
Applying Architectural Patterns for

Parallel Programming

An Hypercube Sorting

Jorge L. Ortega-Arjona

Departamento de Matemáticas

Facultad de Ciencias, UNAM

jloa@ciencias.unam.mx

Héctor Beńıtez-Pérez

DISCA, IIMAS, UNAM

hector@uxdea4.iimas.unam.mx

Abstract

The architectural patterns for parallel programming is a collection of

patterns related with a method for developing the coordination of parallel

software systems. These architectural patterns take as input information

(a) the available parallel hardware platform, (b) the parallel programming

language of this platform, and (c) the analysis of the problem to solve, in

terms of an algorithm and data.

In this paper, it is presented the application of the architectural pat-

terns along with the method for developing a coordination for solving an

hypercube sorting. The method used here takes the information from the

problem analysis, proposes an architectural pattern for the coordination,

and provides some elements about its implementation.

1 Introduction

A parallel program is the specification of a set of processes executing simulta-
neously, and communicating among themselves in order to achieve a common
objective [19]. This definition is obtained from the original research work in par-
allel programming provided by E.W. Dijkstra [5], C.A.R. Hoare [9], P. Brinch-
Hansen [2], and many others, who have established the main basis for parallel
programming today. Practitioners in the area of parallel programming recognize
that the success of a parallel program is able to achieve –commonly, in terms of
performance– is affected by three main factors: (a) the hardware platform, (b)
the programming language, and (c) the problem to solve.

Nevertheless, parallel programming still represents a hard problem to the
software designer and programmer: we do not yet know how to solve an arbi-
trary problem efficiently on a parallel system of arbitrary size. Hence, parallel
programming, at its actual stage of development, does not (cannot) offer univer-
sal solutions, but tries to provide some simple ways to get started. By sticking

A3 - 1



with some common parallel coordinations, it is possible to avoid a lot of errors
and aggravation. Many approaches have been presented up to date, proposing
descriptions of top-level coordinations observed in parallel programs. Some of
these descriptions are: Outlines of the Program [4], Programming Paradigms
[10], Parallel Algorithms [6], High-level Design Strategies [11], and Paradigms
for Process Interaction [1]. These descriptions provide common overall coordi-
nations such as, for example,“master-slave”, “pipeline”, “work-pile”, and others.
They represent assemblies of parallel software components which are allowed to
simultaneously execute and communicate. Furthermore, these descriptions are
expected to support the design of parallel programs, since all of them introduce
common forms that such assemblies exhibit.

The architectural patterns for parallel programming [13, 14, 15, 16, 17, 18,
19, 20] represent a software patterns approach for designing the coordination of
parallel programs. These architectural patterns attempt to save the transforma-
tion “jump” between algorithm and program. They are defined as fundamental
organizational descriptions of common top-level structures observed in parallel
software systems [13, 20], specifying properties and responsibilities of their sub-
systems, and the particular form in which they are assembled together into a
coordination.

Architectural patterns allow software designers and developers to understand
complex software systems in larger conceptual blocks and their relations, thus
reducing the cognitive burden. Furthermore, architectural patterns provide sev-
eral “forms” in which software components of a parallel software system can be
structured or arranged, so the overall structure of such a software system arises.
Architectural patterns also provide a vocabulary that may be used when de-
signing the overall structure of a parallel software system, to talk about such
a structure, and feasible implementation techniques. As such, the architectural
patterns for parallel programming refer to concepts that have formed the basis
of previous successful parallel software systems.

The most important step in designing a parallel program is to think carefully
about its overall coordination. The architectural patterns for parallel program-
ming provide descriptions about how to coordinate a parallel program, having
the following advantages [13, 14, 15, 16, 17, 18, 20]:

• The architectural patterns for parallel programming provide a description
that links a problem statement (in terms of an algorithm and the data to
be operated on) with a solution statement (in terms of an organization or
coordination of communicating software components).

• The partition of the problem is a key for the success or failure of a parallel
program. Hence, the architectural patterns for parallel programming have
been developed and classified based on the kind of partition applied to the
algorithm and/or the data present in the problem statement.

