing that if σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular
values of Am×n, then the image A(S2) ⊂ �m of the unit 2-sphere
S2 ⊂ �n is an ellipsoid (possibly degenerate) in which the kth semiaxis
is σkU∗k = AV∗k, where U∗k and V∗k are respective left-hand and
right-hand singular vectors for A.
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5.12.6. Prove that if σr is the smallest nonzero singular value of Am×n, then

σr = min
‖x‖2=1

x∈R(AT )

‖Ax‖2 = 1/
∥∥A†∥∥

2
,

which is the generalization of (5.12.5).

5.12.7. Generalized Condition Number. Extend the bound in (5.12.8) to
include singular and rectangular matrices by showing that if x and
x̃ are the respective minimum 2-norm solutions of consistent systems
Ax = b and Ax̃ = b̃ = b− e, then

κ−1 ‖e‖
‖b‖ ≤

‖x− x̃‖
‖x‖ ≤ κ

‖e‖
‖b‖ , where κ = ‖A‖

∥∥A†∥∥ .

Can the same reasoning given in Example 5.12.1 be used to argue that
for ‖ � ‖2, the upper and lower bounds are attainable for every A?

5.12.8. Prove that if |ε| < σ2
r for the smallest nonzero singular value of Am×n,

then (ATA + εI)−1 exists, and limε→0(ATA + εI)−1AT = A†.

5.12.9. Consider a system Ax = b in which

A =
(

.835 .667

.333 .266

)
,

and suppose b is subject to an uncertainty e. Using ∞-norms, deter-
mine the directions of b and e that give rise to the worst-case scenario
in (5.12.8) in the sense that ‖x− x̃‖∞ / ‖x‖∞ = κ∞‖e‖∞ / ‖b‖∞.

5.12.10. An ill-conditioned matrix is suspected when a small pivot uii emerges
during the LU factorization of A because

[
U−1

]
ii

= 1/uii is then
large, and this opens the possibility of A−1 = U−1L−1 having large
entries. Unfortunately, this is not an absolute test, and no guarantees
about conditioning can be made from the pivots alone.

(a) Construct an example of a matrix that is well conditioned but
has a small pivot.

(b) Construct an example of a matrix that is ill conditioned but has
no small pivots.
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5.12.11. Bound the relative uncertainty in the solution of a nonsingular system
Ax = b for which there is some uncertainty in A but not in b by
showing that if (A−E)x̃ = b, where α =

∥∥A−1E
∥∥ < 1 for any matrix

norm such that ‖I‖ = 1, then

‖x− x̃‖
‖x‖ ≤ κ

1− α

‖E‖
‖A‖ , where κ = ‖A‖

∥∥A−1
∥∥ .

Note: If the 2-norm is used, then ‖E‖2 < σn insures α < 1.
Hint: If B = A−1E, then A − E = A(I − B), and α = ‖B‖ < 1
=⇒

∥∥Bk∥∥ ≤ ‖B‖k → 0 =⇒ Bk → 0, so the Neumann series
expansion (p. 126) yields (I−B)−1 =

∑∞
i=0 Bi.

5.12.12. Now bound the relative uncertainty in the solution of a nonsingular
system Ax = b for which there is some uncertainty in both A and b
by showing that if (A−E)x̃ = b− e, where α =

∥∥A−1E
∥∥ < 1 for any

matrix norm such that ‖I‖ = 1, then

‖x− x̃‖
‖x‖ ≤ κ

1− κ ‖E‖ / ‖A‖

( ‖e‖
‖b‖ +

‖E‖
‖A‖

)
, where κ = ‖A‖

∥∥A−1
∥∥ .

Note: If the 2-norm is used, then ‖E‖2 < σn insures α < 1. This
exercise underscores the conclusion of Example 5.12.1 stating that if A
is well conditioned, and if the relative uncertainties in A and b are
small, then the relative uncertainty in x must be small.

5.12.13. Consider the matrix A =

(−4 −2 −4 −2
2 −2 2 1
−4 1 −4 −2

)
.

(a) Use the URV factorization you computed in Exercise 5.11.8 to
determine A†.

(b) Now use the URV factorization you obtained in Exercise 5.11.9
to determine A†. Do your results agree with those of part (a)?

5.12.14. For matrix A in Exercise 5.11.8, and for b = (−12 3 −9 )T , find
the solution of Ax = b that has minimum euclidean norm.

5.12.15. Suppose A = URVT is a URV factorization (so it could be an SVD)
of an m× n matrix of rank r, and suppose U is partitioned as U =(
U1 |U2

)
, where U1 is m× r. Prove that P = U1UT1 = AA† is the

projector onto R (A) along N
(
AT

)
. In this case, P is said to be an or-

thogonal projector because its range is orthogonal to its nullspace. What
is the orthogonal projector onto N

(
AT

)
along R (A)? (Orthogonal

projectors are discussed in more detail on p. 429.)
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5.12.16. Establish the following properties of A†.
(a) A† = A−1 when A is nonsingular.

(b) (A†) † = A.

(c) (A†) T = (AT ) †
.

(d) A† =
{

(ATA)−1AT when rank (Am×n) = n,
AT (AAT )−1 when rank (Am×n) = m.

(e) AT = ATAA† = A†AAT for all A ∈ �m×n.

(f) A† = AT (AAT )† = (ATA)†AT for all A ∈ �m×n.

(g) R
(
A†) = R

(
AT

)
= R

(
A†A

)
, and

N
(
A†) = N

(
AT

)
= N

(
AA†).

(h) (PAQ)† = QTA†PT when P and Q are orthogonal matrices,
but in general (AB)† �= B†A† (the reverse-order law fails).

(i) (ATA)† = A†(AT )† and (AAT )† = (AT )†A†.

5.12.17. Explain why A† = AD if and only if A is an RPN matrix.

5.12.18. Let X, Y ∈ �m×n be such that R (X) ⊥ R (Y).
(a) Establish the Pythagorean theorem for matrices by proving

‖X + Y‖2F = ‖X‖2F + ‖Y‖2F .

(b) Give an example to show that the result of part (a) does not
hold for the matrix 2-norm.

(c) Demonstrate that A† is the best approximate inverse for A
in the sense that A† is the matrix of smallest Frobenius norm
that minimizes ‖I−AX‖F .
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5.13 ORTHOGONAL PROJECTION

As discussed in §5.9, every pair of complementary subspaces defines a projector.
But when the complementary subspaces happen to be orthogonal complements,
the resulting projector has some particularly nice properties, and the purpose of
this section is to develop this special case in more detail. Discussions are in the
context of real spaces, but generalizations to complex spaces are straightforward
by replacing (�)T by (�)∗ and “orthogonal matrix” by “unitary matrix.”

If M is a subspace of an inner-product space V, then V = M ⊕M⊥

by (5.11.1), and each v ∈ V can be written uniquely as v = m + n, where
m ∈ M and n ∈ M⊥ by (5.9.3). The vector m was defined on p. 385 to be
the projection of v onto M along M⊥, so the following definitions are natural.

Orthogonal Projection
For v ∈ V, let v = m + n, where m ∈M and n ∈M⊥.

• m is called the orthogonal projection of v onto M.

• The projector PM onto M along M⊥ is called the orthogonal
projector onto M.

• PM is the unique linear operator such that PMv = m (see p. 386).

These ideas are illustrated illustrated in Figure 5.13.1 for V = �3.

Figure 5.13.1

Given an arbitrary pair of complementary subspaces M, N of �n, formula
(5.9.12) on p. 386 says that the projector P onto M along N is given by

P =
(
M |N

) (
I 0
0 0

) (
M |N

)−1 =
(
M |0

)(
M |N

)−1
, (5.13.1)

where the columns of M and N constitute bases for M and N , respectively.
So, how does this expression simplify when N =M⊥? To answer the question,
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observe that if N = M⊥, then NTM = 0 and MTN = 0. Furthermore, if
dimM = r, then MTM is r × r, and rank

(
MTM

)
= rank (M) = r by

(4.5.4), so MTM is nonsingular. Therefore, if the columns of N are chosen to
be an orthonormal basis for M⊥, then
 (

MTM
)−1

MT

NT


(

M |N
)
=

(
I 0
0 I

)
=⇒

(
M |N

)−1=


 (

MTM
)−1

MT

NT


.

This together with (5.13.1) says the orthogonal projector onto M is given by

PM =
(
M |0

) 
 (

MTM
)−1

MT

NT


 = M

(
MTM

)−1
MT . (5.13.2)

As discussed in §5.9, the projector associated with any given pair of com-
plementary subspaces is unique, and it doesn’t matter which bases are used to
form M and N in (5.13.1). Consequently, formula PM = M

(
MTM

)−1
MT

is independent of the choice of M —just as long as its columns constitute some
basis for M. In particular, the columns of M need not be an orthonormal basis
for M. But if they are, then MTM = I, and (5.13.2) becomes PM = MMT .
Moreover, if the columns of M and N constitute orthonormal bases for M and
M⊥, respectively, then U =

(
M |N

)
is an orthogonal matrix, and (5.13.1) be-

comes

PM = U
(

Ir 0
0 0

)
UT .

