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Preface

Scaffolding
Reacting to criticism concerning the lack of motivation in his writings,

Gauss remarked that architects of great cathedrals do not obscure the beauty
of their work by leaving the scaffolding in place after the construction has been
completed. His philosophy epitomized the formal presentation and teaching of
mathematics throughout the nineteenth and twentieth centuries, and it is still
commonly found in mid-to-upper-level mathematics textbooks. The inherent ef-
ficiency and natural beauty of mathematics are compromised by straying too far
from Gauss’s viewpoint. But, as with most things in life, appreciation is gen-
erally preceded by some understanding seasoned with a bit of maturity, and in
mathematics this comes from seeing some of the scaffolding.

Purpose, Gap, and Challenge
The purpose of this text is to present the contemporary theory and applica-

tions of linear algebra to university students studying mathematics, engineering,
or applied science at the postcalculus level. Because linear algebra is usually en-
countered between basic problem solving courses such as calculus or differential
equations and more advanced courses that require students to cope with mathe-
matical rigors, the challenge in teaching applied linear algebra is to expose some
of the scaffolding while conditioning students to appreciate the utility and beauty
of the subject. Effectively meeting this challenge and bridging the inherent gaps
between basic and more advanced mathematics are primary goals of this book.

Rigor and Formalism
To reveal portions of the scaffolding, narratives, examples, and summaries

are used in place of the formal definition–theorem–proof development. But while
well-chosen examples can be more effective in promoting understanding than
rigorous proofs, and while precious classroom minutes cannot be squandered on
theoretical details, I believe that all scientifically oriented students should be
exposed to some degree of mathematical thought, logic, and rigor. And if logic
and rigor are to reside anywhere, they have to be in the textbook. So even when
logic and rigor are not the primary thrust, they are always available. Formal
definition–theorem–proof designations are not used, but definitions, theorems,
and proofs nevertheless exist, and they become evident as a student’s maturity
increases. A significant effort is made to present a linear development that avoids
forward references, circular arguments, and dependence on prior knowledge of the
subject. This results in some inefficiencies—e.g., the matrix 2-norm is presented
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before eigenvalues or singular values are thoroughly discussed. To compensate,
I try to provide enough “wiggle room” so that an instructor can temper the
inefficiencies by tailoring the approach to the students’ prior background.

Comprehensiveness and Flexibility
A rather comprehensive treatment of linear algebra and its applications is

presented and, consequently, the book is not meant to be devoured cover-to-cover
in a typical one-semester course. However, the presentation is structured to pro-
vide flexibility in topic selection so that the text can be easily adapted to meet
the demands of different course outlines without suffering breaks in continuity.
Each section contains basic material paired with straightforward explanations,
examples, and exercises. But every section also contains a degree of depth coupled
with thought-provoking examples and exercises that can take interested students
to a higher level. The exercises are formulated not only to make a student think
about material from a current section, but they are designed also to pave the way
for ideas in future sections in a smooth and often transparent manner. The text
accommodates a variety of presentation levels by allowing instructors to select
sections, discussions, examples, and exercises of appropriate sophistication. For
example, traditional one-semester undergraduate courses can be taught from the
basic material in Chapter 1 (Linear Equations); Chapter 2 (Rectangular Systems
and Echelon Forms); Chapter 3 (Matrix Algebra); Chapter 4 (Vector Spaces);
Chapter 5 (Norms, Inner Products, and Orthogonality); Chapter 6 (Determi-
nants); and Chapter 7 (Eigenvalues and Eigenvectors). The level of the course
and the degree of rigor are controlled by the selection and depth of coverage in
the latter sections of Chapters 4, 5, and 7. An upper-level course might consist
of a quick review of Chapters 1, 2, and 3 followed by a more in-depth treatment
of Chapters 4, 5, and 7. For courses containing advanced undergraduate or grad-
uate students, the focus can be on material in the latter sections of Chapters 4,
5, 7, and Chapter 8 (Perron–Frobenius Theory of Nonnegative Matrices). A rich
two-semester course can be taught by using the text in its entirety.

What Does “Applied” Mean?
Most people agree that linear algebra is at the heart of applied science, but

there are divergent views concerning what “applied linear algebra” really means;
the academician’s perspective is not always the same as that of the practitioner.
In a poll conducted by SIAM in preparation for one of the triannual SIAM con-
ferences on applied linear algebra, a diverse group of internationally recognized
scientific corporations and government laboratories was asked how linear algebra
finds application in their missions. The overwhelming response was that the pri-
mary use of linear algebra in applied industrial and laboratory work involves the
development, analysis, and implementation of numerical algorithms along with
some discrete and statistical modeling. The applications in this book tend to
reflect this realization. While most of the popular “academic” applications are
included, and “applications” to other areas of mathematics are honestly treated,
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there is an emphasis on numerical issues designed to prepare students to use
linear algebra in scientific environments outside the classroom.

Computing Projects
Computing projects help solidify concepts, and I include many exercises

that can be incorporated into a laboratory setting. But my goal is to write a
mathematics text that can last, so I don’t muddy the development by marrying
the material to a particular computer package or language. I am old enough
to remember what happened to the FORTRAN- and APL-based calculus and
linear algebra texts that came to market in the 1970s. I provide instructors with a
flexible environment that allows for an ancillary computing laboratory in which
any number of popular packages and lab manuals can be used in conjunction
with the material in the text.

History
Finally, I believe that revealing only the scaffolding without teaching some-

thing about the scientific architects who erected it deprives students of an im-
portant part of their mathematical heritage. It also tends to dehumanize mathe-
matics, which is the epitome of human endeavor. Consequently, I make an effort
to say things (sometimes very human things that are not always complimentary)
about the lives of the people who contributed to the development and applica-
tions of linear algebra. But, as I came to realize, this is a perilous task because
writing history is frequently an interpretation of facts rather than a statement
of facts. I considered documenting the sources of the historical remarks to help
mitigate the inevitable challenges, but it soon became apparent that the sheer
volume required to do so would skew the direction and flavor of the text. I can
only assure the reader that I made an effort to be as honest as possible, and
I tried to corroborate “facts.” Nevertheless, there were times when interpreta-
tions had to be made, and these were no doubt influenced by my own views and
experiences.

Supplements
Included with this text is a solutions manual and a CD-ROM. The solutions

manual contains the solutions for each exercise given in the book. The solutions
are constructed to be an integral part of the learning process. Rather than just
providing answers, the solutions often contain details and discussions that are
intended to stimulate thought and motivate material in the following sections.
The CD, produced by Vickie Kearn and the people at SIAM, contains the entire
book along with the solutions manual in PDF format. This electronic version
of the text is completely searchable and linked. With a click of the mouse a
student can jump to a referenced page, equation, theorem, definition, or proof,
and then jump back to the sentence containing the reference, thereby making
learning quite efficient. In addition, the CD contains material that extends his-
torical remarks in the book and brings them to life with a large selection of
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portraits, pictures, attractive graphics, and additional anecdotes. The support-
ing Internet site at MatrixAnalysis.com contains updates, errata, new material,
and additional supplements as they become available.

SIAM
I thank the SIAM organization and the people who constitute it (the in-

frastructure as well as the general membership) for allowing me the honor of
publishing my book under their name. I am dedicated to the goals, philosophy,
and ideals of SIAM, and there is no other company or organization in the world
that I would rather have publish this book. In particular, I am most thankful
to Vickie Kearn, publisher at SIAM, for the confidence, vision, and dedication
she has continually provided, and I am grateful for her patience that allowed
me to write the book that I wanted to write. The talented people on the SIAM
staff went far above and beyond the call of ordinary duty to make this project
special. This group includes Lois Sellers (art and cover design), Michelle Mont-
gomery and Kathleen LeBlanc (promotion and marketing), Marianne Will and
Deborah Poulson (copy for CD-ROM biographies), Laura Helfrich and David
Comdico (design and layout of the CD-ROM), Kelly Cuomo (linking the CD-
ROM), and Kelly Thomas (managing editor for the book). Special thanks goes
to Jean Anderson for her eagle-sharp editor’s eye.
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CHAPTER 1

Linear
Equations

1.1 INTRODUCTION

A fundamental problem that surfaces in all mathematical sciences is that of
analyzing and solving m algebraic equations in n unknowns. The study of a
system of simultaneous linear equations is in a natural and indivisible alliance
with the study of the rectangular array of numbers defined by the coefficients of
the equations. This link seems to have been made at the outset.

The earliest recorded analysis of simultaneous equations is found in the
ancient Chinese book Chiu-chang Suan-shu (Nine Chapters on Arithmetic), es-
timated to have been written some time around 200 B.C. In the beginning of
Chapter VIII, there appears a problem of the following form.

Three sheafs of a good crop, two sheafs of a mediocre crop, and
one sheaf of a bad crop are sold for 39 dou. Two sheafs of
good, three mediocre, and one bad are sold for 34 dou; and one
good, two mediocre, and three bad are sold for 26 dou. What is
the price received for each sheaf of a good crop, each sheaf of a
mediocre crop, and each sheaf of a bad crop?

