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Abstract. Parallel processes, by nature, tend to interchange a high
amount of data between them to maintain a highly cohesive system. Nev-
ertheless, when a parallel system is executed on a distributed computing
architecture, communications over the network and the time spent by
them become very important.

This paper introduces a strategy, based on the Max-flow min-cut the-
orem, to agglomerate and allocate parallel processes onto a distributed
computing architecture. The main goal of the strategy is to decrease
the amount of remote communications and increase the amount of local
communications. The strategy allocates the processes “carefully” over
the distributed nodes, and that causes the communication time of the
parallel system to be minimized.

Keywords: Parallel process · Mapping problem · Networks flows

1 Introduction

A parallel system is a set of processes that communicate with each other and
collaborate to accomplish a common goal. Parallel systems not only have mul-
tiple instruction flows executing at the same time, but also multiple data flows
between processes [7].

A parallel system can be classified depending on its communication or syn-
chronization needs. The granularity g(pi) is a qualitative measure obtained by
dividing the processing time tproc(pi) and communication time tcom(pi) of a
process pi [5], see Eq. 1.

g(pi) =
tproc(pi)
tcom(pi)

(1)

Three types of granularity derived from the relation between processing and
communication times are shown next:

c� Springer International Publishing Switzerland 2016
I. Gitler and J. Klapp (Eds.): ISUM 2015, CCIS 595, pp. 201–212, 2016.
DOI: 10.1007/978-3-319-32243-8 14
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202 J.C. Catana-Salazar and J.L. Ortega-Arjona

1. Fine granularity: Says a process is fine grained if tcom > tproc.
2. Medium granularity: A process is medium grained when tcom � tproc.
3. Coarse granularity: Says a process is coarse grained when tcom < tproc.

Any parallel machine or multiprocessor system must implement communi-
cations via one or more memory blocks. There is a broad variety of memory
architectures, which mainly differ on the memory access method [9]. Two widely
used memory architectures are the following:

1. Shared memory: Memory is directly accessed, commonly through a bus,
by every processor in the system. Every processor has a common “snapshot”
of the shared memory [7].

2. Distributed memory: There are many memory blocks housing many
processes. The processes hosted in a memory block can only “see” the local
data. The processes, hosted in different memory blocks, needs a network chan-
nel to interchange data [7,9].

The main difference between memory architectures is the communication
time, in the shared memory architecture communication time is fast and uni-
form in access time, due to the “closeness” between memory and processors. On
the other hand in a distributed memory architecture, communication time is
variable and depends on external characteristics related with the network chan-
nel, network protocols etc. [7].

The execution time ET (P ) of a parallel system P can be defined (in a very
simplified way) as, the processing time PT (P ) plus the communication time of
the system CT (P ).

For each communication c(pi, pj) between two processes pi and pj , such that
both are hosted at the same memory block. A constant communication time,
tcons is added to the execution time ET (P ). Additionally, for each communi-
cation c(pk, pl) between two processes pk and pl, such that both are hosted on
different memory blocks. A variable communication time tvar is added to the
execution time ET (P ), where:

tcons << tvar (2)

Let cl(P ) be the amount of local communications and cr(P ) the amount
of remote communications of P . Then CT (P ) is equal to cl(P ) constant time
communications plus cr(P ) variable time communications. See Eq. 3.

ET (P ) = PT (P ) + cl(P ) ∗ tcons + cr(P ) ∗ tvar (3)

This paper introduces a strategy, based on the Max-flow min-cut theorem,
to agglomerate and allocate the processes of a parallel system onto a distributed
computing architecture with k processing nodes. The main goal of the strat-
egy is to minimize the communication time CT (P ) of P , by increasing cl(P )
the amount of local communications and decreasing cr(P ) the amount of remote
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communications among processes. The mapping of the parallel processes is deter-
mined in a statical off-line manner. The balanced workload on the processing
nodes, is not considered by this strategy.

In Sect. 2 a set of definitions are introduced to help establish a few tools
needed by the strategy proposed in this work. Section 3 describes the agglomer-
ation problem and presents additional considerations. Section 4 shows the strat-
egy in a detailed way. Section 5 shows a case study where the proposed strategy
is applied in a real life case. Finally Sect. 6 shows the conclusions of this work.

