
Refining the evaluation of the degree of security of a system built
using security patterns

Olga Villagrán-Velasco
Dept. of CS and Eng.

Universidad Nac. Autonoma de Mexico
Mexico

ovvingtel@gmail.com

Eduardo B. Fernández
Dept. of CS and EE

Florida Atlantic University
USA

fernande@fau.edu

Jorge Ortega-Arjona
Dept. of CS and Eng.

Universidad Nac. Autonoma de Mexico
Mexico

jloa@ciencias.unam.mx

Abstract
Evaluating the degree of security of a specific software
system is a difficult problem and many metrics have been
proposed. However, if the system has been built with a
methodology that uses patterns as artifacts, a systematic
and rather simple evaluation is possible and a metric has
been proposed for this evaluation: perform threat
enumeration, check if the patterns in the system can stop
the identified threats, and calculate the coverage of these
threats by the patterns. We refine here that approach by
considering the additional effect of the policies
(requirements) defined for the system and by using weights
for threats and policies.

1 Introduction
 A frequent practical problem is verifying if a system
built using some either a systematic methodology or ad hoc
ways, has reached some degree of security. Although there
are many proposed metrics, there are few widely accepted
metrics for security, and they are not easy to apply. This
makes it difficult to compare the products of specific
methodologies, to improve the security of a specific
system, or to improve the methodology used to develop the
product.

By security we mean the ability of a system to protect
the assets in its applications against attacks from external
and internal attackers. Security implies the provision of
confidentiality, integrity, availability, and accountability.
Some work tries to prove that systems have these
properties, usually applying formal methods. We consider
looking at how threats are handled as a more practical
approach and in this work we take this orientation. We are
not interested either in code-based measures, which do not
really measure the whole system security. Security is a
difficult problem, especially for complex applications,
which have many avenues for attacks that include all the

architectural levels of the system and where interactions
between units may hide threats.

In this work we consider systems designed using
patterns. A pattern describes a solution to a recurrent
software or systems problem in a given context, and when
the problems are security problems we call them security
patterns. Security patterns provide a way for guiding
system designers who are not experts on security to build
secure systems [6]. Good security design requires the
application of a set of principles [14], and the use of
patterns is a convenient way to implicitly apply security
principles even by people having little experience and/or
little security knowledge. There have been some attempts
to build catalogs of security patterns such as [6] and [17].
There are also several secure systems development
methodologies that use patterns [6, 19, 20].
 As a way to get a handle on the problem of security
evaluation, Ref. [18] has suggested designing systems that
exhibit measurable properties. Ref. [7] followed this idea
and proposed a way to perform this evaluation. They first
enumerate threats and verify if they all have been stopped
or mitigated by some security mechanism realizing a
security pattern. The percentage of threat coverage by
patterns is their security measure. We show here how this
approach can be refined by considering the effect of the
policies (which are in effect additional security
requirements) defined for the system and by using
estimated weights for threats and policies according to their
impact. We enumerate threats by considering all the actions
in each use case and analyze how they could be subverted
by attackers to reach their goals [6], but other threat
enumeration methods are also acceptable.

 We make clear that we are not defining a new
methodology to build secure systems and we are not
evaluating the effectiveness of a particular methodology to
produce secure systems, we just evaluate the degree of

 .

security of a system already built or being built. In earlier
work we have proposed one of those methodologies [20].

 Our contributions include:
• The refinement of a proposed metric for evaluating

system security based on threat enumeration and on
verifying if these threats are or not controlled in a
specific software architecture. The refinement is
based on considering the effect of policies and the
use of weights according to their impact. This
metric applies to systems built using security
patterns.

• An evaluation of this metric by analysis and an
example.

Section 2 presents background, while Section 3
introduces the refined security metric. Section 4 considers
threat enumeration. Section 5 shows the calculation of the
new metric, including an example. Section 6 evaluates the
refined metric. Section 7 discusses related work. We end
with conclusions in Section 8. An appendix describes the
full model of the example system.

