The Layers of Change in
Software Architecture

Jorge Luis Ortega Arjona and Graham Roberts

Department of Computer Science, University College London

Gower Street, London WCIE 6BT, U.K., email {J.Ortega-Arjona
G.Roberts} @cs.ucl.ac.uk

Abstract

Analogy is a common technique used in many knowledge fields. It allows a
system to be considered from the perspective of an equivalent system, making
it easier to think about and understand the nature of the original problem,
and find good solutions to problems. In this paper, we propose an architec-
tural description using an analogy between building and software architecture,
aiming to help software designers and programmers express and understand
their ideas more clearly. The concept of the Layers of Change is used as a
concept model to the study, design and construction of software programs.

Keywords
Analogy, Software Architecture, Software Patterns, Object—Oriented Program-
ming

1 INTRODUCTION - THE LAYERS OF CHANGE IN BUILDING
ARCHITECTURE

Software has evolved into a wide variety of structures, some of which are com-
plex systems that often include more than one program, protocols of commu-
nication between processes, many functional elements, and so on. Software
construction has become a task as complex as the construction of other arti-
ficial systems, such as high performance aircraft or modern skyscrapers. The
discouraging fact is not the complexity of software, but that software archi-
tects do not possess the experience — as a range of tried and tested techniques
and tools — of constructing software equivalent to that of aeronautical engi-
neers or building architects. However, as it is possible to recognise that the
construction of artificial systems share analogous features, it can also be con-
sidered that practices proposed for solving problems in a more developed field
may be represented and used through analogy in another. This could be the
case between building and software architecture. The problem is to find a cor-
rect analogy in software to good practice in building. In order to illustrate this
concept, this paper proposes an architectural description or interpretation in



2 The Layers of Change in Software Architecture

software of what is know as the Layers of Change in building architecture. The
Layers of Change are proposed by Brand (1994) in his book How buildings
learn. In this book, Brand makes the radical proposal that buildings adapt
best when constantly refined and reshaped by their occupants. Architecture
can mature from being ”an art of space to become an art of time”. Based on
an original description by the architect Frank Duffy, Brand proposes a gen-
eral purpose ”six S’s” for the Layers of Change in building architecture: Site,
Structure, Skin, Services, Space Plan, and Stuff (Brand 1994).

2 CONSIDERATIONS AND ASSUMPTIONS FOR THE
ANALOGY - THE CONCEPT OF HABITABILITY

The idea of Layers of Change in a building arises from the form in which a
building is planned and created, following the actual and future needs of its
occupants. Trying to apply these concepts to software architecture, it is nec-
essary to make some basic assumptions, like what is the analogy of a building
in software terms, who are its occupants or inhabitants, and how they are
able to refine and reshape their software buildings. For this, an interesting
analogy can be taken from the book Patterns of Software: Tales from the
Software Community by Gabriel (1996). This analogy is presented introduc-
ing the concept of habitability in software. Originally, the word habitability
is related to issues about buildings and the quality of living in them. Nev-
ertheless, Gabriel uses this concept to explain an important characteristic of
software, which enables programmers and developers to ”live” comfortably in
and repair or modify code and design. Gabriel applies the concept of habit-
ability as an analogy between software and building, comparing a program to
a New England farmhouse which slowly grows and is modified according to
the needs and desires of the people who live and work on the farm.

?Programs live and grow, and their inhabitants — the programmers — need
to work with that program the way the farmer works with the homestead”
(Gabriel 1996).

Therefore, any software program (or simply software) can be considered
as an analogy of a building, and programmers represent the analogy of the
occupants of software. Refining and reshaping software can be seen as the
process of testing, debugging, extending, adapting and maintaining it through
time.

3 THE LAYERS OF CHANGE IN SOFTWARE ARCHITECTURE

Continuing the analogy, an architectural description of the Layers of Change in
Software can be proposed, using as examples concepts of Computer and Soft-
ware Architecture, Software Patterns, and Object—Oriented Programming.
However, the interpretation of the Layers of Change for Software we give



The Layers of Change in Software Architecture 3

here is an open concept: it is prone to be changed, adapted or modified to
cope with other software development approaches, paradigms or techniques.
Taking Brand’s Six S’s — which are oriented toward building architecture —
we try to produce an equivalent version for software architecture. From the
programmer’s perspective of design and development, the layers are as follows.

3.1 Software Site

The Software Site layer objective is to provide a stable base on which we con-
struct software programs. In our analogy, this can be represented simply by
the hardware elements of Computer Architecture and the software environ-
ment in which a software program will be developed. In general, a good part
of the result of the software development and construction relays on these
elements.

A computer is constructed from basic building blocks such as a memory
system, processor, and I/O devices. Regardless of the nature of the computer
in which they are embedded, the functional behaviour of the components of
one computer are similar to that of any other computer, whether it be a
personal computer, or a supercomputer; memory performs storage functions,
processors execute code, and I/O devices pass data from a processor to the
outside world. The major differences between computers lie in the way the
modules are connected, the performance characteristics of the modules, and
the way the computer system is controlled by programs. Perhaps in the future
computers will exhibit other functional behaviour but, up to now, no radically
different approaches have achieved any widespread use.

