
ITB-00310-2007.R3 1

Parallel Multi-scale Feature Extraction and Region
Growing: Application in Retinal Blood Vessel

Detection
Palomera-Pérez, M.A., Martinez-Perez, M.E., Benı́tez-Pérez, H., and Ortega-Arjona, J.L.

Abstract—This paper presents a parallel implementation based
on ITK for a multi-scale feature extraction and region growing
algorithm, applied to retinal blood vessels segmentation. This
implementation is capable of achieving an accuracy comparable
to its serial counterpart (about 92%), but 8 to 10 times faster. In
this paper, the accuracy of this parallel implementation is evalu-
ated by comparison with expert manual segmentation (obtained
from public databases). On the other hand, its performance is
compared with previous published serial implementations. Both
these characteristics make this parallel implementation feasible
for the analysis of a larger amount of high-resolution retinal
images, achieving a faster, high-quality segmentation of retinal
blood vessels.

Index Terms—Distributed algorithms, Data processing, Image
analysis, Image processing, Image segmentation, Parallel pro-
gramming.

I. INTRODUCTION

RECENT studies show that quantitative measurements
of the retinal microvasculature can be used for the

diagnosis of several diseases [1], [2]. Commonly, blood vessel
assessment is used for predicting cardiovascular diseases, as
an indicator of target organ damage in hypertension, and in
the diagnosis of diabetes. However, manual or semi-automated
techniques for the quantification of the retinal microvascu-
lature are time-consuming and labor intensive. Thus, the
development of rapid means for retinal microvascular assess-
ment are valuable. This situation opens the use of computer
algorithms for segmenting and measuring retinal vasculature
as useful techniques.

Nowadays, computer-aided image analysis is becoming
increasingly important to efficiently and safely handle large
amounts of high-resolution retinal images. Developments in
acquisition technology enable us to capture increasing amounts
of high-resolution retinal images, with unprecedented detail.
For instance, the use of digital cameras for retinal screening
in diabetes is generating an ever increasing large database

Manuscript received on November, 2007. This work was supported in part
by the Macroproyecto: Tecnologı́as para la Universidad de la Información y
la Computación.

Palomera-Pérez and Benı́tez-Pérez are with the Department of Computer
Systems Engineering and Automatization, IIMAS, UNAM. Mexico.
(phone: +(52) 5556223639 e-mail: ese.mike@gmail.com and
hector@uxdea4.iimas.unam.mx).

Martinez-Perez is with the Department of Computer Science, IIMAS,
UNAM. Apdo. Postal 20-726. Delg. Alvaro Obregon, Mexico, D.F., C.P.
01000. Mexico. (e-mail: elena@leibniz.iimas.unam.mx).

Ortega-Arjona is with Department of Mathematics ,Faculty of Science,
UNAM Apdo. Postal 20-726. Admon. 20 Delg. Alvaro Obregon, Mexico,
D.F., C.P. 01000. Mexico. (e-mail: jloa@fciencias.unam.mx).

for retinal analysis in high risk individuals. In clinical rou-
tine, such large amounts of data raise challenges for retinal
image analysis and processing. Hence, it is necessary to
develop computer algorithms capable of processing current
large databases of these retinal images. Currently, information
processing is undergoing rapid advances driven by the use of
high-performance computing, resulting in the development of
practical medical applications [3], [4].

In particular, a novel multi-scale feature extraction and
region growing for segmentation of retinal blood vessels, de-
veloped in Matlab, has been proposed achieving considerably
accurate segmentation results [5]. Nevertheless, this effort is
relatively slow and unable to process high-resolution images
due to memory limitations. An alternative computationally
efficient version has been implemented using the Insight
Segmentation and Registration Toolkit (ITK) [6], aiming to
solve speed and memory limitations [7]. However, although
this implementation allows to process higher-resolution retinal
images, it requires a considerable time for processing.

The main objective of this paper is to propose a parallel
implementation for retinal blood vessel segmentation, capable
of achieving an accuracy similar to the ITK serial version [7],
while providing a faster processing of higher-resolution images
and larger data sets.

The challenge of deploying a parallel segmentation algo-
rithm is to keep the amount of communication low. In this
work, a novel approach is presented where the image is
subdivided into sub-images. Each sub-image to be processed
should have overlapping regions in order to have a low rate
of communications. Moreover, it is shown that using this new
methodology improves the segmentation process time without
compromising the algorithm accuracy.

