
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/282293672

An	Agglomeration	Strategy	for	the	Parallel
Processes	Mapping	onto	a	Distributed
Computing	Architecture

Conference	Paper	·	March	2015

DOI:	10.1007/978-3-319-32243-8_14

READS

8

2	authors:

Juan	Carlos	Catana	Salazar

Universidad	Nacional	Autónoma	de	México

3	PUBLICATIONS			0	CITATIONS			

SEE	PROFILE

Jorge	L.	Ortega-Arjona

Universidad	Nacional	Autónoma	de	México

90	PUBLICATIONS			137	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Jorge	L.	Ortega-Arjona

Retrieved	on:	12	May	2016

https://www.researchgate.net/publication/282293672_An_Agglomeration_Strategy_for_the_Parallel_Processes_Mapping_onto_a_Distributed_Computing_Architecture?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/282293672_An_Agglomeration_Strategy_for_the_Parallel_Processes_Mapping_onto_a_Distributed_Computing_Architecture?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Juan_Catana_Salazar?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Juan_Catana_Salazar?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universidad_Nacional_Autonoma_de_Mexico?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Juan_Catana_Salazar?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Jorge_Ortega-Arjona?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Jorge_Ortega-Arjona?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universidad_Nacional_Autonoma_de_Mexico?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Jorge_Ortega-Arjona?enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ%3D%3D&el=1_x_7

An Agglomeration Strategy for the Parallel
Processes Mapping onto a Distributed

Computing Architecture

Juan C. Catana-Salazar1 and Jorge L. Ortega-Arjona2

1 Posgrado en Ciencia e Ingenieŕıa de la Computación
Universidad Nacional Autónoma de México

j.catanas@uxmcc2.iimas.unam.mx
2 Departamento de Matemáticas, Facultad de Ciencias

Universidad Nacional Autónoma de México
jloa@ciencias.unam.mx

Abstract. Parallel processes, by nature, tend to interchange a high
amount of data between them to maintain a highly cohesive system.
Nevertheless, when a parallel system is executed on a distributed com-
puting architecture, communications over a network and the time spent
by them become very important.
This paper introduces an strategy to agglomerate and allocate parallel
processes onto a distributed computing architecture. The main goal of
the strategy is to decrease the amount of remote communications and
increase the amount of local communications, as a result the performance
of the parallel system is favored, just by allocating processes “carefully”
over the distributed nodes.

Keywords: Parallel Process, Mapping Problem, Networks Flows

1 Introduction

A parallel system is a set of processes that communicate each other and collab-
orate to accomplish a common goal. A parallel system not only have multiple
instruction flows executing at the same time, but also multiple data flows be-
tween processes [7].

A parallel system, by nature, involve problems like synchronization and race
conditions, coupled with the mapping (allocation or assigment) problem and load
balancing problem. All factors mentioned before affect directly the performance
of the system [1, 7, 9].

A parallel system can be classified depending on its own communications
or synchronization needs. The granularity gpi

is a qualitative measure rate be-
tween processing time tproc and communication time tcom of a process pi[5], see
equation 1.

gpi
=

tproc
tcom

(1)

2 An Agglomeration Strategy

Three types of granularity are derived from the relation between processing
and communication, which are shown next:

1. Fine granularity: Says a process is fine grained if tcom > tproc.
2. Medium granularity: A process is medium grained when tcom ' tproc.
3. Coarse granularity: Says a process is coarse grained when tcom < tproc.

Any parallel machine or multiprocessor system must implement communi-
cations via one or more memory blocks. There is a broad variety of memory
architectures which mainly differs on the access method[9]. Two of them are
presented in the following:

1. Shared memory: Memory is directly accessed, commonly through a bus,
by every processor in the system. Every processor has a common “snapshot”
of the shared memory[7].

2. Distributed memory: There are many memory blocks hosting many pro-
cesses. Processes hosted in a memory can only “see” the local memory. Pro-
cess needs a network channel to interchange data with other processes hosted
on different memories[7, 9].

The main difference between memory architectures is the communication
time, in the shared memory architecture communication time is fast and uni-
form in access time, due to the “closeness” between memory and processors. On
the other hand, in a distributed memory architecture communication time is
variable and depends on external characteristics related with the network chan-
nel, network protocols etc[7].

