
Applying Architectural Patterns for

Parallel Programming

An N-body Simulation

Jorge L. Ortega-Arjona

Departamento de Matemáticas

Facultad de Ciencias, UNAM

jloa@fciencias.unam.mx

Abstract

The Architectural Patterns for Parallel Programming is a collection of
patterns related with a method for developing the coordination structure
of parallel software systems. These architectural patterns take as input
information (a) the available parallel hardware platform, (b) the paral-
lel programming language of this platform, and (c) the analysis of the
problem to solve, in terms of an algorithm and data.

In this paper, it is presented the application of the architectural pat-
terns along with the method for developing a coordination structure for
solving an N-Body Simulation. The method used here takes the informa-
tion from the problem analysis, selects an architectural pattern for the
coordination, and provides some elements about its implementation.

1 Introduction

A parallel program is the specification of a set of processes executing simulta-

neously, and communicating among themselves in order to achieve a common

objective. This definition is obtained from the original research work in paral-
lel programming provided by E.W. Dijkstra [4], C.A.R. Hoare [7], P. Brinch-
Hansen [2], and many others, who have established the main basis for parallel
programming today. Specifically, obtaining a parallel program from an algo-
rithmic description is the main objective of the area of Parallel Software Design
[17].

1.1 Parallel Software Design

Parallel Software Design proposes programming techniques to deal with the
parallelization of a problem, described in algorithmic terms. The research in
the area covers several approaches that provide forms to organize software with

1

relatively independent parts which efficiently make use of multiple processors.
As stated before, the goal is to obtain a parallel program from an algorithmic
description. Nevertheless, designing parallel programs can be frustrating [17]:

• There are lots of issues to consider when parallelizing an algorithm. How
to choose a coordination structure that is not too hard to program and
that offers substantial performance compared to uniprocessor execution?

• The overheads involved in synchronization among multiple processors may
actually reduce the performance of a parallel program. How to anticipate
and mitigate this problem?

• Like many performance improvements, parallelizing increases the com-
plexity of a program. How to manage such a complexity?

These are tough problems: we do not yet know how to solve an arbitrary
problem efficiently on a parallel system of arbitrary size. Hence, Parallel Soft-
ware Design, at its actual stage of development, does not (cannot) offer universal
solutions, but tries to provide some simple ways to get started [17].

1.2 Architectural Patterns for Parallel Programming

The Architectural Patterns for Parallel Programming [10, 11, 12, 13, 14, 15, 16,
17] represent an approach for parallel programming using Software Patterns.
Architectural Patterns attempt to save the transformation “jump” between al-
gorithm and program. These Software Patterns are fundamental organizational

descriptions of common top-level structures observed in parallel software systems

[10, 16, 17]. They specify properties and responsibilities of their sub-systems,
and the particular form in which they are assembled together.

Simply put, architectural patterns allow software designers and developers to
understand complex software systems in larger conceptual blocks and their rela-
tions, thus reducing the cognitive burden. Furthermore, architectural patterns
provide several “forms” in which software components of a parallel software sys-
tem can be structured or arranged, so the overall structure of such a software
system arises. Architectural patterns also provide a vocabulary that may be
used when designing the overall structure of a parallel software system, to talk
about such a structure, and feasible implementation techniques. As such, the
Architectural Patterns for Parallel Programming refer to concepts that have
formed the basis of previous successful parallel software systems [16, 17].

The most important step in designing a parallel program is to think carefully
about its overall structure. The Architectural Patterns for Parallel Program-
ming provide descriptions about how to organize a parallel program, having the
following advantages [10, 11, 12, 13, 14, 15, 16, 17]:

• The Architectural Patterns for Parallel Programming (as any Software
Pattern) provide a description that links a problem statement (in terms

2

of an algorithm and the data to be operated on) with a solution state-
ment (in terms of an organization structure of communicating software
components).

