
Applying Architectural Patterns for

Parallel Programming

Solving the One-dimensional Heat Equation

Jorge L. Ortega Arjona∗

Departamento de Matemáticas

Facultad de Ciencias, UNAM.

jloa@ciencias.unam.mx

Abstract

The Architectural Patterns for Parallel Programming is a collection of

patterns related with a method for developing the coordination of parallel

software systems. These architectural patterns take as input information

(a) the available parallel hardware platform, (b) the parallel programming

language of this platform, and (c) the analysis of the problem to solve, in

terms of an algorithm and data.

In this paper, it is presented the application of the architectural pat-

terns along with the method for developing a coordination for solving the

One-dimensional Heat Equation. The method used here takes the infor-

mation from the Problem Analysis, proposes an architectural pattern for

the coordination, and provides elements about its implementation.

1 Introduction

A parallel program is the specification of a set of processes executing simulta-
neously, and communicating among themselves in order to achieve a common
objective [16]. This definition is obtained from the original research work in par-
allel programming provided by E.W. Dijkstra [4], C.A.R. Hoare [7], P. Brinch-
Hansen [2], and many others, who have established the main basis for parallel
programming today. Practitioners in the area of parallel programming recognize
that the success of a parallel program is able to achieve –commonly, in terms of
performance– is affected by three main factors: (a) the hardware platform, (b)
the programming language, and (c) the problem to solve.

Nevertheless, parallel programming still represents a hard problem to the
software designer and programmer: we do not yet know how to solve an arbi-

∗Copyright retain by author. Permission granted to Hillside Europe for inclusion in the

CEUR archive of conference proceedings and for Hillside Europe website.

B3 - 1



trary problem efficiently on a parallel system of arbitrary size. Hence, parallel
programming, at its actual stage of development, does not (cannot) offer univer-
sal solutions, but tries to provide some simple ways to get started. By sticking
with some common parallel coordinations, it is possible to avoid a lot of errors
and aggravation. Many approaches have been presented up to date, proposing
descriptions of top-level coordinations observed in parallel programs. Some of
these descriptions are: Outlines of the Program [3], Programming Paradigms
[8], Parallel Algorithms [5], High-level Design Strategies [9], and Paradigms for
Process Interaction [1]. These descriptions provide common overall coordina-
tions such as, for example,“master-slave”, “pipeline”, “work-pile”, and others.
They represent assemblies of parallel software components which are allowed to
simultaneously execute and communicate. Furthermore, these descriptions are
expected to support the design of parallel programs, since all of them introduce
common forms that such assemblies exhibit.

The Architectural Patterns for Parallel Programming [10, 11, 12, 13, 14, 15]
represent a Software Patterns approach for designing the coordination of par-
allel programs. These Architectural Patterns attempt to save the transforma-
tion “jump” between algorithm and program. They are defined as fundamental
organizational descriptions of common top-level structures observed in parallel
software systems [10], specifying properties and responsibilities of their sub-
systems, and the particular form in which they are assembled together into a
coordination.

Architectural patterns allow software designers and developers to understand
complex software systems in larger conceptual blocks and their relations, thus
reducing the cognitive burden. Furthermore, architectural patterns provide sev-
eral “forms” in which software components of a parallel software system can be
structured or arranged, so the overall coordination of such a software system
arises. Architectural patterns also provide a vocabulary that may be used when
designing the overall coordination of a parallel software system, to talk about
such a structure, and feasible implementation techniques. As such, the Archi-
tectural Patterns for Parallel Programming refer to concepts that have formed
the basis of previous successful parallel software systems.

The most important step in designing a parallel program is to think carefully
about its overall coordination. The Architectural Patterns for Parallel Program-
ming provide descriptions about how to organize a parallel program, having the
following advantages [10, 11, 12, 13, 14, 15]:

• The Architectural Patterns for Parallel Programming (as any Software
Pattern) provide a description that links a problem statement (in terms of
an algorithm and the data to be operated on) with a solution statement
(in terms of an organization or coordination of communicating software
components).

• The partition of the problem is a key for the success or failure of a parallel

B3 - 2



program. Hence, the Architectural Patterns for Parallel Programming
have been developed and classified based on the kind of partition applied
to the algorithm and/or the data present in the problem statement.

