
Applying Idioms for Synchronization

Mechanisms

Synchronizing communication components for the

Two-dimensional Wave Equation

Jorge L. Ortega Arjona

Departamento de Matemáticas

Facultad de Ciencias, UNAM.

jloa@ciencias.unam.mx

Abstract

The Idioms for Synchronization Mechanisms is a collection of patterns

related with the implementation of synchronization mechanisms for the

communication components of parallel software systems. The application

of these idioms take as input information (a) the design pattern of the

communication components to synchronize, (b) the memory organization

of the parallel hardware platform, and (c) the type of communication

required.

In this paper, it is presented the application of the idioms for synchro-

nization mechanisms to implement communication components for the

Two-dimensional Wave Equation. The example here takes information

from previous steps of a more general method, such as Problem Analysis,

Coordination Design, and Communication Design, applying an idiom for

synchronization mechanisms, and providing elements about its implemen-

tation.

1 Introduction

For the last forty years, a lot of work and experience has been gathered in
concurrent, parallel, and distributed programming around the synchronization
mechanisms originally proposed during the late 1960s and 1970s by E.W. Dijk-
stra [4], C.A.R. Hoare [6, 7, 8], and P. Brinch-Hansen [1, 2, 3]. Further work
and experience has been gathered today, such as the formalization of concepts
and their representation in different programming languages.

Synchronization can be expressed in programming terms as language prim-
itives, known as synchronization mechanisms. Nevertheless, merely including

1



such synchronization mechanisms into a language seems not sufficient for creat-
ing a complete parallel program. They neither describe a complete coordination
system nor represent complete communication subsystems. To be applied effec-
tively, the synchronization mechanisms have to be organized and included within
communication structures, which themselves have to be composed and included
in an overall coordination structure. These stages compose the Pattern-based
Parallel Software Design method, as a more general and comprehensive method
for designing parallel software [12].

Common synchronization mechanisms for concurrent, parallel and distributed
programming can be expressed as idioms, that is, as software patterns for pro-
gramming code in a particular programming language. Several of such synchro-
nization mechanisms have been already expressed as idioms: the Semaphore
idiom, the Critical Region idiom, the Monitor idiom, the Message Passing id-
iom and the Remote Procedure Call idiom [12]. All these idioms are presented
by describing the use of the synchronization mechanism with a particular par-
allel programming language, rather than a formal description of their theory of
operation.

The objective of this paper is to show how an idiom that provides a pattern
description of a well-known synchronization mechanism can be applied for a
particular programming problem under development. The description of syn-
chronization mechanisms as idioms should aid software designers and engineers
with a description of common programming structures used for synchronizing
communication activities within a specific programming language, as well as
providing guidelines on their use and selection during the design and implemen-
tation stages of a parallel software system. This development of implementation
structures constitutes the main objective of the Detailed Design step within the
Pattern-based Parallel Software Design method [12].

When implementing the components that act as synchronization mechanisms
within the communication components of a parallel program, it is important to
carefully consider how both communication and synchronization are carried out
by such synchronization mechanisms. Idioms for Synchronization Mechanisms
[12] stands out from many of the sources, references, and descriptions available
about how to implement the synchronization between communicating compo-
nents (or processes) of a parallel program, with the following advantages:

• The Idioms for Synchronization Mechanisms represent programming con-
structs that express synchronization beyond what is properly included
within the parallel programming language, but giving the impression that
their use is actually part of the parallel language.

• The Idioms for Synchronization Mechanisms attempt to reproduce good
programming practices, describing some common programmed structures
used to detail and implement the synchronization required by a Design
Pattern for Communication Components. Thus, their objective is to help

2



the software designer or programmer understand and master features and
details of the parallel programming language at hand, by providing low-
level, language specific descriptions of code that are used to synchronize
between parallel processing components. These Idioms, then, help to solve
recurring programming problems in such a parallel programming language.
There has been extensive experience and research about such codification
in several different parallel programming languages, but unfortunately,
they have not been related or linked with general communication struc-
tures or overall structures of parallel programs.

• The Idioms for Synchronization Mechanisms are descriptions that relate
a synchronization function (in run-time terms) with a coded form (in
compile-time terms). In many parallel languages, synchronization mech-
anisms are implemented so their run-time function has little or no resem-
blance to the code that performs it. Both, function and code, are difficult
to relate, so the software designer or programmer cannot notice how com-
munication and synchronization are carried out by coded components.
The Idioms here try to relate function and code, providing dynamic and
static information about the synchronization mechanisms.