• The partition of the problem to solve is a key for the success or fail-
ure of a parallel program. Hence, the Architectural Patterns for Parallel
Programming have been developed and classified based on the kind of
partition applied to the algorithm and/or the data present in the problem
statement.

• As a consequence of the previous two points, the Architectural Patterns for
Parallel Programming can be selected depending on characteristics found
in the algorithm and/or data, which drive the selection of a potential
parallel structure by observing and studying the characteristics of order
and dependence among instructions and/or datum.

• The Architectural Patterns for Parallel Programming introduce parallel
structures as forms in which software components can be assembled or
arranged together, considering the different partitioning ways of the algo-
rithm and/or data.

Nevertheless, even though the Architectural Patterns for Parallel Program-
ming have these advantages, they also present the disadvantage of not describ-
ing, representing, or producing a complete parallel program in detail. Anyway,
the Architectural Patterns for Parallel Programming are proposed as a way of
helping a software designer to select a parallel structure as a starting point
when designing a parallel program. For a complete exposition of the Architec-
tural Patterns for Parallel Programming, refer to [10, 17], and futher work on
each particular architectural pattern in [11, 12, 13, 14, 15].

2 Problem Analysis – The N-body Simulation

The present paper attempts to demonstrate the use of the Architectural Patterns
for Parallel Programming for designing a coordination structure that solves the
N-body Simulation. The objective is to show how an architectural pattern can
be applied so it deals with the functionality and requirements present in this
problem.

2.1 Problem Statement

An N-body simulation refers to compute the trajectories of n bodies present
in a three-dimensional space, which interact through gravitational forces only.
At discrete time intervals, the forces over each body are computed, adjusting
its velocity and position [5]. Figure 1 attempts to show how a single body is
affected by the gravitational forces produced by the existence of other bodies in
a two-dimensional space.

3

Given all the attraction forces, the body modifies its velocity and position.
So, the overall effect of all the forces is obtaned using a force summation. On
the other hand, all bodies are affected by the interaction with the other bodies,
so each one modifies its velocity and position through time. Hence, the whole
behavior of the system is obtained using a simple time integration for each body.

2.1.1 Force Summation

Commonly, each body is considered as a point in a three-dimensional space. Its
state is defined by its mass m and three vectors: position r, velocity v, and
total force f . The last one is a result of the attraction of the rest of the bodies
on this particular body. Figure 2 shows two bodies, bi and bj , and their position
vectors relative to the origin O.

The body bj attracts bi with a force fij along the vector rij. By Newton’s
law, the magnitude of this force is proportional to the mass of each body and
inversely proportional to the square of the distance:

fij =
Gmimj

|rij |2
rij

where G is the universal gravitational constant. Moreover, bi attracts bj with
a force fji of the same magnitude, but opposite direction, regarding Newton’s
thrid law.

Hence, the total force fi acting over a body bi is the vectorial addition of all

Two−dimensional Space

Figure 1: An example of a body, interacting with other bodies in a two-
dimensional space.

4

the forces on bi, resulting from the other N − 1 bodies:

fi =

N−1∑
i=1

fij (i 6= j)

2.1.2 Time integration

In order to obtain the new position of a body bi due to force fi, it is necessary
first to calculate the acceleration of the body, and with this, apply a simple
integration method to obtain such a new position. By Newton’s second law, it
is known that the acceleration ai of a body bi is determined by its mass mi and
the total force fi acting on it:

ai =
fi
mi

For a discrete time interval ∆t, the acceleration can be considered approxi-
mately constant. Thus, the velocity vi and position ri of bi increase by:

∆vi = ai∆t

∆ri =

∫ ∆t

0

(vi + ai)dt = vi∆t+
1

2
ai∆t2

From both these expressions, the new position of bi is thus:

∆ri = (vi +
1

2
∆vi)∆t

If two bodies are too close, accelerations may become very large. So, in order
to prevent numerical inestability, the time step should be made very small.

bi

bj

ri

r j

r
ij

O

Figure 2: Two bodies considered as points in a space.