Today, this problem would be formulated as three equations in three un-
knowns by writing

3x + 2y + z = 39,
2x + 3y + z = 34,
x + 2y + 3z = 26,

where x, y, and z represent the price for one sheaf of a good, mediocre, and
bad crop, respectively. The Chinese saw right to the heart of the matter. They
placed the coefficients (represented by colored bamboo rods) of this system in



2 Chapter 1 Linear Equations

a square array on a “counting board” and then manipulated the lines of the
array according to prescribed rules of thumb. Their counting board techniques
and rules of thumb found their way to Japan and eventually appeared in Europe
with the colored rods having been replaced by numerals and the counting board
replaced by pen and paper. In Europe, the technique became known as Gaussian
elimination in honor of the German mathematician Carl Gauss,1 whose extensive
use of it popularized the method.

Because this elimination technique is fundamental, we begin the study of
our subject by learning how to apply this method in order to compute solutions
for linear equations. After the computational aspects have been mastered, we
will turn to the more theoretical facets surrounding linear systems.

1
Carl Friedrich Gauss (1777–1855) is considered by many to have been the greatest mathemati-
cian who has ever lived, and his astounding career requires several volumes to document. He
was referred to by his peers as the “prince of mathematicians.” Upon Gauss’s death one of
them wrote that “His mind penetrated into the deepest secrets of numbers, space, and nature;
He measured the course of the stars, the form and forces of the Earth; He carried within himself
the evolution of mathematical sciences of a coming century.” History has proven this remark
to be true.
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1.2 GAUSSIAN ELIMINATION AND MATRICES

The problem is to calculate, if possible, a common solution for a system of m
linear algebraic equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm,

where the xi ’s are the unknowns and the aij ’s and the bi ’s are known constants.
The aij ’s are called the coefficients of the system, and the set of bi ’s is referred
to as the right-hand side of the system. For any such system, there are exactly
three possibilities for the set of solutions.

Three Possibilities

• UNIQUE SOLUTION: There is one and only one set of values
for the xi ’s that satisfies all equations simultaneously.

• NO SOLUTION: There is no set of values for the xi ’s that
satisfies all equations simultaneously—the solution set is empty.

• INFINITELY MANY SOLUTIONS: There are infinitely
many different sets of values for the xi ’s that satisfy all equations
simultaneously. It is not difficult to prove that if a system has more
than one solution, then it has infinitely many solutions. For example,
it is impossible for a system to have exactly two different solutions.

Part of the job in dealing with a linear system is to decide which one of these
three possibilities is true. The other part of the task is to compute the solution
if it is unique or to describe the set of all solutions if there are many solutions.
Gaussian elimination is a tool that can be used to accomplish all of these goals.

Gaussian elimination is a methodical process of systematically transform-
ing one system into another simpler, but equivalent, system (two systems are
called equivalent if they possess equal solution sets) by successively eliminating
unknowns and eventually arriving at a system that is easily solvable. The elimi-
nation process relies on three simple operations by which to transform one system
to another equivalent system. To describe these operations, let Ek denote the
kth equation

Ek : ak1x1 + ak2x2 + · · ·+ aknxn = bk



4 Chapter 1 Linear Equations

and write the system as

S =




E1

E2
...

Em


 .

For a linear system S , each of the following three elementary operations
results in an equivalent system S ′.

(1) Interchange the ith and jth equations. That is, if

S =




E1
...
Ei
...

Ej

...
Em




, then S ′ =




E1
...

Ej

...
Ei
...

Em




. (1.2.1)

(2) Replace the ith equation by a nonzero multiple of itself. That is,

S ′ =




E1
...

αEi
...

Em




, where α �= 0. (1.2.2)

(3) Replace the jth equation by a combination of itself plus a multiple of
the ith equation. That is,

S ′ =




E1
...
Ei
...

Ej + αEi

...
Em




. (1.2.3)
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Providing explanations for why each of these operations cannot change the
solution set is left as an exercise.

The most common problem encountered in practice is the one in which there
are n equations as well as n unknowns—called a square system—for which
there is a unique solution. Since Gaussian elimination is straightforward for this
case, we begin here and later discuss the other possibilities. What follows is a
detailed description of Gaussian elimination as applied to the following simple
(but typical) square system:

2x + y + z = 1,
6x + 2y + z = − 1,
−2x + 2y + z = 7.

(1.2.4)

At each step, the strategy is to focus on one position, called the pivot po-
sition, and to eliminate all terms below this position using the three elementary
operations. The coefficient in the pivot position is called a pivotal element (or
simply a pivot), while the equation in which the pivot lies is referred to as the
pivotal equation. Only nonzero numbers are allowed to be pivots. If a coef-
ficient in a pivot position is ever 0, then the pivotal equation is interchanged
with an equation below the pivotal equation to produce a nonzero pivot. (This is
always possible for square systems possessing a unique solution.) Unless it is 0,
the first coefficient of the first equation is taken as the first pivot. For example,
the circled ©2 in the system below is the pivot for the first step:

©2 x + y + z = 1,
6x + 2y + z = − 1,
−2x + 2y + z = 7.

Step 1. Eliminate all terms below the first pivot.

• Subtract three times the first equation from the second so as to produce the
equivalent system:

©2 x + y + z = 1,
− y − 2z = − 4 (E2 − 3E1),

−2x + 2y + z = 7.

• Add the first equation to the third equation to produce the equivalent system:

©2 x + y + z = 1,
− y − 2z = − 4,

3y + 2z = 8 (E3 + E1).



6 Chapter 1 Linear Equations

Step 2. Select a new pivot.

• For the time being, select a new pivot by moving down and to the right. 2 If
this coefficient is not 0, then it is the next pivot. Otherwise, interchange
with an equation below this position so as to bring a nonzero number into
this pivotal position. In our example, −1 is the second pivot as identified
below:

2x + y + z = 1,
©-1 y − 2z = − 4,

3y + 2z = 8.

Step 3. Eliminate all terms below the second pivot.

• Add three times the second equation to the third equation so as to produce
the equivalent system:

2x + y + z = 1,
©-1 y − 2z = − 4,

− 4z = − 4 (E3 + 3E2).
(1.2.5)

• In general, at each step you move down and to the right to select the next
pivot, then eliminate all terms below the pivot until you can no longer pro-
ceed. In this example, the third pivot is −4, but since there is nothing below
the third pivot to eliminate, the process is complete.

At this point, we say that the system has been triangularized. A triangular
system is easily solved by a simple method known as back substitution in which
the last equation is solved for the value of the last unknown and then substituted
back into the penultimate equation, which is in turn solved for the penultimate
unknown, etc., until each unknown has been determined. For our example, solve
the last equation in (1.2.5) to obtain

z = 1.

Substitute z = 1 back into the second equation in (1.2.5) and determine

y = 4− 2z = 4− 2(1) = 2.

2
The strategy of selecting pivots in numerical computation is usually a bit more complicated
than simply using the next coefficient that is down and to the right. Use the down-and-right
strategy for now, and later more practical strategies will be discussed.
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Finally, substitute z = 1 and y = 2 back into the first equation in (1.2.5) to
get

x =
1
2
(1− y − z) =

1
2
(1− 2− 1) = −1,

which completes the solution.
It should be clear that there is no reason to write down the symbols such

as “ x, ” “ y, ” “ z, ” and “ = ” at each step since we are only manipulating the
coefficients. If such symbols are discarded, then a system of linear equations
reduces to a rectangular array of numbers in which each horizontal line represents
one equation. For example, the system in (1.2.4) reduces to the following array:

 2 1 1 1
6 2 1 −1
−2 2 1 7


 . (The line emphasizes where = appeared.)

The array of coefficients—the numbers on the left-hand side of the vertical
line—is called the coefficient matrix for the system. The entire array—the
coefficient matrix augmented by the numbers from the right-hand side of the
system—is called the augmented matrix associated with the system. If the
coefficient matrix is denoted by A and the right-hand side is denoted by b ,
then the augmented matrix associated with the system is denoted by [A|b].

Formally, a scalar is either a real number or a complex number, and a
matrix is a rectangular array of scalars. It is common practice to use uppercase
boldface letters to denote matrices and to use the corresponding lowercase letters
with two subscripts to denote individual entries in a matrix. For example,

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 .

The first subscript on an individual entry in a matrix designates the row (the
horizontal line), and the second subscript denotes the column (the vertical line)
that the entry occupies. For example, if

A =


 2 1 3 4

8 6 5 −9
−3 8 3 7


 , then a11 = 2, a12 = 1, . . . , a34 = 7. (1.2.6)

A submatrix of a given matrix A is an array obtained by deleting any
combination of rows and columns from A. For example, B =

(
2 4
−3 7

)
is a

submatrix of the matrix A in (1.2.6) because B is the result of deleting the
second row and the second and third columns of A.
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Matrix A is said to have shape or size m× n —pronounced “m by n”—
whenever A has exactly m rows and n columns. For example, the matrix
in (1.2.6) is a 3× 4 matrix. By agreement, 1× 1 matrices are identified with
scalars and vice versa. To emphasize that matrix A has shape m× n, subscripts
are sometimes placed on A as Am×n. Whenever m = n (i.e., when A has the
same number of rows as columns), A is called a square matrix. Otherwise, A
is said to be rectangular. Matrices consisting of a single row or a single column
are often called row vectors or column vectors, respectively.