• Idioms for Synchronization Mechanisms describe common coded program-
ming structures based on data exchange and function call. As such, they
are guidance about how to achieve synchronization between processing
components. This is a key for the success or failure of communication.
Hence, the Idioms proposed here are classified based on (a) the memory
organization and (b) the type of communication between parallel compo-
nents. These issues deeply affect the selection of synchronization mecha-
nisms and the implementation of communication components.

• The Idioms for Synchronization Mechanisms represent programmed forms
as regular organizations of code, aiming to allow software designers to un-
derstand the synchronization between component, and therefore, reducing
their cognitive burden. Moreover, if these idioms are used and learnt, they
ease understanding legacy code, since programs tend to be easier to un-
derstand.

• The Idioms for Synchronization Mechanisms are based on the common
concepts and terms originally used for inter-process communication [4, 6,
1, 7, 2, 8, 3], and as such, they are a vehicle to develop terminology for
implementing synchronization components for parallel programs.

Nevertheless, as it is obvious, the Idioms for Synchronization Mechanisms
present the disadvantage of being non-portable, since they depend on features of
the parallel programming language. This does not exclude that several idioms
for expressing synchronization mechanisms can be developed for the different
parallel programming languages available.

3



2 Specification of the System

In the previous paper Applying Architectural Patterns for Parallel Program-
ming. Solving the Two-dimensional Wave Equation [11], the Communicating
Sequential Elements (CSE) Architectural Pattern has been selected as a viable
solution for the coordination within the parallel program that solves the Two-
dimensional Wave Equation. In order to apply an ISM, some information related
to the CSE Pattern is required, such as the parallel platform and programming
language.

For this example, it is used a SUN SPARC Enterprise T5120 Server. This
is a multi-core, shared memory parallel hardware platform, with 1-8 Core Ul-
traSPARC T2 1.2 GHz processors (capable of running 64 threads), 32 Gbytes
RAM, and Solaris 10. The programming language for this platform is Java.

3 Specification of the Communication Compo-

nents

In another previous paper, Applying Design Patterns for Communication Com-
ponents. Communicating CSE components for the Two-dimensional Wave Equa-
tion [13], the Shared Variable Channel (SVC) Design Pattern has been selected
as a viable solution for the communication components of the CSE pattern for
solving the Two-dimensional Wave Equation. Also, in order to apply an ISM, it
is required some information related with the Shared Variable Channel Pattern.
Such an information is summarized as follows.

3.1 The Shared Variable Channel pattern

The communication components are defined so they enable the exchange of po-
sition values between neighboring surface elements as ordered data [13]. The
Shared Variable Channel pattern is considered as an adequate solution for such
communications. Hence, the design of the communication components can pro-
ceed as follows [9, 11, 13].

• Description of the communication. The parallel program that solves
the Two-dimensional Wave Equation problem is being developed on a
multi-core, shared memory parallel hardware platform, programmable us-
ing the Java programming language. The CSE pattern describes a coor-
dination in which multiple Element objects act as concurrent process-
ing software components, each one applying the same position opera-
tion, whereas Channel objects act as communication software compo-
nent which allow exchanging position values between sequential compo-
nents. Every Element object communicates by sending its position value
from its local space to its neighboring Element objects, and receiving

4



in exchange their position values. This communication is normally asyn-
chronous, considering the exchange of a single position value, in a one to
one fashion [9, 11, 13].

The Channel communication component acts as a single entity, allow-
ing the exchange of information between processing software components.
Given that the available parallel platform is a multi-core, shared memory
system, the behavior of a channel component is modelled using shared vari-
ables. Thus, a couple of shared variables are used to implement the channel
component as a bidirectional, shared memory communication means be-
tween elements. It is clear that such shared variables require to be safely
modified by synchronizing read and write operations from the elements.
Hence, the Java programming language provides the basic elements for de-
veloping synchronization mechanisms (such as semaphores or monitors).
This is required to preserve the order and integrity of the transferred po-
sition values.