This paper is organized as follows: In Section II we briefly
describe the original blood vessel segmentation algorithm [7].
Section III outlines the basics of the parallel implementation.
Section IV presents an evaluation of the parallel implemen-
tation performance compared with the original ITK serial
version (in terms of execution time and speed-up), as well
as the accuracy of its results compared with public databases.
Finally, Section V gives the conclusions and suggestions for
future work.

II. BLOOD VESSELS SEGMENTATION ALGORITHM

The algorithm for blood vessel segmentation is based on
basic principles of multi-scale differential geometry, using

ITB-00310-2007.R3 2

first and second derivative information, in combination with
a region growing strategy [5]. The latter algorithm has been
tested using several databases of complete manually labelled
images [8], [9]. These databases have been used by other
authors for similar validation purposes [8], [9], [10].

Multi-scale techniques provide a way for isolating infor-
mation about objects, by considering geometrical features at
different scales. These features are obtained by convolving the
original image I(x, y) with a Gaussian kernel G(x, y; s) with
variance s2:

Is(x, y; s) = I(x, y)⊗G(x, y; s) (1)

where G is:
G(x, y; s) =

1
2πs2

e−
x2+y2

2s2 (2)

and s is a length scale. In order to extract geometrical features,
an approach based on differentiation is used. Derivatives of an
image are numerically approximated by a linear convolution
of the image with scale-normalized derivatives of the Gaussian
kernel.

∂nIs(x, y; s) = I(x, y)⊗ sn∂nG(x, y; s) (3)

where n indicates the order of the derivative.

A. Feature Extraction

In this algorithm, the features obtained using the multi-scale
technique are (1) the magnitude of the gradient and (2) the
maximum eigenvalue of the Hessian matrix.

1) Gradient Magnitude: is defined as:

|∇Is| =
√

(∂xIs)2 + (∂yIs)2 (4)

It represents the slope of the image intensity for a particular
value of the scale parameter s.

2) Maximum Eigenvalue: Vessels appear as ridge-like
structures in the image, so their pixels are identified where
the intensity has a local maximum in the direction of the
gradient, the largest change (largest concavity) [11]. Hence,
the second derivative information is obtained from the Hessian
of the intensity image I(x, y):

H =
(

∂xxIs ∂xyIs

∂yxIs ∂yyIs

)
(5)

The Hessian matrix is symmetrical since ∂xyIs = ∂yxIs

with real eigenvalues and orthogonal eigenvectors, which are
rotation invariant. A pixel belongs to a vessel region if its
maximum eigenvalue is À 1. Thus, it is weighted as a vessel
pixel. Hence, the overall multi-scale integration is based on
extracting the information across the scales by finding the local
maximum over scales (pixel by pixel) for both measurements
of feature strength [12].

B. Region Growing

The region growing algorithm is based on an iterative relax-
ation technique. All region growing parameters are obtained
for each image, analyzing its extracted features through an
histogram of the complete image. Two class of pixels are

determined from the histogram of the maximum eigenvalue:
vessel and background. And only one class is calculated from
the histogram of the gradient magnitude: low gradient.

For region growing, seeds are planted considering the mean
values of each eigenvalue class. The classification of pixels as
vessel or background is based on the maximum eigenvalue,
where the criteria for determining seeds are defined. Using
spatial information from the classification of the 8-neighboring
pixels, vessel and background classes are iteratively grown.

The algorithm starts a first stage in regions with low
gradient magnitude, allowing a relatively broad and fast classi-
fication. Meanwhile, it also suppresses the classification in the
edge regions, where the gradients are large. In a second stage,
the classification constraint is relaxed, and both the vessel
and the background classes grow based on the the value of
the maximum eigenvalue. During this procedure boundaries
between regions are defined. For further and complete details
of the segmentation algorithm, refer to [5].

III. PARALLEL IMPLEMENTATION

The purpose of parallelizing the segmentation algorithm
described above is to process larger data sets of images, whose
resolution varies from low to high, in an acceptable time. The
main problem for processing such images (particularly high-
resolution ones) is the available local memory. Even though the
trivial solution may be increasing the amount of memory per
processor, the essential problem is not truly solved. Parallelism
is applied so the solution is developed by partitioning the
images, so each sub-image can be partially processed within
the available memory per processor. This kind of parallelism
is known as domain partitioning, and it is considered for both
stages of the segmentation algorithm, feature extraction and
region growing.

