Applying Architectural Patterns for Parallel Programming:
Solving a Matrix Multiplication

Jorge L. Ortega-Arjona
jloa@ciencias.unam.mx
Departamento de Matematicas
Facultad de Ciencias, UNAM
MEXICO

ABSTRACT

The Architectural Patterns for Parallel Programming is a set of pat-
terns along with a method for designing the coordination of parallel
software systems. Their application takes as input: (a) the available
parallel hardware platform, (b) the available parallel programming
language, and (c) the analysis of the problem as an algorithm and
data. This paper presents the application of the architectural pat-
terns within the method for solving the Matrix Multiplication. The
method takes information from the problem analysis, selects an
architectural pattern for the coordination, and provides some ele-
ments about its implementation.

CCS CONCEPTS

« Software and its engineering — Designing software.

KEYWORDS

Architectural Patterns, Matrix Multiplication, Parallel Software
Design

ACM Reference Format:

Jorge L. Ortega-Arjona. 2021. Applying Architectural Patterns for Parallel
Programming: Solving a Matrix Multiplication. In European Conference on
Pattern Languages of Programs (EuroPLoP’21), July 7-11, 2021, Graz, Austria.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3489449.3490011

1 INTRODUCTION

A parallel program is the specification of a set of processes executing
simultaneously, and communicating among themselves in order to
achieve a common objective. This definition is consistent with the
original research by EW. Dijkstra [4], C.A.R. Hoare [7], P. Brinch-
Hansen [2], and many others, who established the main basis for
parallel programming. Specifically, obtaining a parallel program
from an algorithmic description is the main objective of the area of
Parallel Software Design [17].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8997-6/21/07...$15.00
https://doi.org/10.1145/3489449.3490011

1.1 Architectural Patterns for Parallel
Programming

The Architectural Patterns for Parallel Programming are fundamen-
tal organizational descriptions of common top-level structures ob-
served in parallel software systems [10, 16, 17]. They specify prop-
erties and responsibilities of their sub-systems, and the particular
form in which they are assembled together.

The most important step in designing a parallel program is to
think carefully about its overall structure. The Architectural Pat-
terns for Parallel Programming provide descriptions about how
to organize a parallel program, having the following advantages
[16, 17]:

(1) The Architectural Patterns for Parallel Programming (as any
Software Pattern) provide a description that links a prob-
lem statement (in terms of an algorithm and the data to be
operated on) with a solution statement (in terms of an orga-
nization structure of communicating software components).

(2) The partition of the problem to solve is a key for the success
or failure of a parallel program. Hence, the Architectural
Patterns for Paralle] Programming have been developed and
classified based on the kind of partition applied to the algo-
rithm and/or the data present in the problem statement.

(3) As a consequence of the previous two points, the Archi-
tectural Patterns for Parallel Programming can be selected
depending on characteristics found in the algorithm and/or
data, which drive the selection of a potential parallel struc-
ture by observing and studying the characteristics of order
and dependence among instructions and/or datum.

(4) The Architectural Patterns for Parallel Programming intro-
duce parallel structures as forms in which software compo-
nents can be assembled or arranged together, considering
the different partitioning ways of the algorithm and/or data.

Nevertheless, even though the Architectural Patterns for Par-
allel Programming have these advantages, they also present the
disadvantage of not describing, representing, or producing a com-
plete parallel program in detail. Anyway, the Architectural Patterns
for Parallel Programming are proposed as a way of helping a soft-
ware designer to select a parallel structure as a starting point when
designing a parallel program. For a complete exposition of the Ar-
chitectural Patterns for Parallel Programming, refer to [10, 17], and
futher work on each particular architectural pattern in [11-15].