In other words, every orthogonal projector is orthogonally similar to a diagonal
matrix in which the diagonal entries are 1’s and 0’s.

Below is a summary of the formulas used to build orthogonal projectors.

Constructing Orthogonal Projectors
Let M be an r-dimensional subspace of �n, and let the columns of
Mn×r and Nn×n−r be bases for M and M⊥, respectively. The or-
thogonal projectors onto M and M⊥ are

• PM = M
(
MTM

)−1
MT and PM⊥ = N

(
NTN

)−1
NT . (5.13.3)

If M and N contain orthonormal bases for M and M⊥, then

• PM = MMT and PM⊥ = NNT . (5.13.4)

• PM = U
(

Ir 0
0 0

)
UT , where U =

(
M |N

)
. (5.13.5)

• PM⊥ = I−PM in all cases. (5.13.6)

Note: Extensions of (5.13.3) appear on p. 634.
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Example 5.13.1

Problem: Let un×1 �= 0, and consider the line L = span {u} . Construct the
orthogonal projector onto L, and then determine the orthogonal projection of
a vector xn×1 onto L.
Solution: The vector u by itself is a basis for L, so, according to (5.13.3),

PL = u
(
uTu

)−1
uT =

uuT

uTu

is the orthogonal projector onto L. The orthogonal projection of a vector x
onto L is therefore given by

PLx =
uuT

uTu
x =

(
uTx
uTu

)
u.

Note: If ‖u‖2 = 1, then PL = uuT , so PLx = uuTx = (uTx)u, and

‖PLx‖2 = |uTx| ‖u‖2 = |uTx|.

This yields a geometrical interpretation for the magnitude of the standard inner
product. It says that if u is a vector of unit length in L, then, as illustrated
in Figure 5.13.2, |uTx| is the length of the orthogonal projection of x onto the
line spanned by u.

x

u

L

0

PLx

|u
T x|

Figure 5.13.2

Finally, notice that since PL = uuT is the orthogonal projector onto L, it must
be the case that PL⊥ = I − PL = I − uuT is the orthogonal projection onto
L⊥. This was called an elementary orthogonal projector on p. 322—go back
and reexamine Figure 5.6.1.

Example 5.13.2

Volume, Gram–Schmidt, and QR. A solid in �m with parallel opposing
faces whose adjacent sides are defined by vectors from a linearly independent set
{x1,x2, . . . ,xn} is called an n-dimensional parallelepiped. As shown in the
shaded portions of Figure 5.13.3, a two-dimensional parallelepiped is a parallel-
ogram, and a three-dimensional parallelepiped is a skewed rectangular box.
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x1

x2
‖x1‖

‖(I−P2)x2‖

x1

x2

x3

‖(I−P3)x3‖

Figure 5.13.3

Problem: Determine the volumes of a two-dimensional and a three-dimensional
parallelepiped, and then make the natural extension to define the volume of an
n-dimensional parallelepiped.

Solution: In the two-dimensional case, volume is area, and it’s evident from
Figure 5.13.3 that the area of the shaded parallelogram is the same as the area
of the dotted rectangle. The width of the dotted rectangle is ν1 = ‖x1‖2 , and
the height is ν2 = ‖(I−P2)x2‖2 , where P2 is the orthogonal projector onto
the space (line) spanned by x1, and I − P2 is the orthogonal projector onto
span {x1}⊥ . In other words, the area, V2, of the parallelogram is the length of
its base times its projected height , ν2, so

V2 = ‖x1‖2 ‖(I−P2)x2‖2 = ν1ν2.

Similarly, the volume of a three-dimensional parallelepiped is the area of its
base times its projected height. The area of the base was just determined to be
V2 = ‖x1‖2 ‖(I−P2)x2‖2 = ν1ν2, and it’s evident from Figure 5.13.3 that the
projected height is ν3 = ‖(I−P3)x3‖2 , where P3 is the orthogonal projector
onto span {x1,x2} . Therefore, the volume of the parallelepiped generated by
{x1,x2,x3} is

V3 = ‖x1‖2 ‖(I−P2)x2‖2 ‖(I−P3)x3‖2 = ν1ν2ν3.

It’s now clear how to inductively define V4, V5, etc. In general, the volume of
the parallelepiped generated by a linearly independent set {x1,x2, . . . ,xn} is

Vn = ‖x1‖2 ‖(I−P2)x2‖2 ‖(I−P3)x3‖2 · · · ‖(I−Pn)xn‖2 = ν1ν2 · · · νn,

where Pk is the orthogonal projector onto span {x1,x2, . . . ,xk−1} , and where

ν1 = ‖x1‖2 and νk = ‖(I−Pk)xk‖2 for k > 1. (5.13.7)

Note that if {x1,x2, . . . ,xn} is an orthogonal set, Vn = ‖x1‖2 ‖x2‖2 · · · ‖xn‖2 ,
which is what we would expect.
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Connections with Gram–Schmidt and QR. Recall from (5.5.4) on p. 309
that the vectors in the Gram–Schmidt sequence generated from a linearly inde-
pendent set {x1,x2, . . . ,xn} ⊂ �m are u1 = x1/ ‖x1‖2 and

uk =

(
I−UkUTk

)
xk∥∥(

I−UkUTk
)
xk

∥∥
2

, where Uk =
[
u1 |u2 | · · · |uk−1

]
for k > 1.

Since {u1,u2, . . . ,uk−1} is an orthonormal basis for span {x1,x2, . . . ,xk−1} ,
it follows from (5.13.4) that UkUTk must be the orthogonal projector onto
span {x1,x2, . . . ,xk−1} . Hence UkUTk = Pk and (I−Pk)xk = (I−UkUTk )xk,
so

∥∥(
I−UkUTk

)
xk

∥∥
2

= νk is the kth projected height in (5.13.7). This means
that when the Gram–Schmidt equations are written in the form of a QR fac-
torization as explained on p. 311, the diagonal elements of the upper-triangular
matrix R are the νk ’s. Consequently, the product of the diagonal entries in R
is the volume of the parallelepiped generated by the xk ’s. But the QR factor-
ization of A =

[
x1 |x2 | · · · |xn

]
is unique (Exercise 5.5.8), so it doesn’t matter

whether Gram–Schmidt or another method is used to determine the QR factors.
Therefore, we arrive at the following conclusion.

• If Am×n = Qm×nRn×n is the (rectangular) QR factorization of a matrix
with linearly independent columns, then the volume of the n-dimensional
parallelepiped generated by the columns of A is Vn = ν1ν2 · · · νn, where
the νk ’s are the diagonal elements of R. We will see on p. 468 what this
means in terms of determinants.

Of course, not all projectors are orthogonal projectors, so a natural question
to ask is, “What characteristic features distinguish orthogonal projectors from
more general oblique projectors?” Some answers are given below.

Orthogonal Projectors
Suppose that P ∈ �n×n is a projector—i.e., P2 = P. The following
statements are equivalent to saying that P is an orthogonal projector.

• R (P) ⊥ N (P). (5.13.8)

• PT = P (i.e., orthogonal projector ⇐⇒ P2 = P = PT ). (5.13.9)

• ‖P‖2 = 1 for the matrix 2-norm (p. 281). (5.13.10)

Proof. Every projector projects vectors onto its range along (parallel to) its
nullspace, so statement (5.13.8) is essentially a restatement of the definition of
an orthogonal projector. To prove (5.13.9), note that if P is an orthogonal
projector, then (5.13.3) insures that P is symmetric. Conversely, if a projector
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P is symmetric, then it must be an orthogonal projector because (5.11.5) on
p. 405 allows us to write

P = PT =⇒ R (P) = R
(
PT

)
=⇒ R (P) ⊥ N (P).

To see why (5.13.10) characterizes projectors that are orthogonal, refer back
to Example 5.9.2 on p. 389 (or look ahead to (5.15.3)) and note that ‖P‖2 =
1/ sin θ, where θ is the angle between R (P) and N (P). This makes it clear
that ‖P‖2 ≥ 1 for all projectors, and ‖P‖2 = 1 if and only if θ = π/2, (i.e., if
and only if R (P) ⊥ N (P) ).

Example 5.13.3

Problem: For A ∈ �m×n such that rank (A) = r, describe the orthogonal
projectors onto each of the four fundamental subspaces of A.