2. Patterns and security development

methodologies
 A pattern is a solution to a recurrent problem in a
given context [2]. Patterns are described using a template
composed of a set of structured sections. A problem section
describes a general problem and forces that constrain and
define guidelines for the solution. The solution is usually
expressed using UML class, sequence, state, and activity
diagrams (although we usually don’t need all these
models). A set of consequences indicate what is the effect
of the pattern and how well the forces were satisfied by the
solution, including advantages and disadvantages of using
the pattern. An implementation section provides hints on
how to use the pattern in an application, indicating what
steps are needed and possible realizations. A section on
“Known uses” lists real systems where this solution has
been used previously. A section on related patterns
indicates other patterns that complement the pattern or that
provide alternative solutions. A pattern embodies the
knowledge and experience of software developers and can
be reused in new applications; carefully-designed patterns
implicitly apply good design principles [14]. Patterns are
also good for communication between designers and to
evaluate and reengineer existing systems. While initially
developed for software, patterns can describe hardware,
physical entities, and combinations of these, as well as non-
technical processes such as teaching a course or organizing
a conference. In particular, security patterns can suggest
solutions to designers who don’t have much security
experience. Because of their abstraction properties, security
patterns provide a way to apply a holistic approach to
system security and they are useful to handle large and

complex systems in a comprehensive and unified way. To
be effective a catalog is needed and a few exist [6, 17].
 A security methodology SM can be defined formally as
a couple: SM (SP; CF), where SP is a security process – the
activities and/or steps taken to secure a software system of
some type; and CF is a conceptual security framework,
consisting of the conceptual artifacts used by the
methodology's process, that must include a set of security
solutions (defensive artifacts), as well as a set of threats
(offensive artifacts) [20]. The survey in [19] identified
several methodologies that use security patterns as main
artifacts.

3. A refined security metric
 Ref. [7] proposed a metric as the quotient of the
number of threats controlled by the system patterns over the
total number of threats. We now try to make it more precise
by adding the effect of institution policies. We assume the
existence of system documentation indicating the security
and policy patterns that have been used in building the
system.
 Policies include general enterprise policies, security
policies, security regulations, and industry standards. These
policies are additional requirements and can be represented
as Requirement patterns (RPs), which have a similar
structure as security patterns. RPs can have three priorities:

 Low (value 1). Satisfying this policy is desirable.
 Medium (value 2). Satisfying this policy is important.
 High (value 3). This policy must be satisfied.

 We use as example a financial institution described in
the Appendix, its use cases are shown in Fig. 4. The
policies for the use case “Check Trade Information” (Fig.
1) could be:
RP1: All the sessions initiated by the Auditor must be
logged (low priority)
RP2: All the actions performed by the Auditor during a
session must be logged (high priority)
RP3: An auditor can only inspect the orders assigned to her
(high priority).

 Fig. 1. Use case “Check Trade Information”

 3

We use a UML activity diagram to describe the activities in
a use case (Figure 2).
For this use case its security patterns (see Fig.5) could be:
Pat1: RBAC
Pat2: Authenticator
Pat3: Security Logger / Auditor

Fig. 2. Activity diagram of use case “Audit Trade orders”

4. Enumerating threats

This process is usually performed during the
requirements and the design stages of the software
development cycle and it analyzes each activity in the
activity diagram of a use case to see how it could be
subverted by an attacker to reach her goals [1]. The process
requires to consider the activities in the use cases of the
complete system. If this process has not been done in the
system under analysis we can perform it as part of this
evaluation. We show an example in the next paragraph.

 Threat enumeration is a basic step in any secure system
development methodology. This analysis results in a set of
threats and since the use cases are all the ways to interact
with a system we can enumerate threats systematically
(although we cannot prove that we have found all of them).

Secure development methodologies then consider which
policies can stop or mitigate these threats and realize the
policies with patterns. This process requires developers to
conjecture possible attacks to different assets or parts of a
system, to assess their impact and likelihood, and to
determine how they could potentially be stopped or
mitigated.
 Because of the large number of threats that may
appear as attacker goals, many of which may not be
significant, it is important to reduce their number by
performing a risk analysis. In this process threats must be
ranked by impact and filtered or given weights before
applying them in the calculation of SC. Note that the
OWASP or CVSS scores are not useful here because they
only consider design or code aspects. This means that
designers must estimate the impact of threats. A simple
approach is to assign three levels to threats:

Low. The threat has a low impact on the institution (1)
Medium. The threat has a significant impact in the
institution (2).
High. The threat has a serious impact on the institution (3).