• As a consequence of the previous two points, the Architectural Patterns for
Parallel Programming can be selected depending on characteristics found
in the algorithm and/or data, which drive the selection of a potential
parallel structure by observing and studying the characteristics of order
and dependence among instructions and/or datum.

• The Architectural Patterns for Parallel Programming introduce parallel
structures or coordinations as forms in which software components can
be assembled or arranged together, considering the different partitioning
ways of the algorithm and/or data.

Nevertheless, even though the Architectural Patterns for Parallel Program-
ming have these advantages, they also present the disadvantage of not describ-
ing, representing, or producing a complete parallel program in detail. Other
Software Patterns are still needed for achieving this. Anyway, the Architectural
Patterns for Parallel Programming are proposed as a way of helping a software
designer to select a parallel structure as a starting point when designing a paral-
lel program. For a complete exposition of the Architectural Patterns for Parallel
Programming, refer to [10], and further work on each particular architectural
pattern in [11, 12, 13, 14, 15].

2 Problem Analysis – The One-dimensional Heat

Equation

The present paper attempts to demonstrate the use of the Architectural Pat-
terns for Parallel Programming for designing a coordination that solves the
One-dimensional Heat Equation. The objective is to show how an architec-
tural pattern can be selected and applied so it deals with the functionality and
requirements present in this problem.

2.1 Problem Statement

Partial differential equations are commonly used to describe physical phenomena
that continuously change in space and time. One of the most studied and well
known of such equations is the Heat Equation, which mathematically models
the steady-state heat flow in a region that exposes certain dimensionality, with
certain fixed temperatures on its boundaries. In the present example, the region
is represented by a one-dimensional entity, for example, a wire of homogeneous
material and uniform thickness. The surroundings of the wire are perfectly
insulated, and on the extremes, each point keeps a known, fixed temperature. As
heat flows through the wire, the temperature of each point eventually reaches a

B3 - 3



value or state in which such a point has a steady, time-independent temperature
maintained by the heat flow. Thus, the problem of solving the One-dimensional
Heat Equation is to define the equilibrium temperature u(x) for each point x

on the one-dimensional wire. Normally, the heat is studied as a flow through an
elementary piece of the wire, a finite element. This element is represented as a
small, one-dimensional segment of the wire, with a length of ∆x (Figure 1).

∆x

Figure 1: A small one-dimensional element.

Given the insulation surrounding the wire, there could only be a flow through
its only dimension. At every point x, the velocity of the heat flow is considered
to have a horizontal flow component, vx, which is represented in terms of its
temperature u(x) by the equation:

vx = −k
∂u

∂x

This equation means that heat flow is proportional to the temperature gra-
dient, towards decreasing temperatures. Moreover, in equilibrium, the element
holds a constant amount of heat, making its temperature u(x) a constant. Thus,
in the steady-state, this is expressed as:

∂vx

∂x
= 0

Combining this equation with the previous equation for the velocity of flow,
thus Laplace’s law for equilibrium temperatures arises:

∂2u

∂x2
= 0

Known as the one-dimensional heat equation or equilibrium equation, this
equation is abbreviated and expressed in general terms (and dimensions) as:

∇
2u = 0

A function u(x) that satisfies this equation is known as a “potential func-
tion”, and it is determined by boundary conditions. By now, for the actual
purposes, the One-dimensional Heat Equation allows to mathematically model

B3 - 4



u = 0 u = 100
u = ?

Figure 2: A wire with fixed temperatures at each extreme.

the heat flow through a wire. Nevertheless, in order to develop a program that
numerically solves this equation, it is still required to perform a series of further
considerations. Let us consider by now a thin wire, for which temperatures are
considered fixed at each extreme (Figure 2).

In order to develop a program that models the Heat Equation, first it is
necessary to obtain its discrete form. So, the wire in Figure 2 is divided into
segments, each segment with a size of h. This size is relatively very small
regarding the size of the whole wire, so the segment can be considered as a
single point within the wire. So, this results on a segmented wire, in which two
types of segments can be considered (Figure 3).

E I I I I I I I I I I I I EI

h

Figure 3: A segmented wire with two types of elements: interior (I) and extreme
(E).