2 Background

In this section are presented two main themes, parallel software methodology
and network flows.

2.1 Parallel Software Methodology

There are many parallel software methodologies proposed in the literature. The
common goal of every methodology is to have an easy way to translate a sequen-
tial problem into a parallel system. It is also desirable to consider factors such
as performance and efficiency.

The following four steps, can be found in every parallel software methodology:

1. Partitioning or Decomposition. The partitioning stage involves the divi-
sion of a general problem into a set of independent modules that can be exe-
cuted in parallel. That does not imply having the same number of processes
as the number of processors. This stage is concerned with finding parallelism
in every opportunity, regardless of the resources available to the system [4,5].

2. Communication. The parallel modules, generated by the previous stage,
can be executed concurrently but not independently. Every parallel process is
linked to data provided by other tasks, so that data is propagated along the
parallel system [1]. Local communications implies two geographically close
communicating processes. In contrast, remote communication implies two
processes that communicate through a network medium [1].

3. Agglomeration and Granularity Adjustment. The agglomeration stage
is responsible of controlling the granularity, either to increase the parallel
processing or decrease the communication costs. The main idea is to use the
locality, i.e., to group some tasks in a way that reduces communication over
the network [4].

4. Mapping. The parallel processes must be mapped or allocated into a set
of processors to be executed, this is called the mapping problem. Also it is
defined as the problem of maximize the number of communicating processes
pairs allocated in two directly connected processors [2,4]. The allocation can
be specified statically or can be determined in execution time [3].

jloa@ciencias.unam.mx



204 J.C. Catana-Salazar and J.L. Ortega-Arjona

2.2 Network Flows

A network flow Gnf = (V, E) is a strictly directed graph, where each edge
a = (u, v) ∈ E has a capacity c(a) ≥ 0. If E has an edge a = (u, v), then there
is not an edge ar = (v, u) in the opposite direction [6].

A network flow has two special vertices, a source vertex s, and a target
vertex t. The source vertex is responsible of generating the flow to be routed
through the edges of the network [3,6].

Assume that, for all v ∈ V there is a path s → v → t, i.e. the graph is con-
nected. Note that v ∈ V −{s} has at least one incident edge, then |E| ≥ |V |−1 [6].

There are two interesting problems in this type of graphs, which are presented
below:

1. Min Cut Problem: An s − t cut, where s ∈ A and t ∈ B, is a partition of
the set V into two groups V = {A,B}.

The capacity of a cut is defined as c(A, B), which is equal to the sum of
capacities of each edge e ∈ E that goes out from A [3].

cap(A, B) =
�

e goes out A

c(e) (4)

The minimum cut problem refers to find an s−t cut of minimum capacity [3].
2. Max Flow Problem: An s − t flow is defined as a function that satisfies

two properties [3]:
(a) Capacity: All flow assigned to an edge e should be less or equal than its

capacity c(e).
0 ≤ f(e) ≤ c(e), ∀ e ∈ E (5)

(b) Preservation: The total flow entering to a vertex v ∈ V − {s, t}, should
be equal to the total flow coming out from it.

�

e goes to v

f(e) =
�

e� goes out v

f(e�), ∀ v ∈ V (G) − {s, t} (6)

The maximum flow problem refers to finding an s− t flow of maximum value,
with no infringement of the capacity and preservation properties [3,6].

Every edge e = (u, v) in a network flow Gnf has a residual edge er = (v, u)
associated to it, such that c(er) = f(e). The residual edge is allowed to transfer
flow directed to the target vertex t, so that when a flow g pass through a residual
edge er then f(e) = f(e) − g.

It turns out that the min cut problem and the max flow problem are closely
related, and it is shown by the next lemma.

The net flow across a cut (A, B), is the sum of the flow on the edges that goes
from A to B, minus the sum of the flow on the edges that goes from B to A.

