
81

AN EFFICIENT MAPPING STRATEGY FOR PARALLEL
PROGRAMMING

J.L. ORTEGA-ARJONA† and H. BENITEZ-PEREZ‡

† Departamento de Matemáticas, Facultad de Ciencias, UNAM, México. jloa@ciencias.unam.mx
‡ Departamento de Ingeniería en Sistemas Computacionales y Automatización, IIMAS, UNAM, México.

 hector@uxdea4.iimas.unam.mx

Abstract Obtaining an effective execution of a
parallel system requires that the mapping of the pro-
cesses (of the parallel software) on the processors (of
the parallel hardware) is efficiently performed.
Hence, this paper presents an efficient mapping
strategy based on optimizing communications be-
tween processes as well as load balancing process
distribution onto an arbitrary processor network.
Such a mapping strategy is developed as a parallel
program, based on the simultaneous execution of lo-
cal, independent processes. This fact contrasts with
many other approaches for solving the mapping
problem, like simulated annealing, heuristic search,
and others, which require a centralized control for
the mapping. In this paper, it is shown that the pre-
sent mapping strategy is efficient enough when ap-
plied to two different mapping problems. Based up-
on an experimental setup, it is possible to review this
mapping strategy following the related impact.
Keywords Parallel programming, mapping

problem, mapping strategy.

I. INTRODUCTION – MAPPING AND THE
MAPPING PROBLEM

Mapping and the mapping problem are commonly de-
fined as follows (Bokhari, 1981): “Suppose a problem
made up of several modules that execute in parallel is to
be solved on an incompletely connected array. When
assigning modules to processors, pairs of modules that
communicate with each other should be placed, as far as
possible, on processors that are directly connected. We
call the assignment of modules to processors a mapping
and the problem of maximizing the number of pairs of
communicating modules that fall on pairs of directly
connected processors the mapping problem.”

In topological terms, the mapping problem refers to
find whether a graph that represents the system of
communicating processes can be mapped onto a graph
representing the processor network, so that neighboring
processes are allocated on neighboring processors. Nev-
ertheless, even though this seems simple enough, the
mapping problem is known to be NP-complete
(Bokhari, 1981). Therefore, it seems useless trying to
propose exact algorithms for solving the mapping prob-
lem. Instead, only mapping strategies that are able to ef-
ficiently obtain suboptimal solutions have been pro-
posed.

Let us consider that a parallel program is defined as
the specification of a set of processes executing simul-

taneously, and communicating among themselves to
achieve a common objective (Hoare, 1978). Based on
this definition, a parallel software program can be repre-
sented in the form of a graph, in which each process is a
vertex, and each communication between any two pro-
cesses is an edge. In a similar way, a parallel hardware
or processor network can be represented as a graph, in
which now each processor is a vertex and each inter-
connection between any two processors is an edge. The
mapping problem, hence, reduces to embedding the
software graph into the hardware graph.

Nevertheless, since mapping should provide a cer-
tain distribution of the processes onto the processors so
the most efficient execution is obtained; two optimiza-
tion issues have to be considered:

Load balancing. The processes have to be mapped
onto the processors so the processing load caused
by all processes is fairly distributed over all proces-
sors. In such a situation, the parallel system is con-
sidered to be balanced.
Communication optimization. The communications
between any two processes should be distributed as
evenly as possible over all connections between
processors. When this is the case, it is said that
communications are optimal.

Regarding the second issue above, optimizing com-
munications means that neighboring processes should
be mapped onto neighboring processors. Otherwise, for
any communication between any two processes, more
than one connection has to be used. This produces a
communication overhead due to communication re-
emission, increasing overall execution time of the paral-
lel program. Moreover, communication re-emission also
causes load on the intermediate processors, since pro-
cessing in needed for routing a communication until it
reaches its final destination, and also tends to increase
overall execution time of the parallel system. Neverthe-
less, it is commonly not possible to map every neighbor-
ing process onto neighboring processors. Thus, the pro-
cesses should be allocated so that the overall communi-
cation costs are kept as minimal as possible.
A. The Mapping Problem: A Formal Description
For the current purposes, and for obtaining a more for-
mal definition of the mapping problem, let us assume
the following features of the parallel system:

The parallel hardware platform has a distributed
memory organization. Each processor has its own
local, private memory.

Latin American Applied Research 43:81-85 (2013)

82

The only means for communicating two processors
are connections of a network. This network has a
fixed topology or, at most, it is statically reconfigu-
rable.

