
The Shared Resource Pattern
An Activity Parallelism Architectural Pattern for Parallel Programming

Jorge L. Ortega-Arjona
Departamento de Matemáticas, Facultad de Ciencias, UNAM

México, D.F. 01000, México
jloa@fciencias.unam.mx

Abstract
The Shared Resource pattern is an architectural pattern for parallel programming used when a design
problem can be understood in terms of activity parallelism. This pattern proposes a solution in which
different operations are performed simultaneously by sharers on different pieces of data contained in a
shared resource. Operations carried out by each sharer are independent of operations by other sharers.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure or a set of actions, among
multiple processing components that operate simultaneously. The expected result is a more efficient
completion of the solution to the problem. The main advantage of parallel processing is its ability to
handle tasks of a scale that would be unrealistic or not cost-effective for other systems [CG88, Fos94,
ST96, Pan96]. The power of parallelism centres on partitioning a big problem in order to deal with
complexity. Partitioning is necessary to divide such a big problem into smaller sub-problems that are
more easily understood, and may be worked on separately, on a more “comfortable” level. Partitioning
is especially important for parallel processing, because it enables software components to be not only
created separately but also executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation has to be
performed, and therefore, impact on the software design [OR98]. Depending on how the order of data
and operations are present in the problem description, it is possible to consider that most parallel
applications fall into one of three forms of parallelism: functional parallelism, domain parallelism, and
activity parallelism [OR98].

2. The Shared Resource Pattern

The Shared Resource pattern is a specialization of the Blackboard pattern [POSA96], lacking a
control component and introducing aspects of activity parallelism. In the Shared Resource pattern,
computations could be performed without a prescribed order on ordered data. Commonly,
components perform different computations on different data pieces simultaneously [OR98].

Activity parallelism is the form of parallelism that involves problems that apply independent
computations (as sets of non-deterministic transformations and perhaps repeatedly) on values of a data
structure. Activity parallelism can be considered between the extremes of allowing all data to be
absorbed by the components (as in domain parallelism) or all processes to be divided into components

 Copyright 2003 Jorge Luis Ortega-Arjona. Permission is granted to copy for the PLoP 2003 conference. All
other rights reserved.

(as in functional parallelism) [CG88, OR98, Pan96]. Many components share access to pieces of a data
structure. As each component performs independent computations, communication between
processing components is often not required. However, the amount of communication is not zero:
communication is still required between each processing component and a component that controls the
access to the data structure [OR98].

Example: A Token Space

Consider the case of a token space [Gray99]. In its simplest form, a token space is merely a passive
storage structure for tokens, placed there by active processes named clients. A token may be a
specialised data structure, a list, a data tuple, or any data type defined via inheritance from some base
token class. Particularly, in this example a token is considered as a data tuple whose first element is a
typed field and whose other elements are name-value pairs, each one referred as a token item.
Moreover, a token may have one or more token items that contain identification information. The
objective is that one or more token items will contain data that are being transferred between parallel
clients.

The token space supports two operations: “put” and “request” [Gray99]. A “put” operation places a
token in the token space, and it is capable of blocking for flow-control. If a “put” operation cannot be
blocked, every data source has the potential to saturate the token space. A “request” operation can only
succeed if its tokens are matched. The matching of a token from a request requires matching of each of
the token items that it includes. If a request does not match, it is blocked. Requests from different
processes are handled by separate threads, operating on the token space. The blocking of any one
request does not affect request or put operations from other processes. A simple token space with such
characteristics is illustrated in Figure 1.

Figure 1. Overview of a simple token space.

Notice that the token space problem is more likely to be considered as an example for concurrent
programming (where processes execute simulating concurrency on a single processor) rather than for
parallel programming (in which processes execute simultaneously on a group of processors). However,
it is simple to explain, and it could be an example of activity parallelism, if the clients would execute
in parallel.

Client 1 Client 2 Client N

TokenSpace

Considering the token space as a parallel computation, it should be divided and distributed among a set
of processors. Clients send messages to a server running the token space. The server receives messages
from the clients, organises and maintains the token space keeping its order and integrity, and sends its
contents back to the clients.

Context

Start the design of a software program for performing a parallel computation, using a particular
programming language for a certain parallel hardware. Such a computation involves tasks of a scale
that would be unrealistic or not cost-effective for single processor systems to handle. The hardware
platform or machine to be used is given, offering a reasonably good fit to the parallelism found in the
computation. The main objective is to execute the tasks in the most time-efficient way.

Problem

It is necessary to apply a computation on elements of a common centralised data structure. Such a
computation is carried out by several sequential processes executing simultaneously. The data
structure is concurrently shared among the processes. The details of how the data structure is
constructed and maintained are irrelevant to the processes. All the processes know is that they can
send and receive data through the data structure. The integrity of the internal representation,
considered as the consistency and preservation of the data structure, is important. However, the order
of operations on the data is not a central issue. Generally, performance as execution time is the feature
of interest.

