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1. Introduction

Fault diagnosis has been established in two main approaches: model-based fault diagnosis
and model-free fault diagnosis. Present paper focuses on the later, mainly as an extension of
the approach proposed in [17]. The challenge here is to classify faults at early stages, with an
accurate response. However, as the term model-free implies, a model for the plant is not
available neither for fault-free nor for fault-present scenarios. The objective, thus, is to classi‐
fy faults based on system’s response and the related signal analysis, in terms of dilation and
shift decomposition, as obtained by a wavelets approach. So, self-organizing maps (SOM)
are proposed as a powerful nonlinear neural network to achieve such a fault classification.

Several strategies have been proposed for feature extraction using wavelets. For instance,
[1] presents a wavelet packet feature extraction, based on the analysis and measure of a
“distance” between the energy distribution of some signal classes and the proper classifi‐
cation by the use of fuzzy sets. Alternatively, [2] proposes the use of wavelets as a strat‐
egy of parametric system identification, giving prime emphasis to wavelet properties and
parameter relations. The idea of using wavelets for fault classification is a powerful proce‐
dure for feature extraction of several scenarios, even in the case of frequency and power
shifts.  [3] and [4] have explored this approach for process system, in which practical re‐
sults are satisfactory, regardless of the classification. Moreover, several other strategies us‐
ing wavelets have been proposed for abnormal signal detection, like that presented in [5],
in which a parasitic wavelet transform is proposed. Further research in the same direction
is  followed  in  [6],  in  which  a  cubic  spline  methodology  is  proposed  for  the  boundary
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problem, although the results of this approach tend to be just local, linear models. An al‐
ternative strategy for auto-correlation and signal  discovery is  proposed in [7],  following
some multi-class  wavelet  support  vector  machines.  In  all  these  methodologies,  wavelets
are used as a technique for feature extraction; however, none of the above have presented
any enhancement  for  pattern  classification.  Here,  an  enhancement  for  pattern  classifica‐
tion is proposed, in order to isolate different scenarios.

On the other hand, the use of neural networks for feature extraction only presents the disad‐
vantage of inherent data uncertainties and large quantity of necessary data. Different pro‐
posals have previously explored similar strategies. For example, [8] proposes feature
extraction using local parametric models, giving valuable results; however, there is a draw‐
back of a bounded system response. This strategy for fault diagnosis integrates an ART2A
network and a Kohonen neural network. The objective is to combine both strategies in order
to generate two subsystems capable of overcoming glitches and redundant data representa‐
tions [8]. Both subsystems, based on the ART2A topology and the Kohonen neural network,
are used to perform a learning strategy. This strategy allows on-line fault diagnosis, with the
inherent uncertainty of SOM variation due to the plasticity-stability dilemma. A fundamen‐
tal work has been introduced in [9], in which an extended review is provided regarding top‐
ics related to sensors patterns and stability-plasticity trade-offs, inherent to an ART2A
network. Interesting comments have been included about how a time window data can be
monitored, in order to identify abnormal situations, as well as how data should be treated in
terms of normalization, time scaling, and filtering, and their comparison prior to declare a
winner selection. Further developments are addressed in [10], focusing on the use of a paral‐
lel ART2A network approach, based on a wavelet decomposition in which clustering is de‐
fined in the wavelet domain, although it is not proposed for a dynamical system.

Feature extraction for dynamical systems based on wavelets presents the advantage of scale
decomposition, allowing several possibilities of fault detection depending on the scale of the
fault. Similarly, fault detection can be easily engaged if a source of information is decom‐
posed into several fruitful components. These components are taken as parameter vectors,
where several signal conditions are highlighted depending on the resolution. Further, these
components need to be combined in a fair strategy, in order to classify similar behaviors. To
do so, the use of SOM is proposed, in which each vector is processed as a consecutive input.
The result of this classification gives a number of selected patterns, depending on the learn‐
ing rate, and regarding a time window. Nevertheless, using this technique, the plasticity-sta‐
bility dilemma is still not solved.