The symbol Ai∗ is used to denote the ith row, while A∗j denotes the jth

column of matrix A . For example, if A is the matrix in (1.2.6), then

A2∗ = ( 8 6 5 −9 ) and A∗2 =


 1

6
8


 .

For a linear system of equations
a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm,

Gaussian elimination can be executed on the associated augmented matrix [A|b]
by performing elementary operations to the rows of [A|b]. These row operations
correspond to the three elementary operations (1.2.1), (1.2.2), and (1.2.3) used
to manipulate linear systems. For an m× n matrix

M =




M1∗
...

Mi∗
...

Mj∗
...

Mm∗




,

the three types of elementary row operations on M are as follows.

• Type I: Interchange rows i and j to produce




M1∗
...

Mj∗
...

Mi∗
...

Mm∗




. (1.2.7)
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• Type II: Replace row i by a nonzero multiple of itself to produce


M1∗
...

αMi∗
...

Mm∗


 , where α �= 0. (1.2.8)

• Type III: Replace row j by a combination of itself plus a multiple of row
i to produce 



M1∗
...

Mi∗
...

Mj∗ + αMi∗
...

Mm∗




. (1.2.9)

To solve the system (1.2.4) by using elementary row operations, start with
the associated augmented matrix [A|b] and triangularize the coefficient matrix
A by performing exactly the same sequence of row operations that corresponds
to the elementary operations executed on the equations themselves:

 ©2 1 1 1
6 2 1 −1
−2 2 1 7


 R2 − 3R1

R3 + R1

−→


 2 1 1 1

0 ©-1 −2 −4
0 3 2 8




R3 + 3R2

−→


 2 1 1 1

0 −1 −2 −4
0 0 −4 −4


 .

The final array represents the triangular system

2x + y + z = 1,
− y − 2z = − 4,

− 4z = − 4

that is solved by back substitution as described earlier. In general, if an n× n
system has been triangularized to the form


t11 t12 · · · t1n c1
0 t22 · · · t2n c2
...

...
. . .

...
...

0 0 · · · tnn cn


 (1.2.10)

in which each tii �= 0 (i.e., there are no zero pivots), then the general algorithm
for back substitution is as follows.
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Algorithm for Back Substitution
Determine the xi ’s from (1.2.10) by first setting xn = cn/tnn and then
recursively computing

xi =
1
tii

(ci − ti,i+1xi+1 − ti,i+2xi+2 − · · · − tinxn)

for i = n− 1, n− 2, . . . , 2, 1.

One way to gauge the efficiency of an algorithm is to count the number of
arithmetical operations required.3 For a variety of reasons, no distinction is made
between additions and subtractions, and no distinction is made between multipli-
cations and divisions. Furthermore, multiplications/divisions are usually counted
separately from additions/subtractions. Even if you do not work through the de-
tails, it is important that you be aware of the operational counts for Gaussian
elimination with back substitution so that you will have a basis for comparison
when other algorithms are encountered.

Gaussian Elimination Operation Counts
Gaussian elimination with back substitution applied to an n× n system
requires

n3

3
+ n2 − n

3
multiplications/divisions

and
n3

3
+

n2

2
− 5n

6
additions/subtractions.

As n grows, the n3/3 term dominates each of these expressions. There-
fore, the important thing to remember is that Gaussian elimination with
back substitution on an n× n system requires about n3/3 multiplica-
tions/divisions and about the same number of additions/subtractions.

3
Operation counts alone may no longer be as important as they once were in gauging the ef-
ficiency of an algorithm. Older computers executed instructions sequentially, whereas some
contemporary machines are capable of executing instructions in parallel so that different nu-
merical tasks can be performed simultaneously. An algorithm that lends itself to parallelism
may have a higher operational count but might nevertheless run faster on a parallel machine
than an algorithm with a lesser operational count that cannot take advantage of parallelism.
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Example 1.2.1

Problem: Solve the following system using Gaussian elimination with back sub-
stitution:

v − w = 3,
−2u + 4v − w = 1,
−2u + 5v − 4w = − 2.

Solution: The associated augmented matrix is
 0 1 −1 3
−2 4 −1 1
−2 5 −4 −2


 .

Since the first pivotal position contains 0, interchange rows one and two before
eliminating below the first pivot:
 ©0 1 −1 3
−2 4 −1 1
−2 5 −4 −2


 Interchange R1 and R2−−−−−−−−→


 ©-2 4 −1 1

0 1 −1 3
−2 5 −4 −2




R3 −R1

−→


−2 4 −1 1

0 ©1 −1 3
0 1 −3 −3




R3 −R2

−→


−2 4 −1 1

0 1 −1 3
0 0 −2 −6


 .

Back substitution yields

w =
−6
−2

= 3,

v = 3 + w = 3 + 3 = 6,

u =
1
−2

(1− 4v + w) =
1
−2

(1− 24 + 3) = 10.

Exercises for section 1.2

1.2.1. Use Gaussian elimination with back substitution to solve the following
system:

x1 + x2 + x3 = 1,
x1 + 2x2 + 2x3 = 1,
x1 + 2x2 + 3x3 = 1.
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1.2.2. Apply Gaussian elimination with back substitution to the following sys-
tem:

2x1 − x2 = 0,
−x1 + 2x2 − x3 = 0,

−x2 + x3 = 1.

1.2.3. Use Gaussian elimination with back substitution to solve the following
system:

4x2 − 3x3 = 3,
−x1 + 7x2 − 5x3 = 4,
−x1 + 8x2 − 6x3 = 5.

1.2.4. Solve the following system:

x1 + x2 + x3 + x4 = 1,
x1 + x2 + 3x3 + 3x4 = 3,
x1 + x2 + 2x3 + 3x4 = 3,
x1 + 3x2 + 3x3 + 3x4 = 4.

1.2.5. Consider the following three systems where the coefficients are the same
for each system, but the right-hand sides are different (this situation
occurs frequently):

4x− 8y + 5z = 1 0 0,
4x− 7y + 4z = 0 1 0,
3x− 4y + 2z = 0 0 1.

Solve all three systems at one time by performing Gaussian elimination
on an augmented matrix of the form[

A
∣∣ b1

∣∣ b2

∣∣ b3

]
.

1.2.6. Suppose that matrix B is obtained by performing a sequence of row
operations on matrix A . Explain why A can be obtained by performing
row operations on B .

1.2.7. Find angles α, β, and γ such that

2 sinα− cosβ + 3 tan γ = 3,
4 sinα + 2 cosβ − 2 tan γ = 2,
6 sinα− 3 cosβ + tan γ = 9,

where 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π, and 0 ≤ γ < π.
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1.2.8. The following system has no solution:

−x1 + 3x2 − 2x3 = 1,
−x1 + 4x2 − 3x3 = 0,
−x1 + 5x2 − 4x3 = 0.

Attempt to solve this system using Gaussian elimination and explain
what occurs to indicate that the system is impossible to solve.

1.2.9. Attempt to solve the system

−x1 + 3x2 − 2x3 = 4,
−x1 + 4x2 − 3x3 = 5,
−x1 + 5x2 − 4x3 = 6,

using Gaussian elimination and explain why this system must have in-
finitely many solutions.

1.2.10. By solving a 3× 3 system, find the coefficients in the equation of the
parabola y = α+βx+γx2 that passes through the points (1, 1), (2, 2),
and (3, 0).

1.2.11. Suppose that 100 insects are distributed in an enclosure consisting of
four chambers with passageways between them as shown below.

#1

#2

#3

#4

At the end of one minute, the insects have redistributed themselves.
Assume that a minute is not enough time for an insect to visit more than
one chamber and that at the end of a minute 40% of the insects in each
chamber have not left the chamber they occupied at the beginning of
the minute. The insects that leave a chamber disperse uniformly among
the chambers that are directly accessible from the one they initially
occupied—e.g., from #3, half move to #2 and half move to #4.
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(a) If at the end of one minute there are 12, 25, 26, and 37 insects
in chambers #1, #2, #3, and #4, respectively, determine what
the initial distribution had to be.

(b) If the initial distribution is 20, 20, 20, 40, what is the distribution
at the end of one minute?

1.2.12. Show that the three types of elementary row operations discussed on
p. 8 are not independent by showing that the interchange operation
(1.2.7) can be accomplished by a sequence of the other two types of row
operations given in (1.2.8) and (1.2.9).

1.2.13. Suppose that [A|b] is the augmented matrix associated with a linear
system. You know that performing row operations on [A|b] does not
change the solution of the system. However, no mention of column oper-
ations was ever made because column operations can alter the solution.

(a) Describe the effect on the solution of a linear system when
columns A∗j and A∗k are interchanged.

(b) Describe the effect when column A∗j is replaced by αA∗j for
α �= 0.

(c) Describe the effect when A∗j is replaced by A∗j + αA∗k.
Hint: Experiment with a 2× 2 or 3× 3 system.

1.2.14. Consider the n× n Hilbert matrix defined by

H =




1 1
2

1
3 · · · 1

n

1
2

1
3

1
4 · · · 1

n+1

1
3

1
4

1
5 · · · 1

n+2

...
...

