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Abstract  Obtaining an effective execution of a 
parallel system requires that the mapping of the pro-
cesses (of the parallel software) on the processors (of 
the parallel hardware) is efficiently performed. 
Hence, this paper presents an efficient mapping 
strategy based on optimizing communications be-
tween processes as well as load balancing process 
distribution onto an arbitrary processor network. 
Such a mapping strategy is developed as a parallel 
program, based on the simultaneous execution of lo-
cal, independent processes. This fact contrasts with 
many other approaches for solving the mapping 
problem, like simulated annealing, heuristic search, 
and others, which require a centralized control for 
the mapping. In this paper, it is shown that the pre-
sent mapping strategy is efficient enough when ap-
plied to two different mapping problems. Based up-
on an experimental setup, it is possible to review this 
mapping strategy following the related impact. 
Keywords  Parallel programming, mapping 

problem, mapping strategy. 

I. INTRODUCTION – MAPPING AND THE 
MAPPING PROBLEM 

Mapping and the mapping problem are commonly de-
fined as follows (Bokhari, 1981): “Suppose a problem 
made up of several modules that execute in parallel is to 
be solved on an incompletely connected array. When 
assigning modules to processors, pairs of modules that 
communicate with each other should be placed, as far as 
possible, on processors that are directly connected. We 
call the assignment of modules to processors a mapping 
and the problem of maximizing the number of pairs of 
communicating modules that fall on pairs of directly 
connected processors the mapping problem.”  

In topological terms, the mapping problem refers to 
find whether a graph that represents the system of 
communicating processes can be mapped onto a graph 
representing the processor network, so that neighboring 
processes are allocated on neighboring processors. Nev-
ertheless, even though this seems simple enough, the 
mapping problem is known to be NP-complete 
(Bokhari, 1981). Therefore, it seems useless trying to 
propose exact algorithms for solving the mapping prob-
lem. Instead, only mapping strategies that are able to ef-
ficiently obtain suboptimal solutions have been pro-
posed. 

Let us consider that a parallel program is defined as 
the specification of a set of processes executing simul-

taneously, and communicating among themselves to 
achieve a common objective (Hoare, 1978). Based on 
this definition, a parallel software program can be repre-
sented in the form of a graph, in which each process is a 
vertex, and each communication between any two pro-
cesses is an edge. In a similar way, a parallel hardware 
or processor network can be represented as a graph, in 
which now each processor is a vertex and each inter-
connection between any two processors is an edge. The 
mapping problem, hence, reduces to embedding the 
software graph into the hardware graph. 

Nevertheless, since mapping should provide a cer-
tain distribution of the processes onto the processors so 
the most efficient execution is obtained; two optimiza-
tion issues have to be considered: 

Load balancing. The processes have to be mapped 
onto the processors so the processing load caused 
by all processes is fairly distributed over all proces-
sors. In such a situation, the parallel system is con-
sidered to be balanced. 
Communication optimization. The communications 
between any two processes should be distributed as 
evenly as possible over all connections between 
processors. When this is the case, it is said that 
communications are optimal. 

Regarding the second issue above, optimizing com-
munications means that neighboring processes should 
be mapped onto neighboring processors. Otherwise, for 
any communication between any two processes, more 
than one connection has to be used. This produces a 
communication overhead due to communication re-
emission, increasing overall execution time of the paral-
lel program. Moreover, communication re-emission also 
causes load on the intermediate processors, since pro-
cessing in needed for routing a communication until it 
reaches its final destination, and also tends to increase 
overall execution time of the parallel system. Neverthe-
less, it is commonly not possible to map every neighbor-
ing process onto neighboring processors. Thus, the pro-
cesses should be allocated so that the overall communi-
cation costs are kept as minimal as possible. 
A. The Mapping Problem: A Formal Description 
For the current purposes, and for obtaining a more for-
mal definition of the mapping problem, let us assume 
the following features of the parallel system: 

The parallel hardware platform has a distributed 
memory organization. Each processor has its own 
local, private memory. 
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The only means for communicating two processors
are connections of a network. This network has a
fixed topology or, at most, it is statically reconfigu-
rable.

