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Abstract: Nowadays reconfiguration becomes a crucial issue for maintainability and safety requirements. For 
instance, fault tolerance can be performed by physical redundancy; besides, an efficient way to perform this 
task is by choosing those spare fault-free redundant components. This goal can be achieved by the use of 
reconfiguration. Therefore, this strategy needs to be study in terms of its consequences. Specifically, in terms of 
a distributed system (for the case of this paper), online reconfiguration tends to be quite useful based on the 
modularity and reusability of certain system components. This paper presents a proposal for online 
reconfiguration from the perspective of a real-time distributed system and the related case study. The goal is to 
propose a way to achieve reconfiguration without paying a safety cost from the point of view of case study and 
communication network. This approach is based on the use of two genetic algorithms in order to search 
possible strategies for online reconfiguration. This work has been implemented under RT CORBA to get a 
useful strategy for distributed system management. 
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1. Introduction 
 
Nowadays online reconfiguration becomes an issue 
for safety requirement specially for networked 
control where one of the key elements is to keep the 
system working even in hazard situations. To pursue 
on-line reconfiguration, this strategy needs to be 
focused into the type of system to be reconfigured 
and the cost to be paid as result of this action. In that 
respect on-line reconfiguration is pursued in terms 
of a computer communication system where 
physical redundancy is allowed and the primary cost 
it is related to inherent time delays within 
communication performance. Specifically 
reconfiguration is related to keep functionality [1] 
during absence of computer components (where a 
component is an autonomous device capable to 
establish communication between similar units). 
Two actions can be possible either by silent nodes 
or replaced nodes. Both schemes can be performed 
by the use of a scheduling algorithm [2] producing 
predictive configurations where every task reach its 
communication deadlines.  

Online reconfiguration produce an effect into the 
system, specially, a distributed system. This effect is 
mainly (but not always) present as time delay effect 

during the communication accomplishment. 
Furthermore, this paper is focused into networked 
control system where loss of time deadline may 
produce unstable results during transitions. 

Strategies for managing time delay within control 
laws have been studied. For instance [3] proposes 
the use of a time delay scheme integrated to a 
reconfigurable control strategy based upon a 
stochastic methodology. [4] proposes a 
reconfiguration strategy based upon a performance 
measure from a parameter estimation procedure. 
Another strategy has been proposed by [5] where 
time delays are used as uncertainties, modifying 
pole placement of a robust control law. [6] present 
an interesting view of fault tolerant control approach 
related to time delay coupling. Reconfigurable 
control has been studied from the point of view of 
structural modification since fault appearance as 
presented by [7]. From this point of view, 
reconfigurable control performs a combined 
modification of system structure as studied by [8] 
and [9]. The objective of this paper is to allow safe 
online reconfiguration based on previous knowledge 
of already known valid plans, evaluated by planning 
scheduler algorithm, and two genetic algorithms 
taking into account networked control performance 
as shown in Fig. 1.1. 
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Fig. 1.1 General structure of Reconfigurable System 

over a Computer Network 
This system has been accomplished over a computer 
network with the peculiarity of using CORBA . This 
is known as TAO [10] where one of the main 
characteristics is the capability to communicate 
objects and components over the network managing 
which channels need to be open o re-open during 
communication. 
 This paper is divided in 6 sections. First section is 
current introduction, second section describes a 
general background of genetic and scheduling 
algorithms. Third section is a review of proposed 
algorithm. Fourth section gives an idea of 
implemented algorithm using a case study. Related 
results from this implementation are shown in 
section five. Finally some concluding remarks are 
given in section 6. 
 