As stated before, feature extraction presents an inherently extrapolated method to determine
several characteristics (like geometry differences) related to the monitored signal, based on a
scale factor. The most typical characteristics are those related to frequency and phase modi‐
fication, which are multiplicative faults in terms of fault detection. Amplitude change is de‐
tected on the general modification from wavelets scales, and the consequent change on the
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selected patterns. The importance of the methodology is the capacity for fault isolation at
unknown scenarios, with enough time to pursue modification in terms of system safety. In
this sense, time response is determined in terms of the sampled window and the classifica‐
tion of current analyzed data. It is necessary to establish a feasible relationship among the
sampling window, the time taken to process information, and the accuracy to classify a par‐
ticular scenario. This can be achieved by following a frequency analysis of some selected
scenarios, in order to find such a relationship. However, this is a non-homogeneous strategy
for any scenario. Further work needs to be done in terms of data analysis and sampling ca‐
pabilities to recognize scenarios, either known or unknown.

Based on this extensive review, the current approach divides the process of fault isolation
using SOM techniques into a two stages process. The first stage is a basic construction of the
map, as pattern clusters, using SOM. The second stage is a labeling process that identifies
scenarios of the system. Following this, the current approach proposes the classification of
time-varying faults within a bounded time window, using the wavelet decomposition inher‐
ent response. The objective, hence, is to establish an approach for fault localization, based on
feature extraction and clustering, by considering diverse fault-present and fault-free scenar‐
ios. The novelty of this approach is on signal classification for time varying scenarios, under
unknown consideration. The proposed system is limited to certain signals conditions, such
as coupled noise and frequency response. In this case, frequency dispersion should be
bounded, regardless of time variance. The main advantage of this approach is related to
fault isolation through signal decomposition, and classification in a bounded time response.

2. Background

2.1. The Wavelet Transform

Wavelet transform (WT) is an alternative method for processing transient, non-stationary
signals simultaneously in time-scale domains [11]. Wavelets are used to decompose a signal
into different scale factors. Wavelet approach provides a more natural description of the sig‐
nal, in terms of a composition of a set of “typical signals”, or wavelets. In fact, the WT is the
correlation between a signal and a set of basic wavelets, proposed from a basic “mother
wavelet” h(t), chosen in order to analyze a specific transient signal of finite energy. Thus, a
complete orthogonal set of “daughter wavelets” h a,b (t) is generated from h(t) by two opera‐
tions: a dilation a and shift b.

Formally, the dilation and shift, as wavelet coefficients of the signal, are defined by:

WS(a, b)= ∫
−∞

∞

s(t)h a,b
* (t)dt (1)
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where s(t) is the current signal, and the function h a,b (t) defined as:

h a,b(t)=a −1/2h ( t −b
a ) (2)

The information used in this approach is based on both a and b, as expansion coefficients.
Commonly, the mother wavelet is considered as a Daubechies signal. The wavelets automat‐
ically adapt to the different components of a signal, using a small window (large scale) to
search for brief high-frequency components, and large window (low scale) to look for long
lived, low-frequency components. The shape of low- and high-frequency components is de‐
termined by the mother wavelet. A further and deeper revision of the wavelet technique
may be found in [12].

Wavelets can be represented using a function ψ, and the familyℑof expanded and translated
wavelets are expressed as :

ℑ={ψ j ,n(t)=
1

2 j
ψ( t −2 jn

2 j ) : j, n∈Z } (3)

which performs an orthogonal baseL2⊄ . Orthonormal wavelets are obtained by expanding
this by a factor 2 j, allowing variations of the signal in a 2− jresolution. The construction of
these bases permits the study of multi-resolution of a signal. Formally, the approximation of
a function with a resolution 2− j is defined as an orthogonal projection over a spaceV j⊂L2⊄

The space Vj groups every possible approximation with resolution 2− j. Remember that an
orthogonal projection from function f is a function f j∈V jwhich is minimized f − f j .

Definition. (Multi-Resolution) A family of closed subspaces {V j : j∈Z } of L 2⊄ is a multi-resolution
approximation, if it satisfies the following properties:

i. For j, k∈Z , f (t)∈V j f (t −2 jk )∈V j

ii. For j∈Z ,V j+1⊂V j

iii.
For j∈Z , f (t)∈V j f ( t

2 )∈V j+1

iv. lim
j→+∞

V j = ∩
j=−∞

+∞
V j ={0}

v. lim
j→−∞

V j = ∪
j=−∞

+∞
V j =L2⊄

vi. there isθsuch that{θ(t −n) :n∈Z }is a Riesz base of V0 .

