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Abstract. The Architectural Patterns for Parallel Programming are de-
scriptions of the fundamental organizational features of common top-
level coordinations observed in parallel software systems. They represent
a means to capture and express experience in the design and develop-
ment process of parallel software. Nevertheless, by now, these software
patterns have been described in informal terms, in which very little can
be stated about the properties present in the final parallel software sys-
tem.
The present paper presents an initial approach for studying and doc-
umenting logical properties of an architectural pattern for parallel pro-
gramming. In particular, the objective here is to formally verify the prop-
erty known as “absence of deadlock” for the Manager-Workers pattern,
a widely used architectural pattern for parallel programming, by means
of formal verification using CCS and µ-calculus. The aim is to establish
under what conditions this architectural pattern is deadlock-free, and
whether this formal verification can be ported later to other Architec-
tural Patterns for Parallel Programming.1
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1 Introduction

Software patterns describe in a very general and abstract way a general problem
in software design, and link it with a particular structure of software components
that solve the general problem [3, 4]. Among all the software patterns, and in the
area of parallel programming, the Architectural Patterns for Parallel Program-
ming have been proposed as the fundamental organizational descriptions of the
common top-level structure observed in a group of parallel software systems [8,
9]. They can be viewed as templates, expressing and specifying some structural
properties of their communication and synchronization subsystems, and the re-
sponsibilities and relationships between them. The selection of an architectural

1 This work was made possible thanks to the support of a project grant from our
university (papiit IN109010).
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pattern for parallel programming is considered to be a fundamental decision
during the design of the overall coordination of a parallel software system [9].

Architectural Patterns for Parallel Programming are defined and classified
according to the requirements of order of data and operations, and the nature
of their processing components. Requirements of order dictate the way in which
parallel computation has to be performed, and therefore, impact on the software
design [8, 9].

Nevertheless, even though these architectural patterns have served as guid-
ance to the software designer or engineer, they still remain as a documented
informal description about how to partition and communicate a problem among
several parallel software components. In these terms, it would be advantageous
to have further information about the performance and logic properties of the
resulting parallel software system.

The objective of the present paper is to provide a formal verification that an
important logical property of concurrency, namely the “absence of deadlock”, is
present in the Manager-Workers pattern (MW pattern hereafter), as an instance
of an architectural pattern for parallel programming. For this, the MW pattern
will be expressed as a CCS process [7] and absence of deadlock will be repre-
sented by a modal-mu calculus formula [5] satisfied by the process. The aim is
to establish the conditions under which the MW pattern is deadlock-free, and if
such a formal verification technique can be ported later to other Architectural
Patterns for Parallel Programming. For our purposes here, deadlock is defined
as the situation in which no process can take any further action but, at the same
time, at least a process has a pending task [13].

[12] applied a similar approach to verification of mutual exclusion in parallel
algorithms.

2 The Manager-workers pattern

The MW pattern is a variant of the Master-Slave pattern [3] for parallel systems,
considering an activity parallelism approach where the same operations are per-
formed on ordered data. The variation is based on the fact that components
of this pattern are proactive rather than reactive. Each processing component
simultaneously performs the same operations, independent of the processing ac-
tivity of other components. An important feature is to preserve the order of data
[8, 9].

The MW pattern has multiple data sets processed at the same time. So, a
MW structure is composed of a manager component and a group of identical
worker components. The manager is responsible of preserving the order of data.
On the other hand, each worker is capable of performing the same independent
computation on different pieces of data. It repeatedly seeks a task to perform,
performs it and repeats; when no tasks remain, the program is finished. The
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execution model is the same, independent of the number of workers (at least
one). If tasks are distributed at run time, the structure is naturally load balanced:
while a worker is busy with a heavy task, another may perform several shorter
tasks. This distribution of tasks at runtime copes with the fact that data pieces
may exhibit different size. To preserve data integrity, the manager program takes
care of what part of the data has been operated on, and what remains to be
computed by the workers [8, 9].

2.1 Structure

The Manager-Workers pattern is represented as a manager, preserving the or-
der of data and controlling a group of processing elements or workers. Usually,
only one manager and several identical worker components simultaneously ex-
ist and process during the execution time. In this architectural pattern, the
same operation is simultaneously applied in effect to different pieces of data
by worker components. Conceptually, workers have access to different pieces of
data. Operations in each worker component are independent of operations in
other components.

The structure of this pattern involves a central manager that distributes data
among workers by request. Therefore, the solution is presented as a centralized
network, the manager being the central common component. An Object Dia-
gram, representing the network of elements that follows the Manager-Workers
structure is shown in Figure 1.