5

In order to avoid problems, all initial masses are considered suficiently small
regarding the whole space. Nevertheless, a realistic simulation tends to be
highly time-consuming.

2.2 Specification of the Problem

Analyzing the complexity of the whole problem, it is noticeable that a sequential
computer can perform all (n2 − n)/2 computations in O(n2) basic steps. Let
us suppose a numerical example: for a problem with, for example, n = 65, 536
bodies, it may be solved in about 4, 294, 967, 296 time steps. Furthermore,
notice that naive changes to the requirements (which are normally requested
when performing this kind of computations) produce drastic increments of the
number of operations required, which at the same time affects the time required
to calculate this numerical solution.

• Problem Statement. An N-body simulation, for a relatively large number
of bodies, can be computed in a more efficient way by:

1. using a group of software components that exploit the independent
operations performed over each body, and

2. allowing each software component to simultaneously work on a single
body.

A parallel version of this simulation may simultaneously compute forces
between all pair of bodies in O(n), for a certain large n. In this example,
if n ≤ 10, 000 the direct method of force summation allows very accurate
simulations. However, for larger systems, there are other approximations
which may be faster. The objective is to obtain a result in the best possible
time-efficient way.

• Descriptions of the data and the algorithm. The whole parallel program
that performs the simulation takes as its input an array of bodies, each
body represented by its mass m and its vectors r, v, and f . It is important
here to consider some basic vectorial operations, which may be useful when
working with all the three-dimensional vectors. Finally, it seems necessary
to consider some constant values, required for the computation, such as
G.

Hence, every body should be capable of obtaining its own force summation
and time integration:

class Body implements Runnable{

...

private double[] force(Body pi, Body pj){

double g = 667 * Math.pow(10,-11);

double[] rij = u.sub(pi.getr(), pj.getr());

6

double rm = u.length(rij);

double fm = (g * pi.getm() * pj.getm())/Math.sqrt(rm);

double[] eij = u.mult(rij,1/rm);

double[] force = u.mult(eij, fm);

return force;

}

...

public Body forceT(Body[] sist, int index){

int tcps = sist.length;

Body it = new Body();

Body it2 = sist[index];

double[] fij = new double[3];

for(int i=0; i<tcps; i++){

if(i != index){

Body sec = sist[i];

double[] tmpF = force(it2,sec);

fij = u.add(fij, tmpF);

}

}

double[] rs = u.add(it2.getf(),fij);

it.setf(rs);

it.setm(it2.getm());

it.setr(it2.getr());

it.setv(it2.getv());

return it;

}

...

public Body move(Body pi, double increment){

double[] ai = u.mult(pi.getf(), 1/(pi.getm()));

double[] dvi = u.mult(ai, increment);

double[] dri = u.mult(u.add(pi.getv(),u.mult(dvi, .5)), increment);

pi.setv(u.add(pi.getv(), dvi));

pi.setr(u.add(pi.getr(),dri));

return pi;

}

...

}

Once it has the array of bodies, each Body object is able to compute a local
force summation and time integration as a single thread.

• Information about parallel platform and programming language. The parallel
platform available for this parallel program is a cluster of computers, specifically,
a dual-core server (Intel dual Xeon processors, 1 Gigabyte RAM, 80 Gigabytes
HDD) 16 nodes (each with Intel Pentium IV processors, 512 Megabytes RAM,
40 Gigabytes HDD), which communicate through an Ethernet network. The
parallel application for this platform is programmed using the Java programming
language [6].

• Quantified requirements about performance and cost. This application example
has been developed as a course exercise and for experimenting with the platform,

7

testing its functionality in time, and how it maps with a parallel application. So,
the main objective is simply to characterize performance (in terms of execution
time) regarding the number of processes/processors involved in solving a fixed
size problem. Thus, it is important to retrieve information about the execution
time considering several configurations, changing the number of processes on
this parallel platform for further later studies.