Definition 1: Parallel Hardware Platform. Let us define 
a parallel hardware platform with distributed memory as 
a pair: 

HW=(<P, AHW>, CHW )  (1) 
where <P,AHW> is an undirected graph representing the 
network in which P={P1, P2, , PN} is a set N proces-
sors of the parallel hardware platform, and AHW  is an 
adjacency matrix representing such a graph; and CHW is 
a communication cost matrix associated with the paral-
lel hardware platform, in which an element CHW[m,n]
represents the costs of transmitting a single data unit be-
tween processors Pm and Pn.
Definition 2: Parallel Software System. Let us define a 
parallel software system as a static network of com-
municating processes as a triple: 

SW=(<Q, ASW>, CSW , t)        (2) 
where <Q, ASW> is a directed graph representing the 
structure of the parallel software system, in which 
Q={Q1, Q2, , QM} is the set M processes in the paral-
lel software system, and ASW is an adjacency matrix rep-
resenting such a graph; CSW is a communication cost 
matrix associated with the parallel software system, in 
which an element CSW [i,j] represents the number of data 
units sent from process Qi to process Qj. Three types of 
communications should be considered: i) Internal com-
munications, ii) Short communications and iii) Long 
communication; and t:Q Z is a function where t(Qi)
represents the processing time of a process Qi in terms 
of a number Z of atomic computational steps. 
Definition 3: Restrictions. When mapping processes 
onto processors, a restriction implies that some process-
es must be placed on a particular processor, due to such 
a processor offers unique capabilities needed for the 
parallel software system. For example, certain processes 
may require access to peripheral resources and I/O de-
vices that belong to specific processors. Hence, this fact 
should be taken into consideration for the formal de-
scription as follows. Let us define a restriction as a sub-
set R Q P, where (i,m) R means that process Qi  must 
be mapped on processor Pm.
Definition 4: Load. The load of a processor refers to the 
amount of time that such a processor spends processing 
a process or a group of specific processes. Obviously, 
the load is relative to a mapping . Hence, in terms of 
time per process on a processor, load l can be thus de-
fined as: 
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The function t here, which returns the amount of 
time caused by a process, tends to be problematic since 
it is not easy to obtain the amount of time or load that a 
process will require from the processor. In general, de-
termining the load can be achieved by measuring the 
wall-clock time that a process actually takes during real 

execution. Another way can be calculating the theoreti-
cal time complexity of such a process. However, such a 
calculation tends to be not very realistic, since theoreti-
cal complexity is a notion that cannot be automatically 
obtained. Measuring tends to be accurate enough, alt-
hough it involves the problem of process monitoring 
within the parallel software system. Besides, in general, 
the load produced by a process tends to dynamically 
vary during execution. However, for a static mapping 
strategy, the load of a process can be considered as the 
statistical mean of its measured load. 
Definition 5: Optimal Mapping. An optimal process 
mapping is defined in terms of the function: 

: Q P           (4) 
where (Qi)= Pm (i,j) R, which means that the map-
ping function takes into account the restrictions above, 
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which means that the communication costs are mini-
mized.

B. Other Mapping Strategies 
There are many different mapping strategies that at-
tempt to solve the mapping problem. Among the most 
known ones are simulated annealing (Hart and Chen, 
1994; Robic et al., 1995), cardinality based algorithms 
(Bokhari, 1981), heuristic search (Martínez-Gallar et al.,
2010; Soriano and Orduña, 2009), and evolutionary al-
gorithms (Erbas et al., 2006). 

All these methods share a commonality: the map-
ping optimization is controlled by a centralized deci-
sion-making mechanism, like for example, the tempera-
ture decrease in the case of simulated annealing. Strate-
gies based on these methods report adequate results, alt-
hough when both hardware and software graphs present 
a considerable size, they normally require too much 
time to provide a satisfactory solution. Moreover, some 
of these strategies are reported to be applied with rea-
sonable results for a larger number of processes which 
meet certain restriction. For instance, the cardinality 
based algorithm (Bokhari 1981) provides results in a 
reasonable time when both hardware and software 
graphs present an identical size. Furthermore, some ap-
proaches propose that, in order to speed up the mapping 
operation using, the strategies can be parallelized. This 
is mostly right, although this parallelization has certain 
limit due to the need of continuous communication with 
the centralized decision-making mechanism. This is, the 
implementations of these strategies, whether sequential 
or parallel, are always a centralized. 