Property (i) states that the subspace Vj is invariant in any translation proportional to scale 2 j

Property (ii) is causal, since the resolution 2− jowns the necessary information to calculate a
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raw resolution 2− j−1. If the functions are dilated in Vj by 2, then the details are amplified by a
factor of 2. So (iii) defines an approximation of a raw resolution when the resolution 2− j

tends to be cero. (iv) implies that all the details have been lost, meaning that the projection
of signal f over the space Vj when j → + ∞is zero:

lim
j→+∞

PV j
f =0. (4)

On the other hand, if the resolution2− jtends to+∞property (v) forces that the approximation
of the signal converges to the original signal:

lim
j→−∞

f −PV j
f =0. (5)

Finally, the existence of a Riesz base {θ(t −n) :n∈Z } of V0 provides a discretization theorem.
Function θ can be interpreted as a cell with unitary resolution. To compute several resolu‐
tions of signal, it is necessary then to compute the orthogonal components over different
spaces {V j : j∈Z } of L2⊄  According to the definition of a Riesz base, there are A,B > 0 that if
f ∈V0, it may be decomposed as:

f (t)= ∑
n=−∞

+∞
a n θ(t −n) (6)

with

A f 2≤ ∑
n=−∞

+∞
|a n | 2≤B f 2 (7)

This last expression guarantees that the expansion of the signal over {θ(t −n) :n∈Z } is nu‐
merically stable.

The approximation of f in the resolution 2− jis defined as the orthogonal projection PV j
f over

Vj. To compute this projection, an orthogonal base should be find over the space Vj. Hence,
the following theorem allows for an orthogonal Riesz base{θ(t −n) :n∈Z }, and it builds an
orthogonal basis for each space Vj where dilation and transferring over a function ϕ, named
scale.

Theorem (Goswami Jaideva, 1999). Being {V j : j∈Z } an approximation of multi-resolution and ϕ a
scale function, where the Fourier Transformation is:

φ̂(ω)=
θ̂(ω)

(∑
k=−∞

+∞
| θ̂(ω + 2kπ)| 2)1/2 (8)
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Defining

φ j ,n(t)=
2

2 j
φ( t −n

2 j ) (9)

Then the family{θ j ,n :n∈Z }is an orthonormal base ofV j∀ j∈Z

Demonstration

The objective is to build an orthonormal base, and therefore, a function φ∈V0. Now, this
function is expanded in terms of the Reisz base {θ(t −n) :n∈Z }:

φ(t)= ∑
k=−∞

+∞
a n θ(t −n) (10)

Computing the Fourier transform for this last function, it is obtained that:

φ̂(ω)= â(ω)θ̂(ω) (11)

whereâis a Fourier series with period 2π and finite energy; â is expressed in terms of the or‐
thogonal condition of {φ(t −n) :n∈Z } into the Fourier dominion, being φ̄(t)=φ *(− t) It is nec‐
essary that for any n, p∈Z :

φ(t −n), φ(t − p) = ∫−∞
+∞

φ(t −n)φ *(t − p)dt =φ∗ φ̄(p −n)=δ n (12)

If the Fourier transform is obtained from this, it determines the following equation:

∑
k=−∞

+∞
| φ̂(ω + 2kπ)| 2 =1 (13)

On the other hand, the Fourier transform of φ(t)∗ φ̄(t) is | φ̂(ω)| 2, and therefore:

â(ω)=
1

(∑
k=−∞

+∞
| θ̂(ω + 2kπ)| 2) 1

2 (14)

To find an approximation of f over the space Vj, it is necessary to expand the function in
terms of the orthogonal base from the scale function:

PV j
f = ∑

n=−∞

+∞
f , φ j ,n φ j ,n (15)
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where the inner products are:

aj n = f , φ j ,n (16)

giving a discrete approximation of scale 2j. This last equation can be expressed as the convo‐

lution product:

a n = ∫−∞
+∞

f (t) 1

2 j
φ( t −2 jn

2 j )dt = f * φ̄ j(2 jn) (17)

with φ̄ j(t)= 2− jφ(2− jt).The energy of the Fourier Transform φ̂ is typically concentrated in

−π, π , and as a consequence, the Fourier Transform 2 jφ̂*(2 jω) of φ̄ j(t) concentrates its

energy in the interval −2− jπ, 2− jπ . Then, the discrete approximation is aj n , as a low pass

filter of function f, from sampling 2j.

