
On-Line Reconfiguration for a Type of Networked Control System
using Genetic Algorithms

BENÍTEZ-PÉREZ H.*+, SAAVEDRA-HERNÁNDEZ H.+, and ORTEGA-ARJONA J. L.**

**Departamento de Matemáticas, Facultad de Ciencias, UNAM, Ciudad Universitaria, CP. 04510,
México City, México.

*+Departamento de Ingeniería de Sistemas Computacionales y Automatización, IIMAS, UNAM,
Apdo. Postal 20-726., Admón. No. 20, Del. A. Obregón, México D. F., CP. 01000, MÉXICO.

Fax: ++52 55 5616 01 76, Tel: (*) ++52 55 5622 36 39
Email: (*) hector@uxdea4.iimas.unam.mx

Abstract: Nowadays reconfiguration becomes a crucial issue for maintainability and safety requirements. For
instance, fault tolerance can be performed by physical redundancy; besides, an efficient way to perform this
task is by choosing those spare fault-free redundant components. This goal can be achieved by the use of
reconfiguration. Therefore, this strategy needs to be study in terms of its consequences. Specifically, in terms of
a distributed system (for the case of this paper), online reconfiguration tends to be quite useful based on the
modularity and reusability of certain system components. This paper presents a proposal for online
reconfiguration from the perspective of a real-time distributed system and the related case study. The goal is to
propose a way to achieve reconfiguration without paying a safety cost from the point of view of case study and
communication network. This approach is based on the use of two genetic algorithms in order to search
possible strategies for online reconfiguration. This work has been implemented under RT CORBA to get a
useful strategy for distributed system management.

Keywords: Genetic Algorithms, Online Reconfiguration, Network Control

1. Introduction

Nowadays online reconfiguration becomes an issue
for safety requirement specially for networked
control where one of the key elements is to keep the
system working even in hazard situations. To pursue
on-line reconfiguration, this strategy needs to be
focused into the type of system to be reconfigured
and the cost to be paid as result of this action. In that
respect on-line reconfiguration is pursued in terms
of a computer communication system where
physical redundancy is allowed and the primary cost
it is related to inherent time delays within
communication performance. Specifically
reconfiguration is related to keep functionality [1]
during absence of computer components (where a
component is an autonomous device capable to
establish communication between similar units).
Two actions can be possible either by silent nodes
or replaced nodes. Both schemes can be performed
by the use of a scheduling algorithm [2] producing
predictive configurations where every task reach its
communication deadlines.

Online reconfiguration produce an effect into the
system, specially, a distributed system. This effect is
mainly (but not always) present as time delay effect

during the communication accomplishment.
Furthermore, this paper is focused into networked
control system where loss of time deadline may
produce unstable results during transitions.

Strategies for managing time delay within control
laws have been studied. For instance [3] proposes
the use of a time delay scheme integrated to a
reconfigurable control strategy based upon a
stochastic methodology. [4] proposes a
reconfiguration strategy based upon a performance
measure from a parameter estimation procedure.
Another strategy has been proposed by [5] where
time delays are used as uncertainties, modifying
pole placement of a robust control law. [6] present
an interesting view of fault tolerant control approach
related to time delay coupling. Reconfigurable
control has been studied from the point of view of
structural modification since fault appearance as
presented by [7]. From this point of view,
reconfigurable control performs a combined
modification of system structure as studied by [8]
and [9]. The objective of this paper is to allow safe
online reconfiguration based on previous knowledge
of already known valid plans, evaluated by planning
scheduler algorithm, and two genetic algorithms
taking into account networked control performance
as shown in Fig. 1.1.

Reconfiguration
Request Plan

Validation Plan

Valid Plan
Database

Bus Controller

Node

Control Law
Node

Selection of the
Related Control

Law

Database

Control Laws

Computer Network
(Sensor Network)

Yes

(If the Plan
 is valid

The related Control Law
is chosen)

No
(Rejection of the
proposed Plan)

First Reconfiguration Stage

Second Reconfiguration Stage

External Factor to request
reconfiguration

Fig. 1.1 General structure of Reconfigurable System

over a Computer Network
This system has been accomplished over a computer
network with the peculiarity of using CORBA . This
is known as TAO [10] where one of the main
characteristics is the capability to communicate
objects and components over the network managing
which channels need to be open o re-open during
communication.
 This paper is divided in 6 sections. First section is
current introduction, second section describes a
general background of genetic and scheduling
algorithms. Third section is a review of proposed
algorithm. Fourth section gives an idea of
implemented algorithm using a case study. Related
results from this implementation are shown in
section five. Finally some concluding remarks are
given in section 6.