Solution 1: Let Bm×r and Nn×n−r be matrices whose columns are bases for
R (A) and N (A), respectively—e.g., B might contain the basic columns of
A. The orthogonal decomposition theorem on p. 405 says R (A)⊥ = N

(
AT

)
and N (A)⊥ = R

(
AT

)
, so, by making use of (5.13.3) and (5.13.6), we can write

PR(A) = B
(
BTB

)−1
BT ,

PN(AT ) = PR(A)⊥ = I−PR(A) = I−B
(
BTB

)−1
BT ,

PN(A) = N
(
NTN

)−1
NT ,

PR(AT ) = PN(A)⊥ = I−PN(A) = I−N
(
NTN

)−1
NT .

Note: If rank (A) = n, then all columns of A are basic and

PR(A) = A
(
ATA

)−1
AT . (5.13.11)

Solution 2: Another way to describe these projectors is to make use of the
Moore–Penrose pseudoinverse A† (p. 423). Recall that if A has a URV factor-
ization

A = U
(

C 0
0 0

)
VT , then A† = V

(
C−1 0
0 0

)
UT ,

where U =
(
U1 |U2

)
and V =

(
V1 |V2

)
are orthogonal matrices in which the

columns of U1 and V1 constitute orthonormal bases for R (A) and R
(
AT

)
,

respectively, and the columns of U2 and V2 are orthonormal bases for N
(
AT

)
and N (A), respectively. Computing the products AA† and A†A reveals

AA† = U
(

I 0
0 0

)
UT = U1UT1 and A†A = V

(
I 0
0 0

)
VT = V1VT1 ,
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so, according to (5.13.4),

PR(A) = U1UT1 = AA†, PN(AT ) = I−PR(A) = I−AA†,

PR(AT ) = V1VT1 = A†A, PN(A) = I−PR(AT ) = I−A†A.
(5.13.12)

The notion of orthogonal projection in higher-dimensional spaces is consis-
tent with the visual geometry in �2 and �3. In particular, it is visually evident
from Figure 5.13.4 that if M is a subspace of �3, and if b is a vector outside
of M, then the point in M that is closest to b is p = PMb, the orthogonal
projection of b onto M.

M

p = PMb

b

0

min
m∈M

‖b−m‖2

Figure 5.13.4

The situation is exactly the same in higher dimensions. But rather than using
our eyes to understand why, we use mathematics—it’s surprising just how easy
it is to “see” such things in abstract spaces.

Closest Point Theorem
Let M be a subspace of an inner-product space V, and let b be a
vector in V. The unique vector in M that is closest to b is p = PMb,
the orthogonal projection of b onto M. In other words,

min
m∈M

‖b−m‖2 = ‖b−PMb‖2 = dist (b,M). (5.13.13)

This is called the orthogonal distance between b and M.

Proof. If p = PMb, then p−m ∈M for all m ∈M, and

b− p = (I−PM)b ∈M⊥,

so (p−m) ⊥ (b−p). The Pythagorean theorem says ‖x + y‖2 = ‖x‖2 + ‖y‖2
whenever x ⊥ y (recall Exercise 5.4.14), and hence

‖b−m‖22 = ‖b− p + p−m‖22 = ‖b− p‖22 + ‖p−m‖22 ≥ ‖p−m‖22 .



436 Chapter 5 Norms, Inner Products, and Orthogonality

In other words, minm∈M ‖b−m‖2 = ‖b− p‖2 . Now argue that there is not
another point in M that is as close to b as p is. If m̂ ∈ M such that
‖b− m̂‖2 = ‖b− p‖2 , then by using the Pythagorean theorem again we see

‖b− m̂‖22 = ‖b− p + p− m̂‖22 = ‖b− p‖22 + ‖p− m̂‖22 =⇒ ‖p− m̂‖2 = 0,

and thus m̂ = p.

Example 5.13.4

To illustrate some of the previous ideas, consider �n×n with the inner product
〈A B〉 = trace

(
ATB

)
. If Sn is the subspace of n× n real-symmetric matrices,

then each of the following statements is true.

• S⊥
n = the subspace Kn of n× n skew-symmetric matrices.

, Sn ⊥ Kn because for all S ∈ Sn and K ∈ Kn,

〈S K〉 = trace
(
STK

)
= −trace

(
SKT

)
= −trace

(
SKT

)T
= −trace

(
KST

)
= −trace

(
STK

)
= −〈S K〉

=⇒ 〈S K〉 = 0.

, �n×n = Sn ⊕Kn because every A ∈ �n×n can be uniquely expressed
as the sum of a symmetric and a skew-symmetric matrix by writing

A =
A + AT

2
+

A−AT

2
(recall (5.9.3) and Exercise 3.2.6).

• The orthogonal projection of A ∈ �n×n onto Sn is P(A) = (A + AT )/2.

• The closest symmetric matrix to A ∈ �n×n is P(A) = (A + AT )/2.

• The distance from A ∈ �n×n to Sn (the deviation from symmetry) is

dist(A,Sn) = ‖A−P(A)‖F =
∥∥(A−AT )/2

∥∥
F

=

√
trace (ATA)−trace (A2)

2
.

Example 5.13.5

Affine Projections. If v �= 0 is a vector in a space V, and if M is a
subspace of V, then the set of points A = v +M is called an affine space in
V. Strictly speaking, A is not a subspace (e.g., it doesn’t contain 0 ), but, as
depicted in Figure 5.13.5, A is the translate of a subspace—i.e., A is just a copy
of M that has been translated away from the origin through v. Consequently,
notions such as projection onto A and points closest to A are analogous to the
corresponding concepts for subspaces.
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Problem: For b ∈ V, determine the point p in A = v +M that is closest to
b. In other words, explain how to project b orthogonally onto A.

Solution: The trick is to subtract v from b as well as from everything in A
to put things back into the context of subspaces where we already know the
answers. As illustrated in Figure 5.13.5, this moves A back down to M, and it
translates v→ 0, b→ (b− v), and p→ (p− v).

0

p - v

b

v

p

A = v +M

b− v

p− vM

0

Figure 5.13.5

If p is to be the orthogonal projection of b onto A, then p− v must be the
orthogonal projection of b− v onto M, so

p− v = PM(b− v) =⇒ p = v + PM(b− v), (5.13.14)

and thus p is the point in A that is closest to b. Applications to the solution
of linear systems are developed in Exercises 5.13.17–5.13.22.

We are now in a position to replace the classical calculus-based theory of
least squares presented in §4.6 with a more modern vector space development.
In addition to being straightforward, the modern geometrical approach puts
the entire least squares picture in much sharper focus. Viewing concepts from
more than one perspective generally produces deeper understanding, and this is
particularly true for the theory of least squares.

Recall from p. 226 that for an inconsistent system Am×nx = b, the object
of the least squares problem is to find vectors x that minimize the quantity

(Ax− b)T (Ax− b) = ‖Ax− b‖22 . (5.13.15)

The classical development in §4.6 relies on calculus to argue that the set of vectors
x that minimize (5.13.15) is exactly the set that solves the (always consistent)
system of normal equations ATAx = ATb. In the context of the closest point
theorem the least squares problem asks for vectors x such that Ax is as close
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to b as possible. But Ax is always a vector in R (A), and the closest point
theorem says that the vector in R (A) that is closest to b is PR(A)b, the
orthogonal projection of b onto R (A). Figure 5.13.6 illustrates the situation
in �3.

b

0

R (A)

PR(A)b

PR(A)b‖ − b‖2=min
x∈�n

‖Ax− b‖2

Figure 5.13.6

So the least squares problem boils down to finding vectors x such that

Ax = PR(A)b.

But this system is equivalent to the system of normal equations because

Ax = PR(A)b⇐⇒ PR(A)Ax = PR(A)b

⇐⇒ PR(A)(Ax− b) = 0

⇐⇒ (Ax− b) ∈ N
(
PR(A)

)
= R (A)⊥ = N

(
AT

)
⇐⇒ AT (Ax− b) = 0

⇐⇒ ATAx = ATb.

Characterizing the set of least squares solutions as the solutions to Ax = PR(A)b
makes it obvious that x = A†b is a particular least squares solution because
(5.13.12) insures AA† = PR(A), and thus

A(A†b) = PR(A)b.

Furthermore, since A†b is a particular solution of Ax = PR(A)b, the general
solution—i.e., the set of all least squares solutions—must be the affine space
S = A†b + N (A). Finally, the fact that A†b is the least squares solution of
minimal norm follows from Example 5.13.5 together with

R
(
A†) = R

(
AT

)
= N (A)⊥ (see part (g) of Exercise 5.12.16)

because (5.13.14) insures that the point in S that is closest to the origin is

p = A†b + PN(A)(0−A†b) = A†b.

The classical development in §4.6 based on partial differentiation is not easily
generalized to cover the case of complex matrices, but the vector space approach
given in this example trivially extends to complex matrices by simply replacing
(�)T by (�)∗.

Below is a summary of some of the major points concerning the theory of
least squares.
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Least Squares Solutions
Each of the following four statements is equivalent to saying that x̂ is a
least squares solution for a possibly inconsistent linear system Ax = b.