1.2 Parallel Software Design

Parallel Software Design proposes forms, descriptions, and pro-
gramming techniques to solve the parallelization of a problem

https://orcid.org/0000-0002-3863-9307
https://doi.org/10.1145/3489449.3490011
https://doi.org/10.1145/3489449.3490011

EuroPLoP’21, July 7-11, 2021, Graz, Austria

described as an algorithm and data. The research provides forms to
organize parallel software as relatively independent parts which
attempt to efficiently make use of multiple processors. As stated
before, the goal is to obtain a parallel program from an algorithm
and data description. Nevertheless, designing parallel programs can
be frustrating [17]:

(1) There are lots of issues to consider when parallelizing an
algorithm. How to choose a coordination structure that is not
too hard to program and that offers substantial performance
compared to uniprocessor execution?

(2) The overheads involved in synchronization among multiple
processors may actually reduce the performance of a parallel
program. How to anticipate and mitigate this problem?

(3) Like many performance improvements, parallelizing in-
creases the complexity of a program. How to manage such a
complexity?

These are difficult problems: yet, we do not know how to effi-
ciently solve an arbitrary problem for a parallel system of arbitrary
size. Hence, Parallel Software Design, at its actual stage of develop-
ment, cannot offer universal solutions, but tries to provide some
simple forms to get started [17].

Nevertheless, by sticking with some common parallel “coordi-
nation structures”, it is possible to avoid a lot of errors and aggra-
vation. Many approaches to Parallel Software Design have been
presented up to date, proposing organizational descriptions of top-
level, coordination structures observed in parallel programming.
Some of these descriptions are: Outlines of the Program [3], Pro-
gramming Paradigms 8], Parallel Algorithms [6], High-level Design
Strategies [9], and Paradigms for Process Interaction [1]. All these
descriptions provide common overall coorcination structures in par-
allel programming (such as, for example,‘master-slave”, “pipeline”,
“workpile”, and others) that represent assemblies of parallel soft-
ware components which are allowed to simultaneously execute and
communicate. Furthermore, these descriptions support the design
of parallel programs since all of them introduce coordination struc-
tures or forms that such assemblies exhibit. All these forms are the
base for the Architectural Patterns for Parallel Programming [10-15],
as a Software Patterns approach for parallel programming. These
architectural patterns attempt to save the transformation “jump”
between algorithm and program.

2 PROBLEM ANALYSIS - THE MATRIX
MULTIPLICATION

The present paper demonstrates the application of Architectural
Patterns for Parallel Programming for designing a coordination
structure to solves the Matrix Multiplication. The objective is to
show how an architectural pattern can be selected, so it copes with
the functionality and requirements present in this problem.

2.1 Problem Statement

The matrix multiplication is a common known mathematical oper-
ation. The algorithm is relatively simple, although as it is discussed
later, it may take a long time to compute if the size of the involved
matrices is large enough. Consider, for example, the multiplication

Ortega-Arjona

of two square matrices (Figure 1). Both matrices have been chosen
to be square just for sake of simplicity.

a Cu 1263 Cia]
a ©1[6003] - - - (&)

; 53152633 3
) X |bi|b2|b3|----|by - | |

Figure 1: Multiplying two square matrices.

Notice that each one of the elements of the product matrix is
obtained from applying a dot product between each one of the rows
of the first matrix and each one of the columns of the second matrix.
This is:

n
cij =aibj=) ay Xby; (1)
k=0
where:
e c;j represents each element of the product matrix,
e a; is an horizontal vector representing each row of the first
matrix,
e bj is a vertical vector representing each column of the second
matrix,
® a;; represents each element of the ith row, and
e by ; represents each element of the jth column.

2.2 Specification of the Problem

Analyzing the problem, it is noticeable that a sequential process can
perform all computations in O(n?) basic steps (since each n? entries
of the result matrix requires n multiply-add operations). Suppose
this numerically: the multiplication of two square matrices with,
say, n = 65,536, may be solved in about 281, 474, 976, 710, 656 time
steps.