2.2. Self Organizing Maps (SOM)

The purpose of Kohonen’s SOM is to capture the topology and probability distribution of some

input data (Figure 1) [13][14]. First, a topology of SOM is defined as a rectangular grid [15].

Different types of grid may be used to represent data, although the one shown in Figure 2

presents a homogenous response suitable for noise cancellation.

The neighborhood function regarding a rectangular grid, such as this one, is based on a set

of bi-dimensional Gaussian functions, as described by Equation 18.

h (i1, i2)=exp(−0.5 *
(i1win − i1)2 + (i2win − i2)2

σ 2 ) (18)

where i 1 and i 2 represent the indices of each neuron, and σis the standard deviation of each

Gaussian distribution, which determines how the neighbor neurons of a winner neuron are

modified. Each neuron also has a weight vector (wi
j), which represents how the actual neu‐

ron is modified by an input updating. Thus, h(i 1 ,i 2 ) is the Gaussian representation that al‐

lows for modifications of neighbor neurons of a SOM.
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Figure 1. Topology Network of a SOM.

Equation 20 is the basis of the SOM. In this equation, the weight matrix is updated based
on the bi-dimensional indexing, namely h(i  1  ,i  2  ).  This equation is used during training
(offline) stage of the SOM. Moreover, this bi-dimensional function allows the weight ma‐
trix to be updated in a global way, rather than just to update the weight vector associated
to a winner neuron.

Figure 2. Index Grid for noise cancellation.

For updating the SOM, an inner product is performed between the weight matrix W and the
input vector (I), in order to define a winner neuron. Having calculated this product, the
maximum value is determined by the comparison between each scalar from resultant vector.
This value is declared as the winner, just as in the technique known as “the winner take all”.
The related bi-dimensional index (Figure 2) is calculated in order to determine how the
weight matrix is modified.
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The updating process of the weight matrix is performed as shown by Equation 19.

wj
new =wj

old + η * h (i1, i2) * (I −wj
old ) (19)

whereη represents a constant value equals to 0.7. This parameter can be tuned as a learning
parameter. Here, I represents the current input vector.

3. Main approach

The proposed organization for the actual model is shown in Figure 3. The model is divided
into two stages: first, it is performed offline, where the SOM is trained; second, the fault di‐
agnosis procedure is performed online.

Plant

SOM
(Learning Stage)

Persistant Input Output

Feedback of 100 Epochs

Feature 
Extraction 
Wavelets Obs

Figure 3. Organization for the model.

The SOM is trained offline, following the output signal, which is decomposed into sever‐
al levels, as proposed by wavelets feature extraction scales. The observed dynamical sys‐
tem decomposition should perform this regarding its input, by considering a diversity of
frequencies. The decomposition is proposed for several wavelets scales as feature extrac‐
tion,  where  just  one  is  chosen  based  on  repeatability  in  similar  scenarios,  either  fault-
present or fault-free.

Several parameters need to be tuned for the SOM and wavelet feature extraction, such as:

• Length of the sampling window k.

• Number of wavelet decomposition levels.

• Learning value η.

• Vigilance threshold β.
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During the offline stage, the SOM is trained based on known fault-present and fault-free sce‐
narios with a local decomposition wavelet strategy, using a mother wavelet known as Dau‐
bechies 4. This means that four decomposition levels (scales) are produced. The Daubechies
4 is a wavelet particularly chosen here due to the case study response, as it is discussed later.

For fault-free scenarios, four decomposed levels have a particular powerful response, being
different of the fault-present scenarios, as shown in the next section. In this case, similar pat‐
terns are stated to occur when a bounded fault scenario is presented. In both, fault-free and
fault-present cases, and for four levels, Daubechies 4 presents a trustable response.

Current data has a pre-treatment as input/output responses from the plant. Input and out‐
put are locally normalized before they are processed by wavelets, to extract certain features.
To take the advantage of this situation, it is necessary that the learning law of the SOM is
suitable to perform an accurate response with respect to the case study.

Time

Sampling Window Wavelet Feature 
Extraction

SOM Learning Stage

Figure 4. Three steps of the offline stage.

Time

Sampling Window Wavelet Feature 
Extraction

SOM 
Classification Decision Making

Figure 5. Three steps of the online stage.