 
2. Background 

As mention in first section several techniques need to be 
used such as genetic algorithms, planning scheduler 
and implemented over an instance of CORBA. A 
brief explanation is given for these issues. First 
Genetic algorithms (GA) are optimization 
techniques based upon a heuristic approach. These 
algorithms [11] are heuristic searching methods 
based on nature evolution. These algorithms 
establish an analogy between a group of solutions 
from one problem and the group of individuals from 
a basic population by codifying the information of 
each solution as a chromosome. A fitness function 
evaluates the chromosomes, which is known as 
adapting function and it is based on an objective of 
the problem. In a similar fashion, a selection 
mechanism is introduced where the chromosomes 
with the best evaluation should be chosen to 
reproduce more often than the worst cases. 

These algorithms integrate two main ideas; simple 
representations of problem solutions by the use of 
bit chaining and simple transformations, in order to 
get a better solution. To implement this approach 
several elements need to be specified: 

• Chromosome Representation 
• Initial Population 
• Evaluation Metric 
• Selection Criteria 
• Mutation Operation 

The genetic operations are based on the type of 
representation. Initial population tends to be 
heuristically generated. The use of this strategy is to 
optimize a population over a define objective. In 
here, this objective is defined as the schedulability 
capacities from distributed systems and the stability 
analysis from case study. From schedulability 
analysis several algorithms can be used, such as rate 
monotonic (RT), earliest deadline first (EDF), 
flexible time triggered (FTT) [12], and least slack 
time (LST). The difference between them is marked 
by the way tasks are ordered. It depends on the 
application which method for ordering tasks is the 
most suitable for a particular example. Those 
algorithms already mentioned are divided into two 
categories as static and dynamic schedulers. The 
main difference is that the static scheduler defines 
during the off-line process the allocation of task, 
whereas the dynamic scheduler allocates tasks based 
on current conditions considering a time slot. For 
instance, consider three tasks with the next 
characteristics (Table 2.1 and Figure 2.1). Under the 
EDF algorithm, if a task changes its deadline at t∆ , 
it would have a higher priority than those tasks 
already defined (Table 2.2). 

Table 2.1. Tasks used to exemplify EDF the algorithm 

 Consumption 
Time 
(C) 

Periodic 
Time  
(P) 

Deadline 
(D) 

Priority 

(T1) C1 P1 D1 Pr2 

(T2) C2 P2 D2 Pr3 

(T3) C3 P3 D3 Pr1 

From Table 2.1, task 3 has the smallest slack time 
(ts3); therefore, it has the highest priority Pr1. 
Thereafter, task 1 has the next highest priority and 
the last task has the lowest priority Pr3. 
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Fig. 2.1. Time graph related to Table 2.1 

According to Figure 2.1, there are two scenarios for 
these three tasks. First, task 1 has slack time ts1, task 
2 has slack time ts2, and task 3 has slack time ts3, 
which gives the highest priority to task 3. The 
second scenario presents a different priority 
conformation according to slack time modifications. 

Table 2.2. New priority order after at reorganization 

 Consumption 
Time 
(C) 

Periodic 
Time  
(P) 

Deadline 
(D) 

Priority 

(T1) C1 P’1 D’1 Pr3 

(T2) C2 P’2 D’2 Pr1 

(T3) C3 P’3 D’3 Pr2 

For the case of deadline modification, as displayed 
in Figure 2.1 priorities are modified as shown in 
Table 2.2 where task 2 has the smallest slack time 
(ts2); therefore it has the highest priority Pr1, task 3 
has the next highest priority, and the last task has 
the lowest priority Pr3. 

For real-time purposes, it is best to use static 
schedulers because of its deterministic behavior. 
Recently, quasi-dynamic scheduling algorithms 
have been defined to give certain flexibility to the 
static communication approach. An example of this 
sort of algorithm is the planning scheduler [13]. The 
planning scheduler is a pseudo-dynamic scheduler, 
in the sense that it presents some dynamic properties 
but is not fully dynamic. The underlying idea is to 
use the present knowledge about the system (in 
particular, the variable set) to plan the system 
activity for a certain time window in the future. 