1. Interior segments, which require computing their temperatures, each one
having to satisfy the heat equation.

2. Extreme segments, which have fixed and given temperatures.

The discrete solution of the Heat Equation is based on the idea that the heat
flow through interior elements is due to the temperature differences between an
elements and all its neighbors. Let us suppose the temperature of a single
interior element u(i), whose two adjacent neighboring elements are u(i− 1) and
u(i + 1) (Figure 4).

Notice that for the case, h should be small enough so each neighboring
element’s temperature can be approximated in terms of a Taylor expansion. So,
the discrete heat equation is reduced to a difference equation. Rearranging it, it
is noticeable that for thermal equilibrium, the temperature of a single element
u(i) in time, from one thermal state to another, is:

u(t + 1, i) ≈ u(t, i) +
1

h2
(u(t, i − 1) + u(t, i + 1) − 2u(t, i))

B3 - 5



This is the discrete equation to be used in order to obtain a parallel numerical
solution for the One-dimensional Heat Equation.

2.2 Specification of the Problem

From the previous section, it is noticeable that using a wire segmented into n

segments, the discrete form of the Heat Equation implies a computation for
each discrete segment of the wire. Moreover, taking into consideration the time
as another dimension so the evolution of temperatures through time can be ob-
served, and solving it using a direct method on a sequential computer, requires
something like O(n3) units of time. Suppose a numerical example: for a wire
with, for example, n = 65536, it is required to solve about the same number of
average operations, involving floating point coefficients. Using a sequential com-
puter with a clock frequency of about 1MHz, it would take about eight years
for the computation. Furthermore, notice that naive changes to the require-
ments (which are normally requested when performing this kind of simulations)
produce drastic (exponential) increments of the number of operations required,
which at the same time affects the time required to calculate this numerical
solution.

• Problem Statement. The One-dimensional Heat Equation, in its discrete
representation, and for a relatively large number of segments in which a
wire is divided, can be computed in a more efficient way by:

1. using a group of software components that exploit the one-dimensional
logical structure of the wire, and

2. allowing each software component to simultaneously calculate the
temperature value for all segments of the wire at a given time step.

The objective is to obtain a result in the best possible time-efficient way.

• Descriptions of the data and the algorithm. The relatively large number
of segments in which a wire is divided and the discrete representation of
the One-dimensional Heat Equation is described in terms of data and an
algorithm. The divided region is normally represented as a long wire in
terms of a (n+2) array of segments which represent every discrete element
of the wire, and encapsulate some floating point data which represents

u(i−1) u(i) u(i+1)

h

Figure 4: An element u(i) and its two neighboring elements.

B3 - 6



temperature, as shown as follows. Thus, a whole wire consists of n interior
segments and 2 extreme segments.

class Segment implements Runnable{

...

private int i = -1;

...

private Segment(int i){

this.i = i;

new Thread(this).start();

}

...

}

Each Segment object is able to compute a local discrete heat equation
as a single thread. Thus, it exchanges messages with its neighboring seg-
ments (whether interior or extreme) and computes its local temperature,
as follows:

class Segment implements Runnable{

...

private int i = -1;

...

public void run(){

double temperature, received, total;

for (int i = 0; i < iterations; i++) {

// Here the actual segment exchanges data with

// its neighboring elements

total = 0.0;

for (i = 0; i < 2; i++) {

// Receive from neighboring elements

// and put it in the variable ‘received’

total += received;

}

temperature += temperature + (1/h^2)*(total - 2*temperature);

}

}

...

}

Each time step, a new temperature for the local Segment object is ob-
tained from the previous temperature and the temperatures of the neigh-
boring segments (whether interior or extreme). Notice that the term “time
step” implies an iterative method in which the operation requires four co-
efficients. The algorithm described takes into consideration an iterative so-
lution of operations, known as relaxation. The simplest relaxation method
is the Jacobi relaxation, in which the temperature of each and every inte-
rior segment is simultaneously approximated using its local temperature

B3 - 7



and the temperatures of its neighbors (and it is the one presented here).
Other relaxation methods include the Gauss-Seidel relaxation and the suc-
cessive over-relaxation (SOR). Iterative methods tend to be more efficient
than direct methods.