... · · ·
...

1
n

1
n+1

1
n+2 · · · 1

2n−1




.

Express the individual entries hij in terms of i and j.

1.2.15. Verify that the operation counts given in the text for Gaussian elimi-
nation with back substitution are correct for a general 3× 3 system.
If you are up to the challenge, try to verify these counts for a general
n× n system.

1.2.16. Explain why a linear system can never have exactly two different solu-
tions. Extend your argument to explain the fact that if a system has more
than one solution, then it must have infinitely many different solutions.
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1.3 GAUSS–JORDAN METHOD

The purpose of this section is to introduce a variation of Gaussian elimination
that is known as the Gauss–Jordan method.

4 The two features that dis-
tinguish the Gauss–Jordan method from standard Gaussian elimination are as
follows.

• At each step, the pivot element is forced to be 1.

• At each step, all terms above the pivot as well as all terms below the pivot
are eliminated.

In other words, if 


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn




is the augmented matrix associated with a linear system, then elementary row
operations are used to reduce this matrix to


1 0 · · · 0 s1

0 1 · · · 0 s2
...

...
. . .

...
...

0 0 · · · 1 sn


 .

The solution then appears in the last column (i.e., xi = si ) so that this procedure
circumvents the need to perform back substitution.

Example 1.3.1

Problem: Apply the Gauss–Jordan method to solve the following system:

2x1 + 2x2 + 6x3 = 4,
2x1 + x2 + 7x3 = 6,
−2x1 − 6x2 − 7x3 = − 1.

4
Although there has been some confusion as to which Jordan should receive credit for this
algorithm, it now seems clear that the method was in fact introduced by a geodesist named
Wilhelm Jordan (1842–1899) and not by the more well known mathematician Marie Ennemond
Camille Jordan (1838–1922), whose name is often mistakenly associated with the technique, but
who is otherwise correctly credited with other important topics in matrix analysis, the “Jordan
canonical form” being the most notable. Wilhelm Jordan was born in southern Germany,
educated in Stuttgart, and was a professor of geodesy at the technical college in Karlsruhe.
He was a prolific writer, and he introduced his elimination scheme in the 1888 publication
Handbuch der Vermessungskunde. Interestingly, a method similar to W. Jordan’s variation
of Gaussian elimination seems to have been discovered and described independently by an
obscure Frenchman named Clasen, who appears to have published only one scientific article,
which appeared in 1888—the same year as W. Jordan’s Handbuch appeared.
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Solution: The sequence of operations is indicated in parentheses and the pivots
are circled.

 ©2 2 6 4
2 1 7 6
−2 −6 −7 −1


 R1/2

−→


 ©1 1 3 2

2 1 7 6
−2 −6 −7 −1


 R2 − 2R1

R3 + 2R1

−→


©1 1 3 2

0 −1 1 2
0 −4 −1 3


 (−R2) −→


 1 1 3 2

0 ©1 −1 −2
0 −4 −1 3


 R1 −R2

R3 + 4R2

−→


 1 0 4 4

0 ©1 −1 −2
0 0 −5 −5



−R3/5

−→


 1 0 4 4

0 1 −1 −2
0 0 ©1 1


 R1 − 4R3

R2 + R3

−→


 1 0 0 0

0 1 0 −1
0 0 ©1 1


 .

Therefore, the solution is


x1

x2

x3


 =


 0
−1

1


 .

On the surface it may seem that there is little difference between the Gauss–
Jordan method and Gaussian elimination with back substitution because elimi-
nating terms above the pivot with Gauss–Jordan seems equivalent to performing
back substitution. But this is not correct. Gauss–Jordan requires more arithmetic
than Gaussian elimination with back substitution.

Gauss–Jordan Operation Counts
For an n× n system, the Gauss–Jordan procedure requires

n3

2
+

n2

2
multiplications/divisions

and
n3

2
− n

2
additions/subtractions.

In other words, the Gauss–Jordan method requires about n3/2 multipli-
cations/divisions and about the same number of additions/subtractions.

Recall from the previous section that Gaussian elimination with back sub-
stitution requires only about n3/3 multiplications/divisions and about the same
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number of additions/subtractions. Compare this with the n3/2 factor required
by the Gauss–Jordan method, and you can see that Gauss–Jordan requires about
50% more effort than Gaussian elimination with back substitution. For small sys-
tems of the textbook variety (e.g., n = 3 ), these comparisons do not show a great
deal of difference. However, in practical work, the systems that are encountered
can be quite large, and the difference between Gauss–Jordan and Gaussian elim-
ination with back substitution can be significant. For example, if n = 100, then
n3/3 is about 333,333, while n3/2 is 500,000, which is a difference of 166,667
multiplications/divisions as well as that many additions/subtractions.

Although the Gauss–Jordan method is not recommended for solving linear
systems that arise in practical applications, it does have some theoretical advan-
tages. Furthermore, it can be a useful technique for tasks other than computing
solutions to linear systems. We will make use of the Gauss–Jordan procedure
when matrix inversion is discussed—this is the primary reason for introducing
Gauss–Jordan.

Exercises for section 1.3

1.3.1. Use the Gauss–Jordan method to solve the following system:

4x2 − 3x3 = 3,
−x1 + 7x2 − 5x3 = 4,
−x1 + 8x2 − 6x3 = 5.

1.3.2. Apply the Gauss–Jordan method to the following system:

x1 + x2 + x3 + x4 = 1,
x1 + 2x2 + 2x3 + 2x4 = 0,
x1 + 2x2 + 3x3 + 3x4 = 0,
x1 + 2x2 + 3x3 + 4x4 = 0.

1.3.3. Use the Gauss–Jordan method to solve the following three systems at
the same time.

2x1 − x2 = 1 0 0,
−x1 + 2x2 − x3 = 0 1 0,

−x2 + x3 = 0 0 1.

1.3.4. Verify that the operation counts given in the text for the Gauss–Jordan
method are correct for a general 3× 3 system. If you are up to the
challenge, try to verify these counts for a general n× n system.
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1.4 TWO-POINT BOUNDARY VALUE PROBLEMS

It was stated previously that linear systems that arise in practice can become
quite large in size. The purpose of this section is to understand why this often
occurs and why there is frequently a special structure to the linear systems that
come from practical applications.

Given an interval [a, b] and two numbers α and β, consider the general
problem of trying to find a function y(t) that satisfies the differential equation

u(t)y′′(t)+v(t)y′(t)+w(t)y(t) = f(t), where y(a) = α and y(b) = β. (1.4.1)

The functions u, v, w, and f are assumed to be known functions on [a, b].
Because the unknown function y(t) is specified at the boundary points a and
b, problem (1.4.1) is known as a two-point boundary value problem. Such
problems abound in nature and are frequently very hard to handle because it is
often not possible to express y(t) in terms of elementary functions. Numerical
methods are usually employed to approximate y(t) at discrete points inside
[a, b]. Approximations are produced by subdividing the interval [a, b] into n+1
equal subintervals, each of length h = (b− a)/(n + 1) as shown below.

h h h︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

· · ·

· · ·

t0 = a t1 = a + h t2 = a + 2h tn = a + nh tn+1 = b

Derivative approximations at the interior nodes (grid points) ti = a + ih are
made by using Taylor series expansions y(t) =

∑∞
k=0 y(k)(ti)(t− ti)k/k! to write

y(ti + h) = y(ti) + y′(ti)h +
y′′(ti)h2

2!
+

y′′′(ti)h3

3!
+ · · · ,

y(ti − h) = y(ti)− y′(ti)h +
y′′(ti)h2

2!
− y′′′(ti)h3

3!
+ · · · ,

(1.4.2)

and then subtracting and adding these expressions to produce

y′(ti) =
y(ti + h)− y(ti − h)

2h
+ O(h3)

and

y′′(ti) =
y(ti − h)− 2y(ti) + y(ti + h)

h2
+ O(h4),

where O(hp) denotes 5 terms containing pth and higher powers of h. The

5
Formally, a function f(h) is O(hp) if f(h)/hp remains bounded as h → 0, but f(h)/hq

becomes unbounded if q > p. This means that f goes to zero as fast as hp goes to zero.
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resulting approximations

y′(ti) ≈
y(ti+h)− y(ti−h)

2h
and y′′(ti) ≈

y(ti−h)− 2y(ti) + y(ti+h)
h2

(1.4.3)

are called centered difference approximations, and they are preferred over
less accurate one-sided approximations such as

y′(ti) ≈
y(ti + h)− y(ti)

h
or y′(ti) ≈

y(t)− y(t− h)
h

.

The value h = (b − a)/(n + 1) is called the step size. Smaller step sizes pro-
duce better derivative approximations, so obtaining an accurate solution usually
requires a small step size and a large number of grid points. By evaluating the
centered difference approximations at each grid point and substituting the result
into the original differential equation (1.4.1), a system of n linear equations in
n unknowns is produced in which the unknowns are the values y(ti). A simple
example can serve to illustrate this point.

Example 1.4.1

Suppose that f(t) is a known function and consider the two-point boundary
value problem

y′′(t) = f(t) on [0, 1] with y(0) = y(1) = 0.