Fig. 1. Object Diagram of the Manager-Workers pattern.

2.2 Participants

– Manager. The responsibilities of a manager are to create a number of workers,
to partition work among them, to start up their execution, and to compute
the overall result from the sub-results from the workers.
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– Worker. The responsibility of a worker is to seek for a task, to implement
the computation in the form of a set of operations required, and to perform
the computation.

2.3 Dynamics

A typical scenario to describe the run-time behavior of the Manager-Worker pat-
tern is presented, where all participants are simultaneously active. Every worker
performs the same operation on its available piece of data. As soon as it finishes
processing, it returns a result to the manager, requiring more data. Communi-
cations are restricted between the manager and each worker. No communication
between workers is allowed (Figure 2).

Fig. 2. Interaction Diagram of the Manager-Workers pattern.

In this scenario, the steps to perform a set of computations is as follows:
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1. All participants are created, and wait until a computation is required to the
manager. When data is available to the manager, this divides it, sending
data pieces by request to each waiting worker.

2. Each worker receives the data and starts processing an operation Op. on
it. This operation is independent of the operations on other workers. When
the worker finishes processing, it returns a result to the manager, and then,
requests for more data. If there is still data to be operated, the process
repeats.

3. The manager is usually replying to requests of data from the workers or
receiving their partial results. Once all data pieces have been processed, the
manager assembles a total result from the partial results and the program
finishes. The non-serviced requests of data from the workers are ignored.

3 CCS

Milner designed the Calculus of Communicating Systems [7] for modelling con-
currency in systems that communicate in a message-passing synchronous style.
Message are sent via two-end channels. Access to channels can be open or re-
stricted. A message is consumed once communication has taken place and there-
fore is no longer available to anybody else.

Formally speaking, we have a countable set of channels α, β, γ, α0, . . . The
basic actions are

– sending a message: α!m, where α is a channel;
– receiving a message: α?m;
– synchronous communication between process without any disclosure to out-

siders: τ .

Let us denote by the variables λ, λ′ any of the first two types of actions. If
λ is the action α?m, then λ̄ is the complementary action α!m and viceversa.

Processes are made out of basic actions and the simple process nil com-
pounded by prefixing by basic actions, non-deterministic choice, parallel compo-
sition, restriction of channels and relabelling of channels. In BNF:

p ::= nil | λ . p | (p+ p) | (p ‖ p) | p\L | p[f ],

where L is a set of channels and f is a one-to-one mapping of channels.
Finally, a process can be defined recursively by an equation

N ≡def p

where N is a name and P is a process in the above grammar (possibly containing
instances of the name N).

The semantics of CCS is usually expressed in terms of structural operational
semantic rules [11] with labelled transitions:
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Prefixed process

λ . p
λ

−→ p

Choice

p
λ

−→ q

(p+ r)
λ

−→ q

r
λ

−→ q

(p+ r)
λ

−→ q

Parallel composition

p0
λ

−→ p′0

p0 ‖ p1
λ

−→ p′0 ‖ p1

p1
λ

−→ p′1

p0 ‖ p1
λ

−→ p0 ‖ p′1

p0
λ

−→ p′0 p1
λ̄

−→ p′1

p0 ‖ p1
τ

−→ p′0 ‖ p′1

Channel restriction

p
λ

−→ q

p\L
λ

−→ q\L
λ %∈ L ∪ L̄

Channel relabelling

p
λ

−→ q

p[f ]
f(λ)
−→ q[f ]

Recursively defined processes

p
λ

−→ q

P
λ

−→ q
where P ≡def p.

3.1 Manager-Workers in CCS

Our translation of the Manager-Workers pattern to CCS focuses on the messages
sent from the manager to assign a task, and the results sent back by the worker.
The specific task performed for the worker can be left unspecified.

The components of the main process (represented by M) will be as follows:
(a) a task being assigned (represented by T ); (b) the worker which receives the
assignment (represented by W ); (c) the assignment itself (represented by A).
Subscripts will be used to distinguish between different workers and tasks.

Wi ≡def (αi?m . P . α!m . nil)
Ti ≡def (αi!m . α?m . Ai)
Ai ≡def (Ti ‖ Wi)\{αi}+ nil
M ≡def C ‖ (A1 ‖ · · · ‖ An)
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A further explanation is needed:

– Worker Wi is expecting through channel αi an assignment. When this hap-
pens, it proceeds to perform the task, which is represented by the unspecified
process P . The only condition we will assume later is that P is deadlock free
itself. For this assumption to be realistic, P should not depend on any ex-
ternal synchronizing event. Then the result is sent back through the same
channel.