II. AN EFFICIENT MAPPING STRATEGY
The mapping strategy here is distributed, and allows in a 
short time for optimal or suboptimal mapping solutions. 
It is implemented for mapping a static parallel software 
system of communicating processes onto a cluster, this 
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is, a network of processor with distributed memory or-
ganization. It has been implemented in the Java pro-
gramming language, and can be executed on a cluster 
with an arbitrary number of processors. Nevertheless, 
this does not imply a restriction to the mapping strategy: 
this mapping strategy can be programmed with a differ-
ent parallel programming language, and executed in 
parallel on other target hardware. This is due to the 
mapping strategy has the following characteristics: 

it is distributed 
it makes use of local, nearest neighbor optimiza-
tions, which considered together, lead to a global 
optimization 
it is based on the information exchange of load and 
communication costs between neighboring proces-
sors 
it allows processes migration according to the op-
timization demands 
it makes use of the parallel hardware itself to in-
crease the speed of the mapping 

In summary, the strategy is implemented as identical 
communicating processes, executing on each processor 
of the parallel platform. These processes execute in par-
allel, iterating through a number of steps, looking for an 
optimal or suboptimal solution to a current mapping 
problem. At each iteration step, processes on neighbor-
ing processors exchange their current information about 
load and position. To reduce local communication costs, 
processes with high local costs are sent to neighboring 
processors. Since the location of neighboring processes 
of the process to be moved is known, this process can be 
sent to the adequate processor. 

The general steps of the mapping strategy, when ex-
ecuting in parallel on each processor, is as follows. 
1. Information exchange: Exchange information with 

process neighbors and allow processes migration 
between direct processor neighbors.  

2. Communication optimization: Obtain processes 
with high local communication costs, and decide 
whether to send them to neighboring processor 

3. Load balancing: Locally load balance 
Initially, all processes are mapped on any arbitrary 

processor (except those associated with a restriction). At 
each iteration, processes are moved in order to meet op-
timization demands, considering first the most optimal 
load balance. Local communication costs are reduced by 
selecting processes that cause high costs, and moving 
them to another processor. Since load balancing is con-
sidered a more important feature than communication 
minimization, the strategy may only obtain a suboptimal 
mapping solution in which load balancing is achieved, 
but its communications demands are not completely 
met. Thus the decision that, in order to reduce commu-
nication costs, the strategy selects (with a decreasing 
probability) a process to be moved to another processor 
if such a process causes a high local communication 
costs.

The distributed mapping strategy carries out a map-
ping : Q P considering the following: 

• The communication costs CHW [m,n] between any 
two processors Pm and Pn  is: 

elsed
nmAif

nmc
mn

HW
HW 2

1],[1
],[

where dmn denotes the shortest distance between Pm and
Pn.

• The communication costs between any two connect-
ed processes is 1. 
Regarding the formal definition of mapping, both 

these considerations do not introduce any loss of gener-
ality, even though the available storage size of the pro-
cessors and storage requirements of the processes are 
not considered. The mapping strategy is executed in 
parallel on each processor. Commonly, because the 
mapping problem is NP-complete and the optimal solu-
tion of a mapping   is not known in advance, the number 
of iterations to execute is set by considering load bal-
ancing only, as shown in the following section. 
A. Optimization of Communication Costs 
The communication costs between any two processes 
have been defined above to be set to csw[i,j]=1. Never-
theless, during the execution of the mapping strategy, 
three types of communications should be considered: 
1. Internal communications.  
2. Short communications.  
3. Long communications.  
Internal communications are performed between any 
two processes currently mapped on the same processor. 
Its value is set to cSW[i,j] (always 1); short communica-
tions are carried out between any two processes current-
ly mapped on neighboring processors, so its value is set 
to cSW[i,j].cHW[m,n] (again, always 1); long communica-
tions exist between processes currently mapped on pro-
cessors which are not neighbors, and thus, its value is 
set to cSW[i,j].cHW[m,n]. Considering these types of 
communication, selecting a candidate process to be 
moved to another processor is based on an attraction 
function, defined in the following section. 
B. An Attraction Function 
An attraction function is defined as based on the follow-
ing assumptions: 
1. Each processor has the information about the shortest 

distance to every other processor in the network. 
2. Each processor Pm has the information about all 

communication connections IHW[m,n] to a neighbor-
ing processor Pn, through which a shortest distance to 
all the other processors can be obtained. 