Definition 1: Parallel Hardware Platform. Let us define
a parallel hardware platform with distributed memory as
a pair:

HW=(<P, AHW>, CHW) (1)
where <P,AHW> is an undirected graph representing the
network in which P={P1, P2, , PN} is a set N proces-
sors of the parallel hardware platform, and AHW is an
adjacency matrix representing such a graph; and CHW is
a communication cost matrix associated with the paral-
lel hardware platform, in which an element CHW[m,n]
represents the costs of transmitting a single data unit be-
tween processors Pm and Pn.
Definition 2: Parallel Software System. Let us define a
parallel software system as a static network of com-
municating processes as a triple:

SW=(<Q, ASW>, CSW , t) (2)
where <Q, ASW> is a directed graph representing the
structure of the parallel software system, in which
Q={Q1, Q2, , QM} is the set M processes in the paral-
lel software system, and ASW is an adjacency matrix rep-
resenting such a graph; CSW is a communication cost
matrix associated with the parallel software system, in
which an element CSW [i,j] represents the number of data
units sent from process Qi to process Qj. Three types of
communications should be considered: i) Internal com-
munications, ii) Short communications and iii) Long
communication; and t:Q Z is a function where t(Qi)
represents the processing time of a process Qi in terms
of a number Z of atomic computational steps.
Definition 3: Restrictions. When mapping processes
onto processors, a restriction implies that some process-
es must be placed on a particular processor, due to such
a processor offers unique capabilities needed for the
parallel software system. For example, certain processes
may require access to peripheral resources and I/O de-
vices that belong to specific processors. Hence, this fact
should be taken into consideration for the formal de-
scription as follows. Let us define a restriction as a sub-
set R Q P, where (i,m) R means that process Qi must
be mapped on processor Pm.
Definition 4: Load. The load of a processor refers to the
amount of time that such a processor spends processing
a process or a group of specific processes. Obviously,
the load is relative to a mapping . Hence, in terms of
time per process on a processor, load l can be thus de-
fined as:

mi PQ
im QtPl

)(

)()((3)

The function t here, which returns the amount of
time caused by a process, tends to be problematic since
it is not easy to obtain the amount of time or load that a
process will require from the processor. In general, de-
termining the load can be achieved by measuring the
wall-clock time that a process actually takes during real

execution. Another way can be calculating the theoreti-
cal time complexity of such a process. However, such a
calculation tends to be not very realistic, since theoreti-
cal complexity is a notion that cannot be automatically
obtained. Measuring tends to be accurate enough, alt-
hough it involves the problem of process monitoring
within the parallel software system. Besides, in general,
the load produced by a process tends to dynamically
vary during execution. However, for a static mapping
strategy, the load of a process can be considered as the
statistical mean of its measured load.
Definition 5: Optimal Mapping. An optimal process
mapping is defined in terms of the function:

: Q P (4)
where (Qi)= Pm (i,j) R, which means that the map-
ping function takes into account the restrictions above,

N
Pl

Pl
N

n n
m

1
)(

)(, m=1, . N, which means that

the processors are (mostly) load balanced, and

ji nmHWSW PtPtcjic
,

)](),([],[min ,

which means that the communication costs are mini-
mized.

B. Other Mapping Strategies
There are many different mapping strategies that at-
tempt to solve the mapping problem. Among the most
known ones are simulated annealing (Hart and Chen,
1994; Robic et al., 1995), cardinality based algorithms
(Bokhari, 1981), heuristic search (Martínez-Gallar et al.,
2010; Soriano and Orduña, 2009), and evolutionary al-
gorithms (Erbas et al., 2006).

All these methods share a commonality: the map-
ping optimization is controlled by a centralized deci-
sion-making mechanism, like for example, the tempera-
ture decrease in the case of simulated annealing. Strate-
gies based on these methods report adequate results, alt-
hough when both hardware and software graphs present
a considerable size, they normally require too much
time to provide a satisfactory solution. Moreover, some
of these strategies are reported to be applied with rea-
sonable results for a larger number of processes which
meet certain restriction. For instance, the cardinality
based algorithm (Bokhari 1981) provides results in a
reasonable time when both hardware and software
graphs present an identical size. Furthermore, some ap-
proaches propose that, in order to speed up the mapping
operation using, the strategies can be parallelized. This
is mostly right, although this parallelization has certain
limit due to the need of continuous communication with
the centralized decision-making mechanism. This is, the
implementations of these strategies, whether sequential
or parallel, are always a centralized.