The goal is to approximate the values of y at n equally spaced grid points
ti interior to [0, 1]. The step size is therefore h = 1/(n + 1). For the sake of
convenience, let yi = y(ti) and fi = f(ti). Use the approximation

yi−1 − 2yi + yi+1

h2
≈ y′′(ti) = fi

along with y0 = 0 and yn+1 = 0 to produce the system of equations

−yi−1 + 2yi − yi+1 ≈ −h2fi for i = 1, 2, . . . , n.

(The signs are chosen to make the 2’s positive to be consistent with later devel-
opments.) The augmented matrix associated with this system is shown below:



2 −1 0 · · · 0 0 0 −h2f1

−1 2 −1 · · · 0 0 0 −h2f2

0 −1 2 · · · 0 0 0 −h2f3
...

...
...

. . .
...

...
...

...
0 0 0 · · · 2 −1 0 −h2fn−2

0 0 0 · · · −1 2 −1 −h2fn−1

0 0 0 · · · 0 −1 2 −h2fn




.

By solving this system, approximate values of the unknown function y at the
grid points ti are obtained. Larger values of n produce smaller values of h and
hence better approximations to the exact values of the yi ’s.
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Notice the pattern of the entries in the coefficient matrix in the above ex-
ample. The nonzero elements occur only on the subdiagonal, main-diagonal, and
superdiagonal lines—such a system (or matrix) is said to be tridiagonal. This
is characteristic in the sense that when finite difference approximations are ap-
plied to the general two-point boundary value problem, a tridiagonal system is
the result.

Tridiagonal systems are particularly nice in that they are inexpensive to
solve. When Gaussian elimination is applied, only two multiplications/divisions
are needed at each step of the triangularization process because there is at most
only one nonzero entry below and to the right of each pivot. Furthermore, Gaus-
sian elimination preserves all of the zero entries that were present in the original
tridiagonal system. This makes the back substitution process cheap to execute
because there are at most only two multiplications/divisions required at each
substitution step. Exercise 3.10.6 contains more details.

Exercises for section 1.4

1.4.1. Divide the interval [0, 1] into five equal subintervals, and apply the finite
difference method in order to approximate the solution of the two-point
boundary value problem

y′′(t) = 125t, y(0) = y(1) = 0

at the four interior grid points. Compare your approximate values at
the grid points with the exact solution at the grid points. Note: You
should not expect very accurate approximations with only four interior
grid points.

1.4.2. Divide [0, 1] into n+1 equal subintervals, and apply the finite difference
approximation method to derive the linear system associated with the
two-point boundary value problem

y′′(t)− y′(t) = f(t), y(0) = y(1) = 0.

1.4.3. Divide [0, 1] into five equal subintervals, and approximate the solution
to

y′′(t)− y′(t) = 125t, y(0) = y(1) = 0

at the four interior grid points. Compare the approximations with the
exact values at the grid points.
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1.5 MAKING GAUSSIAN ELIMINATION WORK

Now that you understand the basic Gaussian elimination technique, it’s time
to turn it into a practical algorithm that can be used for realistic applications.
For pencil and paper computations where you are doing exact arithmetic, the
strategy is to keep things as simple as possible (like avoiding messy fractions) in
order to minimize those “stupid arithmetic errors” we are all prone to make. But
very few problems in the real world are of the textbook variety, and practical
applications involving linear systems usually demand the use of a computer.
Computers don’t care about messy fractions, and they don’t introduce errors of
the “stupid” variety. Computers produce a more predictable kind of error, called
roundoff error, and it’s important6 to spend a little time up front to understand
this kind of error and its effects on solving linear systems.

Numerical computation in digital computers is performed by approximating
the infinite set of real numbers with a finite set of numbers as described below.

Floating-Point Numbers
A t -digit, base-β floating-point number has the form

f = ±.d1d2 · · · dt × βε with d1 �= 0,

where the base β, the exponent ε, and the digits 0 ≤ di ≤ β − 1
are integers. For internal machine representation, β = 2 (binary rep-
resentation) is standard, but for pencil-and-paper examples it’s more
convenient to use β = 10. The value of t, called the precision, and
the exponent ε can vary with the choice of hardware and software.

Floating-point numbers are just adaptations of the familiar concept of sci-
entific notation where β = 10, which will be the value used in our examples. For
any fixed set of values for t, β, and ε, the corresponding set F of floating-
point numbers is necessarily a finite set, so some real numbers can’t be found
in F . There is more than one way of approximating real numbers with floating-
point numbers. For the remainder of this text, the following common rounding
convention is adopted. Given a real number x, the floating-point approximation
fl(x) is defined to be the nearest element in F to x, and in case of a tie we
round away from 0. This means that for t-digit precision with β = 10, we need

6
The computer has been the single most important scientific and technological development
of our century and has undoubtedly altered the course of science for all future time. The
prospective young scientist or engineer who passes through a contemporary course in linear
algebra and matrix theory and fails to learn at least the elementary aspects of what is involved
in solving a practical linear system with a computer is missing a fundamental tool of applied
mathematics.
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to look at digit dt+1 in x = .d1d2 · · · dtdt+1 · · · × 10ε (making sure d1 �= 0) and
then set

fl(x) =
{

.d1d2 · · · dt × 10ε if dt+1 < 5,

([.d1d2 · · · dt] + 10−t)× 10ε if dt+1 ≥ 5.

For example, in 2 -digit, base-10 floating-point arithmetic,

fl (3/80) = fl(.0375) = fl(.375× 10−1) = .38× 10−1 = .038.

By considering η = 1/3 and ξ = 3 with t -digit base-10 arithmetic, it’s
easy to see that

fl(η + ξ) �= fl(η) + fl(ξ) and fl(ηξ) �= fl(η)fl(ξ).

Furthermore, several familiar rules of real arithmetic do not hold for floating-
point arithmetic—associativity is one outstanding example. This, among other
reasons, makes the analysis of floating-point computation difficult. It also means
that you must be careful when working the examples and exercises in this text
because although most calculators and computers can be instructed to display
varying numbers of digits, most have a fixed internal precision with which all
calculations are made before numbers are displayed, and this internal precision
cannot be altered. Almost certainly, the internal precision of your calculator or
computer is greater than the precision called for by the examples and exercises
in this text. This means that each time you perform a t-digit calculation, you
should manually round the result to t significant digits and reenter the rounded
number before proceeding to the next calculation. In other words, don’t “chain”
operations in your calculator or computer.

To understand how to execute Gaussian elimination using floating-point
arithmetic, let’s compare the use of exact arithmetic with the use of 3-digit
base-10 arithmetic to solve the following system:

47x + 28y = 19,
89x + 53y = 36.

Using Gaussian elimination with exact arithmetic, we multiply the first equation
by the multiplier m = 89/47 and subtract the result from the second equation
to produce (

47 28 19
0 −1/47 1/47

)
.

Back substitution yields the exact solution

x = 1 and y = −1.

Using 3-digit arithmetic, the multiplier is

fl(m) = fl

(
89
47

)
= .189× 101 = 1.89.
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Since

fl

(
fl(m)fl(47)

)
= fl(1.89× 47) = .888× 102 = 88.8,

f l

(
fl(m)fl(28)

)
= fl(1.89× 28) = .529× 102 = 52.9,

f l

(
fl(m)fl(19)

)
= fl(1.89× 19) = .359× 102 = 35.9,

the first step of 3-digit Gaussian elimination is as shown below:(
47 28 19

fl(89− 88.8) fl(53− 52.9) fl(36− 35.9)

)

=
(

47 28 19
©.2 .1 .1

)
.

The goal is to triangularize the system—to produce a zero in the circled
(2,1)-position—but this cannot be accomplished with 3-digit arithmetic. Unless
the circled value ©.2 is replaced by 0, back substitution cannot be executed.
Henceforth, we will agree simply to enter 0 in the position that we are trying
to annihilate, regardless of the value of the floating-point number that might
actually appear. The value of the position being annihilated is generally not
even computed. For example, don’t even bother computing

fl

[
89− fl

(
fl(m)fl(47)

)]
= fl(89− 88.8) = .2

in the above example. Hence the result of 3-digit Gaussian elimination for this
example is (

47 28 19
0 .1 .1

)
.

Apply 3-digit back substitution to obtain the 3-digit floating-point solution

y = fl

(
.1
.1

)
= 1,

x = fl

(
19− 28

47

)
= fl

(−9
47

)
= −.191.

The vast discrepancy between the exact solution (1,−1) and the 3-digit
solution (−.191, 1) illustrates some of the problems we can expect to encounter
while trying to solve linear systems with floating-point arithmetic. Sometimes
using a higher precision may help, but this is not always possible because on
all machines there are natural limits that make extended precision arithmetic
impractical past a certain point. Even if it is possible to increase the precision, it



24 Chapter 1 Linear Equations

may not buy you very much because there are many cases for which an increase
in precision does not produce a comparable decrease in the accumulated roundoff
error. Given any particular precision (say, t ), it is not difficult to provide exam-
ples of linear systems for which the computed t-digit solution is just as bad as
the one in our 3-digit example above.

Although the effects of rounding can almost never be eliminated, there are
some simple techniques that can help to minimize these machine induced errors.