• Structure and dynamics. This section takes information of the Shared
Variable Channel design pattern, expressing the interaction between the
software components that carry out the communication between parallel
software components for the actual example.

1. Structure. The structure of the Shared Variable Channel pattern ap-
plied for designing and implementing channel communication compo-
nents of the CSE pattern is shown in Figure 1 using a UML Collab-
oration Diagram [5]. Notice that the channel component structure
allows an asynchronous, bidirectional communication between two
sequential elements. The asynchronous feature is achieved by allow-
ing an array of positions to be stored, so the sender does not wait for
the receiver [10, 13].

2. Dynamics. This pattern actually emulates the operation of a channel
component within the available shared memory, multi-core parallel
platform. Figure 2 shows the behavior of the participants of this
pattern for the actual example.

In this scenario, a point to point, bi-directional, asynchronous com-
munication exchange of position values of type Double is carried out,
as follows[13]:

– The element(i) sequential element sends its local position

value by issuing a send(position) operation to the sending Syn-
chronization Mechanism.

– This Synchronization Mechanism verifies if the element(i+1)

sequential element is not reading the position shared variable.
If this is the case, then it translates the sending operation, allow-
ing a write(position) operation of the data item on position.
Otherwise, it blocks the operation until the position can be
safely written.

5



:SyncronizationMechanism

:SyncronizationMechanism

position[]:Double

position[]:Double

element(i):Element Element(i+1):Element

1.send(position)

2.write(position) 3.read(position)

4.receive(position)

1.send(position)

2.write(position)3.read(position)

4.receive(position)

Figure 1: UML Collaboration Diagram of the Shared Variable Channel pattern
used for asynchronously exchange position values between sequential compo-
nents of the CSE solution to the Two-dimensional Wave Equation.

:SyncMech :Doubleelement(i):Element element(i+1):Element

position
position

:Double

position

:SyncMech

position

position

position

position

send(position)
write(position)

receive(position)

read(position)

send(position)

write(position)

receive(position)

read(position)

Figure 2: UML Sequence Diagram for the Shared Variable Channel pattern
applied for exchanging position values between two neighboring sequential ele-
ments of the CSE solution for the Two-dimensional Wave Equation.

6



– When the element(i+1) attempts to receive the position value,
it does so by issuing a receive(position) request to the Syn-
chronization Mechanism. This function returns a double type
representing the position value stored in the shared variable
position. Again, only if its counterpart sequential element
(here, element(i)) is not writing on position, the Synchro-
nization Mechanism grants a read(position) operation from it,
returning the requested position value. This achieves the send
and receive operations between neighboring element elements.

– On the other hand, when data flows in the opposite direction,
a similar procedure is carried out: the local position value of
element(i+1) is sent by issuing a send(position) operation to
the Synchronization Mechanism.

3. Functional description of software components. This section describes
each software component of the Shared Variable Channel pattern as
the participant of the communication sub-system, establishing its re-
sponsibilities, input, and output [13].

(a) Synchronization Mechanisms. This kind of components is
used to synchronize the access to the shared variables. Notice
that they should allow the translation of send() and receive()

operations into adequate operations for writing to and reading
from the shared variables. Normally, synchronization mecha-
nisms are used to keep the order and integrity of the shared
data. In this paper, the objective is to obtain the development
and implementation of these synchronization mechanisms for the
available shared memory parallel platform and in the Java pro-
gramming language.

(b) Shared Variables. The responsibility of the shared variables
is to store the position values exchanged by sequential elements.
These shared variables are designed here as simple variables that
buffer during communication, for actually achieving an asyn-
chronous communication.

4 Detailed Design

In the Detailed Design step [12], the software designer applies one (or
more) idiom(s) as the basis for synchronization mechanisms. From
the decisions taken in the previous steps (Specification of the Problem
[11], Specification of the System [11], and Specification of Communi-
cation Components [13]), the main objective now is to decide which
synchronization mechanisms are to be used as part of the communi-
cation substructures.

7



4.1 Specification of the Synchronization Mecha-

nism

– The scope. This section takes into consideration the basic pre-
vious information for solving the Two-dimensional Wave Equa-
tion. The objective is to look for the relevant information for
choosing a particular idiom as a synchronization mechanism.