• As a consequence of the previous two points, the architectural patterns for
parallel programming can be proposed depending on characteristics found
in the algorithm and/or data, which drive the selection of a potential
parallel coordination by observing and studying the characteristics of order
and dependence among instructions and/or datum.

A3 - 2



• The architectural patterns for parallel programming introduce coordina-
tions as forms in which software components can be assembled or ar-
ranged together, considering the different partitioning ways of the algo-
rithm and/or data.

Nevertheless, even though the architectural patterns for parallel program-
ming have these advantages, they also present the disadvantage of not describ-
ing, representing, or producing a complete parallel program in detail. Other
software patterns are still needed for achieving this. Anyway, the architectural
patterns for parallel programming are proposed as a way of helping a software
designer to select a parallel coordination as a starting point when designing a
parallel program. For a complete exposition of the architectural patterns for
parallel programming, refer to [13, 20], and further work on each particular
architectural pattern in [14, 15, 16, 17, 18].

2 Problem Analysis – Quicksort and Hypercube

Sorting

The present paper attempts to demonstrate the use of the architectural patterns
for parallel programming for designing a coordination that solves an hypercube
sorting, based on the Quicksort algorithm [8]. The objective is to show how an
architectural pattern can be chosen and used so it deals with the functionality
and requirements present in this problem.

2.1 Problem Statement

2.1.1 Quicksort

Quicksort is perhaps the best well known sequential algorithm for array sorting
[8]. As it is defined, Quicksort is able to sort an array of n items in an O(n log n)
time. Nevertheless, in the worst case, it presents a sorting time of O(n2). This
feature of Quicksort makes difficult to design and implement its parallel version,
so it efficiently works on a multiprocessor computer.

The basic Quicksort algorithm relays on a partitioning to divide the sorting
array of n items into two sorting arrays of n/2 items. This division is repeated
recursively (obtaining sorting arrays of n/4, n/8, and so on) until the sorting
array is composed of a single item, or an empty operation [8].

The partitioning is based on an algorithm which initially selects an arbitrary
key from an slice of the array and splits this slice into two parts, keeping that
no item in a “left” part is larger than the key, and no item in a “right” part
is smaller than the key. The following algorithm, for example, uses the middle
item as key for an array a of int:

class Quicksort{

private int [] a = null;

private int first = -1;

private int last = -1;

public Quicksort(int n){

A3 - 3



...

first = a[0];

last = a[n];

}

public void partition(int first, int last){

int i = first;

int j = last;

int temp, key;

key = a[(i+j)/2];

while(i <= j){

while(a[i] < key) i = i + 1;

while(key < a[j]) j = j - 1;

if(i <= j){

temp = a[i];

a[i] = a[j];

a[j] = temp;

i++;

j--;

}

}

}

public void Quicksort(int first, int last){

int i, j;

...

if(first < last){

partition(first,last);

Quicksort(first,j);

Quicksort(i,last);

}

}

}

The run-time of this partitioning is O(n), yielding an O(n log n) average run-
time and an O(n2) run-time for the worst case. Nevertheless, the partitioning
generates slices of unknown sizes. In the best case, slices have the same size, but
in the worst case, a slice of a single item may result. This feature of Quicksort
makes it difficult to produce a parallel version that distributes a similar amount
of work among nodes of a parallel computer.

2.1.2 Hypercube Sorting

A parallel sorting based on Quicksort can be carried out by using an hypercube
approach. By now, this parallel sorting is explained in terms of an hypercube
structure with eight nodes (Figure 1). Even though the partitioning of the array
into slices produces sub-arrays of unknown lengths (which cause unbalance prob-
lems for the parallel computer), let us assume that, somehow, the partitioning
provides sub-arrays of equal, or nearly equal, size.

An eight-node cube sorts n int numbers in three main steps:

A3 - 4



1. Partitioning: In a first step, node 0 receives the n int numbers, and divides
them into two halves. One half is sent to node 1, whereas the other half
is kept in node 0. A second step now divides each half within node 0 and
node 1 into fourths. Node 0 and node 1 keep one fourth, sending the other
fourths to node 2 and node 3, respectively. In a third and final partition
step, nodes 0, 1, 2, and 3 divide their respective fourths into eighths, again
keeping one eighth and respectively sending the other eighth to nodes 4,
5, 6, and 7. This partition procedure ends having an eighth of the number
set assigned to each node.