The scheduler must be invoked once in each plan 
to build a static schedule that will describe the bus 
allocation for the next plan. The potential benefit of 
the planning scheduler in terms of run-time 
overhead is revealed by the following reasoning. 
Within a fixed time window of duration Pi, such as 
the period of variable i among a set of N variables, 
there are at most S transactions  
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Among these algorithms exists the Maximum 
Urgency First (MUF) algorithm which is quite 
flexible as required in this paper. This scheduler is 
managed by properties where tasks with biggest 
priorities are executed. It uses rate monotonic 
predictability and the flexibility of dynamic 
strategies such as EDF. MUF dispatches dynamic 
and static priorities using the following properties: 
Critical Level: Tasks with high critical level are 
assigned with highest priority levels in a static 
fashion (These can not be modified during online 
operation). 
Dynamic subpriority: this property is evaluated 
instantly as function of laxity from current task. 
Static subpriority. This priority is used to organize 
tasks who have the same critical level and dynamic 
sub-priority. Where static sub-priority has less 
precedence than the other two. The priority 
assignment is case study based for the three cases. 
Finally this approximation is implemented over a 
Plattform known as CORBA. This specification 
focused into object management (Vinoski, 1997) 
where there is a middle software face that allows 
communication between entities working at 
different computing machines. 
CORBA applications are integrated from objects 
who define interfaces using IDL. A specific 
implementation of CORBA is TAO (The Ace ORB) 
developed by [10]. It has as main characteristic the 
implementation on Real Time by using a common 
event channel between objects. TAO is integrated as 
a group of libraries known as adaptive 
communication environment. Classical 
implementation of TAO is shown in Fig. 2.3. 
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Fig. 2.3. TAO configuration 

 
 
3. Proposed Algorithm 

This proposal is based on management of quality of 
service from task performance. It takes into account 
the needs of each task by deploy system resources 
according to priority levels. These are assigned from 
case study definition and are taken to modify 



operating systems priorities following MUF 
algorithm. The reconfiguration process is divided in 
two parts (Fig. 3.1), first genetic algorithm is used to 
determine those configuration tasks that satisfy the 
evaluation requirements such as efficiency and 
stability from case study. 
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Fig. 3.1 Modified Planning Scheduler 

This stage is known as offline evaluation because 
knowledge search database is integrated from case 
study response according to a GA evaluation of 
possible task configurations. 
Second stage is known as online configuration 
bearing in mind, real-time performance, during this 
stage the online process, the MUF algorithm, the 
event channel, the second GA and the 
reconfiguration algorithm perform their tasks in 
order to adjust task consumption time and 
reconfiguration according to system behaviour. 
During offline performance the genetic algorithm 
search from an initial population, which plan is 
valid from the perspective of individual 
consumption time of each task and the response of 
the whole group of tasks with respect to case study. 
If a plan (an individual from initial population) 
performs a very poor response with respect to any of 
these two mentioned metrics, fitness value is very 
low. Therefore GA would try to modify this 
individual in order to produce a better population. 
After several iterations this algorithm produce a 
population according to those restrictions from plan 
feasibility and system performance. During online 
stage every time a plan proposal is presented to 
perform reconfiguration, this is evaluated through 
the GA by searching the best candidate similar to 
that proposed if the reconfiguration is possible. The 
scheduler values are reported to the event channel 
and the reconfiguration algorithm. This last 
algorithm distributes the data to the involved tasks 
and reconfiguration takes place. As result from this 
search if one plan is chosen, computer network 