For all communication cij between two processes pi and pj of a parallel
system P , such that both are hosted at the same memory block, then, is added
a constant communication time tcons to the execution time ET (P) of the parallel
system P . On the other hand, for all communication ckl between two processes
pk and pl, such that both are hosted on different memory blocks, then, is added
a variable communication time tvar to the execution time ET (P), where:

tcons << tvar (2)

The execution time ET (P) of a parallel system P can be seen (in a sim-
plified way) as, the processing time PT (P) plus the time spent by the whole
communications CT (P) of the system.

Let cl(P) be the amount of local communications of the parallel system P .
Let cr(P) be the amount of remote communications of the same parallel system.
Then CT (P) is equal to cl(P) constant time communications plus cr(P) variable
time communications. See equation 3.

ET (P) = PT (P) + cl(P) ∗ tcons + cr(P) ∗ tvar (3)

This paper presents an strategy which main goal is to maximize local com-
munications and minimize remote communications among processes of a parallel

An Agglomeration Strategy 3

system, considering its execution onto a distributed memory architecture with
k processing nodes.

In section 2 are introduced a set of definitions to help to establish a few tools
needed by the strategy proposed in this work. Section 3 describes the strategy
a in detailed way and shows additional considerations. Section 4 shows a case
study where is applied the proposed strategy in a real life case. Finally section
5 shows the conclusions of this work.

2 Backgrounds

In this section are presented two main themes, a parallel software methodology
and a miscellaneous definitions of network flows.

2.1 Parallel Software Methodology

There are many parallel software methodologies proposed in the literature to
design software, the common goal of every methodology is to have an easy way to
translate a sequential problem into a parallel system. Also is desired to consider
factors such as performance and efficiency.

In the following, are presented four common steps that can be found in every
parallel software methodology:

1. Partitioning or Decomposition. The partitioning stage involves to divide
a general problem into a set of independent modules that can be executed
in parallel. That does not implies to have a number of processes same as the
number of processors, however, this stage is concerned about to express the
parallelism in every opportunity, no matter how many resources the system
has. The partitioning of the problem must be enough to decrease the com-
munication latency between processes[4, 5].

2. Comunication. Parallel modules, generated by the previous stage, can be
executed concurrently but not independently. The processing of every par-
allel task is linked to data provided by other tasks, so that every data needs
to be transferred between parallel tasks in order to accomplish the global
task of the system[1].
Every message sent involve a physical cost, so that is desired to avoid unnec-
essary communications. Local communications implies two geographically
close communicating processes. In contrast, remote communications implies
two processes that communicates through a network medium[1].

3. Agglomeration and Granularity Adjustment. The agglomeration stage
is responsible for control the granularity to increase the processing or de-
crease the communication costs. The main idea is to use the locality, i.e., to
group some tasks will help to reduce the communications over the network[4].
The main goals of the agglomeration stage are: workload balancing, decrease
of communications costs, and decrease of the allocation management delay[1,

4 An Agglomeration Strategy

5].

4. Mapping. The parallel modules must be mapped or allocated into the pro-
cessors to be executed. The mapping problem consist of how to assign process
into processors, also it is defined as the problem of maximize the number of
communicating processes pairs allocated in directly connected processors[2,
4]. The allocation can be specify statically by a load balance algorithm or
can be determined in execution time[3].

2.2 Network Flows

A network flow Gnf = (V,E) is a strictly directed graph, where each edge
a = (u, v) ∈ E has a capacity c(a) ≥ 0. If E has an edge a = (u, v), then there
is not an edge ar = (v, u) in the opposite direction[6].

A network flow has two special vertices, one source vertex s, and one target
vertex t. The source vertex is responsible of generate flow to be route through
the edges of the network[3, 6].

Assume that, ∀ v ∈ V there is a path s → v → t, such that the graph is
connected. Note that v ∈ V − {s} has at least one incident edge, then |E| ≥
|V | − 1[6].

There are two major problems in this type of graphs, which are presented
below:

Let A and B be two subsets in V , then:

1. Min Cut Problem:
An s − t cut, where s ∈ A and t ∈ B, is a partition of the set V into two
groups V = {A,B}.
The capacity of a cut is defined as c(A,B), which is equal to the sum of
capabilities of each edge e ∈ E that goes out from A [3].

cap(A,B) =
∑

e goes out A

c(e) (4)

The minimum cut problem refers to find an s − t cut, such that c(A,B) is
the minimum possible[3].