2. Sorting: Simultaneously, each node sorts its assigned eighth of the prob-
lem.

3. Combining: Simultaneously, nodes 0, 1, 2, and 3 receive the sorted eighth
from nodes 4, 5, 6, and 7, and combine them with their own eighth into
a sorted forth sequence. Just after this, nodes 0 and 1 receive one fourth
from nodes 2 and 3, respectively. Again these fourths are combined into
a sorted half sequence on each node 0 and 1. Finally, node 0 receives
the sorted half from node 1, combining it with its own half sequence, and
outputting a complete sorted sequence of size n.

It is noticeable that larger hypercubes can be used, following a similar dis-
tribution of data, and dividing the problem each time into smaller problems
which can be solved in parallel. In general, a hypercube has p nodes, where p is
a power of 2. So considering d as the dimension of the hypercube, the relations
between number of nodes and dimension are:

p = 2d d = log p

As described previously, the hypercube solution is a hierarchical organiza-
tion, in which each level can be seen as composed by a number of nodes. Hence,
the sorting problem is distributed through the hypercube, one level (or dimen-
sion) at a time. In general, an hypercube with dimension d has d + 1 levels.

2.2 Specification of the Problem

From the previous section, considering an array of n int numbers, it is possible to
analyze T1 as the average sequential runtime required to solve the problem into

0

4

1

2 3

5

6 7

n

n/8

n/8n/8

n/8
n/4

n/4
n/2

Figure 1: Distribution of data to be sorted into an 8 node cube.

A3 - 5



a single node. Input and output of the array of n int numbers is performed in
O(n) time. The processing between input and output is carried out in O(n log n)
time. Thus:

T1 = n(a log n + b)

where a and b are constants depending on communication and processing.

Taking into consideration this time analysis, it can be observed that solving
the sorting problem on a sequential computer, requires something like T1 units
of time. Let us suppose a numerical example: for an array with, for example,
n = 65, 536, it is required to solve about 1, 048, 576 operations. Furthermore,
notice that naive changes to the requirements (which are normally requested
when performing this kind of computations) produce drastic increments of the
number of operations required, which at the same time affects the time required
to calculate this numerical solution.

• Problem Statement. Quicksort, for a relatively large number of array ele-
ments, can be computed in a more efficient way by:

1. using a group of software components that exploit the hierarchical
logical structure of the algorithm, and

2. allowing each software component to simultaneously sort its local
array.

The objective is to obtain a result in the best possible time-efficient way.

• Descriptions of the data and the algorithm. The whole parallel program
that sorts an array takes as its input the very array and its bounds, which
can be received through a communication call.

class Node implements Runnable{

...

private int first = -1;

private int last = -1;

private channel c = null;

private int [] a = null;

...

public void run(){

...

receive(c,first,last);

for(int k = first; k < last; k++){

receive(c, a[k]);

}

...

Quicksort(first,last);

...

for(int k = first; k < last; k++){

send(c, a[k]);

}

A3 - 6



...

}

}

Once it has received its part of the array from channel c, each Node
object is able to compute a local Quicksort as a single thread. When the
local result is obtained, it sends the result to the neighboring nodes again
through channel c.

• Information about parallel platform and programming language. The par-
allel platform available for this parallel program is a cluster of computers,
specifically, a dual-core server (Intel dual Xeon processors, 1 Gigabyte
RAM, 80 Gigabytes HDD) 16 nodes (each with Intel Pentium IV pro-
cessors, 512 Megabytes RAM, 40 Gigabytes HDD), which communicate
through an Ethernet network. The parallel application for this platform
is programmed using the Java programming language [6, 7].

• Quantified requirements about performance and cost. This application ex-
ample has been developed as a course exercise and for experimenting with
the platform, testing its functionality in time, and how it maps with a
parallel application. So, the main objective is simply to characterize
performance (in terms of execution time) regarding the number of pro-
cesses/processors involved in solving a fixed size problem. Thus, it is
important to retrieve information about the execution time considering
several configurations, changing the number of processes on this parallel
platform for further later studies.