Lemma 1 (Flow Value). Let f be any flow assigned to edges of E. Let (A, B)
any s − t cut from the network flow. Then, the net flow sent across the cut is
equal to the value of f [3].

jloa@ciencias.unam.mx
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val(f) = net(f) =
�

e goes out A

fout(e) −
�

e enters to A

fin(e) (7)

By the previous lemma is easy to see the duality of this two problems, such
that the maximum value of a flow f , across a s − t cut, should be less or equal
than the minimum cut’s capacity on the network.

val(f) = net(f) across (A, B) ≤ c(A, B) (8)

There exists an algorithm to find the max flow and the min cut over a network
flow called Ford-Fulkerson algorithm. The algorithm is based in one important
concept called augmenting path. An augmenting path is a simple directed path,
from s to t, with positive capacities edges, such that, the flow over the network
can be increased [6].

Theorem 1 Augmenting Path Theorem. A flow f , which is obtained by the
Ford-Fulkerson algorithm, is maximum if, there is no more augmenting paths in
the network flow [6].

As a corollary by previous theorem and lemmas:

Theorem 2 Maximum Flow Minimum Cut Theorem. Let f be a s − t
flow such that there is no an augmented path in the graph G. Let (A, B) be an
s − t cut in G such that net(f) = c(A, B). f is the maximum flow value in G,
and c(A, B) is the minimum capacity for every s − t cut in G [6].

3 The Agglomeration Problem

As mentioned in the Agglomeration and Granularity Adjustment stage of the
methodology presented in Sect. 2.1, is in this step where the problem of mini-
mizing the communication costs of a parallel system can be addressed.

In order to agglomerate a set of parallel processes, it is necessary to group
some of them in accordance to a given criterion, for the purposes of this work
the main criterion is the minimization of communication costs.

The agglomeration problem can be seen as a more general problem called
graph partitioning. Most partitioning problems are known to be NP-Hard, mean-
ing that there is no efficient way to solve them. Instead, the use of heuristics and
approximation algorithms has been proposed as a solution [12].

The partitioning problem is defined as follows: Let G = (V, E) be a graph
with weighted edges, where |V | = n. The (k, v)-balanced partitioning problem,
for some k ≥ 2, aims to decompose G into subsets at most size v n

k . Where the
aggregated weight of the k edges connecting two vertices from different compo-
nents is minimal [12].

In particular, the k-balanced partitioning problem is shown as a NP-Complete
problem in [12]. Even the (2, 1)-balanced partitioning problem, which seems to
be more easy, is also an NP-Complete problem [8,10].

jloa@ciencias.unam.mx



206 J.C. Catana-Salazar and J.L. Ortega-Arjona

There are two main approaches of the approximation algorithms for graph
partitioning. The local algorithms, which make decisions based on local
search strategies, such as the Kernighan-Lin algorithm [13] and the Fiduccia-
Mattheyses algorithm [14], and the global algorithms that rely on properties of
the entire graph, the best known is the spectral partitioning algorithm [15].

The agglomeration problem, as here is defined with no load balance consider-
ations, can be directly addressed by the minimum k-cut problem. The minimum
k-cut problem asks for a minimum set of weighted edges whose removal leaves
k connected components [11].

The minimum set of weighted edges, to disconnect a graph into two compo-
nents, can be found in polynomial time by the Ford-Fulkerson algorithm [3]. For
a k decomposition of the graph, compute the minimum cut of each subgraph
and take the lightest one, repeat until there are k connected components. The
previous algorithm guarantees a 2 − 2

k approximation [11].

3.1 The Minimum Communication Cut Algorithm

Consider the network flow shown in Fig. 1. Such graph has a minimum cut shaped
by edges (s, 2) and (3, 5) of value 19.

Fig. 1. Network Flow. Grey shapes represent the two partitions (A, B) computed by
the Ford-Fulkerson algorithm.

Note that edge (2, 3) is incident to the partition A, and its weight is not
considered for the value of the flow.

Remark 1. By definition, the capacity of a cut does not consider any edge inci-
dent to the partition A, but in the context of parallel processes such edges are
communications among processes of the system, such that, the flow transmitted
across those edges must be considered by the agglomeration step.