• ‖Ax̂− b‖2 = min
x∈�n

‖Ax− b‖2 . (5.13.16)

• Ax̂ = PR(A)b. (5.13.17)

• ATAx̂ = ATb ( A∗Ax̂ = A∗b when A ∈ Cm×n ). (5.13.18)

• x̂ ∈ A†b + N (A) ( A†b is the minimal 2-norm LSS). (5.13.19)

Caution! These are valuable theoretical characterizations, but none is
recommended for floating-point computation. Directly solving (5.13.17)
or (5.13.18) or explicitly computing A† can be inefficient and numeri-
cally unstable. Computational issues are discussed in Example 4.5.1 on
p. 214; Example 5.5.3 on p. 313; and Example 5.7.3 on p. 346.

The least squares story will not be complete until the following fundamental
question is answered: “Why is the method of least squares the best way to make
estimates of physical phenomena in the face of uncertainty?” This is the focal
point of the next section.

Exercises for section 5.13

5.13.1. Find the orthogonal projection of b onto M = span {u} , and then de-
termine the orthogonal projection of b onto M⊥, where b = ( 4 8 )T

and u = ( 3 1 )T .

5.13.2. Let A =


 1 2 0

2 4 1
1 2 0


 and b =


 1

1
1


 .

(a) Compute the orthogonal projectors onto each of the four funda-
mental subspaces associated with A.

(b) Find the point in N (A)⊥ that is closest to b.

5.13.3. For an orthogonal projector P, prove that ‖Px‖2 = ‖x‖2 if and only
if x ∈ R (P).

5.13.4. Explain why ATPR(A) = AT for all A ∈ �m×n.
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5.13.5. Explain why PM =
∑r
i=1 uiuiT whenever B = {u1,u2, . . . ,ur} is an

orthonormal basis for M⊆ �n×1.

5.13.6. Explain how to use orthogonal reduction techniques to compute the
orthogonal projectors onto each of the four fundamental subspaces of a
matrix A ∈ �m×n.

5.13.7. (a) Describe all 2× 2 orthogonal projectors in �2×2.
(b) Describe all 2× 2 projectors in �2×2.

5.13.8. The line L in �n passing through two distinct points u and v is
L = u + span {u− v} . If u �= 0 and v �= αu, then L is a line not
passing through the origin—i.e., L is not a subspace. Sketch a picture
in �2 or �3 to visualize this, and then explain how to project a vector
b orthogonally onto L.

5.13.9. Explain why x̂ is a least squares solution for Ax = b if and only if
‖Ax̂− b‖2 =

∥∥PN(AT )b
∥∥

2
.

5.13.10. Prove that if ε = Ax̂ − b, where x̂ is a least squares solution for
Ax = b, then ‖ε‖22 = ‖b‖22 −

∥∥PR(A)b
∥∥2

2
.

5.13.11. Let M be an r -dimensional subspace of �n. We know from (5.4.3)
that if B = {u1,u2, . . . ,ur} is an orthonormal basis for M, and if
x ∈ M, then x is equal to its Fourier expansion with respect to B.
That is, x =

∑r
i=1(ui

Tx)ui. However, if x /∈ M, then equality is not
possible (why?), so the question that arises is, “What does the Fourier
expansion on the right-hand side of this expression represent?” Answer
this question by showing that the Fourier expansion

∑r
i=1(ui

Tx)ui is
the point in M that is closest to x in the euclidean norm. In other
words, show that

∑r
i=1(ui

Tx)ui = PMx.

5.13.12. Determine the orthogonal projection of b onto M, where

b =




5
2
5
3


 and M = span






−3/5

0
4/5
0


 ,




0
0
0
1


 ,




4/5
0

3/5
0





 .

Hint: Is this spanning set in fact an orthonormal basis?
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5.13.13. Let M and N be subspaces of a vector space V, and consider the
associated orthogonal projectors PM and PN .

(a) Prove that PMPN = 0 if and only if M⊥ N .

(b) Is it true that PMPN = 0 if and only if PNPM = 0? Why?

5.13.14. Let M and N be subspaces of the same vector space, and let PM
and PN be orthogonal projectors onto M and N , respectively.

(a) Prove that R (PM + PN ) = R (PM) + R (PN ) = M + N .
Hint: Use Exercise 4.2.9 along with (4.5.5).

(b) Explain why M⊥ N if and only if PMPN = 0.
(c) Explain why PM + PN is an orthogonal projector if and only

if PMPN = 0, in which case R (PM + PN ) = M⊕N and
M⊥ N . Hint: Recall Exercise 5.9.17.

5.13.15. Anderson–Duffin Formula.59 Prove that if M and N are subspaces
of the same vector space, then the orthogonal projector onto M∩ N
is given by PM∩N = 2PM(PM + PN )†PN . Hint: Use (5.13.12) and
Exercise 5.13.14 to show PM(PM + PN )†PN = PN (PM + PN )†PM.
Argue that if Z = 2PM(PM+PN )†PM, then Z = PM∩NZ = PM∩N .

5.13.16. Given a square matrix X, the matrix exponential eX is defined as

eX = I + X +
X2

2!
+

X3

3!
+ · · · =

∞∑
n=0

Xn

n!
.

It can be shown that this series converges for all X, and it is legitimate
to differentiate and integrate it term by term to produce the statements
deAt/dt = AeAt = eAtA and

∫
eAtA dt = eAt.

(a) Use the fact that limt→∞ e−AT At = 0 for all A ∈ �m×n to
show A† =

∫ ∞
0

e−AT AtAT dt.
(b) If limt→∞ e−Ak+1t = 0, show AD =

∫ ∞
0

e−Ak+1tAkdt, where
k = index(A). 60

(c) For nonsingular matrices, show that if limt→∞ e−At = 0, then
A−1 =

∫ ∞
0

e−Atdt.

59
W. N. Anderson, Jr., and R. J. Duffin discovered this formula for the orthogonal projector onto

an intersection in 1969. They called PM(PM + PN )†PN the parallel sum of PM and PN
because it is the matrix generalization of the scalar function r1r2/(r1 + r2) = r1(r1 + r2)−1r2

that is the resistance of a circuit composed of two resistors r1 and r2 connected in parallel.
The simple elegance of the Anderson–Duffin formula makes it one of the innumerable little
sparkling facets in the jewel that is linear algebra.

60
A more useful integral representation for AD is given in Exercise 7.9.22 (p. 615).
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5.13.17. An affine space v + M ⊆ �n for which dimM = n − 1 is called a
hyperplane. For example, a hyperplane in �2 is a line (not necessarily
through the origin), and a hyperplane in �3 is a plane (not necessarily
through the origin). The ith equation Ai∗x = bi in a linear system
Am×nx = b is a hyperplane in �n, so the solutions of Ax = b occur
at the intersection of the m hyperplanes defined by the rows of A.

(a) Prove that for a given scalar β and a nonzero vector u ∈ �n,
the set H = {x |uTx = β} is a hyperplane in �n.

(b) Explain why the orthogonal projection of b ∈ �n onto H is
p = b−

(
uTb− β/uTu

)
u.

5.13.18. For u,w ∈ �n such that uTw �= 0, let M = u⊥ and W = span {w} .
(a) Explain why �n =M⊕W.

(b) For b ∈ �n×1, explain why the oblique projection of b onto
M along W is given by p = b− uTb/uTww.

(c) For a given scalar β, let H be the hyperplane in �n defined
by H = {x |uTx = β}—see Exercise 5.13.17. Explain why the
oblique projection of b onto H along W should be given by
p = b−

(
uTb− β/uTw

)
w.

5.13.19. Kaczmarz’s 61 Projection Method. The solution of a nonsingular
system (

a11 a12

a21 a22

) (
x1

x2

)
=

(
b1
b2

)

is the intersection of the two hyperplanes (lines in this case) defined by

H1={(x1, x2) | a11x1+a12x2 = b1} , H2={(x1, x2) | a21x1+a22x2 = b2}.

It’s visually evident that by starting with an arbitrary point p0 and
alternately projecting orthogonally onto H1 and H2 as depicted in
Figure 5.13.7, the resulting sequence of projections {p1, p2, p3, p4, . . . }
converges to H1 ∩H2, the solution of Ax = b.

61
Although this idea has probably occurred to many people down through the ages, credit is
usually given to Stefan Kaczmarz, who published his results in 1937. Kaczmarz was among a
school of bright young Polish mathematicians who were beginning to flower in the first part
of the twentieth century. Tragically, this group was decimated by Hitler’s invasion of Poland,
and Kaczmarz himself was killed in military action while trying to defend his country.
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Figure 5.13.7

This idea can be generalized by using Exercise 5.13.17. For a consis-
tent system An×rx = b with rank (A) = r, scale the rows so that
‖Ai∗‖2 = 1 for each i, and let Hi = {x |Ai∗x = bi} be the hyperplane
defined by the ith equation. Begin with an arbitrary vector p0 ∈ �r×1,
and successively perform orthogonal projections onto each hyperplane
to generate the following sequence:

p1 = p0 − (A1∗p0 − b1) (A1∗)
T (project p0 onto H1 ),

p2 = p1 − (A2∗p1 − b2) (A2∗)
T (project p1 onto H2 ),

...
...

pn = pn−1 − (An∗pn−1 − bn) (An∗)
T (project pn−1 onto Hn ).

