Securing the Adapter Pattern

Eduardo B. Fernandez and Jorge L. Ortega-Arjona

Abstract— This paper presents a proposal for adding
security issues to the well known Adapter pattern. Here,
some possible attacks on the Adapter pattern are discussed,
aproviding security approaches for such attacks. The
objective is to obtain a level of security when applying
this pattern into an application which makes use of the
Adapter pattern.

Index Terms— Security, Adapter pattern

I. INTRODUCTION

ESIGN and architectural patterns are now well-

established for software development. There are a
number of design and architectural patterns that have
been written without considering their security aspects,
including among others common patterns such as the
Model-View-Controller (MVC) [2] and the Adapter [6].
We have proposed an approach to secure this type of
patterns [3], [4]. A secured pattern can be used as a
building block to develop an architectural infrastructure
for secure applications. For example, [7] shows the use of
this approach for securing the Broker pattern, [8] shows
the securing of the Blackboard pattern, and [5] shows
the securing of the Pipes and Filters pattern. We apply
here this method to secure the Adapter pattern.

Section II presents a reworking of the original Adapter
pattern to emphasize its traits of interest here. Section III
discusses some possible attacks on the Adapter pattern
and applies security policies to control these attacks. We
end with some conclusions.

II. THE ADAPTER PATTERN

The Adapter pattern converts the interface of an ex-
isting class into a more convenient interface.

Also Known As
Wrapper

Eduardo B. Fernandez is with the Department of Computer Science
and Engeneering, Florida Atlantic University, Boca Raton, FL 33431,
USA. ed@cse.fau.edu

Jorge L. Ortega-Arjona is with the Departamento de Matemiticas,
Facultad de Ciencias, UNAM. Meéxico D.F. 04510, MEXICO.
jloa@fciencias.unam.mx

Example

We have a text message system that sends, receives,
and manipulates text messages. We want to convert
our text messages into XML messages so that we can
handle more complex transactions. We purchased an off-
the-shelf tool, XmlMessage, which manipulates XML
messages. The problem is that these two interfaces are
incompatible: XmIMessage expects an XML message
and TextMessage does not know how to create an XML
message.

Context

A computational environment where users or pro-
cesses need to use a class which has an interface that
is incompatible with the current class.

Problem
We need to convert the interface of a class into another
class.

Forces

« The existing class has useful functions; if we cannot
find a way to use it we will need to rewrite all these
functions.

« We need to decide how much the adapter should
adapt. There may be many functions and we only
need a few of them.

Solution

Define an Adapter class that adapts some functionality
of the class been adapted. We can do this using class
Adapters and object Adapters. We show the details of
an object Adapter, the class Adapter can be seen in [6].

Structure

Figure 1 shows the structure of an object Adapter.
The Client sends a request () to the Target. The
request () defined in class Target is converted by
the Adapter into a specificRequest () defined
in the class Adaptee. The Adapter can find the
Adaptee through an association.

Dynamics

Figure 2 shows a sequence diagram of a request ()
been adapted to a specificRequest (). A Client
sends a request () to the Target, which delegates
it to the Adapter. The Adapter is responsible to

Target Adaptee
Client request() specificRequest()
Zﬁ‘ adaptee
Adapter
request() o specificRequest()

Fig. 1. Adapter Class Diagram.

convert such request () to a specificRequest ()
defined in the class Adaptee. The response is then
returned to the client.

<<actor> \:Target \ \ :Adapter\ :Adaptee
> :Client i

request() ‘

' request() | H

specificRequest()
response
response
response

Fig. 2. Sequence Diagram for the Adapter.

Example resolved

We can create an adapter class, Message, which
receives all requests to create XML messages and returns
XML messages. The text message is structured in a
certain format; for example, sender’s id, location, name,
message and so forth. We use this format to create the
XML message. Figure 3 shows the class diagram for the
solution.

Consequences
Class Adapter advantages include:

o A class Adapter adapts the interface of an existing
class into a more suitable interface.