3 Coordination Design

In this section, the architectural patterns for parallel programming [10, 16, 17]
are used along with the the information from the problem analysis, in order to
propose an architectural pattern for developing a coordination structure that
performs a parallel N-nody simulation.

3.1 Specification of the System

This section describes the basic operation of the parallel software system, consid-
ering the information presented in the problem analysis step about the parallel
system and its programming environment. Based on the problem description
and algorithmic solution presented in the previous section, the procedure for
proposing an architectural pattern for a parallel solution to the N-body simula-
tion is presented as follows [17]:

1. Analyze the design problem and obtain its specification. Analyzing the
problem description and the algorithmic solution provided, it is notice-
able that an N-body simulation yields a group of operations that may be
performed simultaneously on different data. Such data, in the form of the
bodies array, can be distributed and operated at the same time.

2. Select the category of parallelism. Observing the form in which opera-
tions can be performed by each body at a time step, it is clear that the
parallel soluton should operate on different data, while distributing the
data. Hence, the solution description implies the category of Activity
Parallelism [12, 13, 16, 17].

3. Select the category of the nature of the processing components. Also, from
the description of the solution, it is clear that operations on each body use
exactly the same algorithm. Thus, the nature of the processing compo-
nents of a probable solution for the N-body simulation, using the algorithm
proposed, is certainly a Homogeneous one [12, 13, 16, 17].

4. Compare the problem specification with the architectural pattern’s Problem

section. An Architectural Pattern that directly copes with the categories
of activity parallelism and the homogeneous nature of processing compo-
nents is the Manager-Workers (MW) pattern [15, 16, 17]. In order to
verify that this architectural pattern actually copes with the N-body sim-
ulation, let us compare the problem description with the Problem section

8

of the MW pattern. From the MW pattern description, the problem is
defined as [13, 16, 17]:

‘The same operation is required to be repeatedly performed on
all the elements of some ordered data. Data can be operated
without a specific order. However, an important feature is to
preserve the order of data. If the operation is carried out serially,
it should be executed as a sequence of serial jobs, applying the
same operation to each datum one after another. Generally,
performance as execution time is the feature of interest, so the
goal is to take advantage of the potential simultaneity in order
to carry out the whole computation as efficiently as possible’.

Observing the algorithmic solution for the N-body simulation, it can be
defined in terms of a single set of operations performed over the data of a
single body. Each body, at a single time step, can be operated completely
and autonomously. The data or communication should be between an or-
ganizing component and several processing components, distributing the
information of all the bodies so one body can be operated by each pro-
cessing component. So, the MW is chosen as an adequate solution for the
N-body simulation, and the architectural pattern selection is completed.
The design of the parallel software system should continue, based on the
Solution section of the MW pattern.

3.2 Functional description of components

This section describes each processing and communicating software components
as participants of the Manager-Workers architectural pattern, establishing its
responsibilities, input and output for solving the N-body simulation [13, 16, 17].

• Manager. The responsibilities of a manager are to create a number of
workers, to distribute work among them, to start up their execution, and
to assemble the overall simulation result from the sub-results from the
workers.

• Worker. The responsibility of a worker is to seek for the array of bodies,
to implement the operations of force summation and time integration on
a single body, and to perform such operations.

3.3 Structure and dynamics

The information of the Manager-Workers architectural pattern is used here to
describe the solution to the N-body simulation in terms of this architectural
pattern’s structure and behavior [13, 16, 17].

1. Structure. Using the Manager-Worker architectural pattern for an N-body

simulation, all bodies information is distributed by a manager component,

9

and operated by workers as conceptually-independent components. Each
worker performs the same operations to obtain an update of the state
of a body, at a time step. So, the operations defined for a body are
simultaneously performed.