reconfiguration takes place; otherwise, computer 
network keeps the same configuration. 
During online stage, second genetic algorithm 
performs optimization over a bounded population 
using case study error response to be able to 
determine system performance and be able to chose 
a suitable plan based on the conditions from 
reconfiguration. In terms of a time diagram this 
values takes place every specific time window as 
shown in Fig. 3.2.  
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If plan candidate is valid, this is distributed to every 
task during a particular time window. If this plan is 
not valid, then, current plan is kept for next time 
window W.   
During second stage if one of the valid plans is 
selected, then, the related control law is performed 
as well. 
It is essential to remember that reconfiguration and 
plan distribution takes place between time windows 
W as shown in Fig. 3.2. In this case, reconfiguration 
is allowed just during a fixed period of time. 
Initially, the modification of scheduler strategy is 
based upon local faults of peripheral elements. 
Although these topics are of interest, this work is 
focused on the dynamical modification due to 
scheduler adjustments rather than the causes of on-
line reconfiguration. The AGs use a binary encoded 
population with chromosomes holding 3 integer 
variables for each task represented in a scheduling 
plan. Every chromosome represents a plan that can 
hold any number or tasks. The AGs are 
generational, use elitism, roulette wheel selection, a 
crossover probability of 0.8 and a mutation 
probability of 0.2. In the offline case the population 
has 300 individuals and is evolved at a maximum of 
500 generations. For the online case is used an 
initial population with only 10 individuals evolved 
for 2 generations every time the system tries to find 
a new solution. This small population is used to 
minimize the time needed to process an entire 
generation and to not interfere with the running 
tasks. The fitness function uses the MUF algorithm 
and the steady state response to assign fitness to 
every individual. If the tasks can be accommodated 
into a feasible plan and the steady state is minimized 
the fitness is higher.  



 
 

4. Case Study 
The use of inverted pendulum is followed in this 
work to pursue this approximation. Case study is 
related to a classic nonlinear benchmark named 
inverted pendulum (Fig. 4.1). This model it is a two 
dimension problem with the following dynamics. 

 
Fig. 4.1 Classic Inverted Pendulum 

Where 
M= Mass of the car 
m= mass of the pendulum 
b= Friction from the car 
I = Pendulum inertia 
g = gravity 
u = Applied force 
x = position of the car 
φ = Angle of the pendulum with respect to the car 
The transfer function is deployed next: 
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This system is integrated with 9 components. There 
is a basic constraint which is the basic 
communication system (sensing, controller, 
actuator) Fig. 4.2. The system is implemented in 2.4 
GHz PCs using Linux Mandrake 9.1 and TAO 1.4.2 
in a 100 Mbps Ethernet local network. 
 

 
Fig. 4.2. Class Diagram of Case Study 

Where classical control strategy like pole placement 
is pursued. 
 
 
5. Results 

From this implementation two main characteristics 
need to be mentioned in order to be optimized 
through GA’s. The schedulability of certain group 
of tasks and the error response from case study. 
Second characteristic optimize error in steady state 
conditions where error less than 1% is highly 
valued. Fig. 5.1 shows this proposed response. 
 

 
Fig. 5.1. Error Performance 

 
First characteristic tend to optimize wasted time 
where plans with 80% of databus traffic and high 
computer power are highly valued with respect to 
plans with less than 60% from databus traffic. 
Execution task without reconfiguration using the 
distributed system is shown in Fig 5.2 

 
Fig. 5.2. Classical Execution During Non-

Reconfiugrable Tasks Perfomance 
Based on the optimization procedure shown in 
section 3 over computer performance and stability 
tasks reconfiguration is performed over specific 
time windows as shown in Fig 5.3. 

 
Fig. 5.3. Online Reconfiguration Performance 

From the evaluation of reconfiguration, 99.9% 
percent of selected plans are valid, where 99.8% of 
these plans are distributed on time.  
The measures show that the system is stable even 
when the reconfiguration takes place. The time 
needed to reconfigure the system is about 4 ms with 
tasks around 10 and 20 ms being interrupted. The 



system starts the reconfiguration process every 2 
seconds but the reconfiguration only takes place if a 
better solution is found. For a total of 100 
experiments of reconfiguration the next results are 
shown in Fig. 5.4. 
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Fig. 5.4 Percentage of success in reconfiguration 

 
 