Moreover, naive changes to the requirements (such as, for in-
stance, the size of the matrices), which are normally requested when
performing this kind of processes, produce drastic increments of the
number of required operations, which affects the time to calculate
such a numerical solution.

o Problem Statement. A Matrix Multiplication of two relatively
large matrices can be obtained in a more efficient way by:
(1) using a group of software components that exploit the

independent dot products, and
(2) allowing each software component to simultaneously
work on one or several dot products.
A parallel version of this simultaneously computes products
between all row-column pairs in O(n), for a certain large n.
The objective is to obtain a result in the best possible time-
efficient way. Two parallel solutions based on this approach
for matrix multiplication are the Fox Algorithm and the
Cannon Algorithm [5].

o Descriptions of the data and the algorithm. The parallel pro-
gram that carries out the matrix mutiplication takes as its

Applying Architectural Patterns for Parallel Programming: Solving a Matrix Multiplication

input two matrices: the first divided into rows, and the sec-
ond divided into columns. Since all the dot products can be
simultaneously performed, the only issue is to obtain the
result matrix by ordering each one of its elements.

Hence, every dot product could be obtained independently
from the other dot products:

class MatrixMultiply {
private static int L =0, M =0, N = 0;
private static double[J[] a = null,
b = null, ¢ = null;

public double dotProd(double[] a, double[] b) {
double innerProduct = 0.0;
for (int m = @; m < M; m++)
innerProduct += a[1][ml*b[m][n];
return innerProduct;

3 COORDINATION DESIGN

Here, the architectural patterns for parallel programming [10, 16,
17] are applied along with the the information from the problem
analysis, in order to propose an architectural pattern for devel-
oping a coordination structure that carries out a parallel Matrix
Multiplication.

3.1 Specification of the System

Based on the problem description and algorithmic solution pre-
sented in the previous section, the procedure for proposing an
architectural pattern for a parallel solution to the Matrix Multipli-
cation is presented as follows [17]:

(1) Analyze the design problem and obtain its specification. From
analyzing the problem description and the algorithmic solu-
tion, a Matrix Multiplication yields a group of dot products
that can be simultaneously performed on different vectors,
which can be distributed and independently operated.
Select the category of parallelism. Observing each dot product,
the parallel solution should operate on different data while
distributing such data. Hence, the solution description im-
plies the category of Activity Parallelism [12, 13, 16, 17].
Select the category of the nature of the processing components.
Also, from the description of the solution, all dot products
represent the same algorithm. Thus, the nature of the pro-
cessing components of a probable solution for the Matrix
Mutiplication is a Homogeneous one [12, 13, 16, 17].
Compare the problem specification with the architectural
pattern’s Problem section. An Architectural Pattern that di-
rectly copes with the categories of activity parallelism and
the homogeneous processing components is the Manager-
Workers (MW) pattern [15-17]. Let us compare the prob-
lem description with the Problem section of the MW pattern
[13, 16, 17]:

‘The same operation is required to be repeatedly per-

formed on all the elements of some ordered data. Data

can be operated without a specific order. However, an

(2

~

3

~

“

~

EuroPLoP’21, July 7-11, 2021, Graz, Austria

important feature is to preserve the order of data. If the

operation is carried out serially, it should be executed as

a sequence of serial jobs, applying the same operation to

each datum one after another. Generally, performance

as execution time is the feature of interest, so the goal

is to take advantage of the potential simultaneity in

order to carry out the whole computation as efficiently

as possible’.
Observing the algorithmic solution for the Matrix Multipli-
cation, it can be defined in terms of a dot product performed
over a row vector and a column vector. The information
about which row and which column is important, since this
actually refers to the position of the inner product within the
result matrix. Each dot product can be operated completely
and autonomously. The data or communication should be
between an organizing component and several processing
components, distributing the information of all the rows
and columns so each dot product can be obtained by each
processing component. So, the MW is chosen as an adequate
solution for the Matrix Multiplication, and the architectural
pattern selection is completed. The design of the parallel soft-
ware system should continue, based on the Solution section
of the MW pattern.

3.2 Functional description of components

Each processing and communicating software components, as par-
ticipants of the Manager-Workers architectural pattern, is designed
considering its responsibilities, and input/output when solving the
Matrix Multiplication [13, 16, 17].

e Manager. The responsibilities of a manager are to create a
number of workers, to distribute work among them, to start
up their execution, and to assemble the overall matrix result
from the sub-results from the workers.

o Worker. The responsibility of each worker is to seek for two
vectors, to perform the dot product, and to return a scalar
result.