For the Two-dimensional Wave Equation, the factors that now
affect the application of synchronization mechanisms are as fol-
lows:

∗ The available hardware platform is a shared memory multi-
core computer, this is, a shared memory parallel platform,
programmed using Java as the programming language.

∗ The CSE pattern is used as an architectural pattern, requir-
ing two types of software components: elements and channels
[11].

∗ The Shared Variable Channel design pattern is selected for
the design and implementation of communication compo-
nents to support asynchronous communication between el-
ements [11].

Based on this information, the procedure for applying an Idiom
for Synchronization Mechanisms for the Two-dimensional Wave
Equation is as follows [12]:

(a) Select the type of synchronization mechanism. The Shared
Variable Channel pattern requires a synchronization mecha-
nism that controls the access and exchange of position values
between elements as software components that cooperate.
These position values are communicated using a shared vari-
able. Hence, the idioms that describe this type of synchro-
nization mechanism are the Semaphore idiom, the Critical
Region idiom, and the Monitor idiom [12].

(b) Confirm the type of synchronization mechanism. The use of
a shared memory platform confirms that the synchronization
mechanisms for communication components in this example
are semaphores, critical regions, or monitors.

(c) Select idioms for synchronization mechanisms. Communica-
tion between elements needs to be performed asynchronously
that is, no element should wait for any other element. This is
normally achieved using the Shared Variable Channel. Nev-
ertheless, this design pattern requires synchronization mech-
anisms directly supported by the Java programming lan-
guage. In Java, the Monitor idiom allows to develop a mech-
anism used here to show how implementation of the Shared
Variable Channel pattern can be achieved using this idiom.

8



(d) Verify the selected idioms. Checking the Context and Prob-
lem sections of the Monitor idiom [12]:

∗ Context: ‘A concurrent, parallel or distributed program in
which two or more software components execute simultane-
ously on a shared memory parallel platform, communicat-
ing by shared variables. Each software component accesses
at least one critical section that is, a sequence of instruc-
tions that access the shared variable. At least one software
component writes to the shared variable’.

∗ Problem: ‘To maintain the integrity of data, it is necessary
to give a set of software components synchronous and ex-
clusive access to shared variables for an arbitrary number
of read and write operations’.

Comparing these sections with the synchronization require-
ments of the actual example, it seems clear that the Moni-
tor idiom can be used as the synchronization mechanism for
the communication. The use of a shared memory platform
implies the use of semaphores, critical regions, or monitors,
whereas the need for asynchronous communication between
elements points to the use of shared variables. Nevertheless,
given that Java directly supports monitors, it is therefore
decided that the Monitor Idiom is used as the basis for the
synchronization mechanism.

The design of the parallel software system can now continue using
the Solution section of the Monitor idiom, directly implementing
it in Java.

– Structure and Dynamics.

(a) Structure. The Monitor Idiom is used here for implement-
ing the synchronization mechanisms of the channel commu-
nication components for the CSE pattern. The Monitor id-
iom in Java is presented as follows. Notice that the monitor
allows a synchronization over the shared variables [12].

class Monitor{

...

// declarations of shared variables and local data

private type shared_variables;

private type local_data;

...

// declarations of methods

public synchronized type method(type formal_parameters){

...

// operations_on_shared_variables

...

}

}

9



...

int main(){

...

monitor m;

...

m.method(actual_parameters);

}

(b) Dynamics. Monitors are used in several ways as synchro-
nization mechanisms. Here, monitors are used for mutual ex-
clusion. The Monitor idiom actually synchronizes the opera-
tion of the element components over shared variables within
the available shared memory, multi-core parallel platform.
Figure 3 shows a UML Sequence diagram of the possible
execution of two participants of this idiom as the synchro-
nization mechanism within the Shared Variable Channel pat-
tern. Two parallel software components element(i) and
element(i+1) share an array that represents the position
and, since it is encapsulated within the monitor, it can only
be accessed through invocations to the monitor’s methods.

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

:Doublem:Monitorelement(i):Element element(i+1):Element

position
position

position
position

Critical
Section

send(position)
write(position)

receive(position)

read(position)

Figure 3: UML Sequence Diagram for the Monitor idiom.

In this scenario, the synchronization over the shared variable
is performed as follows:

∗ The mutual exclusion between parallel software compo-
nents starts when element(i) invokes send(position). As-
suming that the monitor is free at that moment, element(i)
obtains its lock and performs write(position), which allows
accesses to the shared variable of type Double.