2. Background

As mention in first section several techniques need to be
used such as genetic algorithms, planning scheduler
and implemented over an instance of CORBA. A
brief explanation is given for these issues. First
Genetic algorithms (GA) are optimization
techniques based upon a heuristic approach. These
algorithms [11] are heuristic searching methods
based on nature evolution. These algorithms
establish an analogy between a group of solutions
from one problem and the group of individuals from
a basic population by codifying the information of
each solution as a chromosome. A fitness function
evaluates the chromosomes, which is known as
adapting function and it is based on an objective of
the problem. In a similar fashion, a selection
mechanism is introduced where the chromosomes
with the best evaluation should be chosen to
reproduce more often than the worst cases.

These algorithms integrate two main ideas; simple
representations of problem solutions by the use of
bit chaining and simple transformations, in order to
get a better solution. To implement this approach
several elements need to be specified:

• Chromosome Representation
• Initial Population
• Evaluation Metric
• Selection Criteria
• Mutation Operation

The genetic operations are based on the type of
representation. Initial population tends to be
heuristically generated. The use of this strategy is to
optimize a population over a define objective. In
here, this objective is defined as the schedulability
capacities from distributed systems and the stability
analysis from case study. From schedulability
analysis several algorithms can be used, such as rate
monotonic (RT), earliest deadline first (EDF),
flexible time triggered (FTT) [12], and least slack
time (LST). The difference between them is marked
by the way tasks are ordered. It depends on the
application which method for ordering tasks is the
most suitable for a particular example. Those
algorithms already mentioned are divided into two
categories as static and dynamic schedulers. The
main difference is that the static scheduler defines
during the off-line process the allocation of task,
whereas the dynamic scheduler allocates tasks based
on current conditions considering a time slot. For
instance, consider three tasks with the next
characteristics (Table 2.1 and Figure 2.1). Under the
EDF algorithm, if a task changes its deadline at t∆ ,
it would have a higher priority than those tasks
already defined (Table 2.2).

Table 2.1. Tasks used to exemplify EDF the algorithm

 Consumption
Time
(C)

Periodic
Time
(P)

Deadline
(D)

Priority

(T1) C1 P1 D1 Pr2

(T2) C2 P2 D2 Pr3

(T3) C3 P3 D3 Pr1

From Table 2.1, task 3 has the smallest slack time
(ts3); therefore, it has the highest priority Pr1.
Thereafter, task 1 has the next highest priority and
the last task has the lowest priority Pr3.

Timet∆

C1

C3

C2

P1

P3

P2

C1

C3

C2

P'1

P'3

P'2

ts1

ts3

ts2 t's2

t's1

t's3

D1

D3

D'1

D'3

D2 D'2

Fig. 2.1. Time graph related to Table 2.1

According to Figure 2.1, there are two scenarios for
these three tasks. First, task 1 has slack time ts1, task
2 has slack time ts2, and task 3 has slack time ts3,
which gives the highest priority to task 3. The
second scenario presents a different priority
conformation according to slack time modifications.

Table 2.2. New priority order after at reorganization

 Consumption
Time
(C)

Periodic
Time
(P)

Deadline
(D)

Priority

(T1) C1 P’1 D’1 Pr3

(T2) C2 P’2 D’2 Pr1

(T3) C3 P’3 D’3 Pr2

For the case of deadline modification, as displayed
in Figure 2.1 priorities are modified as shown in
Table 2.2 where task 2 has the smallest slack time
(ts2); therefore it has the highest priority Pr1, task 3
has the next highest priority, and the last task has
the lowest priority Pr3.