3.3 Structure and dynamics

The information of the Manager-Workers architectural pattern is
used to describe the solution to the Matrix Multiplication in terms
of this architectural pattern’s structure and behavior [13, 16, 17].

(1) Structure. Using the Manager-Worker architectural pattern
for a Matrix Multiplication, each row and column pair is
distributed by the manager, and operated by workers as
conceptually-independent components. Each worker simul-
taneously performs a dot product. An object diagram repre-
senting the manager and worker components on which the
bodies information is distribuited is shown in Figure 2.

Notice that this organization effectively allows to distribute
each row and column among worker components, as previ-
ously described in the problem analysis, so each dot product
can be computed independently from the others.

(2) Dynamics. A typical scenario is used here to describe the
basic run-time behavior of this pattern when applied to the

EuroPLoP’21, July 7-11, 2021, Graz, Austria

_manager:Manager | Mana er

// ,,,,,,

worker[0]:Worker

,,,,,, worker[N-1]:Worker

worker[1]:Worker

Figure 2: Object diagram of the Manager-Workers pattern
applied for solving the Matrix Multiplication.

Matrix Multiplication. All components, whether manager
or workers, are active at the same time, distributing and
processing the information of different rows and columns,
and assembling an overall resulting matrix as described in
Figure 3:

‘ manager:Manager 1 worker[0]: Worker ‘ worker[1]:Worker

- 1worker[N—1]:W0rker

L a[l], b1] dotProduct()
a[3], b[4
L a[3], b[4] ‘ dotProduct()
N al1], b(9]
c[1,1]
c[34]
c[1,9] 1 —(
7 v :

Figure 3: Sequence diagram of the Manager-Workers pattern
for solving the Matrix Multiplication.

o All participants are created, and wait until two matrices a and
b are provided to the manager. When such data is available
to the manager, this distributes it, sending row-column pairs
ali] and b[j] by request to each waiting worker.

e Each worker receives a row-column pair. Notice that the i-th
worker is associated with obtaining the dot product with the
two vectors, and producing an scalar value c[i, j] as part
of the result matrix c. Each operation is independent of the
operations of other workers. Once all results are received
by the manager, each worker may request again for more
work representing another row-column pair, and the process
repeats.

o The manager is usually replying to requests from the workers
or receiving their partial results. Once all row-column pairs
have been processed, the manager assembles a total result
from the partial results and the program finishes. Any non-
serviced requests of data from the workers are ignored.

dotProduct()

Ortega-Arjona

3.4 Description of the coordination

The Manager-Workers architectural pattern uses activity paral-
lelism to execute the Matrix Multiplication, allowing the simultane-
ous existence and execution of more than one worker components
through time. Each one of these instances at the same time obtain a
dot product for each row-column pair. In a parallel system like this,
the Matrix Multiplication involves the distribution and execution of
data. Each processing starts by distributing the row-column data
among all workers, and finish only when all workers provide the
manager with the result of each dot product.

3.5 Coordination analysis

The use of the Manager-Workers pattern as a base for organizing
the coordination of a parallel software system for solving the Matrix
Multiplication has the following advantages and disadvantages:

e Advantages

(1) The order and integrity of the result matrix is preserved
and granted due to the defined behavior of the manager
component. The manager takes care of what part of both
matrices has been operated on by which worker, and what
remains to be obtained by the rest of the workers.

(2) An important characteristic of the Manager-Workers pat-
tern is due to the independent nature of operations that
each worker performs. Each worker requests for a row-
column pair during execution and obtains a dot product.
Such an independence makes that the structure presents a
natural load balance, and easily scale for larger matrices.

(3) Synchronization is simply achieved because communica-
tions are restricted to only between manager and each
worker. The manager is the component in which the syn-
chronization is stated.