∗ As long as element(i) remains inside the monitor element(i+1)
may attempt to invoke methods of the monitor. However,
as element(i) owns the monitor’s lock, element(i+1) is
not able to succeed. Thus, it has to wait until element(i)

10



leaves the monitor.

∗ Only when element(i) leaves the monitor, element(i+1)
is able to access it. Notice that even though the two soft-
ware components proceed in parallel, only one software
component is able to access the monitor, and so only this
component is able to access the shared variables inside the
critical section at once.

– Synchronization Analysis. This section describes the advantages
and disadvantages of the Monitor idiom as a base for the syn-
chronization code proposed [12].

(a) Advantages

∗ Two parallel element software components are allowed
to execute non-deterministically and at different relative
speeds, each acting as independently of the others as pos-
sible.

∗ Synchronization is carried out by atomic or indivisible op-
erations over the monitor.

∗ Each element software component is able to execute the
critical section within the monitor, accessing the shared
variables that represent positions in a safe and secure man-
ner. Any other software component attempting to enter
the monitor is blocked, and should wait until the current
element software component finishes its access.

∗ The shared variables maintain their integrity during the
entire communication exchange.

∗ The use of the monitor enforces the correct use of opera-
tions over the shared variables.

(b) Liabilities

∗ Mutual exclusion using monitors needs to be implemented
at the compiler level. The compiler commonly associates a
semaphore with each monitor. However, this implementa-
tion introduces potential delays when there the semaphore
is committed to a wait() operation when a monitor proce-
dure is called.

∗ Mutual exclusion is sometimes not sufficient for program-
ming concurrent systems. Conditional synchronization is
also needed (a resource may be busy when it is required, a
buffer may be full when a write operation is pending and so
on). Therefore, most monitor-based systems provide a new
type of variable called a condition. These condition vari-
ables should be incorporated during programming: they
are needed by the application and the monitor implemen-
tation, managing them as synchronization queues.

11



∗ A software component must not be allowed to block while
holding a monitor lock. If a process has to wait for condi-
tion synchronization, the implementation must release the
monitor for use by other software components and queue
the software component on the condition variable.

∗ It is essential that a component’s data is consistent before
it leaves the monitor. It might be desirable to ensure that
a component can only read (and not write) the monitor
data before leaving.

∗ The implementation of monitors based on semaphores has
a potential problem with the signal() operation. Suppose
a signaling component is active inside the monitor and an-
other component is freed from a condition queue and is
thus potentially active inside the monitor. By definition,
only one software component can be active inside a mon-
itor at any time. A solution is to ensure that a signal()
is immediately followed by exit from the monitor that
is, the signaling process is forced to leave the monitor. If
this method is not used, one of the software components
may be delayed temporarily and resume execution in the
monitor later.

∗ Monitors, as programming language synchronization mech-
anisms, must be implemented with great care and always
with awareness of the constraints imposed by the mecha-
nism itself.

5 Implementation

In this section, the communication components and their respective monitors are
implemented as described in the Detailed Design step, using the Java program-
ming language [11, 13]. So, the implementation is presented here for developing
the channel as communication and synchronization components. Nevertheless,
this design and implementation of the whole parallel software system goes be-
yond the actual purposes of the present paper.

5.1 Communication components – Channels

A class Monitor is used as the synchronization mechanism component of the
Shared Variable Channel pattern, in order to implement the class Channel as
follows [13]:

public final class Channel {

private Monitor m0 = null;

private Monitor m1 = null;

public Channel(){

12



m0 = new Monitor();

m1 = new Monitor();

}

public void send0(Channel c, double pos){

if(pos == null) throw new NullPointerException();

m0.write(pos);

}

public void send1(Channel c, double pos){

if(pos == null) throw new NullPointerException();

m1.write(pos);

}

public double receive0(Channel c){

return m0.read();

}

public double receive1(Channel c){

return m1.read();

}

}

Each channel component is composed of two monitors which allow the bi-
directional flow of data through the channel. In order to keep straight the
direction of each message flow, it is necessary to define two methods for sending
and another two methods for receiving. Each method distinguishes on which
monitor of the channel the message is written. The channel is capable of allowing
a simultaneous bi-directional flow. In the present example, this is used to enforce
the use of the Jacobi relaxation [11]. In fact, using (a) a channel communication
structure with two-way flow of data, (b) making each one of them asynchronous,
and later, (c) taking care on the communication exchanges between element
components, are all design previsions for avoiding any potential deadlock. In
parallel programming, it is generally advised that during design, all previsions
should be taken against the possibility of a deadlock [13].