Therefore it can be said that:

Definition 1. A minimum communication cut, for the parallel processes
agglomeration problem, is the sum of capacities of edges directed to the parti-
tion A plus the sum of capacities of edges directed to the partition B.

jloa@ciencias.unam.mx
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Fig. 2. Minimum communication cut from the network flow shown in Fig. 1.

Taking Remark 1 into account, the communication cut shown in Fig. 1 is of
value 21. And the minimum communication cut, of the same graph, is given by
the edges (2, 4), (5, 4) y (5, t) of value 20 (see Fig. 2).

Algorithm 1, takes as input parameters a network flow G, a source vertex s,
and a target vertex t. It gives as a result the minimum communication cut of
the graph G.

The Algorithm 1 first compute the minimum cut of G by using the Ford-
Fulkerson algorithm. Then is replaced every edge e in mincut(G), such that
e is incident to the partition A, by its inverse edge. Finally, is repeated the
computation of the minimum cut over the new G until get a minimum cut with
no incident edges to the partition A.

Algorithm 1. Minimum Communication Cut(G, s, t)
mincut(G) ← Ford-Fulkerson(G, s, t)
while ∃ e ∈ mincut(G) incident to A do

for all e ∈ mincut(G) incident to A do
G ← G − e
G ← G + einverse

end for
mincut(G) ← Ford-Fulkerson(G, s, t)

end while

Note that reversing an edge whose flow is greater than zero may cause the
violation of conservation and capacity properties. Because of that, is important
to prove the next lemma.

Let G = (V, E) be a network flow, and mincut(G) = {e1, e2, ..., ek} the set
of edges in the minimum cut of G.

Lemma 2. For all edge e = (y, x) ∈ mincut(G), where y ∈ B y x ∈ A, has an
assigned flow f(e) = 0.

Proof. By contradiction suppose that f(e) > 0.
Note that for all edge e� ∈ mincut(G), that goes from the partition A to the

partition B, has a flow f(e�) = c(e�), otherwise it would not be a minimum cut.
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W. l. g. suppose there is at least one edge e that goes from the partition B
to partition the A, which by assumption has a flow f(e) > 0. Therefor, there is
a residual edge er assigned to e with c(er) > 0, there are two cases:

1. There is at least one path Ps−t that uses er to transfer flow from the vertex
s to the vertex t, thus mincut(G) is not a minimum cut of G.

2. There is no path Ps−t that uses er to transfer flow from the vertex s to
vertex t, meaning that there is one mincut(G)� such that c(mincut(G)�) <
c(mincut(G)).

Any case contradicts the assumptions ⇒⇐. ��

4 The Agglomeration Strategy

In this section the agglomeration strategy for parallel processes mapping is intro-
duced.

4.1 Building the Software Graph

Consider the parallel processes defined in the decomposition stage of the methodol-
ogy presented in Sect. 2.1, such processes can be represented as a set of vertices Vsw.

Let Esw be the set of edges that represent the relations between two processes
established in the communication stage, such that, for all pi, pj ∈ Vsw there is an
edge epi−pj

if this processes interchange d > 0 units of data. For all epi−pj
∈ Esw

there is an associated capacity c(epi−pj
) = d

An edge capacity is equal to the sum of data units interchanged by two
processes during execution time. The number of data units is totally dependent
on the nature of the parallel system. The amount of communications must be
well defined and be representable as a positive integer, otherwise there is no
sense in agglomerating by using this strategy.

Let Gsw = {Vsw, Esw} be the software graph that represents a parallel
system P .

4.2 Transformation to a Network Flow

In order to transform the software graph into a network flow, is necessary to
classify the vertices of Gsw considering the following criterion:

– Initial Vertices or Flow Generators: Most of them are main processes
which generate and send data to other processes in the system. Sometimes
they communicate with each other or do some processing.

– Dealers or Flow Distributors: They receive data from flow generator ver-
tices. Usually they do some processing but their main function is to distribute
data across end vertices.
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– End Vertices or Processing Vertices: They represent slave processes, and
their main purpose is to do processing tasks with data received from initial
or dealer vertices. Sometimes they communicate with each other.