A. Feature Extraction in Parallel

The multi-scale process of feature extraction is a local
process for both, gradient magnitude and maximum eigen-
value. Thus, for a current pixel, the feature value does not
depend on its neighboring pixels. Considering this, the parallel
implementation consists of partitioning the image into equal
size sub-images, so each sub-image is processed by each
processor. After parallel feature extraction, the resulting image
is then compound by all resulting sub-images. However, this
procedure yields some false vessel edges for boundary pixels
of each sub-image. In order to avoid this problem, the original
image is divided so that neighboring sub-images contain
certain overlapping between each other.

Figure 1 shows an example of partitioning an image into
five sub-images. Figure 1(a) shows the simple division into
Ri (i = 5) sub-images. Figure 1(b) depicts the overlapping
needed to process each sub-image. Each pixel region to be
processed is then the composition of an overlapping T region
(defined by a number of extra pixels from the neighboring
sub-images) along with the pixels belonging to the Ri sub-
image. Hence, the pixel region for a particular sub-image is
Ri +2T . Nevertheless, top-most and bottom-most sub-images
have a size of Ri + T . The particular value of T used in this

ITB-00310-2007.R3 3

parallel implementation will be described in Section IV. We
note that T and Ri are not modify during the process.

(a) (b)

Fig. 1. Partitioning: (a) into sub-images (Ri), and (b) considering pixel
regions (Ri + 2T).

Once the feature extraction of all the sub-images has
finished, their results are collected and assembled into a
single overall resulting image. At this point, it is important
to eliminate the overlapping for the final image. Notice that
this parallel processing can be extended to any number of sub-
images without further programming effort.

B. Region Growing in Parallel

Since the region growing algorithm depends on the iteration
stage and on the processing of neighbor pixels, the paralleliz-
ing of this algorithm is not straightforward.

In the current region growing algorithm (as described in
Section II-B), a global statistic defines where pixel seeds are
planted. The position of these pixel seeds depends on the gra-
dient magnitude and the maximum eigenvalue. Starting from
each seed, each pixel class grows by iteratively classifying
each pixel as vessel or background. The growing rules for
a given pixel considers the pixels classified in the previous
iteration along with the current class of its 8-neighboring
pixels. Thus, dividing the image into sub-images is not enough
to address the growing problem.

This is a challenging problem. Suppose, for example, that
an image is divided into two sub-images, as shown in Figure 2.
If the image is horizontally divided (as shown in Figure 2(a)),
vessels horizontally growing have no problem. Nevertheless,
vessels vertically growing may go across the sub-image bor-
ders, and therefore, the algorithm cannot find a direction to
grow giving truncated vessels. This also occurs when the
image is vertically divided, as it is shown in Figure 2(b).

A possible solution to the problem of truncated vessels is
to allow communication between sub-images that share an
overlapping, at each iteration. However, this approach may
produce an excessive number of communications, so it is not
recommended.

Another effective solution is to divide the image into sub-
images in both directions, horizontal and vertical, as shown in
Figure 2. The resulting image then is obtained by combining
both sets of sub-images (horizontal and vertical), as shown in
Figure 2(c).

In summary, the parallel region growing algorithm takes an
initial empty image, plants the seeds in it, and divides it into
two sets of sub-images: horizontal and vertical. Then, each
sub-image is processed, performing the growing algorithm on
it. Since vessel and background classes grow in any direction,

(a) (b)

(c)

Fig. 2. Process with two nodes. (a) Horizontal, (b) vertical and (c) combined
results.

it is likely that some vessels would appear in the vertical sub-
image but would not appear in the horizontal sub-image and
vice versa. So, the use of an OR operator applied to all pixels
of the image corrects this situation. The image is put back
together at the end of the growth, considering vessel with value
1 and 0 for background.

Although each sub-image is represented twice (one vertical,
one horizontal) instead of only once, this partitioning scheme
does not imply communications, which normally may repre-
sent a bottleneck for any parallel application.

Figure 3 shows an example of this kind of partitioning. The
image is divided into five horizontal and five vertical sub-
images. This partitioning scheme makes easy to collect the
final results, allowing to load-balance the process.