Partial Pivoting
At each step, search the positions on and below the pivotal position for
the coefficient of maximum magnitude. If necessary perform the appro-
priate row interchange to bring this maximal coefficient into the pivotal
position. Illustrated below is the third step in a typical case:



∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ©S ∗ ∗ ∗
0 0 S ∗ ∗ ∗
0 0 S ∗ ∗ ∗


 .

Search the positions in the third column marked “ S ” for the coefficient
of maximal magnitude and, if necessary, interchange rows to bring this
coefficient into the circled pivotal position. Simply stated, the strategy
is to maximize the magnitude of the pivot at each step by using only
row interchanges.

On the surface, it is probably not apparent why partial pivoting should
make a difference. The following example not only shows that partial pivoting
can indeed make a great deal of difference, but it also indicates what makes this
strategy effective.

Example 1.5.1

It is easy to verify that the exact solution to the system

−10−4x + y = 1,
x + y = 2,

is given by

x =
1

1.0001
and y =

1.0002
1.0001

.

If 3-digit arithmetic without partial pivoting is used, then the result is
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(
−10−4 1 1

1 1 2

)
R2 + 104R1

−→
(
−10−4 1 1

0 104 104

)
because

fl(1 + 104) = fl(.10001× 105) = .100× 105 = 104 (1.5.1)

and
fl(2 + 104) = fl(.10002× 105) = .100× 105 = 104. (1.5.2)

Back substitution now produces

x = 0 and y = 1.

Although the computed solution for y is close to the exact solution for y, the
computed solution for x is not very close to the exact solution for x —the
computed solution for x is certainly not accurate to three significant figures as
you might hope. If 3-digit arithmetic with partial pivoting is used, then the result
is (

−10−4 1 1
1 1 2

)
−→

(
1 1 2

−10−4 1 1

)
R2 + 10−4R1

−→
(

1 1 2
0 1 1

)
because

fl(1 + 10−4) = fl(.10001× 101) = .100× 101 = 1 (1.5.3)

and
fl(1 + 2× 10−4) = fl(.10002× 101) = .100× 101 = 1. (1.5.4)

This time, back substitution produces the computed solution

x = 1 and y = 1,

which is as close to the exact solution as one can reasonably expect—the com-
puted solution agrees with the exact solution to three significant digits.

Why did partial pivoting make a difference? The answer lies in comparing
(1.5.1) and (1.5.2) with (1.5.3) and (1.5.4).

Without partial pivoting the multiplier is 104, and this is so large that it
completely swamps the arithmetic involving the relatively smaller numbers 1
and 2 and prevents them from being taken into account. That is, the smaller
numbers 1 and 2 are “blown away” as though they were never present so that
our 3-digit computer produces the exact solution to another system, namely,(

−10−4 1 1
1 0 0

)
,
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which is quite different from the original system. With partial pivoting the mul-
tiplier is 10−4, and this is small enough so that it does not swamp the numbers
1 and 2. In this case, the 3-digit computer produces the exact solution to the
system

(
0 1 1
1 1 2

)
, which is close to the original system. 7

In summary, the villain in Example 1.5.1 is the large multiplier that pre-
vents some smaller numbers from being fully accounted for, thereby resulting
in the exact solution of another system that is very different from the original
system. By maximizing the magnitude of the pivot at each step, we minimize
the magnitude of the associated multiplier thus helping to control the growth
of numbers that emerge during the elimination process. This in turn helps cir-
cumvent some of the effects of roundoff error. The problem of growth in the
elimination procedure is more deeply analyzed on p. 348.

When partial pivoting is used, no multiplier ever exceeds 1 in magnitude. To
see that this is the case, consider the following two typical steps in an elimination
procedure:



∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ©p ∗ ∗ ∗
0 0 q ∗ ∗ ∗
0 0 r ∗ ∗ ∗




R4 − (q/p)R3

R5 − (r/p)R3

−→



∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ©p ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗


 .

The pivot is p, while q/p and r/p are the multipliers. If partial pivoting has
been employed, then |p| ≥ |q| and |p| ≥ |r| so that∣∣∣q

p

∣∣∣ ≤ 1 and
∣∣∣r
p

∣∣∣ ≤ 1.

By guaranteeing that no multiplier exceeds 1 in magnitude, the possibility
of producing relatively large numbers that can swamp the significance of smaller
numbers is much reduced, but not completely eliminated. To see that there is
still more to be done, consider the following example.

Example 1.5.2

The exact solution to the system

−10x + 105y = 105,

x + y = 2,

7
Answering the question, “What system have I really solved (i.e., obtained the exact solution
of), and how close is this system to the original system,” is called backward error analysis,
as opposed to forward analysis in which one tries to answer the question, “How close will a
computed solution be to the exact solution?” Backward analysis has proven to be an effective
way to analyze the numerical stability of algorithms.
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is given by

x =
1

1.0001
and y =

1.0002
1.0001

.

Suppose that 3-digit arithmetic with partial pivoting is used. Since | − 10| > 1,
no interchange is called for and we obtain(

−10 105 105

1 1 2

)
R2 + 10−1R1

−→
(
−10 105 105

0 104 104

)
because

fl(1 + 104) = fl(.10001× 105) = .100× 105 = 104

and
fl(2 + 104) = fl(.10002× 105) = .100× 105 = 104.

Back substitution yields
x = 0 and y = 1,

which must be considered to be very bad—the computed 3-digit solution for y
is not too bad, but the computed 3-digit solution for x is terrible!

What is the source of difficulty in Example 1.5.2? This time, the multi-
plier cannot be blamed. The trouble stems from the fact that the first equation
contains coefficients that are much larger than the coefficients in the second
equation. That is, there is a problem of scale due to the fact that the coefficients
are of different orders of magnitude. Therefore, we should somehow rescale the
system before attempting to solve it.

If the first equation in the above example is rescaled to insure that the
coefficient of maximum magnitude is a 1, which is accomplished by multiplying
the first equation by 10−5, then the system given in Example 1.5.1 is obtained,
and we know from that example that partial pivoting produces a very good
approximation to the exact solution.

This points to the fact that the success of partial pivoting can hinge on
maintaining the proper scale among the coefficients. Therefore, the second re-
finement needed to make Gaussian elimination practical is a reasonable scaling
strategy. Unfortunately, there is no known scaling procedure that will produce
optimum results for every possible system, so we must settle for a strategy that
will work most of the time. The strategy is to combine row scaling—multiplying
selected rows by nonzero multipliers—with column scaling—multiplying se-
lected columns of the coefficient matrix A by nonzero multipliers.

Row scaling doesn’t alter the exact solution, but column scaling does—see
Exercise 1.2.13(b). Column scaling is equivalent to changing the units of the
kth unknown. For example, if the units of the kth unknown xk in [A|b] are
millimeters, and if the kth column of A is multiplied by . 001, then the kth

unknown in the scaled system [Â | b] is x̂i = 1000xi, and thus the units of the
scaled unknown x̂k become meters.
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Experience has shown that the following strategy for combining row scaling
with column scaling usually works reasonably well.

Practical Scaling Strategy
1. Choose units that are natural to the problem and do not dis-

tort the relationships between the sizes of things. These natural
units are usually self-evident, and further column scaling past
this point is not ordinarily attempted.

2. Row scale the system [A|b] so that the coefficient of maximum
magnitude in each row of A is equal to 1. That is, divide each
equation by the coefficient of maximum magnitude.

Partial pivoting together with the scaling strategy described above
makes Gaussian elimination with back substitution an extremely effec-
tive tool. Over the course of time, this technique has proven to be reliable
for solving a majority of linear systems encountered in practical work.

Although it is not extensively used, there is an extension of partial pivoting
known as complete pivoting which, in some special cases, can be more effective
than partial pivoting in helping to control the effects of roundoff error.

Complete Pivoting
If [A|b] is the augmented matrix at the kth step of Gaussian elimina-
tion, then search the pivotal position together with every position in A
that is below or to the right of the pivotal position for the coefficient
of maximum magnitude. If necessary, perform the appropriate row and
column interchanges to bring the coefficient of maximum magnitude into
the pivotal position. Shown below is the third step in a typical situation:


∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ©S S S ∗
0 0 S S S ∗
0 0 S S S ∗




Search the positions marked “ S ” for the coefficient of maximal magni-
tude. If necessary, interchange rows and columns to bring this maximal
coefficient into the circled pivotal position. Recall from Exercise 1.2.13
that the effect of a column interchange in A is equivalent to permuting
(or renaming) the associated unknowns.
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You should be able to see that complete pivoting should be at least as effec-
tive as partial pivoting. Moreover, it is possible to construct specialized exam-
ples where complete pivoting is superior to partial pivoting—a famous example
is presented in Exercise 1.5.7. However, one rarely encounters systems of this
nature in practice. A deeper comparison between no pivoting, partial pivoting,
and complete pivoting is given on p. 348.

Example 1.5.3

Problem: Use 3-digit arithmetic together with complete pivoting to solve the
following system:

x− y = −2,
−9x + 10y = 12.