« Since the Adapter class is a subclass of the Adaptee
class, it can override some of the adaptee’s behavior.

o No additional pointer indirection is needed to get
to the adaptee.

Class Adapter disadvantage include:

e A class adapter will not work when we want to
adapt a class and all its subclasses.

Object Adapter advantages include:

o It lets a single Adapter work with many adaptees
and it can add functionality to all adaptees at once.

Object Adapter disadvantages include:

« An object Adapter makes it more difficult to over-
ride adaptee behavior.

An advantage of both varieties is that if the Adaptee is
a Facade of a complex system, e.g. a relational database,
we can define a uniform interface for application pro-
grams to use the complex system.

Related Patterns

Bridge, which separates an interface from its imple-
mentation; Decorator, which enhances another object
without changing its interface; Proxy, which acts as a
surrogate for another object and does not change its
interface [6]; and Wrapper Facade, which encapsulates
low-level functions and data structures within higher
level interfaces [9].

XmlIMessage

TextMessage

TextMessageSystem
createMessage()

createXmlMessage()

message|

MessageAdapter

return
message.createXmlMessage()

createMessage() O

Fig. 3. Adapter Class Diagram for Text and Xml Messages Example.

III. ADDING SECURITY TO THE ADAPTER PATTERN

We consider now some possible attacks to the adapter
and provide some solutions to avoid such attacks.

A. Attacks on the Adapter

As shown earlier, the Adapter converts the interface
of an existing class into a more convenient interface, but
its original description does not take in consideration
security issues.

To illustrate and identify some possible attacks, let us
consider the following example: We have an interface,
RequestServices, which is used to request services from
some servers. We now want to be able to send requests to
a JDBC API; however, our interface is incompatible with
the JDBC API. We create a RequestServicesAdapter that
adapts requests to JDBC. For example, a client sends a
request for a database connection. The RequestService-
sAdapter converts the request to a JDBC request, which
in turn returns a response containing the requested data
items.

We can identify the following threats in this example:

e T1. The database accessed through the JDBC inter-
face could be an impostor and we could be sending
or receiving data from a malicious database.

o T2. The client may be an impostor, trying to access
the data of an authorized user.

e T3. The client making the request may not have
permission to send such request; i.e. the client may
try to access data to which it is not authorized.

o T4. If the client is remote, the data sent and received
may be intercepted by intruders.

After we identify the possible threats to the Adapter
we need to define policies and their corresponding mech-
anisms to stop them:

o T1. Authenticate the database.

o T2 Authenticate the client.

e T3. Control access to the Adaptee functions through
the Adapter.

e T4. Add a secure channel between the client and
the Adapter.

Figure 4 shows a class diagram for the Secure Adapter.
We add Role-Based Access Control for the clients and a
corresponding set of authorization rules. Requests made
to the Adapter have to be authorized ensuring that the
client has permission to send such requests. The Adapter

Adaptee

Target

‘ Client }7request()

* {%
H adaptge
*

Roles Adapter DB
request() of----- { specificRequestm *

1

specificRequest()

* Authorization rulex

authorize()

authenticate

Rights

Authenticationinfo

authenticate()

Fig. 4. Class Diagram for the Secure Adapter.

also checks responses returned by the Adaptee. For
example, when a client requests a database connection,
the Adapter authenticates the database identity returned
in the response from the Adaptee. The secure channel is
not shown in the figure.

Figure 5 shows a sequence diagram for the use case
Request data in the secure Adapter. The client sends a
request to the Target. Such request is captured by the
Adapter, which is responsible to authorize the client.
Once the client’s permission is verified, the Adapter
converts the request to a specific request. The Adaptee
renders such request and sends a response back to the
Adapter. At this point the Adapter needs to make sure
that the identity of the subject in the response is not an
imposter. After authenticating the response subject, the
Adapter sends the response to the client.

B. Known uses

CORBA-based systems use Adaptors to adapt a re-
mote request to the servant object [9]. The Adaptor also
applies authorization constraints.