3. Each processor has the information of the probable
location of all processes. Notice that, at each itera-
tion, locations are exchanged with the neighboring 
processors. 

Due to only the neighbors of a processor have the in-
formation about the actual location of a process which 
has moved to another processor, such information is not 
always up to date. The reason is that when a process Qi
has been moved, it normally takes a few iterations until 
all processors are aware that it has been allocated 
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somewhere else. Thus, at a certain moment of execution 
of the mapping strategy, the current information about 
the location of a process is only precise, but not exact. 
The number of iterations required since a new allocation 
is produced by a processor Pm until this information is 
available to a processor Pn depends on the shortest dis-
tance between them (dmn). Thus, the attraction function 
is defined here to decide whether and which process Qi
currently allocated on processor Pm is sent to a neigh-
boring processor. The attraction function is constructed 
in the following way: 

Let Qi be a process currently allocated on processor 
Pm. Assume that Qi communicates with Qj whose prob-
able location is Pn. Let IHW[m,n] be a communication 
connection, and {Qj}i={Qj|cSW[i,j] 0} be the set of all 
processes communicating with process Qi. The attrac-
tion function Fk(i) defines the communication costs for 
Qi communicating with the processes in {Qj}i through 
the communication connection k. If the two processes Qi
and Qj are mapped on the same processor Pm, k is set to 
0. The attraction value for a process Qi through a com-
munication connection k is defined as follows: 

else

processoronareandif

0

],[
)(0

m
P

j
Q

i
Q

j
SW jic

iF  (5) 

else
shortesta

realizes],[if

0

],[],[)( mnd

kmHWI

j
HWSW

k
nmcjiciF  (6) 

The mapping strategy here selects at each iteration 
the processes on a processor with the highest attraction 
values. This consideration still fulfills the load balanc-
ing requirement. If two or more processes have the same 
attraction value, the processes to be moved are random-
ly selected. Any process with the highest attraction val-
ue is sent to a neighboring processor with decreasing 
probability, in this case neglecting the load balancing 
requirement, in order to assure that the mapping strategy 
does not stay in communication suboptimum. Notice 
that the decreasing probability is a function of the num-
ber of iterations and the current iteration number, as fol-
lows: 

iterationsofnumbertotal
iterationcurrent1     (7) 

III. ANALYSIS OF THE MAPPING STRATEGY 
Since minimizing communications proceeds neglecting 
the load balance and with decreasing probability, and 
also most of minimizing communications is part of the 
load balancing, the analysis of the mapping strategy fo-
cuses on the load balance. For simplicity, let us suppose 
that the number of processes is a lot larger than the 
number of processors, this is: 

N>>>M         (8) 
Moreover, let us neglect the number of processes exe-
cuting on each processor, and just consider the load on 
each processor represented by a real number. 

Let  be a mapping. A (global) cost function ( )
for the load distribution may be defined as: 

Pm
mll 2))(()(       (9) 

where ( )
m P

l l m N .

A global minimum of ( ) can be reached by locally 
optimizing the function (Boillat, 1990): 

Pnm
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From this, the number of iterations needed to reach an 
uniform distribution is at most O(N3). 