For real-time purposes, it is best to use static
schedulers because of its deterministic behavior.
Recently, quasi-dynamic scheduling algorithms
have been defined to give certain flexibility to the
static communication approach. An example of this
sort of algorithm is the planning scheduler [13]. The
planning scheduler is a pseudo-dynamic scheduler,
in the sense that it presents some dynamic properties
but is not fully dynamic. The underlying idea is to
use the present knowledge about the system (in
particular, the variable set) to plan the system
activity for a certain time window in the future.

The scheduler must be invoked once in each plan
to build a static schedule that will describe the bus
allocation for the next plan. The potential benefit of
the planning scheduler in terms of run-time
overhead is revealed by the following reasoning.
Within a fixed time window of duration Pi, such as
the period of variable i among a set of N variables,
there are at most S transactions

∑
=

+

=

N

i iP
wS

1

1 (2.1)

Among these algorithms exists the Maximum
Urgency First (MUF) algorithm which is quite
flexible as required in this paper. This scheduler is
managed by properties where tasks with biggest
priorities are executed. It uses rate monotonic
predictability and the flexibility of dynamic
strategies such as EDF. MUF dispatches dynamic
and static priorities using the following properties:
Critical Level: Tasks with high critical level are
assigned with highest priority levels in a static
fashion (These can not be modified during online
operation).
Dynamic subpriority: this property is evaluated
instantly as function of laxity from current task.
Static subpriority. This priority is used to organize
tasks who have the same critical level and dynamic
sub-priority. Where static sub-priority has less
precedence than the other two. The priority
assignment is case study based for the three cases.
Finally this approximation is implemented over a
Plattform known as CORBA. This specification
focused into object management (Vinoski, 1997)
where there is a middle software face that allows
communication between entities working at
different computing machines.
CORBA applications are integrated from objects
who define interfaces using IDL. A specific
implementation of CORBA is TAO (The Ace ORB)
developed by [10]. It has as main characteristic the
implementation on Real Time by using a common
event channel between objects. TAO is integrated as
a group of libraries known as adaptive
communication environment. Classical
implementation of TAO is shown in Fig. 2.3.

Client Object

IDL Implementation
Repository

ORB Nuclei

IDL
Stub

ORB
Interface

IDL
Skeleton

Fig. 2.3. TAO configuration

3. Proposed Algorithm

This proposal is based on management of quality of
service from task performance. It takes into account
the needs of each task by deploy system resources
according to priority levels. These are assigned from
case study definition and are taken to modify

operating systems priorities following MUF
algorithm. The reconfiguration process is divided in
two parts (Fig. 3.1), first genetic algorithm is used to
determine those configuration tasks that satisfy the
evaluation requirements such as efficiency and
stability from case study.

First Step (Plan Generation)

Second Step (Planning Scheduler Evaluation)

Third Step (Testing of Valid Plans)

Final Table

Off-Line
Stage

On-Line
Stage

Fourth Step (New Plan)
Fifth Step (Plan Verification)

Non Valid
Plan Valid Plan

Distributed System
(Case Study)

Keep last
plan

Sixth Step

GA and MUF
Case Study
Evaluation

GA Evaluation

Fig. 3.1 Modified Planning Scheduler

This stage is known as offline evaluation because
knowledge search database is integrated from case
study response according to a GA evaluation of
possible task configurations.
Second stage is known as online configuration
bearing in mind, real-time performance, during this
stage the online process, the MUF algorithm, the
event channel, the second GA and the
reconfiguration algorithm perform their tasks in
order to adjust task consumption time and
reconfiguration according to system behaviour.
During offline performance the genetic algorithm
search from an initial population, which plan is
valid from the perspective of individual
consumption time of each task and the response of
the whole group of tasks with respect to case study.
If a plan (an individual from initial population)
performs a very poor response with respect to any of
these two mentioned metrics, fitness value is very
low. Therefore GA would try to modify this
individual in order to produce a better population.
After several iterations this algorithm produce a
population according to those restrictions from plan
feasibility and system performance. During online
stage every time a plan proposal is presented to
perform reconfiguration, this is evaluated through
the GA by searching the best candidate similar to
that proposed if the reconfiguration is possible. The
scheduler values are reported to the event channel
and the reconfiguration algorithm. This last
algorithm distributes the data to the involved tasks
and reconfiguration takes place. As result from this
search if one plan is chosen, computer network

reconfiguration takes place; otherwise, computer
network keeps the same configuration.
During online stage, second genetic algorithm
performs optimization over a bounded population
using case study error response to be able to
determine system performance and be able to chose
a suitable plan based on the conditions from
reconfiguration. In terms of a time diagram this
values takes place every specific time window as
shown in Fig. 3.2.