(a) (b)

Fig. 3. Partition scheme: (a) horizontal and (b) vertical sub-images.

Once again, this partitioning scheme can be generalized for
any number of sub-images.

IV. EVALUATION

The parallel implementation for the evaluation is based
on Message Passing Interface (MPI), a message passing li-
brary [13]. Actually, the Mpich version 1.2.7 is used here and
image processing algorithms are developed using ITK version
3.0.0. [6]

The parallel implementation was developed and tested on
a Beowulf cluster, composed of a master node and 13 slaves
nodes. The main features of this cluster are shown in Table I.

Applying the proposed partitioning scheme, each sub-image
(along with its overlapping with neighboring sub-images) is

ITB-00310-2007.R3 4

mapped onto each node, for both algorithms, feature extraction
(Figure 4(a)) and region growing (Figure 4(b)).

TABLE I
CLUSTER FEATURES

Features Master node Internal nodes
CPU(s) 2 Xeon at 2.6 GHz 13 Pentium IV at 2.6 GHz
Memory 1.5 GB 13 × 500 MB

Linux Kernel 2.6.8 2.6.12

(a)

(b)

Fig. 4. Partition schemes: (a) Parallel feature extraction (horizontal partition)
and (b) Parallel region growing (mixed horizontal-vertical partition)

To test the algorithm, three experiments were performed:
A Comparison of parallel performance with the perfor-

mance reported for the ITK serial version [5], [7]. In
this experiment a local database composed of images of
different sizes was used.

B Computation of the accuracy for both, ITK serial and
parallel segmentation.

C Calculation of the speed-up of the parallel implementa-
tion (regarding the ITK serial implementation) using a
high-resolution image (2890 × 2308 pixels), and varying
the number of nodes (from 1 to 14).

A. Comparison with ITK serial version

The previous serial version was implemented with the ITK
library using the C++ language [7]. ITK includes various high-
level and low-level image processing algorithms. It also uses
similar concepts to the Standard Template Library (STL), so
it works with arbitrary image formats [6].

The ITK version used here was 3.0.0. This version im-
plements the operation of convolution (used in the feature
extraction stage) with the derivatives of recursive Gaussian
filters, using approximated 2D Gaussian operators [14]. This
is computationally more efficient. Besides, during the region
growing stage, ITK makes use of an “image iterator” to scan
an image region. This implies a more efficient use of memory.

As the ITK serial version, the parallel implementation
makes use of ITK, considering the parallelizing domain (as

described in Section III). Here, fourth order recursive Gaus-
sian filters of ITK are used with a padding of 4 pixels on
each direction (horizontal and vertical). So, each sub-image
overlapping (T) is of 4 pixels. The ITK serial version has
been tested on the master node of the cluster.

Table II shows the execution time performance of the ITK
serial version. To this end we used a local database of 7
different images, with different sizes and scale intervals. The
scale intervals correspond to the lower and larger s values of
the scale object in the image. These values are set manually,
and depend on both, the size of the image in pixels and the
magnifying settings of the camera used to capture the retinal
image. Execution times are reported in seconds for feature
extraction (FE) and region growing (RG) stages, respectively.
All images were successfully segmented.

TABLE II
EXECUTION TIMES OF THE ITK SERIAL VERSION.

FE-FEATURE EXTRACTION, RG-REGION GROWING.

Image Size (pixels) Scales FE (s) RG (s)
Img1 134 × 116 [1 - 5] 0.284 0.015
Img2 253 × 290 [1 - 4] 1.028 0.115
Img3 703 × 599 [2 - 6] 7.125 1.973
Img4 1319 × 1518 [2 - 8] 49.626 20.823
Img5 2308 × 2890 [5 - 25] 614.934 57.018
Img6 3500 × 3000 [5 - 21] 794.217 252.304
Img7 3500 × 3000 [5 - 35] 1443.860 233.864

Table III shows the performance of the ITK parallel ver-
sion (executing on 14 nodes), as execution time. For feature
extraction (FE), the parallel implementation is 10 times faster
than the ITK serial version, whereas for RG, it is hardly
twice as fast as the ITK serial version. Globally, the complete
segmentation for high-resolution images is processed almost
9 times faster than the ITK serial version.