Three steps are defined during the offline stage, as shown in Figure 4, in terms of data proc‐
essing: first, a sampling window of input and output data is taken and normalized; next,
this information is processed by the wavelet module, to perform feature extraction; finally,
the local matrix is classified by the SOM in learning mode. In this case, it is necessary to pro‐
vide with enough information and a diversity of scenarios (fault-present and fault-free) to
the SOM, in order to ensure a suitable fault identification.
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Time

Sampling Time 
Window

Sampling Time 
Window

Sampling Time 
Window

Sampling Time 
Window

Selected Patterns and Produced 
Results

w w ww

Figure 6. Results produced during the online stage.

Data Taken by Sampling 
Window

SOM Network Classification

Normalized Local Data

Wavelet Feature Extraction

Figure 7. Proposed main procedure for the model-free fault diagnosis.

During the online stage, the SOM does not perform any learning procedure. The compari‐
son between already classified patterns against current scales vectors, produced by wave‐
lets,  is  performed by  an  inner  product,  where  the  minimal  value  obtained amongst  all
patterns is  defined as  the winner,  and compared with β.  If  the winner value is  smaller
than  β,  this  is  a  correct  winner;  otherwise,  the  SOM is  not  capable  of  performing  this
comparison. The value β is called error, for the purposes of model evaluation. Similarly to
the offline stage, the online stage takes four major steps, as shown in Figure 5, in order to
produce a result. The main difference, thus, is that here SOM does evaluate the resultant
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local model, generated by wavelet feature extraction. The decision making module inher‐
ent in SOM determines if this classification is valid or not. Notice that for the current pur‐
poses, time consumption is neglected.

The results  of  the online stage are produced every w  sampling time windows, which is
the time taken by the application in order to produce a result (Figure 6). Such a time win‐
dow w becomes crucial in terms of the frequency of the plant. Further, the sampling win‐
dow is  a  multiple  of  inherent  period  of  the  system.  In  fact,  the  plant  response  during
fault-present  and fault-free scenarios need to be bounded to this  parameter,  in order to
guarantee a reliable response.

The main procedure followed here is shown in Figure 7, in which the normalized, local pre-
processing stage is executed per local sample data; after that, the wavelet feature extraction
is performed as data decomposition. The results related to different levels are processed by
the SOM per level, where just one would be the winner, and learned by the SOM.

4. The case study

The case study is integrated by a system, as it is shown in Figure 8. It consists of a multiple-
input, single-output (MISO) system, with a PID controller, and a switching fault injection
procedure. As it may be noticed, the dynamics of this plant tends to be quite slow in com‐
parison with the occurrence of faults, according to the dynamics of the plant and the fault
scenarios. This characteristic is crucial for the construction of the local model and the feature
extraction, in order to produce a fruitful fault diagnosis procedure. Case study is linear and
modeled through model-based techniques; however, when a fault is present, its dynamics
becomes nonlinear. This nonlinear behavior tends to be extremely difficult to be diagnosed
by classical strategies, like for example, unknown input observers [8]. This scenario has been
presented for local system identification techniques and for a global classification strategy,
in order to have an accurate fault diagnosis strategy [16]. However, the strategy is depend‐
ent on the persistent excitation of certain frequency responses. Alternatively, the proposed
strategy here overcomes such a frequency dependency, since the only obvious dependency
is the sampling period. This strategy is based on the sensibility of the feature extraction
strategy, which uses Daubechies 4 wavelets (db4).

The dynamics of the case study are expressed as vectors of the state space representation:

k1= [0.1; -20.000];

e=[0; 0.001];

b=[1.8000 -2.1000; 0.9000 0.8600];

A=[1.1000 0; 0 2.1000];

c=[0 1];

where A, b, c, and e belong to the case study model, and k1 to the PID controller. The types
of faults are:
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Fault 1: Backlash of 0.01, followed by a dead zone between {-0.1 0.1}

Fault 2: Backlash of 0.91, followed by a dead zone between {-0.3 0.4}

For this case study, the parameters to be tuned (such as β, η, a, b and k) are bounded to spe‐
cific ranges:

0.01β0.99
0.01η0.99
2a, b6
k =10

where η =0.1952 for this case study

tmp3

temporal value 3

out_obs

UIO OUT

In1

In2

Out1

UIO

MATLAB
Function

Time Delay 
variable input

t

Time

Terminator

Step

Sine Wave

residual

Residual OutputPID

PID Controller
out

Output Value

Multiport
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Fault Injection Value
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double
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double

double
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double
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double

double

double

double

double

double

double

double double

Figure 8. Schematic diagram of the system for the case study.