When all n hyperplanes have been used, continue by repeating the
process. For example, on the second pass project pn onto H1; then
project pn+1 onto H2, etc. For an arbitrary p0, the entire Kaczmarz
sequence is generated by executing the following double loop:

For k = 0, 1, 2, 3, . . .
For i = 1, 2, . . . , n

pkn+i = pkn+i−1 − (Ai∗pkn+i−1 − bi) (Ai∗)
T

Prove that the Kaczmarz sequence converges to the solution of Ax = b
by showing ‖pkn+i − x‖22 = ‖pkn+i−1 − x‖22 − (Ai∗pkn+i−1 − bi)

2
.

5.13.20. Oblique Projection Method. Assume that a nonsingular system
An×nx = b has been row scaled so that ‖Ai∗‖2 = 1 for each i, and let
Hi = {x |Ai∗x = bi} be the hyperplane defined by the ith equation—
see Exercise 5.13.17. In theory, the system can be solved by making n−1
oblique projections of the type described in Exercise 5.13.18 because if
an arbitrary point p1 in H1 is projected obliquely onto H2 along H1

to produce p2, then p2 is in H1∩H2. If p2 is projected onto H3 along
H1 ∩ H2 to produce p3, then p3 ∈ H1 ∩ H2 ∩ H3, and so forth until
pn ∈ ∩ni=1Hi. This is similar to Kaczmarz’s method given in Exercise
5.13.19, but here we are projecting obliquely instead of orthogonally.
However, projecting pk onto Hk+1 along ∩ki=1Hi is difficult because
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∩ki=1Hi is generally unknown. This problem is overcome by modifying
the procedure as follows—use Figure 5.13.8 with n = 3 as a guide.

Figure 5.13.8

Step 0. Begin with any set
{
p(1)

1 ,p(1)
2 , . . . ,p(1)

n

}
⊂ H1 such that{(

p(1)
1 −p(1)

2

)
,
(
p(1)

1 −p(1)
3

)
, . . . ,

(
p(1)

1 −p(1)
n

)}
is linearly independent

and A2∗
(
p(1)

1 − p(1)
k

)
�= 0 for k = 2, 3, . . . , n.

Step 1. In turn, project p(1)
1 onto H2 through p(1)

2 ,p(1)
3 , . . . ,p(1)

n to
produce

{
p(2)

2 , p(2)
3 , . . . , p(2)

n

}
⊂ H1 ∩H2 (see Figure 5.13.8).

Step 2. Project p(2)
2 onto H3 through p(2)

3 ,p(2)
4 , . . . ,p(2)

n to produce{
p(3)

3 , p(3)
4 , . . . , p(3)

n

}
⊂ H1 ∩H2 ∩H3. And so the process continues.

Step n−1. Project p(n−1)
n−1 through p(n−1)

n to produce p(n)
n ∈ ∩ni=1Hi.

Of course, x = p(n)
n is the solution of the system.

For any initial set {x1,x2, . . . ,xn} ⊂ H1 satisfying the properties
described in Step 0, explain why the following algorithm performs the
computations described in Steps 1, 2, . . . , n− 1.

For i = 2 to n

For j = i to n

xj ← xj −
(Ai∗xi−1 − bi)
Ai∗(xi−1 − xj)

(xi−1 − xj)

x← xn (the solution of the system)

5.13.21. Let M be a subspace of �n, and let R = I − 2PM. Prove that the
orthogonal distance between any point x ∈ �n and M⊥ is the same as
the orthogonal distance between Rx and M⊥. In other words, prove
that R reflects everything in �n about M⊥. Naturally, R is called
the reflector about M⊥. The elementary reflectors I− 2uuT /uTu
discussed on p. 324 are special cases—go back and look at Figure 5.6.2.
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5.13.22. Cimmino’s Reflection Method. In 1938 the Italian mathematician
Gianfranco Cimmino used the following elementary observation to con-
struct an iterative algorithm for solving linear systems. For a 2× 2 sys-
tem Ax = b, let H1 and H2 be the two lines (hyperplanes) defined
by the two equations. For an arbitrary guess r0, let r1 be the reflection
of r0 about the line H1, and let r2 be the reflection of r0 about the
line H2. As illustrated in Figure 5.13.9, the three points r0, r1, and
r2 lie on a circle whose center is H1 ∩H2 (the solution of the system).

Figure 5.13.9

The mean value m = (r1 + r2)/2 is strictly inside the circle, so m is a
better approximation to the solution than r0. It’s visually evident that
iteration produces a sequence that converges to the solution of Ax = b.
Prove this in general by using the following blueprint.

(a) For a scalar β and a vector u ∈ �n such that ‖u‖2 = 1,
consider the hyperplane H = {x |uTx = β} (Exercise 5.13.17).
Use (5.6.8) to show that the reflection of a vector b about H
is r = b− 2(uTb− β)u.

(b) For a system Ax = b in which the rows of A ∈ �n×r have been
scaled so that ‖Ai∗‖2 = 1 for each i, let Hi = {x |Ai∗x = bi}
be the hyperplane defined by the ith equation. If r0 ∈ �r×1 is
an arbitrary vector, and if ri is the reflection of r0 about Hi,
explain why the mean value of the reflections {r1, r2, . . . , rn} is
m = r0 − (2/n)ATε, where ε = Ar0 − b.

(c) Iterating part (b) produces mk = mk−1 − (2/n)ATεk−1, where
εk−1 = Amk−1 − b. Show that if A is nonsingular, and if
x = A−1b, then x−mk =

(
I− (2/n)ATA

)k (x−m0). Note:

It can be proven that
(
I− (2/n)ATA

)k → 0 as k → ∞, so
mk → x for all m0. In fact, mk converges even if A is rank
deficient—if consistent, it converges to a solution, and, if incon-
sistent, the limit is a least squares solution. Cimmino’s method
also works with weighted means. If W = diag (w1, w2, . . . , wn),
where wi > 0 and

∑
wi = 1, then mk = mk−1−ωATWεk−1

is a convergent sequence in which 0 < ω < 2 is a “relaxation
parameter” that can be adjusted to alter the rate of convergence.
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5.14 WHY LEAST SQUARES?

Drawing inferences about natural phenomena based upon physical observations
and estimating characteristics of large populations by examining small samples
are fundamental concerns of applied science. Numerical characteristics of a phe-
nomenon or population are often called parameters, and the goal is to design
functions or rules called estimators that use observations or samples to estimate
parameters of interest. For example, the mean height h of all people is a pa-
rameter of the world’s population, and one way of estimating h is to observe
the mean height of a sample of k people. In other words, if hi is the height of
the ith person in a sample, the function ĥ defined by

ĥ(h1, h2, . . . , hk) =
1
k

(
k∑
i=1

hi

)

is an estimator for h. Moreover, ĥ is a linear estimator because ĥ is a linear
function of the observations.

Good estimators should possess at least two properties—they should be un-
biased and they should have minimal variance. For example, consider estimating
the center of a circle drawn on a wall by asking Larry, Moe, and Curly to each
throw one dart at the circle. To decide which estimator is best, we need to know
more about each thrower’s style. While being able to throw a tight pattern, it is
known that Larry tends to have a left-hand bias in his style. Moe doesn’t suffer
from a bias, but he tends to throw a rather large pattern. However, Curly can
throw a tight pattern without a bias. Typical patterns are shown below.

Larry Moe Curly

Although Larry has a small variance, he is an unacceptable estimator be-
cause he is biased in the sense that his average is significantly different than
the center. Moe and Curly are each unbiased estimators because they have an
average that is the center, but Curly is clearly the preferred estimator because
his variance is much smaller than Moe’s. In other words, Curly is the unbiased
estimator of minimal variance.

To make these ideas more formal, let’s adopt the following standard no-
tation and terminology from elementary probability theory concerning random
variables X and Y.
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• E[X] = µX denotes the mean (or expected value) of X.

• Var[X] = E
[
(X − µX)2

]
= E[X2]− µ2

X is the variance of X.

• Cov[X,Y ] = E[(X − µX)(Y − µY )] = E[XY ]− µXµY is the covariance of
X and Y.

Minimum Variance Unbiased Estimators
An estimator θ̂ (consider as a random variable) for a parameter θ is
said to be unbiased when E[θ̂] = θ, and θ̂ is called a minimum

variance unbiased estimator for θ whenever Var[θ̂] ≤ Var[φ̂] for
all unbiased estimators φ̂ of θ.