II. AN EFFICIENT MAPPING STRATEGY
The mapping strategy here is distributed, and allows in a
short time for optimal or suboptimal mapping solutions.
It is implemented for mapping a static parallel software
system of communicating processes onto a cluster, this

J. L. ORTEGA-ARJONA, H. BENITEZ-PEREZ

83

is, a network of processor with distributed memory or-
ganization. It has been implemented in the Java pro-
gramming language, and can be executed on a cluster
with an arbitrary number of processors. Nevertheless,
this does not imply a restriction to the mapping strategy:
this mapping strategy can be programmed with a differ-
ent parallel programming language, and executed in
parallel on other target hardware. This is due to the
mapping strategy has the following characteristics:

it is distributed
it makes use of local, nearest neighbor optimiza-
tions, which considered together, lead to a global
optimization
it is based on the information exchange of load and
communication costs between neighboring proces-
sors
it allows processes migration according to the op-
timization demands
it makes use of the parallel hardware itself to in-
crease the speed of the mapping

In summary, the strategy is implemented as identical
communicating processes, executing on each processor
of the parallel platform. These processes execute in par-
allel, iterating through a number of steps, looking for an
optimal or suboptimal solution to a current mapping
problem. At each iteration step, processes on neighbor-
ing processors exchange their current information about
load and position. To reduce local communication costs,
processes with high local costs are sent to neighboring
processors. Since the location of neighboring processes
of the process to be moved is known, this process can be
sent to the adequate processor.

The general steps of the mapping strategy, when ex-
ecuting in parallel on each processor, is as follows.
1. Information exchange: Exchange information with

process neighbors and allow processes migration
between direct processor neighbors.

2. Communication optimization: Obtain processes
with high local communication costs, and decide
whether to send them to neighboring processor

3. Load balancing: Locally load balance
Initially, all processes are mapped on any arbitrary

processor (except those associated with a restriction). At
each iteration, processes are moved in order to meet op-
timization demands, considering first the most optimal
load balance. Local communication costs are reduced by
selecting processes that cause high costs, and moving
them to another processor. Since load balancing is con-
sidered a more important feature than communication
minimization, the strategy may only obtain a suboptimal
mapping solution in which load balancing is achieved,
but its communications demands are not completely
met. Thus the decision that, in order to reduce commu-
nication costs, the strategy selects (with a decreasing
probability) a process to be moved to another processor
if such a process causes a high local communication
costs.

The distributed mapping strategy carries out a map-
ping : Q P considering the following:

• The communication costs CHW [m,n] between any
two processors Pm and Pn is:

elsed
nmAif

nmc
mn

HW
HW 2

1],[1
],[

where dmn denotes the shortest distance between Pm and
Pn.

• The communication costs between any two connect-
ed processes is 1.
Regarding the formal definition of mapping, both

these considerations do not introduce any loss of gener-
ality, even though the available storage size of the pro-
cessors and storage requirements of the processes are
not considered. The mapping strategy is executed in
parallel on each processor. Commonly, because the
mapping problem is NP-complete and the optimal solu-
tion of a mapping is not known in advance, the number
of iterations to execute is set by considering load bal-
ancing only, as shown in the following section.
A. Optimization of Communication Costs
The communication costs between any two processes
have been defined above to be set to csw[i,j]=1. Never-
theless, during the execution of the mapping strategy,
three types of communications should be considered:
1. Internal communications.
2. Short communications.
3. Long communications.
Internal communications are performed between any
two processes currently mapped on the same processor.
Its value is set to cSW[i,j] (always 1); short communica-
tions are carried out between any two processes current-
ly mapped on neighboring processors, so its value is set
to cSW[i,j].cHW[m,n] (again, always 1); long communica-
tions exist between processes currently mapped on pro-
cessors which are not neighbors, and thus, its value is
set to cSW[i,j].cHW[m,n]. Considering these types of
communication, selecting a candidate process to be
moved to another processor is based on an attraction
function, defined in the following section.
B. An Attraction Function
An attraction function is defined as based on the follow-
ing assumptions:
1. Each processor has the information about the shortest

distance to every other processor in the network.
2. Each processor Pm has the information about all

communication connections IHW[m,n] to a neighbor-
ing processor Pn, through which a shortest distance to
all the other processors can be obtained.

3. Each processor has the information of the probable
location of all processes. Notice that, at each itera-
tion, locations are exchanged with the neighboring
processors.