• Information about parallel platform and programming language. The par-
allel system available for this example is a SUN SPARC Enterprise T5120
Server. This is a multi-core, shared memory parallel hardware platform,
with 1× 8-Core UltraSPARC T2, 1.2 GHz processors (capable of running
64 threads), 32 Gbytes RAM, and Solaris 10 as operating system [17].
Applications for this parallel platform can be programmed using the Java
programming language [5, 6].

• Quantified requirements about performance and cost. This application ex-
ample has been developed in order to test the parallel system described in
the previous point. The idea is to experiment with the platform, testing
its functionality in time, and how it maps with a domain parallel applica-
tion. So, the main objective is simply to test and characterize performance
(in terms of execution time) regarding the number of processes/processors
involved in solving a fixed size problem. Thus, it is important to retrieve
information about the execution time considering several configurations,
changing the number of processes on this parallel, shared memory plat-
form.

3 Coordination Design

In this section, the Architectural Patterns for Parallel Programming [10] are
used along with the the information from the Problem Analysis, in order to
select an architectural pattern for developing a coordination that solves the
One-dimensional Heat Equation.

3.1 Specification of the System

• The scope. This section aims to describe the basic operation of the paral-
lel software system, considering the information presented in the Problem
Analysis step about the parallel system and its programming environment.
Based on the problem description and algorithmic solution presented in
the previous section, the procedure for selecting an architectural pattern
for a parallel solution to the One-dimensional Heat Equation problem is
presented as follows [10]:

1. Analyze the design problem and obtain its specification. Analyzing
the problem description and the algorithmic solution provided, it is
noticeable that the calculation of the One-dimensional Heat Equa-
tion is a step-by-step, iterative process. Such a process is based on
calculating the next temperature of each segment of the wire through

B3 - 8



each time step. The calculation uses as input the previous tempera-
ture, and the temperatures of the two neighbor segments of the wire,
and provides the temperature at the next time step.

2. Select the category of parallelism. Observing the form in which the
algorithmic solution partitions the problem, it is clear that the wire
is divided into segments, and computations should be executed si-
multaneously on different segments. Hence, the algorithmic solution
description implies the category of Domain Parallelism.

3. Select the category of the nature of the processing components. Also,
from the algorithmic description of the solution, it is clear that the
temperature of each segment of the wire is obtained using exactly the
same calculations. Thus, the nature of the processing components of
a probable solution for the One-dimensional Heat Equation, using
the algorithm proposed, is certainly a Homogeneous one.

4. Compare the problem specification with the architectural pattern’s
Problem section. An Architectural Pattern that directly copes with
the categories of domain parallelism and the homogeneous nature
[10] of processing components is the Communicating Sequential
Elements (CSE) pattern [11]. In order to verify that this architec-
tural pattern actually copes with the One-dimensional Heat Equation
problem, let us compare the problem description with the Problem
section of the CSE pattern. From the CSE pattern description, the
problem is defined as [11]:

“A parallel computation is required that can be performed as
a set of operations on regular data. Results cannot be con-
strained to a one-way flow among processing stages, but each
component executes its operations influenced by data values
from its neighboring components. Because of this, compo-
nents are expected to intermittently exchange data. Com-
munications between components follow fixed and predictable
paths”.

Observing the algorithmic solution for the One-dimensional Heat
Equation, it can be defined in terms of calculating the next tem-
perature of the wire segments as ordered data. Each segment is
operated almost autonomously. The exchange of data or communi-
cation should be between neighboring segments of the wire. So, the
CSE is chosen as an adequate solution for the One-dimensional Heat
Equation, and the architectural pattern selection is completed. The
design of the parallel software system should continue, based on the
Solution section of the CSE pattern.

• Structure and dynamics. Based on the information of the Communi-
cating Sequential Elements architectural pattern, it is used here to describe
the solution to the Heat Equation in terms of this architectural pattern’s
structure and behavior.

B3 - 9



1. Structure. Using the Communicating Sequential Elements architec-
tural pattern for the One-dimensional Heat Equation, the same oper-
ation is applied simultaneously to obtain the next temperature values
of each segment. However, this operation depends on the partial re-
sults in its neighboring segments. Hence, the structure of the actual
solution involves a regular, one-dimensional, logical structure, con-
ceived from the wire of the original problem. Therefore, the solution
is presented as a one-dimensional network of segments that follows
the shape of the wire. Identical components simultaneously exist and
process during the execution time. An Object Diagram, representing
the network of segments that follows the one-dimensional shape of
the wire and its division into segments, is shown in Figure 5.