– Task Ti contains the complementary communication actions of Wi. Once a
task is finished control is handed over to the assignment process.

– Assignment Ai can choose either calling in a task and a worker to perform
it, or consider the work done and become nil. Observe how channel αi is
restricted in order to guarantee integrity of the communication with Wi.

– M is the manager creating tasks and combining results in process C, while
in parallel assigns tasks to different workers. Please do note that C is also
left unspecified and again the only condition required is that C is deadlock
free.

A final but important remark: this translation has made explicit important
facts about synchronization between actions from manager and workers which
by no means were stated in the English description of this pattern and that will
be critical to have a deadlock free system (as it will be proved later).

4 Model Checking

For expressing properties of processes we will be using a version of modal µ-
calculus extended with special constants [5]. µ-calculus is a propositional multi-
modal logic with an additional least-fixed point operator for recursive formulas.
The modal propositional part of the language is essentially Hennessy-Milner
logic [6].

µ-calculus has as atomic propositions the logical constants V y F (we will
add some more atomic propositions later). The modalities in HML are labelled
by CCS basic actions. In BNF:

D ::= V | F | ¬D | D ∨D | D ∧D | 〈λ〉D | 〈·〉D | µX . D

We can add the following abreviations:

[λ]D ≡def ¬〈λ〉¬D [ · ]D ≡def ¬〈·〉¬D
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We define inductivevly the satisfaction relation |= between CCS processes
and HML formulas:

p |= V ∀p ∈ CCS
p %|= F ∀p ∈ CCS

p |= 〈λ〉D iff ∃p′ . p
λ

−→ p′ ∧ p′ |= D

p |= 〈·〉D iff ∃p′,λ . p
λ

−→ p′ ∧ p′ |= D

p |= [λ]D iff ∀p′ . p
λ

−→ p′ ⇒ p′ |= D

p |= [ · ]D iff ∀p′,λ . p
λ

−→ p′ ⇒ p′ |= D
p |= µX . D iff p |= D[X:=µX . D]

For instance, the process (α?m . nil) ‖ (β!n . nil) satisfies formula 〈α?m〉[ · ]V
because

(α?m . nil) ‖ (β!n . nil)
α?m
−→nil ‖ (β!n . nil)

and the latter process can perform only one action and therefore the only possible
transition is

nil ‖ (β!n . nil)
β!n
−→nil ‖ nil

and nil ‖ nil |= V . On the other hand, the same process does not satisfy
[ · ]〈α?m〉V , for if it performs firstly the transtion (and we are obliged to take
into account every possibility by the operator [ · ])

(α?m . nil) ‖ (β!n . nil)
α?m
−→nil ‖ (β!n . nil)

we will have
nil ‖ (β!n . nil) %|= 〈α?m〉V.

4.1 Formal properties

The other side of model checking verification requires to express the desired/
undesired properties as formulas in a logical language. In this case, we need to
express deadlock as a HML formula. Following [13], we introduce a new atomic
formula satisfied by processes with no pending tasks.

nil |= terminal
λ . p %|= terminal
p+ q |= terminal if p |= terminal and q |= terminal
p+ q %|= terminal otherwise
p ‖ q |= terminal if p |= terminal ∧ q |= terminal
p\L |= terminal if p |= terminal
p[f ] |= terminal if p |= terminal

Our working deadlock definition implies that there is no possible action that can
be performed and yet the process still has pending tasks. For the first part, a
process capable of no action will satisfy trivially the formula [ · ]F . But if the
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process has not terminated yet it will not satisfy terminal. Then deadlock can
be defined by

dead ≡def ([ · ]F ∧ ¬terminal).

Nevertheless, this formula represents the fact of the process that already has
reached deadlock. We want to say that a process can or cannot deadlock now
or in the future (ie, after performing a certain number of actions). For this, we
need the recursive formula

e-dead ≡def µX . (dead ∨ 〈·〉X).

A process satisfying this formula may eventually deadlock. In the following we
will check our translation of the MW pattern.

4.2 Deadlock absence for MW

Let us see now where our Manager-Workers representations stand regarding
eventual deadlock. We need to answer

M |= e-dead?

According to the rules for recursive formulas, this is equivalent to

M |= dead ∨ 〈·〉e-dead?

Being a disjunction we need both disjuncts. Let us start with dead, that is

M |= [ · ]F ∧ ¬terminal?

Assuming C is deadlock free we can focus on the component (A1 ‖ · · · ‖ An)
and check whether

(A1 ‖ · · · ‖ An) |= [ · ]F ∧ ¬terminal.