Let Gnf = {Vnf , Enf} be a network flow, such that Gnf is directed and has
no parallel edges. Then:

1. Let s, t be two vertices, such that s is a source vertex and t is target vertex,
then:

Vnf = Vsw ∪ {s, t} (9)

2. The vertex s should have a directed edge eg for every generator vertex vgen

in the software graph, such that:

Enf = Esw ∪ {eg} | eg = (s, vgen) ∀ vgen ∈ Vsw (10)

The capacity c(eg) of every edge eg = (s, vgen) should be equal or greater
than the sum of capacities of every edge that goes out from vgen.

c(eg) ≥
�

c(eout) | eout = (vgen, u), ∀ eout ∈ vgen (11)

3. For every end vertex vf , there is a directed edge ef ending at t:

Enf = Esw ∪ {ef} | ef = (vend, t), ∀ vend ∈ Vsw (12)

The capacity c(ef ) of every edge ef = (vfin, t) should be equal o greater than
the sum of capacities of every edge that ends at vend.

c(ef ) ≥
�

c(ein) | ein = (u, vgen), ∀ ein ∈ vend. (13)

4.3 Applying the Algorithm

Given a network flow Gnf , the agglomeration problem can be addressed by
using the greedy algorithm to solve the minimum k-cut problem, as described
in Sect. 3, and using the Algorithm 1 instead of the traditional Ford-Fulkerson
algorithm.

As a result a k agglomeration of the parallel system P , which can be directly
allocated into the k processing nodes of the computer architecture is obtained.

5 Case Study

In this section a case study applying the agglomeration strategy presented in
Sect. 4 it is described.

Symmetric and positive defined matrices are very special and they appear
very frequent in some scientific applications. A special factorization method called
Cholesky decomposition, which is two times faster than other alternatives to solve
linear system equations, can be used with this kind of matrices [16].
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Fig. 3. Data dependency for the Cholesky decomposition on a 4 × 4 matrix. Gray cells
denote an element already computed. The arrows denote a data transmission.

Figure 3 shows the data dependency to compute the Cholesky decomposition
on a 4× 4 matrix. Due to the symmetry of this matrix, it is enough to work only
with the inferior side of the matrix.

Particularly, in this instance the problem is decomposed by cells, meaning
that every cell of the matrix represents a parallel process. The arrows between
cells become communications between processes needed to transfer data units.

Let Ch be the parallel system that computes the Cholesky decomposition.
The software graph depicted in Fig. 4 represents the structure of Ch. The amount
of data transferred over each edge is one unit, while the total amount of com-
munications of the parallel system is 20 units.

Fig. 4. Software graph for a cell decomposition on a 4 × 4 matrix.
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Fig. 5. Agglomeration of the network flow of the Cholesky decomposition problem.

Based on the vertex classification presented in Sect. 4.2, is easy to see that
vertex 1 is the only flow generator vertex, while the vertex 10 is the only end
vertex. So that, for this example it is not necessary to add the special vertices
s and t.

For the agglomeration stage, consider the execution of the parallel system on
a cluster of k = 4 distributed nodes. The resulting agglomeration, obtained by
the Algorithm 1, is shown in Fig. 5.

The local and remote communication costs of the agglomeration are:

Partition A: cl = 0, cr = 3.
Partition B: cl = 0, cr = 0.
Partition C: cl = 0, cr = 1.
Partition D: cl = 9, cr = 7.

Such that, the communication time, induced by the agglomeration, of the
parallel system Ch is:

CT (Ch) = 9 ∗ tconstant + 11 ∗ tvariable. (14)

6 Conclusions

The performance of a parallel system is inherently affected by communication
between processes. The communication time added to the execution time of a
system is proportional to the amount of data exchanged by the parallel system
and the type of communication that it implements.

In general, communication cost through shared memory is less expensive
than communication cost via a network medium. Therefore, it is necessary to

jloa@ciencias.unam.mx



212 J.C. Catana-Salazar and J.L. Ortega-Arjona

maximize the amount of local communications and to minimize (to the possible
extent) the amount of remote communications, to control the total communica-
tion time and mitigate the impact of communications over the execution time
of the parallel system.
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