6. Conclusions 
 Present work has shown an approach to implement 
online reconfiguration as an optimization problem 
from the use of genetic algorithms. This novel 
approximation allows periodic reconfiguration with 
the basic advantage of predictive results over 
consecutive time window where reconfiguration 
will take place. Moreover, structural and dynamic 
modifications can take place over safety basis of 
pervious known performance. The use of 
middleware allows a feasible implementation using 
online reconfiguration due to communication 
facilities and scheduling integration. Although, 
system dynamics can be very fast (around 1ms in 
sampling period) where the system response is 
around 20ms due to inherent Ethernet response 
which is the main disadvantage over the 
implementation. One drawback of this system is 
when reconfiguration take place which is a periodic 
task. This can be overcome from GA’s 
implementation and safety requirement measures. 
Further work is pursued over system mobility when 
hazard situation occurs considering different 
measures. 
 

Acknowledgments 
The authors would like to thank PAPIIT-UNAM (Num. 
106100 and 105303) Mexico. 
 
References 
[1] Thompson, H., Chipperfield, A., Fleming P., and 

Legge, C.; “Distributed aero-engine 
Control Systems Architecture Selection 
using multi-objective Optimisation”; 
Control Engineering Practice, Vol. 7, 
1999, pp. 655-664. 

[2] Cheng, A.; “Real-Time Systems: Scheduling, 
Analysis and Verification”; Wiley- 
Interscience, 2002. 

[3] Nilsson, J.; “Real-Time Control Systems with 
Delays”; PhD. Thesise, Department of 
Automatic Control, Lund Institute of 
Technology,  Sweden, 1998. 

[4] Wu N.; “Reliability of Reconfigurable Control 
Systems: A Fuzzy Set Theoretic 
Perspective”; Proceedings of the 36th 
Conference on Decision & Control, 
IEEE, TP15 5:10, 1997, pp. 3352-3356, 
San-Diego, USA.  

[5] Jiang J., and Zhao Q.; “Reconfigurable Control 
Based on Imprecise Fault Identification”; 
Proocedings of the American Control 
Conference, IEEE, 1999, pp. 114-118, 
San Diego, June. 

[6] Izadi-Zamanabadi R. and Blanke M.; “A Ship 
Propulsion System as a Benchmark for 
Fault-Tolerant Control”; Control 
Engineering Practice, Vol. 7, 1999, pp. 
227-239. 

[7] Blanke, M., Kinnaert, M., Lunze, J., and 
Staroswiecki, M.; “Diagnosis and Fault 
Tolerant Control”; Springer, 2003. 

[8] Benítez-Pérez, H., and García-Nocetti, F.; 
“Reconfigurable Distributed Control”; 
Springer-Verlag, 2005. 

[9] Thompson, H.;“Wireless and Internet 
Communications Technologies for 
monitoring and Control”; Control 
Engineering Practice, vol. 12, 2004, pp. 
781-791. 

[10] Schmidt, D. C., D. L. Levine and S. Mungee; 
“The Design of the TAO Real-Time 
Object Request Broker”; Computer 
communications, Elsevier Science, Vol. 
21, No. 4, 1998. 

[11] Kuri, M., and Galaviz-Casas J.; “Algoritmos 
Genéticos”; Instituto Politécnico 
Nacional, Universidad Nacional 
Autónoma de México, Fondo de Cultura 
Económica, México 2002. 

[12] Almeida L., Pedreiras P., and Fonseca J. A.; 
“The FTT-CAN Protocol: Why and How”; 
IEEE Transactions on Industrial 
Electronics, Vol. 49, No. 6, 2002, pp. 
1189-1201. 

[13] Almeida, L., Pasadas, R., and Fonseca, J.A.; 
“Using a Planning Scheduler to Improve 
the Flexibility of Real-Time Fieldbus 
Networks”; Control Engineering Practice, 
Vol. 7, 1999, pp. 101-108. 

 