3 Coordination Design

In this section, the architectural patterns for parallel programming [13, 19, 20]
are used along with the the information from the problem analysis, in order to
propose an architectural pattern for developing a coordination structure that
performs a parallel hypercube sorting, based on Quicksort.

3.1 Specification of the System

This section describes the basic operation of the parallel software system, consid-
ering the information presented in the problem analysis step about the parallel
system and its programming environment. Based on the problem description
and algorithmic solution presented in the previous section, the procedure for
proposing an architectural pattern for a parallel solution to the hypercube sort-
ing problem is presented as follows [20]:

1. Analyze the design problem and obtain its specification. Analyzing the
problem description and the algorithmic solution provided, it is noticeable
that hypercube sorting yields a hierarchical structure of operations. Such
an structure is based on dividing the data of the original array into two
sub-arrays. This division is carried out over and over, until sorting an array
of a single element becomes a trivial operation. Only then, the algorithm
continues retrieving the sorted data, now going back in the hierarchical
structure.

A3 - 7



2. Select the category of parallelism. Observing the form in which the algo-
rithmic solution partitions the problem, it is clear that the algorithm parti-
tions the sorting operation into sub-sorting operations, so these should be
executed simultaneously on different array elements. Hence, the algorith-
mic solution description implies the category of Functional Parallelism.

3. Select the category of the nature of the processing components. Also, from
the algorithmic description of the solution, it is clear that each sorting
operation is obtained using exactly the same algorithm, this is, Quicksort.
Thus, the nature of the processing components of a probable solution
for the hypercube sorting, using the algorithm proposed, is certainly a
Homogeneous one.

4. Compare the problem specification with the architectural pattern’s Problem
section. An Architectural Pattern that directly copes with the categories
of functional parallelism and the homogeneous nature of processing com-
ponents is the Parallel Layers (PL) pattern [18, 19, 20]. In order to
verify that this architectural pattern actually copes with the hypercube
sorting problem, let us compare the problem description with the Problem
section of the PL pattern. From the PL pattern description, the problem
is defined as [18, 19, 20]:

‘An algorithm is composed of two or more simpler sub-algorithms,
which can be divided into further sub-algorithms, and so on, re-
cursively growing as an ordered tree-like structure until a level
in which the sub-parts of the algorithm are the simplest possi-
ble. The order of the tree structure (algorithm, sub-algorithms,
sub-sub-algorithms, etc.) is a strict one. Nevertheless, data can
be divided into data pieces which are not strictly dependent,
and thus, can be operated on the same level in a more relaxed
order. If the whole algorithm is performed serially, it could be
viewed as a chain of calls to the sub-algorithms, evaluated one
level after another. Generally, performance as execution time is
the feature of interest. Thus, how do we solve the problem (ex-
pressed as algorithm and data) in a cost-effective and realistic
manner?’.

Observing the algorithmic solution for the hypercube sorting, it can be
defined in terms of a sorting algorithm composed of two sub-algorithms,
which is divided over and over, recursively growing as a tree-like structure.
Each sorting sub-algorithm performs completely autonomously. The ex-
change of data or communication should be between a root component and
two children components, dividing the array into two sub-arrays. So, the
PL is chosen as an adequate solution for the hypercube sorting problem,
and the architectural pattern selection is completed. The design of the
parallel software system should continue, based on the Solution section of
the PL pattern.

3.2 Structure and dynamics

The information of the Parallel Layers architectural pattern is used here to
describe the solution to the hypercube sorting in terms of this architectural

A3 - 8



P0:Layer P4:Layer P2:Layer P6:Layer P1:Layer P5:Layer P3:Layer P7:Layer

P0:Layer

P0:Layer P1:Layer

P0:Layer P2:Layer P1:Layer P3:Layer

Figure 2: Object diagram of the Parallel Layers pattern applied for solving the
hypercube sorting.

pattern’s structure and behavior [18, 19, 20].

1. Structure. Using the Parallel Layers architectural pattern for hypercube
sorting, different data is sorted by conceptually-independent components,
ordered in the shape of layers. Each layer, as an implicit different level
of abstraction, is composed of several components that perform the same
Quicksort operation. To communicate, layers use calls, referring to each
other. Quicksort is performed by different groups of functionally related
layer components. These components simultaneously exist and process.