:Channel :Segment :Channel :Segment :Channel

Figure 5: Object Diagram of Communicating Sequential Elements for the solu-
tion to the One-dimensional Heat Equation.

2. Dynamics. A scenario to describe the basic run-time behavior of the
Communicating Sequential Elements pattern for solving the One-
dimensional Heat Equation is shown as follows. Notice that all the
segments, as basic processing software components, are active at the
same time. Every segment performs the same temperature operation,
as a piece of a processing network. However, for the one-dimensional
case here, each segment object communicates with its previous and
next neighbors as shown in Figure 6.

The processing and communicating scenario is as follows:

– Initially, consider only a single Segment object, segment(i).
At first, it exchanges its local temperature value with its neigh-
bors segment(i-1) and segment(i+1) though the adequate
communication Channel components. After this, segment(i)
counts with the different temperatures from its neighbors.

– The temperature operation is simultaneously started by the seg-
ment(i) component and all the other components of the wire.

– In order to continue, all components iterate as many times as
required, exchanging their partial temperature values through
the available communication channels.

– The process repeats until each component has finished iterating,
and thus, finishing the whole One-dimensional Heat Equation
computation.

3. Functional description of components. This section describes each
processing and communicating software components as participants

B3 - 10



segment(i+1):Segment:Channelsegment(i):Segment:Channelsegment(i−1):Segment

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

obtainNextTemperature()obtainNextTemperature()obtainNextTemperature()

Figure 6: Sequence Diagram of the Communicating Sequential Elements
for communicating temperatures through channel components for the One-
dimensional Heat Equation.

of the Communicating Sequential Elements architectural pattern, es-
tablishing its responsibilities, input and output for solving the One-
dimensional Heat Equation.

– Segment. The responsibilities of a segment, as a processing
component, are to obtain the next temperature from the temper-
ature values it receives, and make available its own temperature
value so its neighboring components are able to proceed.

– Channel. The responsibilities of every channel, as a communi-
cation component, are to allow sending and receiving tempera-
ture values, synchronizing the communication activity between
neighboring sequential elements. Channel components are de-
veloped as the main design objective of a following step, called
“Communication Design”, which is not addressed in this paper.

4. Description of the coordination. The Communicating Sequential El-
ements pattern describes a coordination in which multiple Segment
objects act as concurrent processing software components, each one
applying the same temperature operation, whereas Channel objects
act as communication software component which allow exchanging
temperature values between sequential components. No temperature
values are directly shared among Segment objects, but each one
may access only its own private temperature values. Every Seg-

B3 - 11



ment object communicates by sending its temperature value from
its local space to its neighboring Segment objects, and receiving
in exchange their temperature values. This communication is nor-
mally asynchronous, considering the exchange of a single tempera-
ture value, in a one to one fashion. Therefore, the data representing
the whole one-dimensional wire represents the regular logical struc-
ture in which data of the problem is arranged. The solution, in terms
of a segmented wire, is presented as a network that actually reflects
this logical structure in the most transparent and natural form [11].

5. Coordination analysis. The use of the Communicating Sequential El-
ements patterns as a base for organizing the coordination of a parallel
software system for solving the One-dimensional Heat Equation has
the following advantages and disadvantages:

– Advantages

(a) The order and integrity of temperature results is granted be-
cause each Segment object accesses only its own local tem-
perature value, and no other data is directly shared among
components.

(b) All Segment objects have the same structure and behavior,
which normally can be modified or changed without excessive
effort.

(c) The solution is easily structured in a transparent and natural
form as a one-dimensional array of components, reflecting the
logical structure of the one-dimensional wire in the problem.

(d) All Segment objects perform the same temperature oper-
ation, and thus, granularity is independent of functionality,
depending only on the size and number of the elements in
which the one-dimensional wire is divided. Changing the
granularity is normally easy, by just adjusting the number of
Segment objects in which the wire is divided, thus obtaining
a better resolution or precision.

(e) The Communication Sequential Elements pattern can be eas-
ily mapped into the shared memory structure of the parallel
platform available.