TABLE III
EXECUTION TIME OF THE ITK PARALLEL VERSION.
FE-FEATURE EXTRACTION, RG-REGION GROWING.

Image Size (pixels) Scales FE (s) RG (s)
Img1 134 × 116 [1 - 5] 0.175 0.027
Img2 253 × 290 [1 - 4] 0.478 0.355
Img3 703 × 599 [2 - 6] 1.454 1.506
Img4 1319 × 1518 [2 - 8] 6.996 10.872
Img5 2308 × 2890 [5 - 25] 48.192 25.799
Img6 3500 × 3000 [5 - 21] 62.897 74.593
Img7 3500 × 3000 [5 - 35] 105.761 106.794

B. Algorithm Accuracy Computation

In order to validate the segmentation accuracy, two public
databases of digitalized retinal images were used.

The first database, STARE [8], contains 20 retinal fundus
images photographed with a TopCon TRV-50 fundus camera
with a 35◦ field of view. Each positive is digitalized to produce
a 605×700 pixel image, with 24 bits per pixel (standard RGB).
Ten images are from subjects with no pathology (normals)
and the other 10 with pathology (abnormals). Each of these
20 images were hand-segmented by two different observers
named, AH and VK, respectively.

ITB-00310-2007.R3 5

The second public database, DRIVE, has been made avail-
able by [9]. This database consists of 40 images captured in
digital form from a Canon CR5 non-mydriatic 3CCD camera
at 45◦ field of view. The images are 768× 584 pixels, 8 bits
per color channel. The images have been divided into a test
and train sets with 20 images each. Images in the test set are
hand-segmented twice resulting in sets A and B. Only the test
set is used.

Because the green band of color images on RGB format
gives the highest contrast between vessel and background, only
the green band is used for both databases. Images from STARE
database are processed through a scale interval s ∈ [2, 12],
whereas those from DRIVE database uses s ∈ [2, 8].

The validation of segmentation outcome (SO) is based on
contingency tables built using a hand-segmented image as the
“ground truth” (GT). Along with STARE database, AH images
are used as “ground truth”, whereas for DRIVE database, the
set A is used. Contingency tables are built as follows: any
pixel marked as vessel in both GT and SO is a true positive
(TP). Any pixel which is marked as non-vessel in both GT and
SO is a true negative (TN). Any pixel marked as vessel in SO,
but non-vessel in GT is a false positive (FP). The true positive
rate (TPR) is established by dividing the number of TP by the
total number of vessel pixels in GT. The false positive rate
(FPR) is computed by dividing the number of FP by the total
number of non-vessel pixels in GT. A measure of accuracy
(Ac) is defined by the sum of TP and TN divided by the total
number of pixels in the image. For a perfect segmentation,
TPR should be 1 and FPR should be 0.

Comparisons of the present segmentation method (with the
Matlab implementation) against the methods used by other
authors using these databases have been reported in [5].
These comparisons show that the accuracy achieved using the
STARE database is similar as the one reported in [8], having
a slightly lower performance than that of [10]. In the case of
DRIVE database, the Matlab serial method performs better on
detecting correct vessels than the one in [9]. It detects more
blobs from the background, particularly in those images with
strong pathologies. Anyhow, the accuracy value is very similar
for both databases.

Evaluation of the segmentation method between both serial
implementations (Matlab and ITK) have been already reported
in [7]. It is shown that, although the value of FPR is slightly
larger for Matlab, the ITK segmentation had a similar accuracy
(Ac) still comparable with other author’s techniques, and it is
adequate for blood vessel geometry measurements.

Table IV shows the mean and standard deviation values
for TPR, FPR, and Ac for both implementations, ITK serial
and parallel, using both STARE and DRIVE databases. The
parameters (TPR, FPR, and Ac) are calculated only in the
field of view (FOV) of each image rather than the complete
rectangular image, since the dark background outside the FOV
is easily extracted. The same practice is reported by [9], unlike
that of [8].

Since there are slight differences between TPRs of the ITK
serial and parallel versions for both databases, it seems neces-
sary to determine if these are significant. For this verification, a
statistical analysis is used, based on the well known Wilkoxon

(a) (b)

(c) (d)

Fig. 5. (a) Green band image from STARE database, (b) manual segmentation
by AH, (c) automatic segmentation by ITK serial version, and (d) automatic
segmentation by ITK parallel version.