During a software development, the elements that compose the Software
Site should be analysed determined as the first elements that influence the
design and implementation of software programs. ”Site is eternal” (Brand
1994) during the lifetime of a software program.

3.2 Software Structure

The Software Structure layer objective is to provide stability and support to
the other subsequent layers. It is represented by the basic organisation schema
of a software program.

Software Structure is the description of a software program as a set of
defined subsystems, specifying their responsibilities, and including rules and
guidelines for organising the relationships between them. Software Structure
is concerned with the issues about partitioning a complex software system.
The partition of software is necessary to cognitively deal with complexity. A
big problem is divided into smaller subproblems that are possible to reason
about, and perhaps perform some work on separately, at more comfortable



4 The Layers of Change in Software Architecture

cognitive level. Software Structure can be described in terms of architectural
patterns (Buschmann et al. 1996):

?An architectural pattern ezpresses a fundamental structural organisation
schema for software systems. It provides a set of predefined subsystems, spec-
ifies their responsibilities, and includes rules and guidelines for organising the
relationships between them” (Buschmann et al. 1996).

Software Structure changes (or at least should change) very little or not at
all during the lifetime of a software program. An important factor in deter-
mining the success or failure of a software program relies deeply on choosing
an appropriate Software Structure that properly matches with the require-
ments and resources. A careful selection of the Software Structure has to be
made; if the Structure has benefits and liabilities, these will be reflected by
the software program during its entire lifetime. At this level, architectural
patterns can help to define or choose an initial overall Software Structure, as
they express and specify structural properties, and can be used as the starting
point of coarse—grained design. Software Structure is properly the first design
stage of a software program. In practice, software development consider the
Software Site as provided or given, and initiates from the Software Structure
design. Due to it supports and stabilizes all other layers, any considerations
and decisions taken during its design affect the other layers design and con-
struction. ”Structure persists and dominates” (Brand 1994).

3.3 Software Skin

The Software Skin objective is to give an appearance to a software program,
exhibiting its functionalities. In general, it is represented by all the elements
that allow user interaction, mainly expressed by the use of graphical user
interfaces, in which end users conceptualize how the software program works.

Software Skin ranges from complete graphical environments to simple text
screens. User friendly software programs try to enhace their Software Skin to
make them attractive and understandable. The aim of Software Skin then is
to support the usability of software, allowing users to learn about the software
program and use it effectively. During software construction, Software Skin
has to be considered as integral part of the software program. For its definition
and design, the conceptual model embodied by the system should be consid-
ered. The conceptual model is a description of how the system works from the
end user perspective, presented as a plan of interaction between the user and
the system, and therefore, has an impact on the design of the Software Skin
and other layers. An important characteristic of interactive software is to keep
functionality independent of the user interface. Software functionality usually
remains stable, whereas Software Skin is often changed and adapted to sup-
port different standards, customer requirements, or aesthetic considerations.
Software Patterns (Buschmann et al. 1996), like Model-View—Controller or



The Layers of Change in Software Architecture 5

Presentation—Abstraction—Control allow adaptation of a user interfaces with-
out affecting its functionality or data model. Design patterns, like Composite,
Decorator, Abstract Factory, Bridge, etc. (Gamma et al. 1994), are intended
to help with the development of the Software Skin layer of software programs.

The most visible changes that can be performed on a software program are
at the Software Skin layer. Just observe the graphic or programming environ-
ment of different users and programmers. Although they preserve the same
elements, most of them represent a modified version of an original. Changes
can be performed quickly and easily, according to necessity or taste. Also, it is
noticeable that from one software release to another, developers commonly in-
troduce changes in the user interface of a software program. The change may
follow different causes, from newly added capabilities to aesthetics. These
changes represent, in a more visible form, the improvement of the software as
a product but occasionally, as with buildings, this is the only improvement of
the software. ”Skin is mutable” (Brand 1994).

3.4 Software Services

The Software Services layer objective is to provide support for common ac-
tivities during the use of a software program. Software Services are defined as
those elements which are part of the ”working guts” of a software program.
From a programming point of view, Software Services can be found in the
form of all those prebuilt standard components that provide common func-
tionality like mathematical, input/output, and disk access. Software Services
are available as libraries of standard components from reliable suppliers or
experienced programmers. Often, Software Services found in a library should
be customized by the designer or programmer for a particular software design.
For example, libraries of classes can be used effectively for customization in
Object—Oriented programming (Stroustrup 1991).

Design patterns and idioms can help with the use and development of Soft-
ware Services. Idioms provide information about how to use Software Services
and the rules and expectations when using them. Design patterns capture and
organize reusable pieces of software as new Software Services and can be used
to clearly express dependencies between Software Services. Memory allocation
techniques, exception handling strategies, and input/output mechanisms are
Software Services that can be easier to comprehend and apply when expressed
as Patterns.