Moreover, in case of modifying the present implementation for executing on a
distributed memory parallel system, it would be necessary only to substitute the
implementation of the class Channel, but using the Message Passing Channel
pattern [10, 12] as a base for its definition.

5.2 Synchronization Mechanism – Monitors in Java

Based on the Monitor idiom and their implementation in the Java programming
language, the basic synchronization mechanism that controls the access to the
position array is presented as follows:

import java.util.Vector;

class Monitor {

private int numMessages = 0;

private final Vector positions = new Vector();

public final synchronized void write(double pos){

13



if(pos == null) throw new NullPointerException();

numMessages++;

positions.addElement(pos);

if(numMessages <= 0) notify();

}

public final synchronized double read(){

double pos = 0.0d;

numMessages--;

while(numMessages < 0){

try{

wait();

break;

}

catch(InterruptedException e){

if(numMessages >=0) break;

else continue;

}

}

pos = positions.firstElement();

positions.removeElementAt(0);

return pos;

}

}

The class Monitor presents two synchronized methods, write() and read(),
which enables the safe modification of the positions buffer and provides a mech-
anism for asynchronous communication between element components. This
class is used in the following implementation stage as the basic element of the
channel components.

6 Summary

The Idioms for Synchronization Mechanisms are applied along with a method
for selecting them, in order to show how to select an idiom that copes with the
requirements of the communication components present in the CSE solution
to the Two-dimensional Wave Equation problem. The main objective of this
paper is to demonstrate, with a particular example, the detailed design and
implementation that may be guided by a selected idiom. Moreover, the applica-
tion of the Idioms for Synchronization Mechanisms and the method for selecting
them is proposed to be used during the Detailed Design and Implementation for
other similar problems that involve the calculation of differential equations for
a two-dimensional problem, executing on a shared memory parallel platform.

7 Ackowledgements

This work is part of an ongoing research in the Departamento de Matemáticas.
Facultad de Ciencias, UNAM.

14



References

[1] P. Brinch-Hansen, Structured Multiprogramming. Communications of the
ACM, Vol. 15, No. 17. July, 1972.

[2] P. Brinch-Hansen, The Programming Language Concurrent Pascal. IEEE
Transactions on Software Engineering, Vol. 1, No. 2. June, 1975.

[3] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-
cept., Communications of the ACM, Vol.21, No. 11, 1978.

[4] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

[5] M. Fowler, UML Distilled. Addison-Wesley Longman Inc., 1997.

[6] C.A.R. Hoare, Towards a theory of parallel programming. Operating Sys-
tem Techniques, Academic Press, 1972.

[7] C.A.R Hoare, Monitors: An Operating System Structuring Concept. Com-
munications of the ACM, Vol. 17, No. 10. October, 1974.

[8] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[9] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An
Architectural Pattern for Domain Parallelism, Proceedings of the 7th
Conference on Pattern Languages of Programming (PLoP2000), Allerton
Park, Illinois, USA, 2000.

[10] J.L. Ortega-Arjona Design Patterns for Communication Components,
Proceedings of the 12th European Conference on Pattern Languages of Pro-
gramming and Computing (EuroPLoP2007), Kloster Irsee, Germany, 2007.

[11] J.L. Ortega-Arjona Applying Architectural Patterns for Parallel Program-
ming. Solving the Two-dimensional Wave Equation, Proceedings of the 8th
Latin American Conference on Pattern Languages of Programming (Sugar-
LoafPLoP2010), Salvador, Bahia, Brasil, 2010.

[12] J.L. Ortega-Arjona Patterns for Parallel Software Design. John Wiley &
Sons, 2010.

[13] J.L. Ortega-Arjona Applying Design Patterns for Communication Com-
ponents. Communicating CSE components for the Two-dimensional Wave
Equation, Accepted to the 2nd Asian Conference on Pattern Languages
of Programs (AsianPLoP2011), Tokyo, Japan, 2011.

15