TABLE IV
COMPARISON OF SO WITH HAND-SEGMENTED SET. MEAN

AND STANDARD DEVIATION (SD) OF TPR, FPR, AND AC, FOR
BOTH DATABASES

STARE Database
Implementation TPR FPR Ac n

mean(SD) mean(SD) mean(SD)
ITK Serial 0.779(0.066) 0.0591(0.040) 0.924(0.035) 20
ITK Parallel 0.769(0.070) 0.0551(0.035) 0.926(0.031) 20

DRIVE Database
Implementation TPR FPR Ac n

mean(SD) mean(SD) mean(SD)
ITK Serial 0.660(0.056) 0.038(0.019) 0.922(0.016) 20
ITK Parallel 0.644(0.059) 0.033(0.011) 0.925(0.011) 20

signed rank test [15]. Based on this, and considering the
STARE database, the p values (for p ≤ 0.01) of the two sided
Wilcoxon signed rank test show that there are not significant
differences for any of the three parameters between groups
(with all p >> 0.6). This enables the comparison in this
experiment.

The bottom part of Table IV shows the comparisons with
DRIVE database. In this case, p values, again, do not show
any significant difference (p >> 0.3).

Since ITK serial and parallel versions are implemented
using the same tools, this evaluation shows that the parallel
implementation performs the same segmentation outcome with
an Ac value of 92%, with an improved performance compared
with that of the ITK serial version.

Figure 5 shows an example of one image taken from STARE
database. Figure 5(a) is the original green band, (b) the hand-
segmented by AH, (c) the ITK serial, and (d) ITK parallel
segmentation results.

C. Speed-Up of the Parallel Implementation

In order to obtain the speed-up, the parallel implementation
is executed by gradually increasing the number of nodes used
for the parallel execution, from 1 to 14, for processing a high-
resolution image of size 2890 × 2308 pixels. The image is

ITB-00310-2007.R3 6

processed through the scales s ∈ [5, 25]. The full segmentation
(feature extraction and region growing) takes less than 2
minutes, using the ITK parallel version, with 14 nodes.

Table V shows communication time (CT), processing time
(PT), and total time (TT) against the number of nodes (N),
for feature extraction and region growing. Notice that total
TT is composed of PT and CT . CT includes both, the
time required for distributing the image and the time required
for collecting the results. These times are obtained using two
timers. The first one at the beginning of the communication
point, and the second at its respective end. The measurement
of TT is similarly obtained, using timers at the beginning and
at the end of the whole program. Finally, PT is obtained as
the difference between TT and CT .

TABLE V
TIMES (CT, PT, AND TT) AGAINST NUMBER OF NODES.

Feature Extraction Region Growing
N CT PT TT CT PT TT

(s) (s) (s) (s) (s) (s)
1 0.0000 646.4280 646.4280 0.0000 40.2711 40.2711
2 9.8415 256.7310 266.5720 2.2427 34.3705 36.6132
3 10.4730 162.2180 172.6910 4.0459 27.1860 31.2319
4 10.9809 120.1640 131.1450 6.2991 23.2851 29.5842
5 11.1359 96.8638 108.0000 4.6305 21.7022 26.3327
6 10.7143 81.4611 92.1755 5.7617 20.0627 25.8245
7 9.9628 70.5231 80.4858 5.9725 18.6531 24.6255
8 10.8059 62.4687 73.2746 5.5059 18.8504 24.3562
9 9.3711 56.2291 65.6002 5.2227 18.3495 23.5722
10 9.3335 51.0964 60.4299 5.2931 17.2408 22.5339
11 9.2112 46.8360 56.0472 5.5995 17.2048 22.8044
12 9.4583 43.3362 52.7944 5.5864 16.8260 22.4124
13 9.3029 40.5326 49.8354 5.1995 17.1958 22.3953
14 8.9073 37.9851 46.8924 5.1635 17.1538 22.3173

The effectiveness of parallel implementation is evaluated
using a relation known as speed-up [16]. The times from
Table V are used for calculating the speed-up of the parallel
version for both, feature extraction and region growing. The
speed-up is defined as:

speed-up =
Ts

Tp
(6)

where Ts is the processing time of the ITK serial version, and
Tp is the time taken by the parallel version. Notice that Tp

depends on the number of nodes.
Figure 6 shows the related speed-up of the complete seg-

mentation procedure (feature extraction and region growing)
against the number of nodes. The time includes the whole
process. As parallelism is based on partitioning the image, the
increment of speed-up related to the number of nodes tends
to be linear. Notice that, due to the region growing algorithm
is not as efficient in parallel, there is a slight decrement on
speed-up from using seven nodes and onwards.