Due to only the neighbors of a processor have the in-
formation about the actual location of a process which
has moved to another processor, such information is not
always up to date. The reason is that when a process Qi
has been moved, it normally takes a few iterations until
all processors are aware that it has been allocated

Latin American Applied Research 43:81-85 (2013)

84

somewhere else. Thus, at a certain moment of execution
of the mapping strategy, the current information about
the location of a process is only precise, but not exact.
The number of iterations required since a new allocation
is produced by a processor Pm until this information is
available to a processor Pn depends on the shortest dis-
tance between them (dmn). Thus, the attraction function
is defined here to decide whether and which process Qi
currently allocated on processor Pm is sent to a neigh-
boring processor. The attraction function is constructed
in the following way:

Let Qi be a process currently allocated on processor
Pm. Assume that Qi communicates with Qj whose prob-
able location is Pn. Let IHW[m,n] be a communication
connection, and {Qj}i={Qj|cSW[i,j] 0} be the set of all
processes communicating with process Qi. The attrac-
tion function Fk(i) defines the communication costs for
Qi communicating with the processes in {Qj}i through
the communication connection k. If the two processes Qi
and Qj are mapped on the same processor Pm, k is set to
0. The attraction value for a process Qi through a com-
munication connection k is defined as follows:

else

processoronareandif

0

],[
)(0

m
P

j
Q

i
Q

j
SW jic

iF (5)

else
shortesta

realizes],[if

0

],[],[)(mnd

kmHWI

j
HWSW

k
nmcjiciF (6)

The mapping strategy here selects at each iteration
the processes on a processor with the highest attraction
values. This consideration still fulfills the load balanc-
ing requirement. If two or more processes have the same
attraction value, the processes to be moved are random-
ly selected. Any process with the highest attraction val-
ue is sent to a neighboring processor with decreasing
probability, in this case neglecting the load balancing
requirement, in order to assure that the mapping strategy
does not stay in communication suboptimum. Notice
that the decreasing probability is a function of the num-
ber of iterations and the current iteration number, as fol-
lows:

iterationsofnumbertotal
iterationcurrent1 (7)

III. ANALYSIS OF THE MAPPING STRATEGY
Since minimizing communications proceeds neglecting
the load balance and with decreasing probability, and
also most of minimizing communications is part of the
load balancing, the analysis of the mapping strategy fo-
cuses on the load balance. For simplicity, let us suppose
that the number of processes is a lot larger than the
number of processors, this is:

N>>>M (8)
Moreover, let us neglect the number of processes exe-
cuting on each processor, and just consider the load on
each processor represented by a real number.

Let be a mapping. A (global) cost function ()
for the load distribution may be defined as:

Pm
mll 2))(()((9)

where ()
m P

l l m N .

A global minimum of () can be reached by locally
optimizing the function (Boillat, 1990):

Pnm
i Pmnlml

),(

2))()(()((10)

From this, the number of iterations needed to reach an
uniform distribution is at most O(N3).

IV. PERFORMANCE EVALUATION OF THE
MAPPING STRATEGY

The performance of the mapping strategy is evaluated
depending on how fast an optimal (or sub-optimal) solu-
tion is reached on a given parallel platform (remember,
the mapping strategy is developed as a parallel pro-
gram). Thus, the performance is measured as the time
used to achieve a percentage of success, on actual hard-
ware platform, provided a number of iterations.
 Two mapping examples are presented: (a) a homo-
geneous load, which has an optimal solution, that is, a
uniform distribution is achieved for a particular number
of processors, and (b) a non-homogeneous load, whose
solution is sub-optimal, that is, there is no even distribu-
tion of the software processes to hardware processors.
Both mapping examples are developed as actual parallel
programs (no simulations), executing on a cluster of
computers, with a fixed number of processors. Also, for
each example, all tests are performed so software pro-
cesses represent the same load, and all communications
are considered to have the same costs.
 The first mapping example is performed to shown
that a homogeneous-loaded, parallel software system, a
uniform distribution is obtained. For this example, Ta-
ble 1 shows the results of mapping a 4 × 4 mesh of
software processes onto a cluster of 4 processors. In the-
se tests, for each number of iterations, 50 executions
have been run. The load has been optimally balanced in
all executions.

Table 2 shows the results of other mapping example,
whose solution is planned to be suboptimal: a 5 dimen-
sional hypercube of processes onto a 3 dimensional pro-
cessor hypercube. The load balance has been obtained
in all but one of 200 executions. Again, for each number
of iterations, 50 executions have been run. The load bal-
ance is obtained after about 20 steps. The other steps are
required in order to optimize the communication costs.

In Table 2, the results show that after 800 iterations,
a suboptimal mapping is obtained, differing in the mean
only 4% from the optimal solution. 96% of the map-
pings are optimal; and they do not require any routing
optimization. Notice that all process mappings in both

Table 1: Mapping a 4 × 4 process mesh onto a cluster of
4 processors.