An object diagram, representing the tree of layer components on which
the hypercube shape is mapped for dividing the Quicksort operations is
shown in Figure 2.

Notice that this organization effectively allow to distribute data among
layer components as described by the hypercube sorting, as previously
described in the problem analysis.

2. Dynamics. A typical scenario of three levels is used to describe the basic
run-time behavior of this pattern when applied to the hypercube sorting
of n int numbers. All layer components are active at the same time,
accepting a function call with its assigned int numbers, distributing them
through two function calls to its child components in lower level layers,
and once all int numbers are completely distributed, applying a Quicksort
operation to the returned results from the child components. This pattern
is used here to repeatedly perform a parallel hypercube sorting, as series of
tree ordered Quicksort operations, as described in Figure 2. The parallel
execution follows the description of the hypercube sorting (Figure 3):

3.3 Functional description of components

This section describes each processing and communicating software com-
ponents as participants of the Parallel Layers architectural pattern, es-

A3 - 9



P0:Layer P1:Layer P2:Layer P3:Layer P4:Layer P5:Layer P6:Layer P7:Layer

n
n/2

n/2

n/4 n/4

n/4 n/4

n/8 n/8 n/8 n/8
n/8 n/8 n/8 n/8

Sort(n/8)Sort(n/8)Sort(n/8) Sort(n/8) Sort(n/8)

n/8n/8n/8n/8

Sort(n/4) Sort(n/4)Sort(n/4)

n/4n/4

Sort(n/2) Sort(n/2)

n/2

Sort(n)

n

Sort(n/8)

Sort(n/4)

Sort(n/8) Sort(n/8)

Figure 3: Sequence diagram of the Parallel Layers pattern for solving the hy-
percube sorting.

10



tablishing its responsibilities, input and output for solving the hypercube
sorting.

• Layer component. The responsibilities of a layer component here are
to allow the creation of the tree structure for solving the hypercube
sorting. Hence, it provides a service to the layer component above,
receiving a function call when distributing data, while delegating
further distribution to the two or more layer components below. This
allows the top-down flow of data, by receiving data from the layer
component above, distributing it to the layers components below.
Also, the layer component allows the bottom-up flow of results, by
receiving partial results from the components below, and making its
result available to the layer component above. Moreover, each layer
component is able to independently perform a Quicksort operation
over the results received from the components below it, making it
easy to execute in parallel layer components belonging to the same
layer [18, 19, 20].

3.4 Description of the coordination

The Parallel Layers architectural pattern uses functional parallelism to
execute the Quicksort, allowing the simultaneous existence and execution
of more than one instance of a layer component through time. Each one
of these instances at the same time divides the data for further applying
Quicksort. In a layered system like this, hypercube sorting involves the
execution of Quicksort in several layers. These Quicksort operations are
usually triggered by a call, and data is vertically shared among layers in
the form of arguments for these function calls. During the execution of
Quicksort operations in each layer, usually the higher layers have to wait
for the results from lower layers. However, if each layer is represented by
more than one component, they can be executed in parallel. Therefore, at
the same time, several ordered sets of Quicksort operations can be carried
out by the same system, by allowing several Quicksorts overlapped in time.

3.5 Coordination analysis

The use of the Parallel Layers pattern as a base for organizing the coordi-
nation of a parallel software system for solving the hypercube sorting has
the following advantages and disadvantages:

• Advantages

(a) The Parallel Layers pattern, as the original Layers pattern, is
based on increasing levels of complexity. This allows the parti-
tioning of the computation of a complex problem into a sequence
of incremental, simple operations [24]. Allowing each layer to be
presented as multiple components executing in parallel allows to
perform the computation several times, enhancing performance.

A3 - 11



(b) Changes in one layer do not propagate across the whole sys-
tem, as each layer interacts at most with only the layers above
and below, that can be affected. Furthermore, standardizing the
interfaces between layers usually confines the effect of changes
exclusively to the layer that is changed. [22, 24].