We have two cases: (a) nil is chosen in each instance of Ai and we end up trivially
with a collection of nil; (b) at least one of the assignments launches an instance
of (Ti ‖ Wi).

In case (a), (nil ‖ · · · ‖ nil) is equivalent to nil and although nil |= [ · ]F , by
definition nil %|= terminal and then nil %|= dead.

In case (b), by virtue of the rules of structural operational semantics

(Ti ‖ Wi)
τ

−→ (α?m . Ai) ‖ (P . α!m . nil)

which means that

(A1 ‖ · · · (Ti ‖ Wi) ‖ An) %|= [ · ]F and
(A1 ‖ · · · (Ti ‖ Wi) ‖ An) %|= ¬terminal

and therefore
M %|= dead.
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What about the other side of the disjunction, namely 〈·〉e-dead? Applying again
the rule for recursive formulas, we are asking the question

M |= 〈·〉dead ∨ 〈·〉〈·〉e-dead?

Let us consider again the first disjunct. As before, we are faced with the question

(A1 ‖ · · · ‖ An) |= 〈·〉dead,

and again we can have the two cases (a) and (b). In case (a)

(nil ‖ · · · ‖ nil) %|= 〈·〉dead,

this time by definition of |= for the operator 〈·〉 (as there is no possible action).
Suppose now that a process Ai chooses to launch an instance of (Ti ‖ Wi).
Following a similar argument as before, we have to answer now the question

(A1 ‖ · · · (Ti ‖ Wi) ‖ An) |= 〈·〉dead?

Again, we apply the rules of structural operational semantics

(Ti ‖ Wi)
τ

−→ (α?m . Ai) ‖ (P . α!m . nil)

(A1 ‖ · · · (Ti ‖ Wi) ‖ An)
τ

−→ (A1 ‖ · · · ((α?m . Ai) ‖ (P . α!m . nil)) ‖ An)

and the rules of |= pose now the question

(A1 ‖ · · · ((α?m . Ai) ‖ (P . α!m . nil)) ‖ An) |= dead?

Given that P is deadlock-free and does not require any external communication
event we now that

(α?m . Ai) ‖ (P . α!m)
τ

−→ ∗(α?m . Ai) ‖ (α!m . nil) and

(α?m . Ai) ‖ (α!m . nil)
τ

−→Ai ‖ nil

ie, the process can perform at least one action and therefore, as before,

(A1 ‖ · · · ((α?m . Ai) ‖ (P . α!m)) ‖ An) %|= dead.

This again resolves the left-hand side of the second disjunction, and we have to
look at 〈·〉〈·〉dead which is tantamount to

M |= 〈·〉〈·〉dead ∨ 〈·〉〈·〉〈·〉e-dead.

Following the previous line of reasoning we will be considering either the question

(A1 ‖ · · · (Ai ‖ nil) ‖ An) |= dead?

which we have already answer on the negative.
But again we will have to consider a new right-hand side disjunct. This can

lead us to think this process will never end. However, it is not difficult to see
by now that the new questions posed can be reduced to one of the previously
considered, no matter how many times a task and its corresponding worker is
launched. Therefore it is safe to state that

M %|= e-dead.

'LVWULEXWHG�V\VWHP�IRU�DVVHVVPHQW�RI�ZDWHU�TXDOLW\�LQ�VKULPS�DTXDFXOWXUH�V\VWHPV�����



5 Conclusions and Future Work

We have shown a way of translating a natural language description of the MW
pattern into a syntactic construction of a formal language. This translation
helped to expose and solve some vagueness implicit in the original description
and it also made explicit decisions of synchronization previously left to applica-
tion phase of the pattern.

The new formulation of the MW pattern was proved to comply with the prop-
erty of deadlock absence. For this we used (an instance of) the modal µ-calculus
and standard model checking techniques. So we can ascertain that a system
based on this formulation of the MW pattern will be deadlock-free (provided
the additional assumptions stated here are also met).

The MW pattern is a very general one and it can be specialized into more
particular patterns according to specific decisions related to coordination order,
discipline of communication or any other consideration deemed relevant. Future
work should consider these variants in order to prove that they are also deadlock
free.

Absence of deadlock can be defined differently, as in [1, 2]. Different defini-
tions may require different formulas in µ-calculus and either a proof of equiva-
lence or inclusion between them or separate proofs of deadlock absence.

Finally, we hope we have shown the utility of this method and how it can be
applied to other Architectural Patterns for Parallel Programming.
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