Number of
iterations

Mean
costs

Variance Success
rate

Time
used

50 25.54 1.53 86% 0.32s
100 25.06 0.52 98% 0.46s
200 25.00 0.00 100% 0.73s

J. L. ORTEGA-ARJONA, H. BENITEZ-PEREZ

85

Table 2: Mapping a 5 dimensional process hypercube onto a 3
dimensional processor hypercube.

Number of
iterations

Mean
costs

Variance Success
Rate

Time
used

200 98.21 23.86 55% 1.22s
400 90.53 18.09 67% 2.451s
600 84.16 13.38 86% 3.55s
800 84.82 12.49 96% 4.63s

these examples have been obtained in a time of just a
few seconds.

V. CONCLUSIONS
In this paper, a mapping strategy is presented as an effi-
cient alternative to other traditional mapping techniques.
The mapping strategy here has the following ad-
vantages:

It is efficient, and capable of producing suboptimal
mapping solutions
It is simple and easy to implement
It is distributed over any network of processors
It does not require global synchronization: Syn-
chronization is restricted to the local interactions
between neighboring processors.

The mapping strategy here is qualified as efficient
since, when compared with the performance of other
previous work, the times used to obtain a optimal (or
sub-optimal) solution are, in average, shorter. For the
examples here, the mapping strategy, as a parallel pro-
gram, achieved about 1908 ms of average time used.
This is, in the order of thousands of milliseconds. Other
referred approaches require more time for achieving a
solution. For instance, Bokhari (1981) presents the
mapping of several problems using his cardinality based
algorithms, whose times used is also in the order of
thousands of milliseconds, but their average is about
7615 ms (between 321 ms and 29219 ms). Martínez-
Gallar et al. (2010) present also four mapping examples
using heuristic search, whose average time used is in the
order of seconds, having an average of 2060 s, with a
minimum of 1796 s and a maximum of 2411 s. Other
approaches simply do not consider time for their per-
formance evaluation. Robic et al. (1995) make use of a
Q function for the performance evaluation, and only
considers that their approach obtains results within an
“acceptable time”. Erbas et al. (2006) evaluate perfor-
mance regarding the accuracy, uniformity, and extent of
multimedia applications, but do not provide information
about the time used for obtaining the mapping.
 As future work, it is proposed to use the mapping
strategy to dynamic parallel platforms. The mapping
strategy seems well suited for dynamic parallel plat-
forms since it is adaptable to changes in the communi-
cation links between processors. Moreover, the mapping
strategy seems to be a candidate to be included as part
of a real distributed operating system (along with a
communication kernel) or part of a configuration tool
for parallel software systems.

ACKNOWLEDGMENTS
The authors acknowledge the support of UNAM-
PAPIIT IN103310 and ICyTDF PICCO 10-53

REFERENCES
Boillat, J.E., “Load balancing and Poisson equation in

a graph,” Concurrency: Practice and Experience,
2, 289-313 (1990).

Bokhari, S.H., “On the Mapping Problem,” IEEE
Transactions on Computers, 30, 207-214 (1981).

Erbas, C., S. Cerav-Erbas and A.D. Pimentel,
“Multiobjective Optimization and Evolutionary
Algorithms for the Application Mapping Problem
in Multiprocessor System-on-Chip Design,” IEEE
Transactions on Evolutionary Computation, 10,
358-374 (2006).

Hart, S.M. and C.S. Chen, “Simulated annealing and
the mapping problem: a computational study,”
Computers and Operations Research, 21, 455-461
(1994).

Hoare, C.A.R., “Communicating Sequential Process-
es,” Communications of the ACM, 21, 666-677
(1978).

Martínez-Gallar, J.P., F. Almeida and D. Giménez,
“Mapping in Heterogeneous Systems with Heuris-
tic Methods. Applied Parallel Computing,” State
of the Art in Scientific Computing. Lecture Notes
in Computer Science, 4699, 1084-1093 (2010).

Robic, B., J. Silc and B. Robic, “Algorithm Mapping
with Parallel Simulated Annealing,” Computers
and Artificial Intelligence, 14, 339-351 (1995).

Soriano, R. and J.M. Orduña, “Improving the Scalabil-
ity of Communication-Aware Task Mapping
Techniques,” 2009 International Conference on
Advanced Information Networking and Applica-
tions Workshops, Bradford, United Kingdom,
1061-1066 (2009).

Received: October 10, 2011.
Accepted: June 28, 2012.
Recommended by Subject Editor José Guivant.