For instance, consider the Token Space example. The whole process is based on allowing clients to
simultaneously operate, putting or requesting tokens to the token space when needed. Parallelism
results from the fact that client processes that have satisfied all their needs for data can then continue
concurrently. The processes synchronise activities as necessary by waiting for others to place tokens in
the token space. The integrity of the internal representation of the tokens and the token items is
important for obtaining a final result after the computation is carried out, but the order of operations on
the tokens or token items is not pre-determined.

Forces

Considering the problem description and granularity and load balance as other elements of parallel
design [Fos94, CT92] the following forces should be considered:

� The integrity of the data structure must be preserved. This integrity provides the base for result
interpretation. For example, in the token space example, it is important to control where and when a
token is requested or put, by synchronising these operations for such a token. This allows
preserving the overall order and integrity of the token space, so the final state of the token space is
considered as the result of the whole computation.

� Each process performs simultaneously and independently a computation on different pieces of data.
The objective is to obtain the best possible benefit from activity parallelism. In the token space
example, clients indicate their interest in a token. This is the only occasion in which they may

interact with other clients, via the token space. During the rest of the execution time, clients are
able to operate independently from the others, using the data of the token.

� Every process may perform different operations, in number and complexity. However, no specific
order of data access by processing elements is defined. In the token space example, clients are not
restricted to perform the same operation (in fact, performing the same operation is considered as a
variation of this pattern). Normally, clients operate or use the information contained in the tokens in
different ways. Moreover, as clients execute independently from each other, there is no precise or
defined order in which they request or put tokens in the token space.

� Improvement in performance is achieved when execution time decreases. Our main objective is to
carry out the computation in the most time-efficient way.

Solution

Introduce parallelism as multiple participating sequential components. Each component executes
simultaneously, capable of performing different and independent operations. It also accesses the data
structure when needed via a shared resource component, which maintains the integrity of the data
structure by defining the synchronising operations that the sequential components can do. Parallelism
is almost complete among components: any component can be performing different operations on a
different piece of data at the same time, without a prescribed order. Communication can be achieved
only as function calls to require data from the shared resource. Components communicate exclusively
through the shared resource, by each one indicating its interest in a certain data. The shared resource
should provide such data immediately if no other component is accessing it. Data consistency and
preservation are tasks of the shared resource. The integrity of the internal representation of data is
important, but the order of operations on it is not a central issue. The main restriction is that no piece
of data is accessed at the same time by different components. The goal is to make sure that an
operation carried out by one sharer component goes on without interference from other sharer
components. The Shared Resource pattern is an activity parallel variation of the Blackboard pattern
[POSA96] without a control instance that triggers the execution of sources (the concurrent components
of the Blackboard pattern). An important feature is that the execution does not follow a precise order
of computations [Shaw95, Pan96].

Structure

In this architectural pattern, the different operations are applied in effect simultaneously to different
pieces of data by sharer components. Operations in each sharer component are independent of
operations in other components. The structure of the solution involves a shared resource that controls
the access of different sharer components to the central data structure. Usually, the shared resource
component and several different sharer components simultaneously exist and operate during execution
time. Therefore, the solution is presented as a centralised network, with the shared resource as the
central common component. An Object Diagram, representing the network of elements that follows
the shared resource structure, is shown in Figure 2.

Figure 2. Object Diagram of the Shared Resource pattern.

Participants

• Shared Resource. The responsibility of a shared resource is to co-ordinate the access of sharer
components, preserving the integrity of data. In the token space example, the token space acts as a
shared resource, containing the data structure and defining the operations needed for maintaining
and preserving the integrity of the data structure. Such operations are defined to control the request
and put operations performed on the token space by the clients.

• Sharer components. The responsibilities of a sharer component are to perform its independent
computation until requiring data from the shared resource. Then, the sharer component has to cope
with any access restriction imposed by the shared resource. Since their computations are
independent, all sharer components are able to execute in parallel. In the token space problem,
clients act as sharer elements that execute in parallel until they request or put tokens contained in
the token space. Once satisfied, clients continue their computations independently.

Dynamics

A typical scenario to describe the basic run-time behaviour of this pattern is described, where all
participants (shared resource and sharer components) are active at the same time. This scenario is
based on the Token Space example. As it is shown later in the Implementation section, the example
program includes data generation, sorting of subsets of the data, merging of sorted subsets of data , and
a final reporting element that uses the sorted data. The classes Source, Sorter, Merger, and
Reporter respectively provide each one of these functionalities. However, by now the scenario
presented here only considers an instance of each of these classes. A more detailed description of how
they really interact to perform a merge-sort computation is presented in the Example Resolved section.

Notice that an instance of the Source, Sorter, Merger, and Reporter classes behaves as a sharer,
performing different operations, and requiring the Token Space (as shared resource) for data tokens. If
a data token is not available, the sharer can request another data token. As soon as a data token is made
available from the Token Space, the requesting sharer continues its computations. Communications
between sharers are normally not allowed. The Token Space is the only common component among
the sharers. The processing and communicating scenario is as follows (Figure 3):

:SharedResource

:Sharer 1 :Sharer 2 :Sharer 3 :Sharer n

Figure 3. An Interaction Diagram of the Token Space example.