These ideas make it possible to precisely articulate why the method of least
squares is the best way to fit observed data. Let Y be a variable that is known
(or assumed) to be linearly related to other variables X1, X2, . . . , Xn according
to the equation 62

Y = β1X1 + · · ·+ βnXn, (5.14.1),

where the βi ’s are unknown constants (parameters). Suppose that the values
assumed by the Xi ’s are not subject to error or variation and can be exactly
observed or specified, but, due perhaps to measurement error, the values of Y
cannot be exactly observed. Instead, we observe

y = Y + ε = β1X1 + · · ·+ βnXn + ε, (5.14.2)

where ε is a random variable accounting for the measurement error. For exam-
ple, consider the problem of determining the velocity v of a moving object by
measuring the distance D it has traveled at various points in time T by using
the linear relation D = vT. Time can be prescribed at exact values such as
T1 = 1 second, T2 = 2 seconds, etc., but observing the distance traveled at the
prescribed values of T will almost certainly involve small measurement errors so
that in reality the observed distances satisfy d = D + ε = vT + ε. Now consider
the general problem of determining the parameters βk in (5.14.1) by observing
(or measuring) values of Y at m different points Xi∗ = (xi1, xi2, . . . , xin) ∈ �n,
where xij is the value of Xj to be used when making the ith observation. If yi
denotes the random variable that represents the outcome of the ith observation
of Y, then according to (5.14.2),

yi = β1xi1 + · · ·+ βnxin + εi, i = 1, 2, . . . ,m, (5.14.3)

62
Equation (5.14.1) is called a no-intercept model, whereas the slightly more general equation
Y = β0 + β1X1 + · · · + βnXn is known as an intercept model. Since the analysis for an
intercept model is not significantly different from the analysis of the no-intercept case, we deal
only with the no-intercept case and leave the intercept model for the reader to develop.
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where εi is a random variable accounting for the ith observation (or mea-
surement) error.63 It is generally valid to assume that observation errors are not
correlated with each other but have a common variance (not necessarily known)
and a zero mean. In other words, we assume that

E[εi] = 0 for each i and Cov[εi, εj ] =
{

σ2 when i = j,
0 when i �= j.

If y =




y1

y2
...

ym


, X =




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn


, β =




β1

β2
...
βn


, ε =




ε1

ε2
...

εm


,

then the equations in (5.14.3) can be written as y = Xm×nβ + ε. In practice,
the points Xi∗ at which observations yi are made can almost always be selected
to insure that rank (Xm×n) = n, so the complete statement of the standard
linear model is

y = Xm×nβ + ε such that




rank (X) = n,

E[ε] = 0,

Cov[ε] = σ2I,

(5.14.4)

where we have adopted the conventions

E[ε]=




E[ε1]
E[ε2]

...
E[εm]


 and Cov[ε]=




Cov[ε1, ε1] Cov[ε1, ε2] · · · Cov[ε1, εm]
Cov[ε2, ε1] Cov[ε2, ε2] · · · Cov[ε2, εm]

...
...

. . .
...

Cov[εm, ε1] Cov[εm, ε2] · · · Cov[εm, εm]


.

The problem is to determine the best (minimum variance) linear (linear function
of the yi ’s) unbiased estimators for the components of β. Gauss realized in 1821
that this is precisely what the least squares solution provides.

Gauss–Markov Theorem
For the standard linear model (5.14.4), the minimum variance linear
unbiased estimator for βi is given by the ith component β̂i in the
vector β̂ =

(
XTX

)−1
XTy = X†y. In other words, the best linear

unbiased estimator for β is the least squares solution of Xβ̂ = y.

63
In addition to observation and measurement errors, other errors such as modeling errors or
those induced by imposing simplifying assumptions produce the same kind of equation—recall
the discussion of ice cream on p. 228.
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Proof. It is clear that β̂ = X†y is a linear estimator of β because each com-
ponent β̂i =

∑
k[X

†]ik yk is a linear function of the observations. The fact that
β̂ is unbiased follows by using the linear nature of expected value to write

E[y] = E[Xβ + ε] = E[Xβ] + E[ε] = Xβ + 0 = Xβ,

so that
E

[
β̂
]

= E
[
X†y

]
= X†E[y] = X†Xβ =

(
XTX

)−1
XTXβ = β.

To argue that β̂ = X†y has minimal variance among all linear unbiased estima-
tors for β, let β∗ be an arbitrary linear unbiased estimator for β. Linearity of
β∗ implies the existence of a matrix Ln×m such that β∗ = Ly, and unbiased-
ness insures β = E[β∗] = E[Ly] = LE[y] = LXβ. We want β = LXβ to hold
irrespective of the values of the components in β, so it must be the case that
LX = In (recall Exercise 3.5.5). For i �= j we have

0 = Cov[εi, εj ] = E[εiεj ]− µεi
µεj

=⇒ E[εiεj ] = E[εi]E[εj ] = 0,
so that

Cov[yi, yj ] =

{
E[(yi − µyi

)2] = E[ε2
i ] = Var[εi] = σ2 when i = j,

E[(yi − µyi
)(yj − µyj

)] = E[εiεj ] = 0 when i �= j.
(5.14.5)

This together with the fact that Var[aW +bZ] = a2Var[W ]+b2Var[Z] whenever
Cov[W,Z] = 0 allows us to write

Var[β∗
i ] = Var[Li∗y] = Var

[
m∑
k=1

likyk

]
= σ2

m∑
k=1

l2ik = σ2 ‖Li∗‖22 .

Since LX = I, it follows that Var[β∗
i ] is minimal if and only if Li∗ is the

minimum norm solution of the system zTX = eTi . We know from (5.12.17) that
the (unique) minimum norm solution is given by zT = eTi X

† = X†
i∗, so Var[β∗

i ]
is minimal if and only if Li∗ = X†

i∗. Since this holds for i = 1, 2, . . . ,m, it follows
that L = X†. In other words, the components of β̂ = X†y are the (unique)
minimal variance linear unbiased estimators for the parameters in β.

Exercises for section 5.14

5.14.1. For a matrix Zm×n = [zij ], of random variables, E[Z] is defined to be
the m× n matrix whose (i, j)-entry is E[zij ]. Consider the standard
linear model described in (5.14.4), and let ê denote the vector of random
variables defined by ê = y −Xβ̂ in which β̂ =

(
XTX

)−1
XTy = X†y.

Demonstrate that

σ̂2 =
êT ê

m− n

is an unbiased estimator for σ2. Hint: dT c = trace(cdT ) for column
vectors c and d, and, by virtue of Exercise 5.9.13,

trace
(
I−XX†) = m− trace

(
XX†) = m− rank

(
XX†) = m− n.
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5.15 ANGLES BETWEEN SUBSPACES

Consider the problem of somehow gauging the separation between a pair of
nontrivial but otherwise general subspaces M and N of �n. Perhaps the first
thing that comes to mind is to measure the angle between them. But defining the
“angle” between subspaces in �n is not as straightforward as the visual geometry
of �2 or �3 might suggest. There is just too much “wiggle room” in higher
dimensions to make any one definition completely satisfying, and the “correct”
definition usually varies with the specific application under consideration.

Before exploring general angles, recall what has already been said about
some special cases beginning with the angle between a pair of one-dimensional
subspaces. If M and N are spanned by vectors u and v, respectively, and if
‖u‖ = 1 = ‖v‖ , then the angle between M and N is defined by the expression
cos θ = vTu (p. 295). This idea was carried one step further on p. 389 to define
the angle between two complementary subspaces, and an intuitive connection to
norms of projectors was presented. These intuitive ideas are now made rigorous.

Minimal Angle
The minimal angle between nonzero subspaces M, N ⊆ �n is defined
to be the number 0 ≤ θmin ≤ π/2 for which

cos θmin = max
u∈M,v∈N

‖u‖2=‖v‖2=1

vTu. (5.15.1)

• If PM and PN are the orthogonal projectors onto M and N ,
respectively, then

cos θmin = ‖PNPM‖2 . (5.15.2)

• If M and N are complementary subspaces, and if PMN is the
oblique projector onto M along N , then

sin θmin =
1

‖PMN ‖2
. (5.15.3)

• M and N are complementary subspaces if and only if PM −PN
is invertible, and in this case

sin θmin =
1

‖(PM −PN )−1‖2
. (5.15.4)

Proof of (5.15.2). If f : V → � is a function defined on a space V such that
f(αx) = αf(x) for all scalars α ≥ 0, then

max
‖x‖=1

f(x) = max
‖x‖≤1

f(x) (see Exercise 5.15.8). (5.15.5)
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This together with (5.2.9) and the fact that PMx ∈M and PNy ∈ N means

cos θmin = max
u∈M,v∈N

‖u‖2=‖v‖2=1

vTu = max
u∈M,v∈N

‖u‖2≤1, ‖v‖2≤1

vTu

= max
‖x‖2≤1, ‖y‖2≤1

yTPNPMx = ‖PNPM‖2 .