IV. PERFORMANCE EVALUATION OF THE 
MAPPING STRATEGY 

The performance of the mapping strategy is evaluated 
depending on how fast an optimal (or sub-optimal) solu-
tion is reached on a given parallel platform (remember, 
the mapping strategy is developed as a parallel pro-
gram). Thus, the performance is measured as the time 
used to achieve a percentage of success, on actual hard-
ware platform, provided a number of iterations. 
 Two mapping examples are presented: (a) a homo-
geneous load, which has an optimal solution, that is, a 
uniform distribution is achieved for a particular number 
of processors, and (b) a non-homogeneous load, whose 
solution is sub-optimal, that is, there is no even distribu-
tion of the software processes to hardware processors. 
Both mapping examples are developed as actual parallel 
programs (no simulations), executing on a cluster of 
computers, with a fixed number of processors. Also, for 
each example, all tests are performed so software pro-
cesses represent the same load, and all communications 
are considered to have the same costs. 
 The first mapping example is performed to shown 
that a homogeneous-loaded, parallel software system, a 
uniform distribution is obtained. For this example, Ta-
ble 1 shows the results of mapping a 4 × 4 mesh of 
software processes onto a cluster of 4 processors. In the-
se tests, for each number of iterations, 50 executions 
have been run. The load has been optimally balanced in 
all executions. 

Table 2 shows the results of other mapping example, 
whose solution is planned to be suboptimal: a 5 dimen-
sional hypercube of processes onto a 3 dimensional pro-
cessor hypercube. The load balance has been obtained 
in all but one of 200 executions. Again, for each number 
of iterations, 50 executions have been run. The load bal-
ance is obtained after about 20 steps. The other steps are 
required in order to optimize the communication costs. 

In Table 2, the results show that after 800 iterations, 
a suboptimal mapping is obtained, differing in the mean 
only 4% from the optimal solution. 96% of the map-
pings are optimal; and they do not require any routing 
optimization. Notice that all process mappings in both 

Table 1: Mapping a 4 × 4 process mesh onto a cluster of 
4 processors. 

Number of 
iterations 

Mean 
costs

Variance Success 
rate

Time
used 

50 25.54 1.53 86% 0.32s 
100 25.06 0.52 98% 0.46s 
200 25.00 0.00 100% 0.73s 
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Table 2: Mapping a 5 dimensional process hypercube onto a 3 
dimensional processor hypercube. 

Number of 
iterations 

Mean 
costs

Variance Success 
Rate

Time
used 

200 98.21 23.86 55% 1.22s 
400 90.53 18.09 67% 2.451s 
600 84.16 13.38 86% 3.55s 
800 84.82 12.49 96% 4.63s 

these examples have been obtained in a time of just a 
few seconds. 

V. CONCLUSIONS 
In this paper, a mapping strategy is presented as an effi-
cient alternative to other traditional mapping techniques. 
The mapping strategy here has the following ad-
vantages: 

It is efficient, and capable of producing suboptimal 
mapping solutions 
It is simple and easy to implement 
It is distributed over any network of processors 
It does not require global synchronization: Syn-
chronization is restricted to the local interactions 
between neighboring processors. 

The mapping strategy here is qualified as efficient
since, when compared with the performance of other 
previous work, the times used to obtain a optimal (or 
sub-optimal) solution are, in average, shorter. For the 
examples here, the mapping strategy, as a parallel pro-
gram, achieved about 1908 ms of average time used.  
This is, in the order of thousands of milliseconds. Other 
referred approaches require more time for achieving a 
solution. For instance, Bokhari (1981) presents the 
mapping of several problems using his cardinality based 
algorithms, whose times used is also in the order of 
thousands of milliseconds, but their average is about 
7615 ms (between 321 ms and 29219 ms). Martínez-
Gallar et al. (2010) present also four mapping examples 
using heuristic search, whose average time used is in the 
order of seconds, having an average of 2060 s, with a 
minimum of 1796 s and a maximum of 2411 s. Other 
approaches simply do not consider time for their per-
formance evaluation. Robic et al. (1995) make use of a 
Q function for the performance evaluation, and only 
considers that their approach obtains results within an 
“acceptable time”. Erbas et al. (2006) evaluate perfor-
mance regarding the accuracy, uniformity, and extent of 
multimedia applications, but do not provide information 
about the time used for obtaining the mapping. 
 As future work, it is proposed to use the mapping 
strategy to dynamic parallel platforms. The mapping 
strategy seems well suited for dynamic parallel plat-
forms since it is adaptable to changes in the communi-
cation links between processors. Moreover, the mapping 
strategy seems to be a candidate to be included as part 
of a real distributed operating system (along with a 
communication kernel) or part of a configuration tool 
for parallel software systems. 
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