Figure 7 shows the speed-up regarding only the feature
extraction stage, which is almost linear. This means that data
partitioning is efficient for feature extraction [16]. Further-
more, communication time tends to be constant, and as the
process time continuously decreases (by increasing the number
of nodes), this means that it is possible to increase the number
of nodes without efficiency costs.

Figure 8 shows the speed-up for parallel region growing.
Nevertheless, notice that the parallel region growing does

Fig. 6. Speed-Up of segmentation vs number of nodes.

Fig. 7. Speed-Up of feature extraction vs number of nodes.

not result as effective as the parallel feature extraction. The
parallel region growing implementation has a speed-up at
most of 2, even using 14 nodes. This speed-up tends to be
constant from 10 nodes onwards. This behavior is due to the
parallelizing strategy used for this algorithm.

Fig. 8. Speed-Up of region growing vs number of nodes.

Even though the speed-up for region growing is less than the
speed-up for feature extraction, considering the whole image
processing application of retinal blood vessel detection, the
overall segmentation for high-resolution images is processed
in an acceptable time compared with any other approach in
literature, as far as we are aware.

There are several reasons why the speed-up of the RG
algorithm behaves in this fashion. First, the process depends on
the number of seeds within a sub-image. The larger the number

ITB-00310-2007.R3 7

of seeds, the larger the number of iterations needed. Second,
the vessel distribution is not homogeneous. It is likely that with
the actual partition scheme there are sub-images with larger
number of vessels than others. And third, since both classes
may grow in any direction (vertical, horizontal or both) two
sub-images are needed instead of one.

V. CONCLUSIONS

This paper introduced an adhoc parallel implementation for
the segmentation of high-resolution images. This implemen-
tation is based on a data partitioning, which allowed a faster
processing of those images.

Two data partitioning schemes were proposed and analyzed:
a horizontal partitioning for feature extraction, and a mixed
(horizontal and vertical) partitioning for region growing. From
the results above, it is noticeable that the first partition scheme
adequately works with local and linear characteristics of the
feature extraction algorithm, whereas the latter produces infe-
rior results due to the ordering and neighboring dependence
characteristics of the region growing algorithm.

Originally, the Matlab implementation did not have enough
memory to handle high-resolution images. On the other hand,
the ITK serial version was able to segment higher-resolution
images (≈ 3500 × 3000 pixels size).

It has been shown that the segmentation outcome between
both ITK versions (serial vs parallel) are statistically the same,
using two public databases [8], [9]. Furthermore, the ITK
parallel version has an improved performance, about 9 times
faster than the ITK serial version. Both versions present a
reasonable enough accuracy (92%) for blood vessel geometry
measurements. The implementation presented here provides
a unique setting for the transfer of these methods from the
laboratory into the clinical environment,

However, the results obtained for the region growing algo-
rithm are not completely satisfactory, due to the intrinsic serial
part of this algorithm. Despite this, the current segmentation
outcome, in terms of accuracy and computation speed, is
already superior for the analysis of large amount of high-
resolution retinal images than the approaches already available
in the literature. Further work should be related with the
development of a new parallel region growing algorithm.

REFERENCES

[1] N. Witt, T. Y. Wong, A. D. Hughes, N. Chaturvedi, B. E. Klein, and
R. Evans, “Abnormalities of retinal microvascular structure and risk of
mortality from ischemic heart disease and stroke,” Hypertension, vol. 47,
no. 5, pp. 975–981, 2006.

[2] T. Y. Wong, R. Klein, B. Klein, J. Tielsch, L. Hubbard, and F. J.
Nieto, “Retinal microvascular abnormalities and their relationship with
hypertension, cardiovascular disease, and mortality.” Surv. Ophthalmol.,
vol. 46, no. 1, pp. 59–80, 2001.

[3] J. C. Crane, F. W. Crawford, and S. J. Nelson, “Grid enabled magnetic
resonance scanners for near real-time medical image processing.” J.
Parallel. Distrub. Comput., vol. 66, no. 12, pp. 1524–1533, 2006.