An object diagram, representing the manager and worker components on
which the bodies information is distribuited is shown in Figure 3.

manager:Manager

worker[0]:Worker worker[1]:Worker worker[N−1]:Worker

Figure 3: Object diagram of the Manager-Workers pattern applied for solving
the N-body simulation.

Notice that this organization effectively allows to distribute the data of all
bodies among worker components, as previously described in the problem
analysis, so each body’s new state can be computed independently from
the others.

2. Dynamics. A typical scenario is used here to describe the basic run-
time behavior of this pattern when applied to the N-body simulation. All
components, whether manager or workers, are active at the same time,
distributing and processing the information of different bodies, and as-
semlbling an overall state of the system at each time step. A single time
step is described in Figure 4:

• All participants are created, and wait until a data array of all the bod-
ies sist[] is provided to the manager. When such data is available
to the manager, this distributes it, sending all the array by request
to each waiting worker.

• Each worker receives a copy of the array. Notice that the i-th worker
is associated with obtaining the force summation and the time in-
tegration for the i-th body. So, every worker starts processing an
operation forceT() and move(). These operations are independent
of the operations on other workers. When the i-th worker finishes
processing, it returns a result of only the state of the i-th body to
the manager. Once all results are received by the manager, and if the
simulation is to be continued for further time steps, each worker re-
quests again for the array representing all the state of all the bodies,
and the process repeats.

10

manager:Manager worker[0]:Worker worker[1]:Worker worker[N−1]:Worker

sist[]

sist[0]

sist[]

sist[]

sist[1]

sist[N−1]

forceT()
move()

forceT()
move()

forceT()
move()

Figure 4: Sequence diagram of a single time step of the Manager-Workers pat-
tern for solving the N-body simulation.

• For each time step, the manager is usually replying to requests of
the array from the workers or receiving their partial results. Once all
time steps have been processed, the manager assembles a total result
from the partial results and the program finishes. Any non-serviced
requests of data from the workers are ignored.

3.4 Description of the coordination

The Manager-Workers architectural pattern uses activity parallelism to
execute the N-body simulation, allowing the simultaneous existence and
execution of more than one worker components through time. Each one
of these instances at the same time obtain the force summation and time
integration for a single body, and during a time step. In a parallel system
like this, the N-body simulation involves the distribution and execution of
data for several time steps. Each time step starts by distributing the data
among all workers, and finish only when all workers provide the manager
with the new state of its correspondent body.

3.5 Coordination analysis

The use of the Manager-Workers pattern as a base for organizing the
coordination of a parallel software system for solving the N-body simulation

11

has the following advantages and disadvantages:

• Advantages

(a) The order and integrity of the whole array is preserved and
granted due to the defined behaviour of the manager compo-
nent. The manager takes care of what part of the array has been
operated on by which worker, and what remains to be obtained
by the rest of the workers.

(b) An important characteristic of the Manager-Workers pattern is
due to the independent nature of operations that each worker
performs. Each worker requests for the bodies array during ex-
ecution and operates considering a different body. Such an in-
dependence makes that the structure to present a natural load
balance, and easily scale for larger sets of bodies.

(c) Synchronisation is simply achieved because communications are
restricted to only between manager and each worker. The man-
ager is the component in which the synchronisation is stated.

(d) Using the Manager-Worker pattern, the parallelising task is rela-
tively straightforward, and it is possible to achieve a respectable
performance. If designed carefully, the Manager-Worker pat-
tern enables the performance to be increased without significant
changes.

• Liabilities

(a) The Manager-Workers systems may present poor performance
if the number of bodies (and thus workers) is excesively large
(as pointed out before, if n > 10, 000). In such a case, workers
may remain idle for periods of time while the manager is busy
trying to serve all their requests. Granularity should be modified
in order to balance the amount of work, by allowing that more
than one body is operated by each worker.