2. Max Flow Problem:
An s− t flow is defined as a function that satisfies two properties[3]:
(a) Capacity: All assigned flow to an edge e should be less or equal than

its capacity c(e).

0 ≤ f(e) ≤ c(e), ∀ e ∈ E (5)

(b) Preservation: The total flow entering to a vertex v ∈ V −{s, t}, should
be equal to the total flow coming out from it.∑

e goes to v

f(e) =
∑

e′ goes out v

f(e′), ∀ v ∈ V (G)− {s, t} (6)

https://www.researchgate.net/publication/3047738_On_the_Mapping_Problem?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==

An Agglomeration Strategy 5

The maximum flow problem refers to find an s − t flow of maximum value,
with no infringement of the capacity and preservation properties[3, 6].

Every edge e = (u, v) in a network flow Gnf has a residual edge er = (v, u)
associated to it, such that c(er) = f(e). The residual edge is allowed to transfer
flow directed to the target vertex t, so that when a flow g pass through a residual
edge er then f(e) = f(e)− g.

It turns out that the min cut problem and the max flow problem are closely
related, and it is shown by the next lemma.

The net flow across a cut (A,B) is the sum of the flow on its edges from A
to B, minus the sum of the flow on its edges from B to A.

Lemma 1 (Flow value). Let f be any flow assigned to edges of E. Let (A,B)
any s − t cut from the network flow. Then, the net flow sent across the cut is
equal to the value of f [3].

val(f) = net(f) =
∑

e goes out A

fout(e)−
∑

e enters to A

fin(e) (7)

By the previous lemma is easy to see the duality of this problems, such that
the maximum value of a flow f , across a (A,B) cut, should be less or equal than
the minimum cut’s capacity on the network.

val(f) = net(f) across (A,B) ≤ c(A,B) (8)

There exist an algorithm to find the max flow and the min cut over a network
flow called Ford-Fulkerson algorithm. The algorithm is based on one important
concept called augmenting path. An augmenting path is a simple directed path,
from the source vertex s to the target vertex t, with positive capacities edges,
such that, the flow over the network can be increased[6].

Theorem 1. Augmenting Path Theorem
A flow f , which is obtained by the Ford-Fulkerson algorithm, is maximum if and
only if, there is no more augmenting paths in the network flow[6].

As a corollary by previous theorem and lemmas:

Theorem 2. Maximum Flow Minimum Cut Theorem
Let f be a s − t flow such that there is no an augmented path in the graph G.
Let (A,B) be an s − t cut in G such that net(f) = c(A,B). f is the maximum
flow value in G, and c(A,B) is the minimum capacity for every s − t cut in G
[6].

https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==

6 An Agglomeration Strategy

3 The Agglomeration Problem

As mentioned in the Agglomeration and Granularity Adjustment stage of the
methodology presented in section 2.1, is in this step where communication costs
of a parallel system can be addressed. To agglomerate a set of processes is neces-
sary to group some of them in accordance to a given criterion, for the purposes
of this work the main criterion is the minimization of communication costs. The
agglomeration problem can be reduced into a more general problem called graph
partitioning problem, most of this problems are known to be NP-Hard problems,
meaning that there is no an efficient way to solve them, instead, are proposed
some heuristics and approximation algorithms[11].

Let G = (V,E) be a graph with weighted edges, such that |V | = n. The
(k, v)-balanced partitioning problem, for some k ≥ 2, aims to decompose G
into subsets at most size v n

k , while the total weight of the edges connecting
two vertices from different components are minimum[11]. Particularly, the k-
balanced partitioning problem is shown as a NP-Complete problem in [11]. Even
(2, 1)-balanced partitioning problem, which seems to be more easy, is also an
NP-Complete problem[8, 10].

The minimum set of edges to disconnect a graph into two components can be
efficiently found by the Ford-Fulkerson algorithm[3]. Note that the minimum cut
set can isolate even just one vertex from the graph, resulting in a very unbalanced
partition, but the balanced partitioning is not the propose of this work.

Consider the network flow shown in figure 1. Such graph has a minimum cut
shaped by edges (s, 2) y (3, 5) of value 19.