[4] F. Zhang, A. Bilas, A. Dhanantwari, K. N. Plataniotis, R. Abiprojo,
and S. Stregiopoulos, “Parallelization and performance of 3D ultrasound
imaging beamforming algorithms on modern clusters.” in ICS ’02:
Proceedings of the 16th International Conference on Supercomputing,
New York, USA: ACM, 2002, pp. 294–304.

[5] M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath,
and K. H. Parker, “Segmentation of blood vessels from red-free and
fluorescein retinal images,” Medical Image Analysis, vol. 11, no. 1, pp.
47–61, 2007.

[6] “Itk insight segmentation and registration toolkit,” [Online]. Available:
http://www.itk.org.

[7] M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, and K. H. Parker,
“Improvement of a retinal blood vessel segmentation method using the
insight segmentation and registration toolkit (ITK),” in 29th IEEE EMBS
Annual International Conference, Lyon, France, August 23-26 2007.

[8] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels
in retinal images by piecewise threshold probing of a matched filter
response,” IEEE Trans. Med. Imag., vol. 19, pp. 203–210, 2000.

[9] J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van
Ginneken, “Ridge-based vessel segmentation in color images of the
retina,” IEEE Transactions on Medical Imaging., vol. 23, pp. 501–509,
2004.

[10] X. Jiang and D. Mojon, “Adaptive local thresholding by verification-
based multithreshold probing with application to vessel detection in
retinal images,” IEEE Transactions on Pattern Recognition Analysis and
Machine Intelligence., vol. 25, pp. 131–137, 2003.

[11] D. Eberly, Ridges in Image and Data Analysis, ser. Computational
Imaging and Vision. Netherlands: Kluwer Academic Publishers, 1996.

[12] T. Lindeberg, “On scale selection for differential operators,” in Proc. 8th
Scandinavian Conference on Image Analysis, K. Heia, K. A. Hogdra,
and B. Braathen, Eds., Tromso, Norway, 1993, pp. 857–866.

[13] R. Hempel, “The MPI standard for message passing,” in Proceedings
of the International Conference and Exhibition on High-Performance
Computing and Networking Volume II: Networking., ser. Lecture Notes
in Computer Science, vol. 797. Springer-Verlag, 1994, pp. 247–252.

[14] R. Deriche, “Recursively implementing the gaussian and its derivatives,”
Unite de Recherche INRIA-Sophia Antipolis, Tech. Rep. 1893, 1993.

[15] Wilcoxon, “Individual comparisons by ranking methods.” vol. 1, pp.
80–83, 1945.

[16] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in AFIPS Conference Proceedings,
vol. 30, 1967, pp. 483–485.

Palomera-Pérez, M.A. received in 2002 a B.Sc. degree in Telecommunication
Engineering and in 2005 a MSc degree in Computer Science, at the Univer-
sidad Nacional Autónoma de México (UNAM). He is currently pursuing a
PhD. His research interest includes parallel and distributed systems.

Martinez-Perez, M.E. received in 1992 a B.Sc. degree in Computer Engi-
neering and in 1996 a MSc degree in Computer Science at the Universidad
Nacional Autónoma de México (UNAM), and a PhD degree by the Imperial
College London, UK in 2001. Since 2002, she holds a Research position in the
Department of Computer Science from the Institute of Research in Applied
Mathematics and Systems, UNAM, Mexico. Her research interests include
digital image processing, pattern recognition, and computer vision.

Benı́tez-Pérez, H. is a full time Researcher in the IIMAS UNAM (México).
He received in 1994 a B.Sc. degree in Electronic Engineering by the Faculty
of Engineering, Universidad Nacional Autónoma de México (UNAM), and a
PhD degree by the University of Sheffield, UK, in 1999. His research interest
includes real-time control and fault-diagnosis.

Ortega-Arjona, J.L. is a full time lecturer at the Department of Mathematics
Faculty of Sciences, Universidad Nacional Autónoma de México (UNAM). He
received a B.Sc. degree in Electronic Engineering as well as his M.Sc. degree
in Computer Science at UNAM and earned his Ph.D. degree at the University
College London (UCL),UK. His research interest includes parallel processing,
object-oriented programming software patterns, and software architecture and
design.