Microkernels use adaptors to adapt process requests
that might have different formats [2]. This makes the
microkernel more reusable. In some implementations the
adaptor applies authorization restrictions.

C. Related Patterns

Role-Based Access Control [10]. How do we assign
rights to people based on their functions or tasks? Assign
people to roles and give rights to these roles so they can
perform their tasks.

‘ Adapter ‘ ‘ :Roles ‘ ‘ :Ada‘ptee‘ ‘ :Authenticatiomnfo‘

Client i

request()

Request()

Authorize(client),

l ok
SpecificRequest()

response H

Authenticate(response.subject
)

=

response

response

Fig. 5. Sequence Diagram of the Secure Adapter.

Authenticator [10]. How to verify that a subject is who
it says it is? Use a single point of access to receive the
interactions of a subject with the system and apply a
protocol to verify the identity of the subject.

Secure Logger [11]. How to capture the application-
specific events and exceptions in a secure and reliable
manner to support security auditing?

Secure Channel [1]. Define a secure communication
channel between two remote processes.

Microkernel [2]. Microkernels use adapters to adapt
to different types of client requests.

IV. CONCLUSIONS

We have examined the Adapter pattern and considered
some possible attacks in order to add security to it. Our
approach was first to describe the Adapter in detail and
then evaluate security issues. We applied a method we
proposed earlier [3], [4]. We conclude that the two main
problems are: the client making a request may not have
permission to do so; and that the subject in the response
may be an impostor. In both cases we could compromise
the integrity of our application, lose data, and facilitate
the misuse of confidential information. To solve these
problems we need to check the authorization rights of
the client and authenticate the subject returned in the
response.

To complement this work we can consider some
specific implementation and check for additional security
concerns introduced by the lower levels. Another future
work is to secure the MVC pattern.

REFERENCES

[1] A. Braga, C. Rubira, and R. Dahab, Tropyc: A pattern language
for cryptographic object-oriented software, Chapter 16 in
Pattern Languages of Program Design 4 (N. Harrison, B. Foote,
and H. Rohnert, Eds.). Also in Procs. of PLoP’98.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and
M. Stal Pattern-Oriented Software Architecture. A System of
Patterns, New York: John Wiley & Sons, 1996.

[3] E.B. Fernandez, S. Huang, and M.M. Larrondo-Petrie Building
secure middleware using patterns, Procs. of the IEEE Int. Sym-
posium and School on Advanced Distributed Systems (ISSADS
2006), January 2006.

[4] E.B. Fernandez and M.M. Larrondo-Petrie Developing secure
architectures for middleware systems, Procs. of CLEI 2006.
(XXXII Conferencia Latinoamericana de Informatica)

[5] E.B Fernandez and J.L. Ortega-Arjona, The Secure Pipes and
Filters pattern, accepted for the Third Int Workshop on
Secure System Methodologies using Patterns (SPattern 2009),
Linz, Austria, Sept. 2009.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides Design Pat-

terns. Elements of Reusable Object-Oriented Software, — Read-
ing, MA: Addison-Wesley, 1995.
[7] P. Morrison and E.B. Fernandez, Securing the Broker

pattern, Procs. of the 11th European Conf. on
Pattern Languages of Programs (EuroPLoP 2006)
http://www.hillside.net/europlop/

[8] J.L. Ortega-Arjona and E.B. Fernandez, The Secure Blackboard
pattern, Procs. of the 15th Int.Conference on Pattern Languages
of Programs (PLoP 2008), co-located with OOPSLA, Nashville,
TN, Oct. 2008.

[9] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
oriented software architecture, vol. 2, Patterns for concurrent
and networked objects, J. Wiley, 2000.

[10] M. Schumacher, E.B. Fernandez, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating security and
systems engineering ~ Wiley 2006.

[11] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns:
Best Strategies for J2EE Web Services, and Identity Management,
Prentice Hall, Upper Saddle River, New Jersey, 2005.