Fig. 1. Network Flow. Grey shapes represent the two partitions (A,B) computed by
the Ford-Fulkerson algorithm.

Note that edge (2, 3) is incident to partition A, recalling cut’s capacity defi-
nition says:

“The capacity of a cut is equal to the sum of capacities of the edges
pointing outward the partition.”

Remark 1. By definition the capacity of a cut does not consider any edge in-
cident to partition A, but in the context of parallel processes such edges are
communications among processes of the system, such that, the flow transmitted
by those edges must be considered for the agglomeration step.

https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/220695890_Computers_and_Intractability_A_Guide_To_The_Theory_of_NP-Completeness?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==

An Agglomeration Strategy 7

therefor it can be say that:

Definition 1. A minimum communication cut, for the parallel processes ag-
glomeration problem, is the sum of capacities of edges directed to partition A
plus the sum of capacities of edges directed to partition B.

Taking into account the remark 1, it is easy to see that in figure 1 the value
of the cut turns into a cut of value 21. If it is found a minimum communication
cut over the network flow shown in figure 1, there is one of value 20 given by the
edges (2, 4), (5, 4) y (5, t) (see figure 2).

Fig. 2. Minimum communication cut from the network flow shown in figure 1.

3.1 The minimum communication cut algorithm

In the following is presented the algorithm 1 to compute the minimum commu-
nication cut over a network flow G.

Algorithm 1 Minimum Communication Cut(G, s, t)

mincut(G)← Ford-Fulkerson(G, s, t)
while ∃ e ∈ mincut(G) incident to A do

for all e ∈ mincut(G) incident to A do
G← G− e
G← G + einverse

end for
mincut(G)← Ford-Fulkerson(G, s, t)

end while

The algorithm 1 takes the Ford-Fulkerson algorithm as a black box to com-
pute a minimum cut mincut(G) over the network G. Once the minimum cut is
known, algorithm 1 checks if there is at least one edge e in mincut(G) incident
to partition A, in such case, algorithm 1 exchanges e by its inverse einverse. The
algorithm finishes when a minimum cut with no edges incident in partition A is
computed.

8 An Agglomeration Strategy

Note that reversing an edge whose flow is greater than zero may cause the
violation of conservation and capacity properties. Because of this, is important
to prove the next lemma.

Let G = {V,E} be a network flow. Let mincut(G) = {e1, e2, ..., ek} be the
minimum set of edges to disconnect G into two subsets A,B ⊂ V , such that
every edge in mincut(G) goes from partition A to partition B or viceversa.

Lemma 2. Every edge e = (y, x) ∈ mincut(G) where y ∈ B y x ∈ A has a flow
assigned f(e) = 0.

Proof. By contradiction suppose that f(e) > 0.
Note that mincut(G) is a minimum cut of G, then for all edge e′ ∈ mincut(G)

that goes from partition A to partition B has a flow f(e′) = c(e′), otherwise it
would not be a minimum cut.

W. l. g. suppose there is at least one edge e that goes from partition B to
partition A, which by assumption has flow f(e) > 0, therefor, there is a residual
edge er assigned to e with c(er) > 0, thus there are two cases:

1. There is at least one path Ps−t that uses er to transfer flow from the vertex
s to vertex t, thus mincut(G) is not a minimum cut of G.

2. There is no a path Ps−t that uses er to transfer flow from the vertex s to
vertex t, meaning that there is one mincut(G)′ such that c(mincut(G)′) <
c(mincut(G)).

Any case contradicts the assumptions ⇒⇐.

4 The Agglomeration Strategy

In this section are presented the three steps of the proposed strategy, and are
described some additional considerations.

4.1 Building the Software Graph

Let consider the parallel processes defined in the decomposition stage of the
methodology presented in section 2.1, such processes can be represented as a
set of nodes or vertices Vsw. Let consider now the set of relations between two
process Esw established in the communications stage 2.2 from the same method-
ology. A software graph is defined as Gsw = {Vsw, Esw}, which is an abstract
representation to model a parallel system structure.

Let pi, pj ∈ Vsw be two processes. If pi establish a directed communication
channel to pj , then there is an edge eij in the set of edges Esw.