– Liabilities

(a) The performance of a parallel application for solving the
One-dimensional Heat Equation based on the Communicat-
ing Sequential Elements pattern is heavily impacted by the
communication strategy used. For the present example, the
threads available in the parallel platform have to take care
of a large number of Segment objects, so each thread has
to operate on a subset of the data rather than on a single
value. Due to this, dependencies between data, expressed as

B3 - 12



communication exchanges, could be a cause of a slow down
in the program execution.

(b) For this example, load balancing is kept by allowing only a
fixed number of Segment objects per thread, which tends
to be larger than the number of threads available. Never-
theless, if data would not be easily divided into same-size
subsets, then the computational intensity varies on different
processors. Even though every processor is virtually equal
to the others, maintaining the synchronization of the paral-
lel application means that any thread that slows down should
eventually catch up before the computation can proceed to
the next step. This builds up as the computations proceeds,
and could impacts strongly on the overall performance.

(c) Using synchronous communications implies a significant amount
of effort required to get a minimal increment in performance.
On the other hand, if the communications are kept asyn-
chronous, it is more likely that delays would be avoided. This
is taken into consideration in the next step, “Communication
Design” (not described here).

4 Implementation

In this section, all the software components described in the Coordination De-
sign step are considered for their implementation using the Java programming
language. Once programmed, the whole system is evaluated by executing it on
the available hardware platform, measuring and observing its execution through
time, and considering some variations regarding the granularity.

Here, it is only presented the implementation of the coordination structure,
in which the processing components are introduced, implementing the actual
computation that is to be executed in parallel. Further design work is required
for developing the channel as communication and synchronization components.
Nevertheless, this design and implementation goes beyond the actual purposes
of the present paper.

The distinction between coordination and processing components is impor-
tant, since it means that, with not a great effort, the coordination structure
may be modified to deal with other problems whose algorithmic and data de-
scriptions are similar to the One-dimensional Heat Equation, such as the Wave
Equation or the Poisson Equation.

4.1 Coordination

Considering the existence of a class Channel for defining the communications be-
tween Segment objects, the Communicating Sequential Elements architectural

B3 - 13



pattern is used here to implement the main Java class of the parallel software
system that solves the One-dimensional Heat Equation. The class Segment is
presented as follows. This class represents the Communicating Sequential Ele-
ments coordination for the One-dimensional Heat Equation example.

class Segment implements Runnable{

private static int M = 65536, iterations = 10;

private static Channel[][] segment = null;

private int i = -1;

public Segment(int i){

this.i = i;

new Thread(this).start();

}

public void run(){

double temperature, received, total;

temperature = random(10*M);

for (int iter = 0; iter < iterations; iter++) {

// Send local temperature to neighbors

if (i < M-2) send(segment[i+1][0], temperature);

if (i > 1) send(segment[i-1][1], temperature);

total = 0.0;

// Receive temperature from neighbors

if(i > 0 && i < M-1){

received = receive(segment[i][0]);

total += received;

received = receive(segment[i][1]);

total += received;

}

// Insert processing here

}

}

public static void main(String[] args){

segment = new Channel[M][2];

for(int m = 0; m < M; m++){

for(int i = 0; i < 2; i++){

segment[m][i] = new Channel();

}

}

for(int m = 0; m < M; m++){

new Segment(m);

}

System.exit(0);

}

}

This class only creates two adjacent, one-dimensional arrays of Channel com-
ponents and Segment components, which represents the coordination structure
of the whole parallel software system, developed for executing on the avail-
able parallel hardware platform. Channel components are used for exchanging
temperature values between neighboring Segment components, each one first

B3 - 14



sending its own temperature value (which is an asynchronous, non-blocking op-
eration), and later retrieving the temperature values of the two neighboring wire
components. Using this data, now it is possible to sequentially process to obtain
the new temperature of the present component. This communication-processing
activity repeats as many times as iterations defined.

The utility of the coordination presented here goes beyond the One-dimensional
Heat Equation application. By modifying the sequential processing section,
each wire component is capable of computing the discrete versions of other one-
dimensional differential equations, such as the Wave Equation or the Poisson
Equation.