Proof of (5.15.3). Let U =
(
U1 |U2

)
and V =

(
V1 |V2

)
be orthogonal

matrices in which the columns of U1 and U2 constitute orthonormal bases for
M and M⊥, respectively, and V1 and V2 are orthonormal bases for N⊥

and N , respectively, so that UTi Ui = I and VTi Vi = I for i = 1, 2, and

PM = U1UT1 , I−PM = U2UT2 , PN = V2VT2 , I−PN = V1VT1 .

As discussed on p. 407, there is a nonsingular matrix C such that

PMN = U
(

C 0
0 0

)
VT = U1CVT1 . (5.15.6)

Notice that P2
MN = PMN implies C = CVT1 U1C, which in turn insures

C−1 = VT1 U1. Recall that ‖XAY‖2 = ‖A‖2 whenever X has orthonormal
columns and Y has orthonormal rows (Exercise 5.6.9). Consequently,

‖PMN ‖2 = ‖C‖2 =
1

min
‖x‖2=1

∥∥C−1x
∥∥

2

=
1

min
‖x‖2=1

∥∥VT1 U1x
∥∥

2

(recall (5.2.6)).

Combining this with (5.15.2) produces (5.15.3) by writing

sin2 θmin = 1− cos2 θmin = 1− ‖PNPM‖22 = 1−
∥∥V2VT2 U1UT1

∥∥2

2

= 1−
∥∥(I−V1VT1 )U1

∥∥2

2
= 1− max

‖x‖2=1

∥∥(I−V1VT1 )U1x
∥∥2

2

= 1− max
‖x‖2=1

xTUT1 (I−V1VT1 )U1x = 1− max
‖x‖2=1

(
1−

∥∥VT1 U1x
∥∥2

2

)
= 1−

(
1− min

‖x‖2=1

∥∥VT1 U1x
∥∥2

2

)
=

1
‖PMN ‖22

.

Proof of (5.15.4). Observe that

UT (PM −PN )V =

(
UT1

UT2

)
(U1UT1 −V2VT2 )

(
V1 |V2

)

=
(

UT1 V1 0
0 −UT2 V2

)
,

(5.15.7)
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where UT1 V1 = (C−1)T is nonsingular. To see that UT2 V2 is also nonsingular,
suppose dimM = r so that dimN = n− r and UT2 V2 is n− r × n− r. Use
the formula for the rank of a product (4.5.1) to write

rank
(
UT2 V2

)
= rank

(
UT2

)
−dimN

(
UT2

)
∩R (V2) = n−r−dimM∩N = n−r.

It now follows from (5.15.7) that PM −PN is nonsingular, and

VT (PM −PN )−1U =
(

(UT1 V1)−1 0
0 −(UT2 V2)−1

)
.

(Showing that PM − PN is nonsingular implies M ⊕ N = �n is Exercise
5.15.6.) Formula (5.2.12) on p. 283 for the 2-norm of a block-diagonal matrix
can now be applied to yield

∥∥(PM −PN )−1
∥∥

2
= max

{∥∥(UT1 V1)−1
∥∥

2
,
∥∥(UT2 V2)−1

∥∥
2

}
. (5.15.8)

But
∥∥(UT1 V1)−1

∥∥
2

=
∥∥(UT2 V2)−1

∥∥
2

because we can again use (5.2.6) to write

1∥∥(UT1 V1)−1
∥∥2

2

= min
‖x‖2=1

∥∥UT1 V1x
∥∥2

2
= min

‖x‖2=1
xTVT1 U1UT1 V1x

= min
‖x‖2=1

xTVT1 (I−U2UT2 )V1x

= min
‖x‖2=1

(1− xTVT1 U2UT2 V1x)

= 1− max
‖x‖2=1

∥∥UT2 V1x
∥∥2

2
= 1−

∥∥UT2 V1

∥∥2

2
.

By a similar argument, 1/
∥∥(UT2 V2)−1

∥∥2

2
= 1−

∥∥UT2 V1

∥∥2

2
(Exercise 5.15.11(a)).

Therefore,∥∥(PM −PN )−1
∥∥

2
=

∥∥(UT1 V1)−1
∥∥

2
=

∥∥CT∥∥
2

= ‖C‖2 = ‖PMN ‖2 .

While the minimal angle works fine for complementary spaces, it may not
convey much information about the separation between noncomplementary sub-
spaces. For example, θmin = 0 whenever M and N have a nontrivial inter-
section, but there nevertheless might be a nontrivial “gap” between M and
N—look at Figure 5.15.1. Rather than thinking about angles to measure such a
gap, consider orthogonal distances as discussed in (5.13.13). Define

δ(M,N ) = max
m∈M

‖m‖2=1

dist (m,N ) = max
m∈M

‖m‖2=1

‖(I−PN )m‖2
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to be the directed distance from M to N , and notice that δ(M,N ) ≤ 1
because (5.2.5) and (5.13.10) can be combined to produce

dist (m,N ) = ‖(I−PN )m‖2 = ‖PN⊥m‖2 ≤ ‖PN⊥‖2 ‖m‖2 = 1.

Figure 5.15.1 illustrates δ(M,N ) for two planes in �3.

Mm

N

δ(M,N ) = max
m∈M

‖m‖2=1

dist (m,N )

Figure 5.15.1

This picture is a bit misleading because δ(M,N ) = δ(N ,M) for this particular
situation. However, δ(M,N ) and δ(N ,M) need not always agree—that’s why
the phrase directed distance is used. For example, if M is the xy-plane in �3

and N = span {(0, 1, 1)} , then δ(N ,M) = 1/
√

2 while δ(M,N ) = 1. Con-
sequently, using orthogonal distance to gauge the degree of maximal separation
between an arbitrary pair of subspaces requires that both values of δ be taken
into account. Hence we make the following definition.

Gap Between Subspaces
The gap between subspaces M, N ⊆ �n is defined to be

gap (M,N ) = max
{
δ(M,N ), δ(N ,M)

}
, (5.15.9)

where δ(M,N ) = max
m∈M

‖m‖2=1

dist (m,N ).

Evaluating the gap between a given pair of subspaces requires knowing some
properties of directed distance. Observe that (5.15.5) together with the fact that
‖AT ‖2 = ‖A‖2 can be used to write

δ(M,N ) = max
m∈M

‖m‖2=1

dist (m,N ) = max
m∈M

‖m‖2=1

‖(I−PN )m‖2

= max
m∈M

‖m‖2≤1

‖(I−PN )m‖2 = max
‖x‖2=1

‖(I−PN )PMx‖2

= ‖(I−PN )PM‖2 = ‖PM(I−PN )‖2 .

(5.15.10)
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Similarly, δ(N ,M) = ‖(I−PM)PN ‖2 = ‖PN (I−PM)‖2 . If U =
(
U1 |U2

)
and V =

(
V1 |V2

)
are the orthogonal matrices introduced on p. 451, then

δ(M,N ) = ‖PM(I−PN )‖2 =
∥∥U1UT1 V1VT1

∥∥
2

=
∥∥UT1 V1

∥∥
2

and (5.15.11)
δ(N ,M) = ‖(I−PM)PN ‖2 =

∥∥U2UT2 V2VT2
∥∥

2
=

∥∥UT2 V2

∥∥
2
.

Combining these observations with (5.15.7) leads us to conclude that

‖PM −PN ‖2 = max
{∥∥UT1 V1

∥∥
2
,
∥∥UT2 V2

∥∥
2

}
= max

{
δ(M,N ), δ(N ,M)

}
= gap (M,N ).

(5.15.12)

Below is a summary of these and other properties of the gap measure.

Gap Properties
The following statements are true for subspaces M, N ⊆ �n.

• gap (M,N ) = ‖PM −PN ‖2 .

• gap (M,N ) = max
{
‖(I−PN )PM‖2 , ‖(I−PM)PN ‖2

}
.

• gap (M,N ) = 1 whenever dimM �= dimN . (5.15.13)

• If dimM = dimN , then δ(M,N ) = δ(N ,M), and

, gap (M,N ) = 1 when M⊥ ∩N (or M∩N⊥) �= 0, (5.15.14)

, gap (M,N ) < 1 when M⊥ ∩N (or M∩N⊥) = 0. (5.15.15)

Proof of (5.15.13). Suppose that dimM = r and dimN = k, where r < k.
Notice that this implies that M⊥ ∩ N �= 0, for otherwise the formula for the
dimension of a sum (4.4.19) yields

n ≥ dim(M⊥ +N ) = dimM⊥ + dimN = n− r + k > n,

which is impossible. Thus there exists a nonzero vector x ∈ M⊥ ∩ N , and by
normalization we can take ‖x‖2 = 1. Consequently, (I−PM)x = x = PNx, so
‖(I−PM)PNx‖2 = 1. This insures that ‖(I−PM)PN ‖2 = 1, which implies
δ(N ,M) = 1.