Esw = Esw ∪ {eij} | eij = (pi, pj) (9)

since eij has an associated capacity c(eij) where:

c(eij) = n, | n ∈ N+ (10)

An Agglomeration Strategy 9

An edge capacity c(eij) is equal to the sum of data units interchanged by
processes pi and pj during execution time. The amount of communications are
totally dependent by the nature of the parallel system, and if the amount of com-
munications can be well defined and represented as a positive integer, otherwise
has no sense to agglomerate by using this strategy.

4.2 Transformation to a Network Flow

In order to transform the software graph into a network flow, is necessary to
classify the vertices of Gsw considering the following criterion:

– Initial Vertices or Flow Generators: Most of them are main processes
which generates and sends information to other processes in the system.
Sometimes they communicate each other or do some processing.

– Dealers or Processing Vertices: They receive data from flow genera-
tor vertices. Usually they do some processing but its main function is to
distribute data across end vertices.

– End Vertices: End vertices represent slave processes, which main purpose
is to do processing tasks with data received from initial or dealer vertices.
Sometimes they communicate each other.

Let Gsw = {Vsw, Esw} be the software graph. Let Gnf = {Vnf , Enf} be the
network flow, such that Gnf is directed and has no parallel edges.

1. Let s, t be two vertices, s be a source vertex and t be target vertex, then:

Vnf = Vsw ∪ {s, t} (11)

2. Vertex s should have a directed edge eg for every generator vertex vgen in
the software graph, such that:

Enf = Esw ∪ {eg} | eg = (s, vgen) ∀ vgen ∈ Vsw (12)

The capacity c(eg) of every edge eg = (s, vgen), should be equal or greater
than the sum of capacities of every edge that goes out from vgen.

c(eg) ≥
∑

c(eout) | eout = (vgen, u), ∀ eout ∈ vgen (13)

3. For every end vertex vf , there is a directed edge ef ending at t:

Enf = Esw ∪ {ef} | ef = (vend, t), ∀ vend ∈ Vsw (14)

The capacity c(ef) of every edge ef = (vfin, t), should be equal o greater
than the sum of capacities of every edge that ends in vend.

c(ef) ≥
∑

c(ein) | ein = (u, vgen), ∀ ein ∈ vend (15)

10 An Agglomeration Strategy

4.3 Applying the Algorithm

Once the network flow is builded, is necessary to apply a partitioning algorithm
over Gsw to obtain the agglomeration of processes. The algorithm 1 obtains a
bipartition through the minimum communication cut, which holds thats is the
minimum set of edges with less weight to divide the graph into two subsets.

The algorithm 1 takes as input parameter a network flow G, one source vertex
s, and one target vertex t. The algorithm 1 gives as output a couple of subgraphs
A and B.

The algorithm 1 can be applied recursively over the subgraphs A and B
in order to obtain k agglomerations of the parallel processes, thereby can be
assigned each agglomeration directly over the k processing units or nodes of the
distributed system.

5 Case Study

If a matrix is symmetric and positive defined, then it has an special triangular
decomposition. symmetric and positive defined matrices are very special and they
appear very frequent in some applications. It turns that this types of matrices
has an special factorization method called Cholesky decomposition, which it two
times faster than other alternatives to solver linear system equations[11].

Due to symmetry of this matrices it is clear enough to work only at one
side, say the inferior one. Figure 3 shows the data dependency to compute the
Cholesky decomposition in a 4x4 matrix.

Fig. 3. Data dependency for the Cholesky decomposition on a 4x4 matrix. Gray cells
denote an element already computed at that position. Arrows denote the need to
transfer information between cells.

An Agglomeration Strategy 11

Particularly for this instance the problem is decomposed by cells, meaning
that every cells from the matrix represents a parallel process. Arrows pointing a
cell represent a communication necessity. For this problem the amount of data
transfer on each edge is one unit. Figure 4 shows the software graph to model
de communications structure of the parallel system.

Fig. 4. Software graph for a cell decomposition on a 4x4 matrix.

The total amount of communicant between two processes of the system shown
in figure 4 is 20 units.

Based on the vertex classification presented in section 4.2, is easy to see that
vertex 1 is the only one flow generator vertex, on the other hand vertex 10 is the
only one end vertex, so that for this example is not necessary to add the special
vertices s and t.