��
��

��
��

Reconfiguration Time
Windows

EC EC ECECECEC ECECECEC

Time Window W Time Window W
Fig. 3.2 Time Window Managing

If plan candidate is valid, this is distributed to every
task during a particular time window. If this plan is
not valid, then, current plan is kept for next time
window W.
During second stage if one of the valid plans is
selected, then, the related control law is performed
as well.
It is essential to remember that reconfiguration and
plan distribution takes place between time windows
W as shown in Fig. 3.2. In this case, reconfiguration
is allowed just during a fixed period of time.
Initially, the modification of scheduler strategy is
based upon local faults of peripheral elements.
Although these topics are of interest, this work is
focused on the dynamical modification due to
scheduler adjustments rather than the causes of on-
line reconfiguration. The AGs use a binary encoded
population with chromosomes holding 3 integer
variables for each task represented in a scheduling
plan. Every chromosome represents a plan that can
hold any number or tasks. The AGs are
generational, use elitism, roulette wheel selection, a
crossover probability of 0.8 and a mutation
probability of 0.2. In the offline case the population
has 300 individuals and is evolved at a maximum of
500 generations. For the online case is used an
initial population with only 10 individuals evolved
for 2 generations every time the system tries to find
a new solution. This small population is used to
minimize the time needed to process an entire
generation and to not interfere with the running
tasks. The fitness function uses the MUF algorithm
and the steady state response to assign fitness to
every individual. If the tasks can be accommodated
into a feasible plan and the steady state is minimized
the fitness is higher.

4. Case Study
The use of inverted pendulum is followed in this
work to pursue this approximation. Case study is
related to a classic nonlinear benchmark named
inverted pendulum (Fig. 4.1). This model it is a two
dimension problem with the following dynamics.

Fig. 4.1 Classic Inverted Pendulum

Where
M= Mass of the car
m= mass of the pendulum
b= Friction from the car
I = Pendulum inertia
g = gravity
u = Applied force
x = position of the car
φ = Angle of the pendulum with respect to the car
The transfer function is deployed next:

()

()
q

bmgls
q

mglmMs
q

mIIb
s

s
q

ml

)s(u
s

2

2

3
−+−

 +

+

=φ

This system is integrated with 9 components. There
is a basic constraint which is the basic
communication system (sensing, controller,
actuator) Fig. 4.2. The system is implemented in 2.4
GHz PCs using Linux Mandrake 9.1 and TAO 1.4.2
in a 100 Mbps Ethernet local network.

Fig. 4.2. Class Diagram of Case Study

Where classical control strategy like pole placement
is pursued.

5. Results

From this implementation two main characteristics
need to be mentioned in order to be optimized
through GA’s. The schedulability of certain group
of tasks and the error response from case study.
Second characteristic optimize error in steady state
conditions where error less than 1% is highly
valued. Fig. 5.1 shows this proposed response.

Fig. 5.1. Error Performance

First characteristic tend to optimize wasted time
where plans with 80% of databus traffic and high
computer power are highly valued with respect to
plans with less than 60% from databus traffic.
Execution task without reconfiguration using the
distributed system is shown in Fig 5.2

Fig. 5.2. Classical Execution During Non-

Reconfiugrable Tasks Perfomance
Based on the optimization procedure shown in
section 3 over computer performance and stability
tasks reconfiguration is performed over specific
time windows as shown in Fig 5.3.