Solution: Since 10 is the coefficient of maximal magnitude that lies in the
search pattern, interchange the first and second rows and then interchange the
first and second columns:

(
1 −1 −2
−9 10 12

)
−→

(
−9 10 12

1 −1 −2

)

−→
(

10 −9 12
−1 1 −2

)
−→

(
10 −9 12
0 .1 −.8

)
.

The effect of the column interchange is to rename the unknowns to x̂ and ŷ,
where x̂ = y and ŷ = x. Back substitution yields ŷ = −8 and x̂ = −6 so that

x = ŷ = −8 and y = x̂ = −6.

In this case, the 3-digit solution and the exact solution agree. If only partial
pivoting is used, the 3-digit solution will not be as accurate. However, if scaled
partial pivoting is used, the result is the same as when complete pivoting is used.

If the cost of using complete pivoting was nearly the same as the cost of using
partial pivoting, we would always use complete pivoting. However, it is not diffi-
cult to show that complete pivoting approximately doubles the cost over straight
Gaussian elimination, whereas partial pivoting adds only a negligible amount.
Couple this with the fact that it is extremely rare to encounter a practical system
where scaled partial pivoting is not adequate while complete pivoting is, and it
is easy to understand why complete pivoting is seldom used in practice. Gaus-
sian elimination with scaled partial pivoting is the preferred method for dense
systems (i.e., not a lot of zeros) of moderate size.
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Exercises for section 1.5

1.5.1. Consider the following system:

10−3x− y = 1,

x + y = 0.

(a) Use 3-digit arithmetic with no pivoting to solve this system.
(b) Find a system that is exactly satisfied by your solution from

part (a), and note how close this system is to the original system.
(c) Now use partial pivoting and 3-digit arithmetic to solve the

original system.
(d) Find a system that is exactly satisfied by your solution from

part (c), and note how close this system is to the original system.
(e) Use exact arithmetic to obtain the solution to the original sys-

tem, and compare the exact solution with the results of parts (a)
and (c).

(f) Round the exact solution to three significant digits, and compare
the result with those of parts (a) and (c).

1.5.2. Consider the following system:

x + y = 3,

−10x + 105y = 105.

(a) Use 4-digit arithmetic with partial pivoting and no scaling to
compute a solution.

(b) Use 4-digit arithmetic with complete pivoting and no scaling to
compute a solution of the original system.

(c) This time, row scale the original system first, and then apply
partial pivoting with 4-digit arithmetic to compute a solution.

(d) Now determine the exact solution, and compare it with the re-
sults of parts (a), (b), and (c).

1.5.3. With no scaling, compute the 3-digit solution of

−3x + y = −2,
10x− 3y = 7,

without partial pivoting and with partial pivoting. Compare your results
with the exact solution.
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1.5.4. Consider the following system in which the coefficient matrix is the
Hilbert matrix:

x +
1
2
y +

1
3
z =

1
3
,

1
2
x +

1
3
y +

1
4
z =

1
3
,

1
3
x +

1
4
y +

1
5
z =

1
5
.

(a) First convert the coefficients to 3-digit floating-point numbers,
and then use 3-digit arithmetic with partial pivoting but with
no scaling to compute the solution.

(b) Again use 3-digit arithmetic, but row scale the coefficients (after
converting them to floating-point numbers), and then use partial
pivoting to compute the solution.

(c) Proceed as in part (b), but this time row scale the coefficients
before each elimination step.

(d) Now use exact arithmetic on the original system to determine
the exact solution, and compare the result with those of parts
(a), (b), and (c).

1.5.5. To see that changing units can affect a floating-point solution, consider
a mining operation that extracts silica, iron, and gold from the earth.
Capital (measured in dollars), operating time (in hours), and labor (in
man-hours) are needed to operate the mine. To extract a pound of silica
requires $.0055, .0011 hours of operating time, and .0093 man-hours of
labor. For each pound of iron extracted, $.095, .01 operating hours, and
.025 man-hours are required. For each pound of gold extracted, $960,
112 operating hours, and 560 man-hours are required.

(a) Suppose that during 600 hours of operation, exactly $5000 and
3000 man-hours are used. Let x, y, and z denote the number
of pounds of silica, iron, and gold, respectively, that are recov-
ered during this period. Set up the linear system whose solution
will yield the values for x, y, and z.

(b) With no scaling, use 3-digit arithmetic and partial pivoting to
compute a solution (x̃, ỹ, z̃) of the system of part (a). Then
approximate the exact solution (x, y, z) by using your machine’s
(or calculator’s) full precision with partial pivoting to solve the
system in part (a), and compare this with your 3-digit solution
by computing the relative error defined by

er =

√
(x− x̃)2 + (y − ỹ)2 + (z − z̃)2√

x2 + y2 + z2
.
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(c) Using 3-digit arithmetic, column scale the coefficients by chang-
ing units: convert pounds of silica to tons of silica, pounds of
iron to half-tons of iron, and pounds of gold to troy ounces of
gold (1 lb. = 12 troy oz.).

(d) Use 3-digit arithmetic with partial pivoting to solve the column
scaled system of part (c). Then approximate the exact solution
by using your machine’s (or calculator’s) full precision with par-
tial pivoting to solve the system in part (c), and compare this
with your 3-digit solution by computing the relative error er as
defined in part (b).

1.5.6. Consider the system given in Example 1.5.3.
(a) Use 3-digit arithmetic with partial pivoting but with no scaling

to solve the system.
(b) Now use partial pivoting with scaling. Does complete pivoting

provide an advantage over scaled partial pivoting in this case?

1.5.7. Consider the following well-scaled matrix:

Wn =




1 0 0 · · · 0 0 1
−1 1 0 · · · 0 0 1

−1 −1 1
. . . 0 0 1

...
...

. . . . . . . . .
...

...

−1 −1 −1
. . . 1 0 1

−1 −1 −1 · · · −1 1 1
−1 −1 −1 · · · −1 −1 1




.

(a) Reduce Wn to an upper-triangular form using Gaussian elimi-
nation with partial pivoting, and determine the element of max-
imal magnitude that emerges during the elimination procedure.

(b) Now use complete pivoting and repeat part (a).
(c) Formulate a statement comparing the results of partial pivoting

with those of complete pivoting for Wn, and describe the effect
this would have in determining the t -digit solution for a system
whose augmented matrix is [Wn | b].

1.5.8. Suppose that A is an n× n matrix of real numbers that has been scaled
so that each entry satisfies |aij | ≤ 1, and consider reducing A to tri-
angular form using Gaussian elimination with partial pivoting. Demon-
strate that after k steps of the process, no entry can have a magnitude
that exceeds 2k. Note: The previous exercise shows that there are cases
where it is possible for some elements to actually attain the maximum
magnitude of 2k after k steps.
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1.6 ILL-CONDITIONED SYSTEMS

Gaussian elimination with partial pivoting on a properly scaled system is perhaps
the most fundamental algorithm in the practical use of linear algebra. However,
it is not a universal algorithm nor can it be used blindly. The purpose of this
section is to make the point that when solving a linear system some discretion
must always be exercised because there are some systems that are so inordinately
sensitive to small perturbations that no numerical technique can be used with
confidence.

Example 1.6.1

Consider the system
.835x + .667y = .168,
.333x + .266y = .067,

for which the exact solution is

x = 1 and y = −1.

If b2 = .067 is only slightly perturbed to become b̂2 = .066, then the exact
solution changes dramatically to become

x̂ = −666 and ŷ = 834.

This is an example of a system whose solution is extremely sensitive to
a small perturbation. This sensitivity is intrinsic to the system itself and is
not a result of any numerical procedure. Therefore, you cannot expect some
“numerical trick” to remove the sensitivity. If the exact solution is sensitive to
small perturbations, then any computed solution cannot be less so, regardless of
the algorithm used.

Ill-Conditioned Linear Systems
A system of linear equations is said to be ill-conditioned when
some small perturbation in the system can produce relatively large
changes in the exact solution. Otherwise, the system is said to be well-
conditioned.

It is easy to visualize what causes a 2× 2 system to be ill-conditioned.
Geometrically, two equations in two unknowns represent two straight lines, and
the point of intersection is the solution for the system. An ill-conditioned system
represents two straight lines that are almost parallel.
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If two straight lines are almost parallel and if one of the lines is tilted only
slightly, then the point of intersection (i.e., the solution of the associated 2× 2
linear system) is drastically altered.

L

L'

Original
Solution

Perturbed
Solution

Figure 1.6.1

This is illustrated in Figure 1.6.1 in which line L is slightly perturbed to
become line L′. Notice how this small perturbation results in a large change
in the point of intersection. This was exactly the situation for the system given
in Example 1.6.1. In general, ill-conditioned systems are those that represent
almost parallel lines, almost parallel planes, and generalizations of these notions.

Because roundoff errors can be viewed as perturbations to the original coeffi-
cients of the system, employing even a generally good numerical technique—short
of exact arithmetic—on an ill-conditioned system carries the risk of producing
nonsensical results.