4.2 Processing components

At this point, all what properly could be considered “parallel design and im-
plementation” has finished: data is initialized (here, randomly, but it can be
initialized with particular temperature values) and distributed among a collec-
tion of Segment components. It is now the moment to insert the sequential
processing which corresponds to the algorithm and data description found in
the Problem Analysis, This is done in the class Segment, where it is commented
Insert processing here, by simply adding the following code, and consider-
ing the particular declarations for its computation:

temperature += temperature + (1/h^2)*(total - 2*temperature);

The simple, sequential Java code allows that each Segment component ob-
tains a local temperature based on the One-dimensional Heat Equation. Modi-
fying this code implies modifying the processing behavior of the whole parallel
software system, so the class Segment can be used for other parallel applications,
as long as they are one-dimensional and execute on a shared memory parallel
computer.

5 Summary

The Architectural Patterns for Parallel Programming are applied here along
with a method for selecting them, in order to show how to select an architec-
tural pattern that copes with the requirements of order of data and algorithm
present in the One-dimensional Heat Equation problem. The main objective of
this paper is to demonstrate, with a particular example, the detailed design and
implementation that may be guided by a selected architectural pattern. More-
over, the application of the Architectural Patterns for Parallel Programming
and the method for selecting them is proposed to be used during the Coordi-
nation Design and Implementation for other similar problems that involve the
calculation of differential equations for a one-dimensional problem, executing on
a shared memory parallel platform.

B3 - 15



6 Acknowledgements

The author wishes to thank Neil Harrison, my shepherd for Euro Plop 2009, for
his encouraging comments about the present paper.

References

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Distributed Pro-
gramming., Addison-Wesley Longman, Inc., 2000.

[2] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-
cept., Communications of the ACM, Vol.21, No. 11, 1978.

[3] K.M. Chandy, and S. Taylor An Introduction to Parallel Programming.
Jones and Bartlett Publishers, Inc., Boston, 1992.

[4] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

[5] S. Hartley Concurrent Programming. The Java Programming Language.,
Oxford University Press Inc., 1998.

[6] Herlihy, M., and Shavit, N., The Art of Multiprocessor Programming. Mor-
gan Kaufmann Publishers. Elsevier, 2008.

[7] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[8] S. Kleiman, D. Shah, and B. Smaalders Programming with Threads, 3rd ed.
SunSoft Press, 1996.

[9] B. Lewis and D.J.. Berg Multithreade Programming with Java Technology,
Sun Microsystems, Inc., 2000.

[10] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel
Programming, Proceedings of the 3rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP98), Kloster Irsee,
Germany, 1998.

[11] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An
Architectural Pattern for Domain Parallelism, Proceedings of the 7th
Conference on Pattern Languages of Programming (PLoP2000), Allerton
Park, Illinois, USA, 2000.

[12] J.L. Ortega-Arjona The Shared Resource Pattern. An Activity Parallelism
Architectural Pattern for Parallel Programming, Proceedings of the 3rd Eu-
ropean Conference on Pattern Languages of Programming and Computing
(EuroPLoP98), Kloster Irsee, Germany, 1998.

16



[13] J.L. Ortega-Arjona The Manager-Workers Pattern. An Activity Paral-
lelism Architectural Pattern for Parallel Programming, Proceedings of
the 9th European Conference on Pattern Languages of Programming and
Computing (EuroPLoP2004), Kloster Irsee, Germany, 2004.

[14] J.L. Ortega-Arjona The Parallel Pipes and Filters Pattern. A Functional
Parallelism Architectural Pattern for Parallel Programming, Proceedings
of the 10th European Conference on Pattern Languages of Programming
and Computing (EuroPLoP2005), Kloster Irsee, Germany, 2005.

[15] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional Parallelism
Architectural Pattern for Parallel Programming, Proceedings of the 6th
Latin American Conference on Pattern Languages of Programming and
Computing (SugarLoafPLoP2007), Porto de Galinhas, Pernambuco, Brasil,
2007.

[16] J.L. Ortega-Arjona Architectural Patterns for Parallel Programming:
Models for Performance Evaluation, PhD Thesis, Depart-
ment of Computer Science, University College London, UK, 2007.
http://www.sigsoft.org/phdDissertations/theses/JorgeOrtega.pdf

[17] Sun Microsystems. Sun SPARC Enterprise T5120 Server.
http://www.sun.com/servers/coolthreads/t5120/.

B3 - 17