 These criteria let us give a weight to each threat. A
threat may have a higher impact in one system with respect
to another depending on its context; e.g., getting the
information of a bank customer is different from getting the
tweets of a participant in a social network. The fact that the
goals of the attacker are defined at a higher level than
design aspects make these impacts easier to estimate.

Fig. 3 shows the threats for the use case “Audit Trade

Orders in a financial institution”. For the actor Auditor we
can identify the following threats:

Inspect Order:
T11 Low impact. Deny to have inspected an order
T12 High impact. Copy information from orders
Generate Report:
T21 High impact . Ignore the policies that should
have been applied in an order
T22 High impact. Illegal Dissemination
of information from reports
T23 Medium Impact. Read information from other
reports.

5. Calculating the new metric

5.1 Effect of threats

 .

 Each threat has a weight defined by:

Figure 3. Activity Diagram for Use Case "Audit Trade Orders”
showing threats as attacker goals.

Where α is the weight of the threat, imp is the impact of the
threat, and M is the total number of identified threats. To
calculate the weight of all the mitigated threats we have:

Where ωame is the mitigated weight of the system, α is the
weight of each threat, and vpi is the pattern value for this
threat (1 if it can control it).

 As an example, Table 1 shows the calculation for the
use case shown earlier. We can see that since this system
had a defense (security pattern) for all its identified threats

its degree of security is 1. The patterns required here to stop
these threats are: Pat1=Authorizer (RBAC), Pat2=
Authenticator, Pat3=Security Logger/Auditor.

5.2 Effect of requirements

 If there is a pattern that satisfies the policy we assign a
value v =1; if not v = 0.

Table 1 Effect of threats on security

Each policy (security requirement) has a system

priority of:

Where µ measures the importance of this policy in the

system, prio is its priority, and N is the total number of
policies defined for the system.

The weight of all the security policies is then:

Where ωreq is the weight of all the policies

(requirements) in the system, µj is the importance of each
policy, and vpj is the value assigned to the presence of the
pattern corresponding to each µj. Table 2 shows the result
of this calculation for the running example.

Again, the result is 1 because we satisfied all the

prescribed policies using the security patterns in the final
system. The total degree of security of the system (ss) is
then:

 5

Table 2. Satisfied requirements

This metric combines the effect of handling the

identified threats of the system (ωame) with the degree of
fulfilling the institution requirements (ωreq). The metric ss
takes values between 0 and 1. Clearly, we want the system
to be close to 1. Depending on the type of application, we
can accept values relatively low, say 0.5. In critical or
important applications we need to be more strict and
require values close to 1. Since we assume that we have
access to the documentation of the system we can analyze
the system design and see where new patterns need to be
added to make the system stronger.

6. Analysis of the new metric

 Savola presented criteria to evaluate the quality of a security
metric [16], they were used in [7] and we also apply them to our
metric. He found four basic quality criteria for these metrics:

• Correctness—threats are a basic quality criteria for
security, mitigating them will improve the security of
the system. Satisfying the requirements will also
improve its security.

• Measurability—we can produce a reasonably complete
list of threats and count the corresponding security
patterns that can cover them. Counting the requirements
is trivial because they are explicit.

• Meaningfulness—applying defenses against the
identified threats will make the system more secure.
Two sub-aspects of meaningfulness are:

o Comparability—It is now possible to compare two
systems based on their threat and policy coverage
because we can obtain numerical values.

o Progression. Adding security patterns we can
improve security. Each added security or requirement
pattern may improve security.

• Usability—the method for threat enumeration and the
analysis of the use of patterns are rather simple
approaches that do not require designers to be security
experts.

Since we are looking at models we cannot say much about code
vulnerabilities. However, we claim that with wise use of
compartmentalization we can build systems where an attacker can
get some data from a compromised section but not reach more
valuable information. We cannot perform actual measurements to
evaluate a design either, we can only indicate that specific threats

cannot happen; that is, meaningfulness is high. These measures
can be applied both to systems under development or to systems
already built. In the second case we need to identify in the system
the patterns that have been applied in its construction, either
explicitly or implicitly. Applying these measures while a system
is being built can help the designers selecting what patterns they
need to add. If the process is iterative the designers can try
different defenses to improve the metrics.