Fig. 5.3. Online Reconfiguration Performance

From the evaluation of reconfiguration, 99.9%
percent of selected plans are valid, where 99.8% of
these plans are distributed on time.
The measures show that the system is stable even
when the reconfiguration takes place. The time
needed to reconfigure the system is about 4 ms with
tasks around 10 and 20 ms being interrupted. The

system starts the reconfiguration process every 2
seconds but the reconfiguration only takes place if a
better solution is found. For a total of 100
experiments of reconfiguration the next results are
shown in Fig. 5.4.

Successful
Reconfigurati
on 99%
Errors 1%

Fig. 5.4 Percentage of success in reconfiguration

6. Conclusions
 Present work has shown an approach to implement
online reconfiguration as an optimization problem
from the use of genetic algorithms. This novel
approximation allows periodic reconfiguration with
the basic advantage of predictive results over
consecutive time window where reconfiguration
will take place. Moreover, structural and dynamic
modifications can take place over safety basis of
pervious known performance. The use of
middleware allows a feasible implementation using
online reconfiguration due to communication
facilities and scheduling integration. Although,
system dynamics can be very fast (around 1ms in
sampling period) where the system response is
around 20ms due to inherent Ethernet response
which is the main disadvantage over the
implementation. One drawback of this system is
when reconfiguration take place which is a periodic
task. This can be overcome from GA’s
implementation and safety requirement measures.
Further work is pursued over system mobility when
hazard situation occurs considering different
measures.

Acknowledgments
The authors would like to thank PAPIIT-UNAM (Num.
106100 and 105303) Mexico.

References
[1] Thompson, H., Chipperfield, A., Fleming P., and

Legge, C.; “Distributed aero-engine
Control Systems Architecture Selection
using multi-objective Optimisation”;
Control Engineering Practice, Vol. 7,
1999, pp. 655-664.

[2] Cheng, A.; “Real-Time Systems: Scheduling,
Analysis and Verification”; Wiley-
Interscience, 2002.

[3] Nilsson, J.; “Real-Time Control Systems with
Delays”; PhD. Thesise, Department of
Automatic Control, Lund Institute of
Technology, Sweden, 1998.

[4] Wu N.; “Reliability of Reconfigurable Control
Systems: A Fuzzy Set Theoretic
Perspective”; Proceedings of the 36th
Conference on Decision & Control,
IEEE, TP15 5:10, 1997, pp. 3352-3356,
San-Diego, USA.

[5] Jiang J., and Zhao Q.; “Reconfigurable Control
Based on Imprecise Fault Identification”;
Proocedings of the American Control
Conference, IEEE, 1999, pp. 114-118,
San Diego, June.

[6] Izadi-Zamanabadi R. and Blanke M.; “A Ship
Propulsion System as a Benchmark for
Fault-Tolerant Control”; Control
Engineering Practice, Vol. 7, 1999, pp.
227-239.

[7] Blanke, M., Kinnaert, M., Lunze, J., and
Staroswiecki, M.; “Diagnosis and Fault
Tolerant Control”; Springer, 2003.

[8] Benítez-Pérez, H., and García-Nocetti, F.;
“Reconfigurable Distributed Control”;
Springer-Verlag, 2005.

[9] Thompson, H.;“Wireless and Internet
Communications Technologies for
monitoring and Control”; Control
Engineering Practice, vol. 12, 2004, pp.
781-791.

[10] Schmidt, D. C., D. L. Levine and S. Mungee;
“The Design of the TAO Real-Time
Object Request Broker”; Computer
communications, Elsevier Science, Vol.
21, No. 4, 1998.

[11] Kuri, M., and Galaviz-Casas J.; “Algoritmos
Genéticos”; Instituto Politécnico
Nacional, Universidad Nacional
Autónoma de México, Fondo de Cultura
Económica, México 2002.

[12] Almeida L., Pedreiras P., and Fonseca J. A.;
“The FTT-CAN Protocol: Why and How”;
IEEE Transactions on Industrial
Electronics, Vol. 49, No. 6, 2002, pp.
1189-1201.

[13] Almeida, L., Pasadas, R., and Fonseca, J.A.;
“Using a Planning Scheduler to Improve
the Flexibility of Real-Time Fieldbus
Networks”; Control Engineering Practice,
Vol. 7, 1999, pp. 101-108.