(4) Using the Manager-Worker pattern, the parallelizing task
is relatively straightforward, and it is possible to achieve
a respectable performance. If designed carefully, the
Manager-Worker pattern enables the performance to be
increased without significant changes.

o Liabilities

(1) The Manager-Workers systems may present poor perfor-
mance if the size of matrices is excesively large. In such a
case, workers may remain idle for periods of time while
the manager is busy trying to serve all their requests. Gran-
ularity should be modified in order to balance the amount
of work, by allowing that more than one dot product is
operated by each worker.

(2) Manager-Worker architectures may also have poor perfor-
mance if the manager activities — data distribution, receive
worker requests, send data, receive partial results, and as-
sembling the final result - take a longer time compared
with the processing time of the workers. The overall perfor-
mance depends mostly on the manager, so programming
the manager should be done taking special consideration
to the time it takes to perform its activities. A poor perfor-
mance of the manager impacts heavily on the performance
of the whole system.

(3) Many different issues must be carefully considered, such
as strategies for work distribution, manager and worker

Applying Architectural Patterns for Parallel Programming: Solving a Matrix Multiplication

collaboration, and assemble of final result. In general, the
issue is to find the right combination of worker number,
active or passive manager, and data size in order to get
the optimal performance, but experience shows that this
still remains a research issue.

(4) Moreover, it is necessary to provide error handling strate-
gies for failure of worker execution, failure of communi-
cation between the manager and workers, or failure to
start-up parallel workers.

4 IMPLEMENTATION

Here, all software components described in the coordination design
section are considered for their implementation using the Java
programming language. Once programmed, the whole system is
evaluated by executing it on the available hardware platform, for
the purposes of measuring and observing its execution through
time.

Nevertheless, here it is only presented the implementation of
the coordination, in which the processing components are intro-
duced, implementing the actual computation that is to be executed
in parallel. Further design work is required for developing the com-
munication and synchronization components. Nevertheless, this
design and implementation goes beyond the actual purposes of the
present paper.

The distinction between coordination and processing compo-
nents is important, since it means that, with not a great effort, the
coordination structure may be modified to deal with other problems
whose algorithmic and data descriptions are similar to the Matrix
Multiplication [6].

4.1 Coordination

In order to support the communication exchange of data, let us con-
sider the class Message as follows, which establishes a serializable
set of fields used to communicate data from the manager to the
workes, as well as from each worker to the manager.

class Message implements Serializable {
public int workerID = -1;
public boolean containsResult = false;
public double result = -1;
public boolean containsWork = false;
public int N = -1;
public int inRow = -1;
public int inColumn = -1;
public double [] Row = null;
public double [] Column = null;

public Message(int workerID, boolean

containsResult, double result, boolean
containsWork, double Row[], double Column[],
int inRow, int inColumn, int N) {
this.workerID = workerID;
this.containsResult = containsResult;
this.result = result;

this.containsWork = containsWork;

this.Row = Row;

this.Column = Column;

EuroPLoP’21, July 7-11, 2021, Graz, Austria

this.inRow = inRow;
this.inColumn = inColumn;
this.N = N;

3

The first element of a Message type is workerID which allows
to identify which worker is to perform the dot product for the data
present in this message. Next, two variables, containsResult and
result, represent the information from any worker to the manager;
containsResult states that this message has a result from the dot
product of the sending worker, which is the scalar value stored
in the variable result. Finally, the next five fields represent the
information from the manager to the worker which is required to
perform de dot product: inRow and inColumn identify the position
within the first matrix and the second matrix respectively; both
these are used later, when sending a result of the dot product to
the manager, so this could place such result in the proper position
within the product matrix. The two arrays Row and Column are the
actual data vectors to dot product. And N is the length of the vectors,
used in the dot product as a limit for the operation.