7. Related work
 There is a variety of proposed measures for security.
We discuss the most relevant to our work, starting with
surveys. [12] is a survey of security metrics describing the
state of the art up to 2010. They emphasize standards and
indicate that security metrics are not very developed and
need more work. Another survey [10] considers aspects of
security measurement and possible research areas; it
summarizes the state of the art up to 2009. [15] and [18]
discuss measuring security in general; [18] classifies
measures into computational-complexity metrics,
economical/biological metrics, and empirical metrics. An
important direction is represented by the concept of attack
surface [11]. This measure counts the ways through which
an adversary can penetrate the system. It does not consider
the semantics of the application or the quality of the design,
only its input/output properties.

 Similarly to us, [9] also takes advantage of patterns to
evaluate security. It associates security metrics to patterns
and aggregates the measures of a system to evaluate its
security. Their metrics are statistical measures based on
system events, which implies the need to measure the
actual system behavior. [8] quantifies the security level of a
system based on its implemented/missing security patterns
but their method uses a totally different (and more
complex) approach.

There are several approaches to measure
vulnerabilities in a specific system, e.g., [4, 5]. They only
can measure a specific system implementation, they are not
a measure of the quality of the design but they can
complement our metrics by indicating where a pattern can
be added to remove a vulnerability.

[13] proposes a security metric based on arguments.

The metric relies on its degree of confidence in security
arguments supporting a security goal. Confidence is based
on appropriateness, sufficiency, and trustworthiness. It uses
the CWE lists [5] to indicate where to apply the arguments.
The problem is that a system may have many
vulnerabilities and each one requires an argument.

 .

The Common Criteria (CC) approach evaluates
specific products according to protection profiles that
define their expected requirements [3]. The Common
Criteria provides assurance that the process of
specification, implementation and evaluation of a product
has been conducted in a rigorous, standard, and repeatable
manner at a level that is commensurate with the target
environment for use; however, it does not try to measure
the degree of security of the evaluated product or the
security of all the products of some methodology.

 Some secure systems methodologies use security
attributes as objectives and they use formal methods to
prove that a system has a given degree of confidentiality or
integrity. However, they often require unrealistic
assumptions and do not consider implementation aspects.
Their standard definition of security is the provision of
properties such as confidentiality, integrity, availability,
and accountability. However, these attributes are not
directly measurable and proving that a system exhibits
these properties is a very difficult problem for large and
complex systems. We believe that a practical measure of
security must be based on considering the threats to the
system. In this case, instead of looking for abstract
properties we need to find ways to stop the threats we have
identified. The quality of the development methodology
obviously has an effect on the security of its products; a set
of criteria to evaluate this quality is given in [21].

8. Conclusions
 We have presented a security metric which is simpler
than earlier proposals and refines a similar type of method.
While we require that the system has been built using
patterns, even if the product software was not implemented
using object-oriented methods it is still possible to define
use cases (complete user interactions with the product; e.g.
open account). Then each activity in a use case can be
analyzed to see what are the goals of the attacker and his
threats. Further, if no patterns were used in building a
product, it is possible to discover them as abstractions of
the security mechanisms that are actually implemented in
the product.

 Since a design can be implemented in many ways, this
security evaluation applies to all its possible
implementations. However, we are evaluating the design of
a specific system, by showing that it has the correct
patterns; however, it is possible that the patterns were not
applied correctly. This can only be verified by analyzing or
testing the code. Also, it is possible that although we have
the correct patterns correctly implemented, there are still

vulnerabilities in the code. An attacker, in this case could
compromise parts of the system but not the complete
system because a design based on patterns can provide a
strong design structure. An interesting possibility is to
consider the effect of safety patterns to define a metric
useful for cyber-physical systems.

 Further validation of these ideas requires applying them
to a real system. We leave this as a future work.