(c) Layers support reuse. If a layer represents a well-defined op-
eration, and communicates via a standardized interface, it can
be used interchangeably in multiple contexts. A layer can be
replaced by a semantically equivalent layer without great pro-
gramming effort [22, 24].

(d) Granularity depends on the level of complexity of the operation
that the layer performs. As the level of complexity decreases,
the size of the components diminishes as well.

(e) Due to several instances of the same computation are executed
independently on different data, synchronization issues are re-
stricted to the communications within just one computation.
Relative performance depends only on the level of complexity
of the operations to be computed, since all components are ac-
tive [21].

• Liabilities

(a) Not every system computation can be efficiently structured as
layers. Considerations of performance may require a strong cou-
pling between high-level functions and their lower level imple-
mentations. Load balance among layers is also a difficult issue
for performance [24, 21].

(b) Many times, a layered system is not as efficient as a structure
of communicating components. If services in upper layers rely
heavily on the lowest layers, all data must be transferred through
the system. Also, if lower layers perform excessive or duplicate
work, there is a negative influence on the performance. In certain
cases, it is possible to consider a Pipe and Filter architecture
instead [22].

(c) If an application is developed as layers, a lot of effort must be
expended in trying to establish the right levels of complexity, and
thus, the correct granularity of different layers. Too few layers
do not exploit the potential parallelism, but too many introduce
unnecessary communications. The granularity and operation of
layers is difficult, but related with the performance quality of the
system [22, 24, 12].

(d) If the level of complexity of the layers is not correct, problems
can arise when the behavior of a layer is modified. If substantial
work is required on many layers to incorporate an apparently
local modification, the use of Layers can be a disadvantage [22].

4 Implementation

In this section, all the software components described in the coordination design
section are considered for their implementation using the Java programming

A3 - 12



language. Once programmed, the whole system is evaluated by executing it on
the available hardware platform, for the purposes of measuring and observing
its execution through time.

Nevertheless, here it is only presented the implementation of the coordi-
nation, in which the processing components are introduced, implementing the
actual computation that is to be executed in parallel. Further design work is
required for developing the communication and synchronization components.
Nevertheless, this design and implementation goes beyond the actual purposes
of the present paper.

The distinction between coordination and processing components is impor-
tant, since it means that, with not a great effort, the coordination structure may
be modified to deal with other problems whose algorithmic and data descrip-
tions are similar to the hypercube sorting, such as the Fast Fourier Transform
[3].

4.1 Coordination

The Parallel Layers architectural pattern is used here to implement the main
Java class of the parallel software system that solves the hypercube sorting
problem. The class ParallelQS is presented as follows. This class represents
the Parallel Layers coordination for the hypercube sorting problem.

class ParallelQS{

...

private static BinaryTree<ArrayList<Int>> tree;

private Node<ArrayList<Int>> rootNode;

private ArrayList<Int> merge;

...

public ParallelQS(Node <ArrayList<Int>> rootNode){

this(rootNode,new Vector(), new Vector());

}

public Node<ArrayList<Int>> getOrdered(){

return rootNode;

}

...

private ArrayList<Int> divide(ArrayList<Int> cont, boolean half1){

ArrayList<Int> part = new ArrayList<Int>();

if(half1){

for(int x = 0; x < cont.size()/2.0; x++){

part.add(cont.get(x));

}

}

else{

for(int x = cont.size()-1; x >= cont.size()/2.0; x--){

part.add(0, cont.get(x));

}

}

return part;

}

private ArrayList<Int> merge(ArrayList<Int> left,

ArrayList<Int> right){

A3 - 13



ArrayList<Int> merge = new ArrayList<Int>();

while(left.size() > 0 && right.size() > 0){

if(left.get(0) < right.get(0)){

merge.add(left.remove(0));

}

else{

merge.add(right.remove(0));

}

}

if(left.size() > 0 && right.size() == 0){

merge.addAll(left);

}

else{

merge.addAll(right);

}

return merge;

}

public static void main(String[] args){

...

/*

A tree is used as the data structure that composes the layers.

* The depth of the tree is provided by the user.

* The data structure is a binary tree with numNods = (2^deep)-1 nodes.

* The number of leaves is numLeaves = 2^(deep-1).