(b) Manager-Worker architectures may also have poor performance
if the manager activities – data distribution, receive worker re-
quests, send data, receive partial results, and assembling the final
result – take a longer time compared with the processing time
of the workers. The overall performance depends mostly on the
manager, so programming the manager should be done taking
special consideration to the time it takes to perform its activi-
ties. A poor performance of the manager impacts heavily on the
performance of the whole system.

(c) Many different considerations must be carefully considered, such
as strategies for work distribution, manager and worker collab-
oration, and assemble of final result. In general, the issue is to
find the right combination of worker number, active or passive
manager, and data size in order to get the optimal performance,

12

but experience shows that this still remains a research issue.
Moreover, it is necessary to provide error handling strategies for
failure of worker execution, failure of communication between
the manager and workers, or failure to start-up parallel workers.

4 Implementation

In this section, all the software components described in the coordination design
section are considered for their implementation using the Java programming
language. Once programmed, the whole system is evaluated by executing it on
the available hardware platform, for the purposes of measuring and observing
its execution through time.

Nevertheless, here it is only presented the implementation of the coordi-
nation, in which the processing components are introduced, implementing the
actual computation that is to be executed in parallel. Further design work is
required for developing the communication and synchronization components.
Nevertheless, this design and implementation goes beyond the actual purposes
of the present paper.

The distinction between coordination and processing components is impor-
tant, since it means that, with not a great effort, the coordination structure may
be modified to deal with other problems whose algorithmic and data descrip-
tions are similar to the N-body simulation, such as the Matrix Multiplication
[6].

4.1 Coordination

The Manager-Workers architectural pattern is used here to implement the main
Java class of the parallel software system that solves the N-body simulation. The
class NbodyManager is presented as follows. This class represents the Manager-
Workers coordination for the N-body simulation.

class NbodyManager extends MyObject {

...

private static int N = 10000;

private static int numSolutions = 0;

...

public static void main(String[] args) {

...

Vector result = new Vector(N); // Overall result

Body[] hist = new Body [numWorkers]; // Array for previous information

...

// Initial bodies configuration is read from a file

Body[] rs = g.parseXML("nbody.xml");

...

// Start iterations for (N-1) time steps

13

for(int it = 0; it < (N-1); it++){

rs = new Body[numWorkers];

...

for (int i = 0; i < numWorkers; i++) new NbodyWorker(i, er);

// send out all the "work" (initial configurations)

...

rs = new Body[numWorkers]; // Generate an N-body system

...

// Clean previous information

hist = new Body[numWorkers];

...

// Store the result of this iteration

result.addElement(hist);

iterador++;

...

}

// Save information into a file

file.genXML(result);

System.exit(0);

}

}

This class makes use of an array of bodies as the basic data structure that
represents the three-dimensional space and the bodies within it. Thus, this
class creates a rs data structure of Body components, which represents the
coordination of the whole parallel software system, developed for executing on
the available parallel hardware platform. Each Body operates on vectors in Java,
instead of double arrays, to take advantage of the many possible operations that
the Java programming language has available. So, the force summation and time
integration are applied to Body in Java, as it is shown as follows.

The utility of the coordination presented here goes beyond of a parallel N-
body simulation. By modifying the sequential processing section, each worker
component is capable of processing other problems, such as the N- Queens
problem [6].

4.2 Processing components

At this point, all what properly could be considered “parallel design and imple-
mentation” has finished: data is initialized and distributed among a collection
of Body components. It is now the moment to insert the sequential processing
which corresponds to the operations of the N-body simulation and data descrip-
tion found in the problem analysis, This is done in the class NBodyWorker, which
considers the particular declarations for the N-body computation:

class NbodyWorker extends MyObject implements Runnable {

private int N = -1;

private int id = -1;

private Body cp;

14

...

public NbodyWorker(int id, Body cp) {

...

this.id = id;

this.cp = new Body();

new Thread(this).start();

}

...

public void run() {

...