These ranges are arbitrarily fixed, since there is no further information regarding these val‐
ues. In order to obtain certain selection according to fault presence and dynamic system re‐
sponse, a testing (response) from the tuples integrated by the combination of these values is
performed, as shown in the next section. Notice that the pattern selected by the SOM is a
representation of the most suitable approximation of current feature extraction, that is, a
model of the current response.

5. Case study results

The present results are referred in terms of pattern construction and feature extraction, con‐
sidering several known fault-present and fault-free scenarios. Regarding this, Figure 9
shows the output response of the benchmark during a fault-free scenario. The response of
the system is inherently stable, due to the inner local control. In this case, the sampling time
window has a duration of 10 seconds, representing a period of system response. This re‐
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sponse produces the level decomposition presented in Figure 10, in which four wavelet lev‐
els are used to decompose the data. Since response is fairly stable, the main differences
amongst levels are not significant neither regarding to power, nor regarding to frequency
selection. Based on this approximation, the selected patterns should be similar, equidistant,
and close related; otherwise, an unknown response has appeared.

Figure 9. Fault-free response for the current example.

Figure 10. Wavelets feature extraction for fault-free scenario.
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Figure 11. SOM for the fault-free scenario.

Figure 12. Selected patterns per level for the fault-free scenario. The winner patterns are at the first level.

The fault-free scenario shows the response of a damped system, in which four decomposed
levels tends to be similar in terms of power values. For this scenario, the patterns are classi‐
fied by the SOM as shown in Figure 11. The total number of patterns is 125, from which 55
patterns are “zoom” (enlarged) patterns with a similar power response, given the wavelets
feature extraction. Remember that Daubechies 4 has been selected for feature extraction,
since this wavelet is stable enough in terms of feature extraction repetition for same scenar‐
ios. In Figure 11, the amplitude of 55 patterns reflects a similar response amongst them.
Moreover, there is a region around patterns 30 to 45, whose amplitude is close to zero. No‐
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tice that the pattern response tends to be similar through time. In Figure 12, the related pat‐
terns per level are classified by the SOM for this fault-free scenario. In this case, level 1
presents most of the variations with respect to the observer scenario. This is reflected by the
number of created patterns regarding the rest of the levels: level 1 proposes 125 patterns,
while the rest of the levels propose mostly 2.

Figure 13 presents the response of the system and the selected patterns that vary from 0.1 to
0.8, in magnitude terms, presenting a close relation between the winner patterns. It is inter‐
esting to observe that the most selected pattern has a magnitude of 0.6.

Figure 13. Fault-free scenario and selected patterns for the case study.

For the fault-present scenario, two types of faults are injected to the system (see Section
4). First, let us consider Fault 1, which is an increment of sudden amplitude, as shown in
Figure 14. In this case, the fault scenario is presented from 400 to 800 seconds, and it is
related to a 10% increment of the amplitude. A detail of the response for this scenario is
shown in Figure 15. Observe that the system response presents just an oscillation, and not
a clear stage of fault condition. However, the expected response is not desirable according
to system dynamics.

Figure 16 shows the features extraction results for this scenario. In this case, power values
are modified around 500 seconds, in comparison with the fault-free response (Figure 10).
This difference is a clear modification of phase around the 500 seconds. This slight phase
modification is the result of the increment of amplitude for this fault scenario. Regarding
the patterns that are classified by the SOM for this fault scenario, the number of patterns
simply does not augment, but the feature extraction results are different. This is shown in
the amplitude of the patterns and the selected patterns, especially in pattern number 15,

Developments and Applications of Self-Organizing Maps58



which clearly exposes the presence of the fault. In Figure 16, the first level presents a very
noticeable  difference  between the  two responses  of  the  whole  scale  presentation.  More‐
over, the response in terms of patterns classified by the SOM tends to increase, but it is
still stable (Figure 17).

Figure 14. System response during fault present scenario.

Figure 15. Detail of the response for the first fault present scenario.
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Figure 16. Wavelets feature extraction for the fault present scenario.

Figure 17. SOM for the fault present scenario.