In dealing with an ill-conditioned system, the engineer or scientist is often
confronted with a much more basic (and sometimes more disturbing) problem
than that of simply trying to solve the system. Even if a minor miracle could
be performed so that the exact solution could be extracted, the scientist or
engineer might still have a nonsensical solution that could lead to totally incorrect
conclusions. The problem stems from the fact that the coefficients are often
empirically obtained and are therefore known only within certain tolerances. For
an ill-conditioned system, a small uncertainty in any of the coefficients can mean
an extremely large uncertainty may exist in the solution. This large uncertainty
can render even the exact solution totally useless.

Example 1.6.2

Suppose that for the system

.835x + .667y = b1

.333x + .266y = b2

the numbers b1 and b2 are the results of an experiment and must be read from
the dial of a test instrument. Suppose that the dial can be read to within a
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tolerance of ±.001, and assume that values for b1 and b2 are read as . 168 and
. 067, respectively. This produces the ill-conditioned system of Example 1.6.1,
and it was seen in that example that the exact solution of the system is

(x, y) = (1,−1). (1.6.1)

However, due to the small uncertainty in reading the dial, we have that

.167 ≤ b1 ≤ .169 and .066 ≤ b2 ≤ .068. (1.6.2)

For example, this means that the solution associated with the reading (b1, b2) =
(.168, .067) is just as valid as the solution associated with the reading (b1, b2) =
(.167, .068), or the reading (b1, b2) = (.169, .066), or any other reading falling
in the range (1.6.2). For the reading (b1, b2) = (.167, .068), the exact solution is

(x, y) = (934,−1169), (1.6.3)

while for the other reading (b1, b2) = (.169, .066), the exact solution is

(x, y) = (−932, 1167). (1.6.4)

Would you be willing to be the first to fly in the plane or drive across the bridge
whose design incorporated a solution to this problem? I wouldn’t! There is just
too much uncertainty. Since no one of the solutions (1.6.1), (1.6.3), or (1.6.4)
can be preferred over any of the others, it is conceivable that totally different
designs might be implemented depending on how the technician reads the last
significant digit on the dial. Due to the ill-conditioned nature of an associated
linear system, the successful design of the plane or bridge may depend on blind
luck rather than on scientific principles.

Rather than trying to extract accurate solutions from ill-conditioned sys-
tems, engineers and scientists are usually better off investing their time and re-
sources in trying to redesign the associated experiments or their data collection
methods so as to avoid producing ill-conditioned systems.

There is one other discomforting aspect of ill-conditioned systems. It con-
cerns what students refer to as “checking the answer” by substituting a computed
solution back into the left-hand side of the original system of equations to see
how close it comes to satisfying the system—that is, producing the right-hand
side. More formally, if

xc = ( ξ1 ξ2 · · · ξn )

is a computed solution for a system

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
an1x1 + an2x2 + · · · + annxn = bn,
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then the numbers

ri = ai1ξ1 + ai2ξ2 + · · ·+ ainξn − bi for i = 1, 2, . . . , n

are called the residuals. Suppose that you compute a solution xc and substitute
it back to find that all the residuals are relatively small. Does this guarantee that
xc is close to the exact solution? Surprisingly, the answer is a resounding “no!”
whenever the system is ill-conditioned.

Example 1.6.3

For the ill-conditioned system given in Example 1.6.1, suppose that somehow
you compute a solution to be

ξ1 = −666 and ξ2 = 834.

If you attempt to “check the error” in this computed solution by substituting it
back into the original system, then you find—using exact arithmetic—that the
residuals are

r1 = .835ξ1 + .667ξ2 − .168 = 0,
r2 = .333ξ1 + .266ξ2 − .067 = −.001.

That is, the computed solution (−666, 834) exactly satisfies the first equation
and comes very close to satisfying the second. On the surface, this might seem to
suggest that the computed solution should be very close to the exact solution. In
fact a naive person could probably be seduced into believing that the computed
solution is within ±.001 of the exact solution. Obviously, this is nowhere close
to being true since the exact solution is

x = 1 and y = −1.

This is always a shock to a student seeing this illustrated for the first time because
it is counter to a novice’s intuition. Unfortunately, many students leave school
believing that they can always “check” the accuracy of their computations by
simply substituting them back into the original equations—it is good to know
that you’re not among them.

This raises the question, “How can I check a computed solution for accu-
racy?” Fortunately, if the system is well-conditioned, then the residuals do indeed
provide a more effective measure of accuracy (a rigorous proof along with more
insight appears in Example 5.12.2 on p. 416). But this means that you must be
able to answer some additional questions. For example, how can one tell before-
hand if a given system is ill-conditioned? How can one measure the extent of
ill-conditioning in a linear system?

One technique to determine the extent of ill-conditioning might be to exper-
iment by slightly perturbing selected coefficients and observing how the solution
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changes. If a radical change in the solution is observed for a small perturbation
to some set of coefficients, then you have uncovered an ill-conditioned situation.
If a given perturbation does not produce a large change in the solution, then
nothing can be concluded—perhaps you perturbed the wrong set of coefficients.

By performing several such experiments using different sets of coefficients, a
feel (but not a guarantee) for the extent of ill-conditioning can be obtained. This
is expensive and not very satisfying. But before more can be said, more sophisti-
cated tools need to be developed—the topics of sensitivity and conditioning are
revisited on p. 127 and in Example 5.12.1 on p. 414.

Exercises for section 1.6

1.6.1. Consider the ill-conditioned system of Example 1.6.1:

.835x + .667y = .168,

.333x + .266y = .067.

(a) Describe the outcome when you attempt to solve the system
using 5-digit arithmetic with no scaling.

(b) Again using 5-digit arithmetic, first row scale the system before
attempting to solve it. Describe to what extent this helps.

(c) Now use 6-digit arithmetic with no scaling. Compare the results
with the exact solution.

(d) Using 6-digit arithmetic, compute the residuals for your solution
of part (c), and interpret the results.

(e) For the same solution obtained in part (c), again compute the
residuals, but use 7-digit arithmetic this time, and interpret the
results.

(f) Formulate a concluding statement that summarizes the points
made in parts (a)–(e).

1.6.2. Perturb the ill-conditioned system given in Exercise 1.6.1 above so as to
form the following system:

.835x + .667y = .1669995,

.333x + .266y = .066601.

(a) Determine the exact solution, and compare it with the exact
solution of the system in Exercise 1.6.1.

(b) On the basis of the results of part (a), formulate a statement
concerning the necessity for the solution of an ill-conditioned
system to undergo a radical change for every perturbation of
the original system.
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1.6.3. Consider the two straight lines determined by the graphs of the following
two equations:

.835x + .667y = .168,

.333x + .266y = .067.

(a) Use 5-digit arithmetic to compute the slopes of each of the lines,
and then use 6-digit arithmetic to do the same. In each case,
sketch the graphs on a coordinate system.

(b) Show by diagram why a small perturbation in either of these
lines can result in a large change in the solution.

(c) Describe in geometrical terms the situation that must exist in
order for a system to be optimally well-conditioned.

1.6.4. Using geometric considerations, rank the following three systems accord-
ing to their condition.

(a) 1.001x− y = .235,
x + .0001y = .765. (b) 1.001x− y = .235,

x + .9999y = .765.

(c) 1.001x + y = .235,
x + .9999y = .765.

1.6.5. Determine the exact solution of the following system:

8x + 5y + 2z = 15,
21x + 19y + 16z = 56,
39x + 48y + 53z = 140.

Now change 15 to 14 in the first equation and again solve the system
with exact arithmetic. Is the system ill-conditioned?

1.6.6. Show that the system

v − w − x− y − z = 0,
w − x− y − z = 0,

x− y − z = 0,
y − z = 0,

z = 1,
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is ill-conditioned by considering the following perturbed system:

v − w − x− y − z = 0,

− 1
15

v + w − x− y − z = 0,

− 1
15

v + x− y − z = 0,

− 1
15

v + y − z = 0,

− 1
15

v + z = 1.

1.6.7. Let f(x) = sinπx on [0, 1]. The object of this problem is to determine
the coefficients αi of the cubic polynomial

p(x) =
3∑

i=0

αix
i

that is as close to f(x) as possible in the sense that

r =
∫ 1

0

[f(x)− p(x)]2dx

=
∫ 1

0

[f(x)]2dx− 2
3∑

i=0

αi

∫ 1

0

xif(x)dx +
∫ 1

0

(
3∑

i=0

αix
i

)2

dx

is as small as possible.
(a) In order to minimize r, impose the condition that ∂r/∂αi = 0

for each i = 0, 1, 2, 3, and show this results in a system of linear
equations whose augmented matrix is [H4 | b], where H4 and
b are given by

H4 =




1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7




and b =




2
π

1
π

1
π − 4

π3

1
π − 6

π3




.

Any matrix Hn that has the same form as H4 is called a
Hilbert matrix of order n.

(b) Systems involving Hilbert matrices are badly ill-conditioned,
and the ill-conditioning becomes worse as the size increases. Use
exact arithmetic with Gaussian elimination to reduce H4 to tri-
angular form. Assuming that the case in which n = 4 is typical,
explain why a general system [Hn | b] will be ill-conditioned.
Notice that even complete pivoting is of no help.
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To isolate mathematics from the practical demands of the sciences
is to invite the sterility of a cow shut away from the bulls.

— Pafnuty Lvovich Chebyshev (1821–1894)
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