Body[] system = m.system;

double imto = m.increment;

int ps = m.pos;

Body res = forceT(system,ps);

res = move(res,imto);

Body tmp = new Body();

tmp.setm(res.getm());

tmp.setr(res.getr());

tmp.setf(res.getf());

tmp.setv(res.getv());

m = new Message(id, true, null, false, tmp, ps, imto);

...

}

}

This simple, sequential Java code allows that each NBodyWorker component
to obtain a local force summation and time inbtegration over a single Body is
provided. Modifying this code implies modifying the processing behavior of the
whole parallel software system, so the class NbodyManager can be modified and
used for other parallel applications, as long as they are independent computa-
tions, and execute on a cluster or a distributed memory parallel computer.

5 Summary

The architectural patterns for parallel programming are applied here along with
a method for selecting them, in order to show how to select an architectural pat-
tern that copes with the requirements of order of data and algorithm present in
the N-body simulation problem. The main objective of this paper is to demon-
strate, with a particular example, the detailed design and implementation that
may be guided by a selected architectural pattern. Moreover, the application of
the architectural patterns for parallel programming and the method for selecting
them is proposed to be used during the coordination design and implementation
for other similar problems that involve a distribution of work, executing on a
distributed memory parallel platform.

15

References

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Distributed Pro-

gramming., Addison-Wesley Longman, Inc., 2000.

[2] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-

cept., Communications of the ACM, Vol.21, No. 11, 1978.

[3] K.M. Chandy, and S. Taylor An Introduction to Parallel Programming.

Jones and Bartlett Publishers, Inc., Boston, 1992.

[4] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

[5] R. Feynman, R.B. Leighton, and M.L. Sands The Feynman Lectures on

Physics, Vol. 1. Addison-Wesley, 1989.

[6] S. Hartley Concurrent Programming. The Java Programming Language.,
Oxford University Press Inc., 1998.

[7] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[8] S. Kleiman, D. Shah, and B. Smaalders Programming with Threads, 3rd ed.
SunSoft Press, 1996.

[9] B. Lewis and D.J.. Berg Multithreade Programming with Java Technology,
Sun Microsystems, Inc., 2000.

[10] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel

Programming, Proceedings of the 3rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP98), Kloster Irsee,
Germany, 1998.

[11] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An

Architectural Pattern for Domain Parallelism, Proceedings of the 7th
Conference on Pattern Languages of Programming (PLoP2000), Allerton
Park, Illinois, USA, 2000.

[12] J.L. Ortega-Arjona The Shared Resource Pattern. An Activity Parallelism

Architectural Pattern for Parallel Programming, Proceedings of the 3rd Eu-
ropean Conference on Pattern Languages of Programming and Computing
(EuroPLoP98), Kloster Irsee, Germany, 1998.

[13] J.L. Ortega-Arjona The Manager-Workers Pattern. An Activity Paral-

lelism Architectural Pattern for Parallel Programming, Proceedings of
the 9th European Conference on Pattern Languages of Programming and
Computing (EuroPLoP2004), Kloster Irsee, Germany, 2004.

16

[14] J.L. Ortega-Arjona The Parallel Pipes and Filters Pattern. A Functional

Parallelism Architectural Pattern for Parallel Programming, Proceedings
of the 10th European Conference on Pattern Languages of Programming
and Computing (EuroPLoP2005), Kloster Irsee, Germany, 2005.

[15] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional Parallelism

Architectural Pattern for Parallel Programming, Proceedings of the 6th
Latin American Conference on Pattern Languages of Programming and
Computing (SugarLoafPLoP2007), Porto de Galinhas, Pernambuco, Brasil,
2007.

[16] J.L. Ortega-Arjona Architectural Patterns for Parallel Programming: Mod-

els for Performance Evaluation, VDM Verlag, 2009.

[17] J.L. Ortega-Arjona Patterns for Parallel Software Design, John Wiley &
Sons, 2010.

17