For the case second fault scenario, Fault 2, Figure 18 shows a detail of the output response of
the system, in which an oscillation tends to be larger than that present in the first fault sce‐
nario. Although, this behavior is quite erratic, the case study is still measurable, as shown in
Figure 19. In this figure, the patterns are selected and quite defined in terms of the presence
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of the fault in fast response. There is a small magnitude variation around patterns 2 to 3, at
the beginning of the fault scenario, which is resolved at the fifth sampling window. The val‐
ues of the selected patterns in terms of magnitude are quite defined around 3, which is clear‐
ly different in comparison with the other two previous scenarios.

Figure 18. Detail of the response for the second fault present scenario.

Figure 19. General response for the second fault present scenario and the selected pattern.
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Figure 20 shows the selected patterns per level, which present an increment in the number
of patterns. Now, the first level has 200 patterns, while the rest of three levels have around
80 patterns. Moreover, the amplitude of learned and winner patterns are around 0.15 for the
first level, and close to zero for the second, third, and fourth levels, in the majority of
learned patterns (red patterns).

Figure 20. Selected patterns per level for the second fault present scenario.

Figure 21. Current output response for the fault-present and fault-free scenarios.
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Figure 21 shows a combination of the three scenarios: the fault-free scenario from time 0 to
400 seconds, the first fault scenario from 400 to 700 seconds, and the second fault scenario
from 1100 to 1500 seconds, and again from 2000 to 2500 seconds. From this combination,
several patterns have been selected, as shown by the upper diagram of Figure 21. These se‐
lected patterns, depicted with their amplitude, show a clear definition of the three fault sce‐
narios: the fault-free scenario is related to the patterns measured at 0.7, the first fault-present
scenario is related with the two patterns measured at 0.4 and 0.9, respectively, and the sec‐
ond fault-present scenario is related with the three patterns whose values are 1.4, 1.6 and
2.0. The richness is quite obvious in this scenario, due to the oscillation present in it.

Figure 22. Selected patterns per wavelet levels for the three scenarios.

Finally, Figure 22 shows the levels of the four wavelets, depicted as learned patterns, in
which the first level has 190 winner patterns, while the other three levels have 60 winner
patterns. Observe that the richness of the combined winner patterns determines a clear clas‐
sification of the patterns, as shown in Figure 21. Moreover, the current amplitude is quite
similar and rich for the first level, as presented in the three scenarios.

6. Concluding remarks

The present work shows a strategy for fault diagnosis based on local feature extraction and
global system classification, in which different parameters play an important role in this
condition monitoring proposal. The number of samples with respect to sampling window,
the learning and vigilance parameters, and the number of extracted features has been tuned
by an extensive review of every possible scenario. This approach enhances the capabilities of
the simple use of a neural network for pattern classification. This strategy has shown an al‐
ternative for classification of abnormal situations, with no information from current case
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study as state space response. Furthermore, pattern databases have been constructed, based
on several selected scenarios, which have been obtained offline per scenario. This initial in‐
formation is basic in order to obtain an accurate model of the system under study. This strat‐
egy shows how model-free techniques can be implemented for fault diagnosis, and the need
of a large amount of data, as well as the extensive review of multiple parameters. The main
contribution here is the use of several pre-processing data stages, in order to conform suita‐
ble and accurate information to be processed by the neural network. In addition, a database
of several scenarios needs to be used for a trustable fault diagnosis strategy. In fact, it is nec‐
essary to define a heuristic index that allows the differentiation between scenarios. Here, the
use of one specific time frequency distribution approach over the rest of the current algo‐
rithms is pursued. Moreover, this strategy could address a proper dynamic non-linear sys‐
tem for online classification of unknown scenarios.

Acknowledgements

The authors would like to thank the financial support of DISCA-IIMAS-UNAM, ICYTDF
PICCO10-53, and UNAM-PAPIIT (IN103310) Mexico, in connection with this work. Further‐
more, authors would like to thank the valuable help of Mr. Adrian Duran during the con‐
struction of this chapter.