Consider the network flow shown in figure 4. For the agglomeration stage,
consider the execution of the parallel system onto a cluster of 4 distributed
nodes. Figure 5 shows the partition obtained by the algorithm 1 executed over
the network flow shown in figure 4. The local and remote communication costs
of the agglomeration are shown in the following:

A : cl = 0, cr = 3

B : cl = 0, cr = 0

C : cl = 0, cr = 1

D : cl = 9, cr = 7

Such that, the communication time CT of the agglomeration shown in figure
5 is:

CT = 9 ∗ tconstant + 11 ∗ tvariable (16)

In order to establish a benchmark for network flow based strategy is needed
to agglomerate or map the same parallel system but with a different strategy.

12 An Agglomeration Strategy

Fig. 5. Agglomeration of the network flow of the Cholesky decomposition problem.

For this purpose consider the well-known strategy called Round Robin, which is
widely used by most operating systems for scheduling processes.

The Round Robbin mapping proceeds assigning the process 1 to agglom-
eration A, process 2 is allocated to agglomeration B, process 3 is allocated to
agglomeration C, process 4 is allocated to agglomeration D, and in a circular
way the next process is allocated once again to agglomeration A. This assign-
ment is affected consecutively until the processes are completely assigned. Figure
6 shows the agglomeration into 4 group based with the Round Robbin technic.

The communications costs of the agglomerations shown in figure 6 are:

A : cl = 1, cr = 5

B : cl = 0, cr = 4

C : cl = 0, cr = 5

D : cl = 0, cr = 5

The total amount of communications time is:

CT = 1 ∗ tconstant + 19 ∗ tvariable (17)

6 Conclusiones

The performance of a parallel system is inherently affected by communications
between processes. The communication time added to the execution time of the

An Agglomeration Strategy 13

Fig. 6. Agglomeration affected with the round robin technique

system is proportional to the amount of data exchanged by the parallel system
and by the type of communication that implements.

In general, communications through shared memory are less expensive than
communications via a network medium. Such that, it is necessary to maximize
the amount of local communications cl(P) and to minimize (to the possible ex-
tent) the amount of remote communications cr(P), to minimize the total com-
munication time in order to mitigate the impact on the execution time of the
parallel system.

References

1. Foster, I.: Design and Building Parallel Programs v1.3: An Online Publishing
Project (1995)

2. Bokhari, S.: On the Mapping Problem: IEEE Transactions on Computers, Vol. c-30,
No. 3, March (1981)

3. Kleinberg, J., Tardos, E.: Algorithm Design: Pearson-Addison Wesley (2005)
4. Chandy, M., Taylor, S.: An Introduction to Parallel Programming: Part II Parallel

Program Design Chapter 7, Jones and Bartlett (1992)
5. Culler, D., Singh, J., Gupta A., Kaufmann, K.: Parallel Computer Arquitecture, A

Hardware / Software Approach,: Chapter 2 Parallel Programs, (1997)
6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, Section

26.2: The Ford-Fulkerson method, MIT Press and McGraw-Hill Second Ed. (2001)
7. Blaise B.: Introduction to Parallel Computing: Lawrence Livermore National Lab-

oratory.
8. Steven S.: The Algorithm Design Manual, Chapter 4 Sorting and Searching, Second

Edition Springer (2008)

https://www.researchgate.net/publication/3047738_On_the_Mapping_Problem?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/3047738_On_the_Mapping_Problem?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/232203501_Algorithm_Design?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==

14 An Agglomeration Strategy

9. Bondy, J., Murty, U.: Graph Theory: Springer, (2008)
10. Garey, M., Johnson D.: Computers and Intractability, A Guide of the Theory of

NP-Completeness: Bell Telephone Laboratories, (1979)
11. Andreev, K., Racke, H.: Balanced Graph Partitioning

https://www.researchgate.net/publication/220695890_Computers_and_Intractability_A_Guide_To_The_Theory_of_NP-Completeness?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==
https://www.researchgate.net/publication/220695890_Computers_and_Intractability_A_Guide_To_The_Theory_of_NP-Completeness?el=1_x_8&enrichId=rgreq-738bf769-b58e-4ea1-9546-0ad3bfa6e8a1&enrichSource=Y292ZXJQYWdlOzI4MjI5MzY3MjtBUzoyODMxMDAwOTg2NDYwMTZAMTQ0NDUwNzczMTkyNQ==