Proof of (5.15.14). Assume dimM = dimN = r, and use the formula for the
dimension of a sum along with (M∩N⊥)⊥ = M⊥ + N (Exercise 5.11.5) to
conclude that

dim
(
M⊥ ∩N

)
= dimM⊥ + dimN − dim

(
M⊥ +N

)
= (n− r) + r − dim

(
M∩N⊥)⊥

= dim
(
M∩N⊥)

.



5.15 Angles between Subspaces 455

When dim
(
M∩N⊥)

= dim
(
M⊥ ∩N

)
> 0, there are vectors x ∈ M⊥ ∩ N

and y ∈ M ∩ N⊥ such that ‖x‖2 = 1 = ‖y‖2 . Hence, ‖(I−PM)PNx‖2 =
‖x‖2 = 1, and ‖(I−PN )PMy‖2 = ‖y‖2 = 1, so

δ(N ,M) = ‖(I−PM)PN ‖2 = 1 = ‖(I−PN )PM‖2 = δ(M,N ).

Proof of (5.15.15). If dim
(
M∩N⊥)

= dim
(
M⊥ ∩N

)
= 0, then UT2 V1 is

nonsingular because it is r × r and has rank r—apply the formula (4.5.1) for
the rank of a product. From (5.15.11) we have

δ2(M,N ) =
∥∥UT1 V1

∥∥2

2
=

∥∥U1UT1 V1

∥∥2

2
=

∥∥(I−U2UT2 )V1

∥∥2

2

= max
‖x‖2=1

xTVT1 (I−U2UT2 )V1x = max
‖x‖2=1

(
1−

∥∥UT2 V1x
∥∥2

2

)

= 1− min
‖x‖2=1

∥∥UT2 V1x
∥∥2

2
= 1− 1∥∥(UT2 V1)−1

∥∥2

2

< 1 (recall (5.2.6)).

A similar argument shows δ2(N ,M) =
∥∥UT2 V2

∥∥2

2
= 1− 1/

∥∥(UT2 V1)−1
∥∥2

2
(Ex-

ercise 5.15.11(b)), so δ(N ,M) = δ(M,N ) < 1.

Because 0 ≤ gap (M,N ) ≤ 1, the gap measure defines another angle be-
tween M and N .

Maximal Angle
The maximal angle between subspaces M, N ⊆ �n is defined to be
the number 0 ≤ θmax ≤ π/2 for which

sin θmax = gap (M,N ) = ‖PM −PN ‖2 . (5.15.16)

For applications requiring knowledge of the degree of separation between
a pair of nontrivial complementary subspaces, the minimal angle does the job.
Similarly, the maximal angle adequately handles the task for subspaces of equal
dimension. However, neither the minimal nor maximal angle may be of much
help for more general subspaces. For example, if M and N are subspaces
of unequal dimension that have a nontrivial intersection, then θmin = 0 and
θmax = π/2, but neither of these numbers might convey the desired information.
Consequently, it seems natural to try to formulate definitions of “intermediate”
angles between θmin and θmax. There are a host of such angles known as the
principal or canonical angles, and they are derived as follows.
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Let k = min{dimM, dimN}, and set M1 =M, N1 = N , and θ1 = θmin.
Let u1 and v1 be vectors of unit 2-norm such that the following maximum is
attained when u = u1 and v = v1 :

cos θmin = max
u∈M,v∈N

‖u‖2=‖v‖2=1

vTu = vT1 u1.

Set
M2 = u⊥

1 ∩M1 and N2 = v⊥
1 ∩N1,

and define the second principal angle θ2 to be the minimal angle between M2

and N2. Continue in this manner—e.g., if u2 and v2 are vectors such that
‖u2‖2 = 1 = ‖v2‖2 and

cos θ2 = max
u∈M2,v∈N2
‖u‖2=‖v‖2=1

vTu = vT2 u2,

set
M3 = u⊥

2 ∩M2 and N3 = v⊥
2 ∩N2,

and define the third principal angle θ3 to be the minimal angle between M3

and N3. This process is repeated k times, at which point one of the subspaces
is zero. Below is a summary.

Principal Angles
For nonzero subspaces M, N ⊆ �n with k = min{dimM, dimN},
the principal angles between M = M1 and N = N1 are recursively
defined to be the numbers 0 ≤ θi ≤ π/2 such that

cos θi = max
u∈Mi,v∈Ni

‖u‖2=‖v‖2=1

vTu = vTi ui, i = 1, 2, . . . , k,

where ‖ui‖2 = 1 = ‖vi‖2 , Mi = u⊥
i−1∩Mi−1, and Ni = v⊥

i−1∩Ni−1.

• It’s possible to prove that θmin = θ1 ≤ θ2 ≤ · · · ≤ θk ≤ θmax, where
θk = θmax when dimM = dimN .

• The vectors ui and vi are not uniquely defined, but the θi ’s are
unique. In fact, it can be proven that the sin θi ’s are singular values
(p. 412) for PM − PN . Furthermore, if dimM ≥ dimN = k,
then the cos θi ’s are the singular values of VT2 U1, and the sin θi ’s
are the singular values of VT2 U2UT2 , where U =

(
U1 |U2

)
and

V =
(
V1 |V2

)
are the orthogonal matrices from p. 451.
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Exercises for section 5.15

5.15.1. Determine the angles θmin and θmax between the following subspaces
of �3.

(a) M = xy-plane, N = span {(1, 0, 0), (0, 1, 1)} .
(b) M = xy-plane, N = span {(0, 1, 1)} .

5.15.2. Determine the principal angles between the following subspaces of �3.

(a) M = xy-plane, N = span {(1, 0, 0), (0, 1, 1)} .
(b) M = xy-plane, N = span {(0, 1, 1)} .

5.15.3. Let θmin be the minimal angle between nonzero subspaces M, N ⊆ �n.
(a) Explain why θmax = 0 if and only if M = N .

(b) Explain why θmin = 0 if and only if M∩N �= 0.

(c) Explain why θmin = π/2 if and only if M⊥ N .

5.15.4. Let θmin be the minimal angle between nonzero subspaces M, N ⊂ �n,
and let θ⊥min denote the minimal angle between M⊥ and N⊥. Prove
that if M⊕N = �n, then θmin = θ⊥min.

5.15.5. For nonzero subspaces M, N ⊂ �n, let θ̃min denote the minimal angle
between M and N⊥, and let θmax be the maximal angle between M
and N . Prove that if M⊕N⊥ = �n, then cos θ̃min = sin θmax.

5.15.6. For subspaces M, N ⊆ �n, prove that PM−PN is nonsingular if and
only if M and N are complementary.

5.15.7. For complementary spaces M, N ⊂ �n, let P = PMN be the oblique
projector onto M along N , and let Q = PM⊥N⊥ be the oblique
projector onto M⊥ along N⊥.

(a) Prove that (PM −PN )−1 = P−Q.

(b) If θmin is the minimal angle between M and N , explain why

sin θmin =
1

‖P−Q‖2
.

(c) Explain why ‖P−Q‖2 = ‖P‖2 .
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5.15.8. Prove that if f : V → � is a function defined on a space V such that
f(αx) = αf(x) for scalars α ≥ 0, then

max
‖x‖=1

f(x) = max
‖x‖≤1

f(x).

5.15.9. Let M and N be nonzero complementary subspaces of �n.
(a) Explain why PMN =

[
(I − PN )PM

]†
, where PM and PN

are the orthogonal projectors onto M and N , respectively,
and PMN is the oblique projector onto M along N .

(b) If θmin is the minimal angle between M and N , explain why

sin θmin =
∥∥∥[

(I−PN )PM
]†∥∥∥−1

2
=

∥∥∥[
PM(I−PN )

]†∥∥∥−1

2

=
∥∥∥[

(I−PM)PN
]†∥∥∥−1

2
=

∥∥∥[
PN (I−PM)

]†∥∥∥−1

2
.

5.15.10. For complementary subspaces M, N ⊂ �n, let θmin be the minimal
angle between M and N , and let θ̄min denote the minimal angle be-
tween M and N⊥.

(a) If PMN is the oblique projector onto M along N , prove that

cos θ̄min =
∥∥∥P†

MN

∥∥∥
2
.

(b) Explain why sin θmin ≤ cos θ̄min.

5.15.11. Let U =
(
U1 |U2

)
and V =

(
V1 |V2

)
be the orthogonal matrices

defined on p. 451.
(a) Prove that if UT2 V2 is nonsingular, then

1∥∥(UT2 V2)−1
∥∥2

2

= 1−
∥∥UT2 V1

∥∥2

2
.

(b) Prove that if UT2 V1 is nonsingular, then

∥∥UT2 V2

∥∥2

2
= 1− 1∥∥(UT2 V1)−1

∥∥2

2

.
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