Author details

Héctor Benítez-Pérez1*, Jorge L. Ortega-Arjona2 and Alma Benítez-Pérez3

*Address all correspondence to: hector@uxdea4.iimas.unam.mx

1 Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de
Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma
de México, México

2 Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de
México, México

3 CECYT 11 “WILFRIDO MASSIEU”, Instituto Politécnico Nacional, México

References

[1] Li, D., Pedrycz, W., & Pizzu, N. (2005). Fuzzy Wavelet Packet based Feature Extrac‐
tion Method and Its Application to Biomedical Signal Classification. IEEE Transaction
on Biomedical Engineering, 52(6), 1132-1139.

Developments and Applications of Self-Organizing Maps64



[2] Billings, S., & Wei, H. (2005). A New Class of Wavelet Networks for Nonlinear Sys‐
tem Identification. IEEE Transaction on Neural Networks, 14(4), 862-874.

[3] Wang, X., Chen, B., Yang, S., & Mc Greavy, C. (1999a). Application of Wavelets and
Neural Networks to Diagnostic Systems Development, 2, an Integrated Framework
and its Application. Computers and Chemical Engineering, 23, 945-954.

[4] Chen, B. H., Wang, X. Z., Yang, S. H., & Mc Greavy, C. (1999). Application of wave‐
lets and neural networks to diagnostic system development, 1, feature extraction.
Computers & Chemical Engineering , July 1999, 23(7), 899-906.

[5] Zhan, Z., Ikeuchi, H., Saiki, N., Imamura, T., Miyake, T., Toda, H., & Horihata, S.
(2008). Fast Wavelet Instantaneous Correction and its Application to Abnormal Sig‐
nal Detection. International Journal of Innovative Computing Information and Control,
4(10), 2697-2710.

[6] Cheng, Y., Junxian, L., Feng, B., & Guan, W. (2009). Hermite Cubic Spline Multi-
Wavelet Natural Boundary Element Method. ICIC Express Letters, 3(2), 213-217.

[7] Xing, Y., Wu, X., & Zhiliang, X. (2008). Multiclass Least Squares Auto-Correlation
Wavelet Support Vector Machines. ICIC Express Letters, 2(4), 345-350.

[8] Benítez-Pérez, H., & Benitez-Perez, Alma. (2009). The use of ARMAX strategy and
Self Organizing Maps for Feature Extraction and Classification for Fault Diagnosis.
International Journal of Innovative Computing, Information and Control, IJICIC, 5(2), 1-
ISIII08-025.

[9] Whiteley, J., Davis, A., & Mehrotra, Ahalt S. (1996). Observations and Problems Ap‐
plying ART2 for Dynamic Sensor Pattern Interpretation. IEEE Transactions on Sys‐
tems, Man, and Cybernetics- Part A: Systems and Humans, 26, 4, July.

[10] Moisen, C., Benítez-Pérez, H., & Medina, L. (2008). Non-contact Ultrasound for Flaw
Characterisation using ARTMAP and Wavelet Analysis. DOI: 10.1504/IJMPT.
2008.022517, International Journal of Materials and Product Technology, 33(4), 387-403.

[11] Abbate, A., Koay, H., Frankel, J., Schroeder, S., & Das, P. (1997). Signal Detection and
Noise Suppression Using a Wavelet Transform Signal Processor: Application to Ul‐
trasonic Flaw Detection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre‐
quency Control , January 1997, 44(1), 14-26.

[12] Frazier, M. (1999). An Introduction to Wavelets Through Linear Algebra, Springer-Verlag.

[13] Kohonen, T. (1989). Self-Organization and Associative Memory, Springer-Verlag, Berlin,
Germany.

[14] Hassoum, H. (1995). Fundamentals of Artificial Neural Networks, Massachusetts Insti‐
tute of Technology, USA.

[15] Nelles, O. (2001). Non-Linear Systems Identification, Springer-Verlag, Berlin, Germany.

Using Wavelets for Feature Extraction and Self Organizing Maps for Fault Diagnosis of Nonlinear Dynamic Systems
http://dx.doi.org/10.5772/50235

65



[16] Blanke, M., Kinnaert, M., Lunze, J., & Staroswicki, . (2003). Diagnosis and Fault Toler‐
ant Control, Springer-Verlag.

[17] Benítez-Pérez, Héctor, & Benitez-Perez, Alma. (2010). The use of WAVELET strategy
and Self Organizing Maps for Feature Extraction and Classification for Fault Diagno‐
sis. International Journal of Innovative Computing, Information and Control, IJICIC, 6(11),
4923-4936.

Developments and Applications of Self-Organizing Maps66