The correct use of Software Services can lead to more manageable, ex-
tensible and maintainable implementations. However, they are not universal
standard programming tools or programming libraries. They depend closely
on features and resources of the computer system where they are suppose to
be used. Due to this, it would be unreasonable to expect them to be fully stan-
dard. Most Software Services can be considered standard on only a specific



6 The Layers of Change in Software Architecture

type of computer system (Stroustrup 1991). When computer systems change,
Software Services have to evolve with them. ”Services obsolesce and wear out”
(Brand 1994).

3.5 Software Space Plan

The Software Space Plan layer objective is to organize the different partial
tasks or activities performed by a software program. It represents the way
in which the layout of a software program is organised. Following a partic-
ular paradigm or technology, data structures and functions are organised as
abstractions in the form of software components and interfaces among them.
Object—Oriented Programming, for example, presents organisations of classes
that can be used as a layout for cooperating objects. This is the base for the
concept of design patterns (Buschmann et al. 1996, Gamma et al. 1994):

?A design pattern provides a scheme for refining the subsystems or com-
ponents of a software system, or the relations between them. It describes a
commonly - recurring structure of communicating components that solves a
general design problem within o particular contezt” (Buschmann et al 1996).

Design patterns are intended to be independent of any particular language.
Their application does not impact the fundamental structure of a software
system, but influences deeply the development of the subsystem in which it
is applied (Buschmann et al. 1996). Design patterns can be applied in the
design of the Software Space Plan by specifying detailed design aspects and
the implementation requirements of a component. They can also be applied
in refining and deciding on the basic module interfaces, following the reuse
principle ”Program to an interface, not an implementation” (Gamma et al.
1994). The aim of decoupling interface from implementation is to simplify the
reuse and reorganisation of the Software Space Plan.

As with the case of Space Plan in building architecture, Software Space Plan
is the layer that often changes to cope with the needs and desires of occupants.
This level is where most systems are designed to evolve, in response to changes
of existing requirements or the needs of new requirements. ” The space plan
is the stage of the human comedy. New scene, new set” (Brand 1994).

3.6 Software Stuff

The Software Stuff layer objective is to represent the actual programming
elements that perform or support process, or contain information: functions,
procedures, data representations, data structures, etc. In an object—oriented
program, classes are defined with an interface controlling access to the data
and functions, and an implementation that represents the coding of such data



Some comments and observations on the analogy 7

and functions. Idioms are the Software Pattern approach for describing Soft-
ware Stuff.

?An idiom 1s a low-level pattern specific to a program language. An idiom
describes how to tmplement particular aspects of components or the relation-
ships between them using the features of the given language” (Buschmann et
al. 1996).

Idioms represent patterns for the design and implementation of code that
provides specific functionality in a particular language. Idioms are used in the
implementation phase to transform a software architecture into a software
program written in a specific language. They address problems that arise
during the implementation stages and capture the programming experience of
previous implementations (Buschmann et al. 1996). Software Stuff is precisely
the working material of the programmer. It is the layer of software that is
continuously evolving and changing. ” Stuff just keeps moving” (Brand 1994).

4 SOME COMMENTS AND OBSERVATIONS ON THE
ANALOGY

Why is it often simpler to understand architectural properties in building ar-
chitecture than in software architecture? It is probably because a building is
the most commonly human constructed system that we know. A building is
a stage for human life. We usually spend all our lives in buildings, and know
about their advantages and liabilities, whereas only recently the idea of ”in-
habiting” software has been considered by the Pattern Community. Analogy
is the basis for the discovery of patterns.

Surely, this is not the only description analogy that can be obtained between
building and software architecture. Our interpretation of the Layers of Change
is not unique. Interpretations depending on other paradigms, techniques and
applications can also be proposed. However, as our work is closely related to
the area of Software Architecture, Software Patterns, and Object—Oriented
Programming, this analogy seems to fulfil our requirements and expectations.
Our aim is that the way we use analogy to obtain this interpretation for
software design and construction would be useful for others to propose their
own interpretations.

The concept of the Layers of Change can be used as an approach to the
study, design and construction of systems in general. In the case of software,
recognition of the Layers of Change provides a firm basis for understanding
how software systems can be changed and modified, while respecting the dif-
ferent ways that different systems evolve. However, our problem now is that
only the programmer or designer who wrote a software program can precisely
recognize the layers in his/her design and estimate their rates of change. A
closer study of the evolution of software is required to understand more about
rates of change and how they can be measured and communicated.



The Layers of Change in Software Architecture

REFERENCES

Steward Brand (1994) How Buildings Learn. What happens after they’re built.
Phoenix Illustrated, Orion Books Ltd.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, and
Michael Stal (1996) Pattern—Oriented Software Architecture. A System
of Patterns. John Wiley & Sons, Ltd.

Richard Gabriel (1996) Patterns of Software: Tales from the Software Com-
munity. Oxford University Press.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (1994)
Design Patterns: Elements of Reusable Object—Oriented Systems.
Addison—Wesley, Reading, MA.

Bjarne Stroustrup (1991) The C++ Programming Language. Second edition.
Addison—Wesley Publishing Co.