Now, the Manager-Workers architectural pattern is used here to
implement the main Java class of the parallel software system that
solves the Matrix Multiplication. The class MatrixMultManager is
presented as follows. This class represents the Manager-Workers
coordination for the Matrix Multiplication.

class MatrixMultManager extends MyObject {
private static int N = 8; //size of square matrices
private static double[][] a = null,
b = null, c = null;
private static int numProducts = 0;
int numWorkers = 8;
private static int portNum = 9999;

public static void main(String[] args) {

// create the remote workers
if (numWorkers > @) {

for (int i = 0; i < numWorkers; i++)
new MatrixMultWorker(i, er);

3

// send out all the "work" (initial configurations)
// a dot product of row i column j
Message m = null;
int numResultsReceived = 0;
for (int i = 1; i <= N*N; i++) {
for (int j = 1; 1 <= N*N; j++) {

m = (Message) r.serverGetRequest();

if (m.containsResult) {
c[m.inRow][m.inColumn] = m.result;
numResultsReceived++;
r.serverMakeReply(new Message(-1, false,

0, true, alil, b[jl1, i, j, N));

r.close();

3

// tally up the returning results

EuroPLoP’21, July 7-11, 2021, Graz, Austria

while (numResultsReceived < N*N) {

m = (Message) r.serverGetRequest();
if (m.containsResult) {
c[m.inRow][m.inColumn] = m.result;
numResultsReceived++;
r.serverMakeReply(new Message(-1,
false, @, false, null, null,
0, 0, 9));
r.close();

}

System.exit(Q);

This class makes use of the class Message as the basic data
communication structure. This class requires the creation of
MatrixMultWorker as worker components, to perform the dot prod-
uct, and which together with the class MatrixMultManager repre-
sent the coordination of the whole parallel software system, de-
veloped for executing on the available parallel hardware platform.
Notice that both classes rely on a class Rendezvous for communi-
cation exchange, to send and receive messages. Nevertheless, this
class goes beyond the scope of this paper. By now, let us suppose
that such a class is available, so communications are performed just
as indicated.

4.2 Processing components

At this point, all what properly could be considered “parallel design
and implementation” has finished: data is initialized and distributed
among a collection of worker components. It is now the moment
to present the sequential processing which corresponds to the dot
product found in the problem analysis. This is done in the class
MatrixMultWorker, which considers the particular declarations
for the Matrix Multiplication computation:
class MatrixMultWorker implements Runnable {

private int N = -1;

private String masterMachine = null;

// Server where manager executes
private int portNum = -1;

private int id = -1;

public MatrixMultWorker(int id,
String masterMachine, int portNum) {

this.id = id;
this.masterMachine = masterMachine;
this.portNum = portNum;

new Thread(this).start();
}

public void run() {
Message m = new Message(id, false, 0,
false, null, null, o, 0, 0);
while (true) {

Ortega-Arjona

m = (Message)
r.clientMakeRequestAwaitReply(m);

r.close();
if (!m.containsWork) {
if (masterMachine != null) {

// remote workers
System.exit(Q);
} else return;

N = m.N;
int inRow = m.inRow;
int inColumn = m.inColumn;
double result = 0.0d;
for (int i = @; i < N; i++) result += a[il*b[i];
m = new Message(id, true, result, false, null,
null, inRow, inColumn, 0);
}
3

public static void main(String[] args) {
new MatrixMultWorker(id, masterMachine, portNum);

}

This simple, sequential Java code allows that each
MatrixMultWorker component to obtain a local dot product from
two row-column vectors, for the position provided. Modifying
this code implies modifying the processing behavior of the whole
parallel software system, so the class MatrixMultManager can
be modified and used for other parallel applications, as long as
they are independent computations, and execute on a cluster or a
distributed memory parallel computer.

The utility of the coordination presented here goes beyond of a
parallel Matrix Multiplication. By modifying the sequential process-
ing section, each worker component is capable of processing other
problems, such as the N- Queens problem [6].

5 SUMMARY

The architectural patterns for parallel programming are applied
here along with a method for selecting them, in order to show how
to select an architectural pattern that copes with the requirements
of order of data and algorithm present in the Matrix Multiplica-
tion. The main objective of this paper is to demonstrate, with a
particular example, the detailed design and implementation that
may be guided by a selected architectural pattern. Moreover, the
application of the architectural patterns for parallel programming
and the method for selecting them is proposed to be used during
the coordination design and implementation for other similar prob-
lems that involve a distribution of work, executing on a distributed
memory parallel platform.