*/

int N; // Number of int numbers to order

int deep; // Dept of the tree

...

// dependent variables

int numLeaves; // Number of leaves of the tree

int numNods; // Number of nodes of the tree

numLeaves = (int)(Math.pow(2, deep-1));

numNods = (int)(Math.pow(2, deep)-1);

...

if(deep < 2) deep = 2;

if(N < numLeaves) N = numLeaves + 50;

...

// A Vector of nodes is contained in the tree

Vector<Node<ArrayList<Int>>> nods =

new Vector<Node<ArrayList<Int>>>(numNods);

for(int x = 0; x < numNods; x++){

nods.add(new Node<ArrayList<Int>>(new ArrayList<Int>()));

}

tree=new BinaryTree(nods);

...

tree.getNode(0).setCont(nums);

tree.getNode(0).getCont());

new ParallelQS(tree.getNode(0),v,v2).getOrdered().getCont();

}

}

A3 - 14



This class makes use of a binary tree as the basic data structure that repre-
sents the hypercube sorting as a layered coordination. Thus, this class creates
a tree data structure of Node components, which represents the coordination
of the whole parallel software system, developed for executing on the available
parallel hardware platform. Each Node operates on ArrayLists in Java instead
of int arrays, to take advantage of the many possible operations that the Java
programming language has available for ArrayLists. So, the Quicksort algorithm
is applied to ArrayLists in Java, as it is shown as follows.

The utility of the coordination presented here goes beyond of a parallel
hypercube sorting application. By modifying the sequential processing section,
each layer component is capable of processing other tree-like problems, such as
the Fast Fourier Transform [3].

4.2 Processing components

At this point, all what properly could be considered “parallel design and imple-
mentation” has finished: data is initialized and distributed among a collection
of Node components. It is now the moment to insert the sequential processing
which corresponds to the Quicksort algorithm and data description found in
the problem analysis, This is done in the class Quicksort, which considers the
particular declarations for the Quicksort algorithm computation [23]:

public class Quicksort {

private static long comparisons = 0;

private static long exchanges = 0;

public static void Quicksort(ArrayList<Int> a){

Quicksort(a, 0, a.size() - 1);

}

private static void Quicksort(ArrayList<Int> a, int left, int right){

if (right <= left) return;

int i = partition(a, left, right);

Quicksort(a, left, i-1);

Quicksort(a, i+1, right);

}

private static int partition(ArrayList<Int> a, int left, int right){

int i = left - 1;

int j = right;

while (true) {

while(less(a.get(++i),a.get(right)));// find item on left to swap

while(less(a.get(right),a.get(--j))) // find item on right to swap

if (j == left) break; // do not go out-of-bounds

if (i >= j) break; // check if pointers cross

exch(a, i, j); // swap two elements into place

}

exch(a, i, right); // swap with partition element

return i;

}

private static boolean less(double x, double y) {

comparisons++;

return (x < y);

}

private static void exch(ArrayList<Int> a, int i, int j) {

A3 - 15



exchanges++;

double swap = a.get(i);

a.set(i, a.get(j));

a.set(j, swap);

}

private static void shuffle(ArrayList<Int> a) {

int N = a.size();

for (int i = 0; i < N; i++) {

int r = i + (int)(Math.random()*(N-i)); // between i and N-1

exch(a, i, r);

}

}

public static void main(String a[]){

ArrayList<Int> v=new ArrayList<Int>();

ArrayList<Int> v2=new ArrayList<Int>();

for(int x=0; x<1000; x++){

v.add(new Random().nextInt()*100);

}

...

Quicksort(v);

}

}

This simple, sequential Java code allows that each Node component obtains
a local Quicksort over its ArrayList provided. Modifying this code implies mod-
ifying the processing behavior of the whole parallel software system, so the class
ParallelQS can be modified and used for other parallel applications, as long
as they are tree-like computations and execute on a cluster or a distributed
memory parallel computer.