References
[1] F. Braz, E.B.Fernandez, and M. VanHilst, "Eliciting security
requirements through misuse activities" Procs. of the 2nd Int. Workshop
on Secure Systems Methodologies using Patterns (SPattern'07). Turin,
Italy, September 1-5, 328-333.
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal.
Pattern-Oriented Software Architecture: A System of Patterns, Volume 1.
J. Wiley, 1996.
[3] Common Criteria Portal, last accessed February 22, 2015.
https://www.commoncriteriaportal.org/
[4] Common Vulnerabilities and Exposures, https://cve.mitre.org/
[5] Common Weakness Enumeration (CWE), https://cwe.mitre.org
[6] E.B.Fernandez, “Security patterns in practice: Building secure
architectures using software patterns”. Wiley Series on Software Design
Patterns. 2013
[7] E.B.Fernandez, N. Yoshioka, H. Washizaki, “Evaluating the degree of
security of a system built using security patterns”, 13th International
Conference on Availability, Reliability and Security (ARES 2018),
Hamburg, Germany, Sept. 2018
[8] S.T. Halkidis, N. Tsantalis, “Architectural risk analysis of software
systems based on security patterns”, IEEE Trans. On Dependable and
Secure Computing, vol. 8, No 3, July-Sept. 2006, 129-142.
[9] T Heyman, R Scandariato, C Huygens, W Joosen, “Using security
patterns to combine security metrics”, Availability, Reliability and
Security, 2008. ARES 08.
 [10] W. Jansen, Directions in Security Metrics Research, NISTIR 7564,
April 2009. http://csrc.nist.gov/publications/nistir/ir7564/nistir-
7564_metrics-research.pdf
[11] K. Manadhata, J.M.Wing, “An attack surface metric”, IEEE Trans. on
Soft. Eng., vol. 37, No 3, May/June 2011, 371-386.
[12] D Mellado, E. Fernández-Medina, M Piattini, A comparison of
software design security metrics, Procs. of the Fourth European
Conference on Software Architecture, 2010, 236-242
[13] B.D.Rodes, J.C.Knight, K.S.Wasson, “A security metric based on
security arguments”, WETSoM’14, June 2014, Hyderabad, India, 66-72.
[14] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems”, Procs. of the IEEE, vol. 63, No 9, Sept.1975, 1278-
1308.
[15]W.H.Sanders, “Quantitative security metrics: Unattainable Holy Grail
or a vital breakthrough within our reach”, IEEE Security&Privacy,
March/April 2014, 67-69.
[16] Reijo M. Savola: “Quality of security metrics and measurements”.
Computers & Security 37: 78-90 (2013)
[17] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns: Best
Strategies for J2EE, Web Services, and Identity Management, Prentice
Hall, Upper Saddle River, New Jersey, 2005.
[18] Sal Stolfo, Steven M. Bellovin, and David Evans.”Measuring
security”. IEEE Security & Privacy, 9(3):88, May--June 2011.
[19] A.V. Uzunov, E.B. Fernandez & K. Falkner (2012), "Securing
distributed systems using patterns: A survey", Computers & Security,
31(5), 681 - 703. doi:10.1016/j.cose.2012.04.005
[20] Anton Uzunov, E. B Fernandez, Katrina Falkner, “ASE: A
Comprehensive Pattern- Driven Security Methodology for Distributed
Systems”, J. of Comp. Standards & Interfaces, Vol. 41, Sept. 2015, 112-13
[21] Anton Uzunov, E.B.Fernandez, Katrina Falkbeer, “Assessing and
Improving the Quality of Security Methodologies for Distributed

 7

Systems”, J. of Softw.Evolution and Process, August 2018,
https://doi.org/10.1002/smr.1980

Appendix
We use a financial institution as a running example. Figure
4 shows its main use cases, while Figure 5 shows its class
diagram. This model represents the facts that Customer
have Accounts in which they can perform Transactions.
There are two types of Customers, Owners are the entities
responsible for the accounts, AccountUsers are the
operational users of the accounts. The class diagram
indicates in blue the security patterns that were added in
order to counter the identified threats (Using the approach
of [20]). Auditors prepare reports after inspecting Orders.

 Fig.4 Use case diagram for a financial institution.

Fig. 5. Class diagram including security patterns for the financial institution (the patterns are described in [6])