ACKNOWLEDGMENTS

The author wishes to acknowledge the important contribution to
the development of this paper to my shepherd for EuroPLoP 2021,
Ruslan Batdalov, as well as all the participants of the attendants to
the Writers’ Workshop Group 3, for their invaluable comments.

Applying Architectural Patterns for Parallel Programming: Solving a Matrix Multiplication

REFERENCES

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Distributed Programming.,
Addison-Wesley Longman, Inc., 2000.

[2] P.Brinch-Hansen Distributed Processes: A Concurrent Programming Concept., Com-
munications of the ACM, Vol.21, No. 11, 1978.

[3] K.M. Chandy, and S. Taylor An Introduction to Parallel Programming. Jones and
Bartlett Publishers, Inc., Boston, 1992.

[4] EW. Dijkstra Co-operating Sequential Processes, In Programming Languages (ed.
Genuys), pp.43-112, Academic Press, 1968.

[5] G.C.Fox, SW. Otto, and A.J.G. Hey Matrix algorithms on a hypercube I: matrix

multiplication., In Parallel Computing 4, pp.17-31, 1987.

S. Hartley Concurrent Programming. The Java Programming Language., Oxford

University Press Inc., 1998.

[7] C.A-R.Hoare Communicating Sequential Processes. Communications of the ACM,

Vol.21, No. 8, August 1978.

S.Kleiman, D. Shah, and B. Smaalders Programming with Threads, 3rd ed. SunSoft

Press, 1996.

B. Lewis and D.J.. Berg Multithreade Programming with Java Technology, Sun

Microsystems, Inc., 2000.

[10] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel Program-
ming, Proceedings of the 3rd European Conference on Pattern Languages of
Programming and Computing (EuroPLoP98), Kloster Irsee, Germany, 1998.

=

=

[9

EuroPLoP’21, July 7-11, 2021, Graz, Austria

[11] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An Architec-
tural Pattern for Domain Parallelism, Proceedings of the 7th Conference on Pattern
Languages of Programming (PLoP2000), Allerton Park, Illinois, USA, 2000.

[12] J.L. Ortega-Arjona The Shared Resource Pattern. An Activity Parallelism Architec-
tural Pattern for Parallel Programming, Proceedings of the 3rd European Conference
on Pattern Languages of Programming and Computing (EuroPLoP98), Kloster
Irsee, Germany, 1998.

[13] J.L.Ortega-Arjona The Manager-Workers Pattern. An Activity Parallelism Architec-
tural Pattern for Parallel Programming, Proceedings of the 9th European Conference
on Pattern Languages of Programming and Computing (EuroPLoP2004), Kloster
Irsee, Germany, 2004.

[14] J.L. Ortega-Arjona The Parallel Pipes and Filters Pattern. A Functional Paral-
lelism Architectural Pattern for Parallel Programming, Proceedings of the 10th
European Conference on Pattern Languages of Programming and Computing
(EuroPLoP2005), Kloster Irsee, Germany, 2005.

[15] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional Parallelism Archi-
tectural Pattern for Parallel Programming, Proceedings of the 6th Latin American
Conference on Pattern Languages of Programming and Computing (SugarLoaf-
PLoP2007), Porto de Galinhas, Pernambuco, Brasil, 2007.

[16] J.L. Ortega-Arjona Architectural Patterns for Parallel Programming: Models for
Performance Evaluation, VDM Verlag, 2009.

[17] J.L. Ortega-Arjona Patterns for Parallel Software Design, John Wiley & Sons, 2010.

	Abstract
	1 Introduction
	1.1 Architectural Patterns for Parallel Programming
	1.2 Parallel Software Design

	2 Problem Analysis – The Matrix Multiplication
	2.1 Problem Statement
	2.2 Specification of the Problem

	3 Coordination Design
	3.1 Specification of the System
	3.2 Functional description of components
	3.3 Structure and dynamics
	3.4 Description of the coordination
	3.5 Coordination analysis

	4 Implementation
	4.1 Coordination
	4.2 Processing components

	5 Summary
	Acknowledgments
	References