5 Summary

The architectural patterns for parallel programming are applied here along with
a method for selecting them, in order to show how to select an architectural pat-
tern that copes with the requirements of order of data and algorithm present in
the hypercube sorting problem. The main objective of this paper is to demon-
strate, with a particular example, the detailed design and implementation that
may be guided by a selected architectural pattern. Moreover, the application of
the architectural patterns for parallel programming and the method for selecting
them is proposed to be used during the coordination design and implementation
for other similar problems that involve the a tree-like algorithm, executing on a
distributed memory parallel platform.

6 Acknowledgements

The author wishes to thank Veli-Pekka Eloranta and Ville Reijonen, my shep-
herds for EuroPLoP 2010, for his encouraging comments about the present
paper. This work is part of an ongoing research, funded by project IN103310,
PAPIIT-DGAPA-UNAM, 2010.

A3 - 16



References

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Distributed Pro-
gramming., Addison-Wesley Longman, Inc., 2000.

[2] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-
cept., Communications of the ACM, Vol.21, No. 11, 1978.

[3] P. Brinch-Hansen Studies in Computational Science. Parallel Programming
Paradigms., Prentice-Hall, 1995.

[4] K.M. Chandy, and S. Taylor An Introduction to Parallel Programming.
Jones and Bartlett Publishers, Inc., Boston, 1992.

[5] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

[6] S. Hartley Concurrent Programming. The Java Programming Language.,
Oxford University Press Inc., 1998.

[7] Herlihy, M., and Shavit, N., The Art of Multiprocessor Programming. Mor-
gan Kaufmann Publishers. Elsevier, 2008.

[8] C.A.R. Hoare Algorithm 64: Quicksort. Communications of the ACM, No.
4, 1961.

[9] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[10] S. Kleiman, D. Shah, and B. Smaalders Programming with Threads, 3rd ed.
SunSoft Press, 1996.

[11] B. Lewis and D.J.. Berg Multithreaded Programming with Java Technology,
Sun Microsystems, Inc., 2000.

[12] Christopher H. Nevison, Daniel C. Hyde, G. Michael Schneider, Paul T. Ty-
mann. Laboratories for Parallel Computing. Jones and Bartlett Publishers,
1994.

[13] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel
Programming, Proceedings of the 3rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP98), Kloster Irsee,
Germany, 1998.

[14] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An
Architectural Pattern for Domain Parallelism, Proceedings of the 7th
Conference on Pattern Languages of Programming (PLoP2000), Allerton
Park, Illinois, USA, 2000.

[15] J.L. Ortega-Arjona The Shared Resource Pattern. An Activity Parallelism
Architectural Pattern for Parallel Programming, Proceedings of the 3rd Eu-
ropean Conference on Pattern Languages of Programming and Computing
(EuroPLoP98), Kloster Irsee, Germany, 1998.

A3 - 17



[16] J.L. Ortega-Arjona The Manager-Workers Pattern. An Activity Paral-
lelism Architectural Pattern for Parallel Programming, Proceedings of
the 9th European Conference on Pattern Languages of Programming and
Computing (EuroPLoP2004), Kloster Irsee, Germany, 2004.

[17] J.L. Ortega-Arjona The Parallel Pipes and Filters Pattern. A Functional
Parallelism Architectural Pattern for Parallel Programming, Proceedings
of the 10th European Conference on Pattern Languages of Programming
and Computing (EuroPLoP2005), Kloster Irsee, Germany, 2005.

[18] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional Parallelism
Architectural Pattern for Parallel Programming, Proceedings of the 6th
Latin American Conference on Pattern Languages of Programming and
Computing (SugarLoafPLoP2007), Porto de Galinhas, Pernambuco, Brasil,
2007.

[19] J.L. Ortega-Arjona Architectural Patterns for Parallel Programming: Mod-
els for Performance Evaluation, VDM Verlag, 2009.

[20] J.L. Ortega-Arjona Patterns for Parallel Software Design, John Wiley &
Sons, 2010.

[21] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Orig-
inally published in Computational Science and Engineering, Vol. 3, No. 2.
Summer, 1996.

[22] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland,
Michael Stal. Pattern-Oriented Software Architecture. John Wiley & Sons,
Ltd., 1996.

[23] Robert Sedgewick. Algorithms in Java. Addison-Wesley Professional, 3 edi-
tion, 2002.

[24] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall Publishing, 1996.

A3 - 18