• For this scenario, let us consider a simple Token Space which is able to perform a couple of
actions, Read and Write, in order to respectively allow reading or writing data tokens. Each sharer
starts processing, performing different, independent operations, and requesting the Token Space to
execute read or write operations.

• Consider the very basic operation: a Source object, named Source, generates a data token by
performing the Generate operation, requesting a Write operation of the data token to the Token
Space. If no other sharer component interferes, the Token Space is able to immediately serve the
request from Source, writing the new data token.

• Things become more complex when one sharer component is reading or writing a data token of the
Token Space, and another sharer component requires to read or write the same data token.
Consider, for example, that Sorter, (an instance of the class Sorter) is performing a Request
operation which requires a Read operation of a particular data token to the Token Space. If while
the Token Space is serving this operation, one or more other sharer components (in this scenario,
Merger or Reporter, which are instances of the classes Merger, and Reporter respectively)
issue calls to the Token Space for a Read or Write operation of the same data token, the Token
Space should be able to continue until completion of its actual operation, deferring the calls for
later execution, or even ignoring them. If this is the case, any sharer component should be able to
re-issue its call, requesting for an operation on the same or other data token until it is carried out.

Source Sorter Merger Reporter Token Space

Generate Sort

Request

Sort

Merge

Put

Merge

Report Read

Write

Read

Read

Write
Read

Read

Data token

Data token

Write

Write

• Another complex situation that may arise is if two or more sharer components issue calls requesting
the same data piece to the Token Space at precisely the same time. Consider, for example, the
previous situation in the scenario: as the Merger and Reporter calls could not be serviced by the
Token Space, they have to re-issue their calls, doing it at the very same time. In this particular
case, the Token Space should be able to resolve the situation by servicing one call (in this scenario,
the Write request from Merger), and deferring or ignoring all other requests for the same data piece
for later (as it is the case of the Read operation from Reporter). Again, the sharer components
whose calls were deferred or ignored, should be able to re-issue them, contesting again for the data
piece serviced by the Token Space.

Implementation

An architectural exploratory approach to design is described below, in which hardware-independent
features are considered early, and hardware-specific issues are delayed in the implementation process
[Fos94]. This method structures the implementation process of parallel software based on four stages
[OR98]. During the first two stages, attention is focused on concurrency and scalability characteristics.
In the last two stages, attention is aimed to shift locality and other performance-related issues.
Nevertheless, it is preferred to present each stage as general considerations for design instead of
providing details about precise implementation. These implementation details are pointed more
precisely in the form of references to design patterns for concurrent, parallel, and distributed systems of
several other authors [Sch95, Sch98a, Sch98b, POSA00].

1. Partitioning. The computation to be performed can be viewed as the effect of different
independent computations on the data structure. Each sharer component is defined to perform an
independent computation on data from the shared resource. Sharer components can be executed
simultaneously due to their independent processing nature. However, the shared resource
implementation should reflect a division and integrity criteria of the data structure, following the
basic assumption that no piece of data is operated at the same time by two or more different sharer
components. Therefore, sharer components may be implemented by a single entity (for instance, a
process, a task, and object, etc.) that performs a defined computation, or a sub-system of entities.
Design patterns in general [GHJV95, POSA96, PLoP94, PLoP95] may help with the
implementation of the sharer components as sub-system entities. Also, patterns used in concurrent
programming like the Object group pattern [Maf96], the Active Object pattern [LS95, POSA00],
and Categorize Objects for Concurrency pattern [AEM95] can help to define and implement
sharer components.

2. Communication. The communication to co-ordinate the interaction of sharer components and
shared resource is represented by an appropriate communication interface that allows access to the
shared resource. This interface should reflect the form in which requests are issued to the shared
resource, and the format and size of the data as argument or return value. In general, an
asynchronous coordination schema is used, due to the heterogeneous behaviour of sharer
components whose requests can be deferred or ignored by the shared resource. The
implementation of a flexible interface between sharer components and shared resource can be
done using design patterns for communication, like the Service Configurator pattern [JS96], the

Composite Messages pattern [SC95], and the Compatible Heterogeneous Agents and
Communication between Agents patterns [ABM96]. Other design patterns, like the Double-
Checked Locking pattern [SH96, POSA00], the Thread-Specific Storage pattern [HS97, POSA00]
and patterns presented dealing with issues about safe use of threads, synchronisation and locks
[McKe95, POSA00], can provide help to implement the expected behaviour of the shared resource
component.

3. Agglomeration. The components and communication structures defined in the first two stages of a
design are evaluated and compared with the performance requirements. If necessary, operations
can be recombined and reassigned to create different sets of sharer components with different
granularity and load-balance. Usually, due to the independent nature of the sharer components, it
is difficult to achieve good performance initially, but at the same time, it is easy to make changes
on the sharer components without affecting the whole structure. A conjecture-test approach can be
used intensively, modifying both granularity and load-balance among sharer components to
observe which combination can be used to improve performance. However, special care should be
taken with the load-balance between sharer components and a shared resource. The operations of
the shared resource should be lighter then any sharer computation, to allow a fast response of the
shared resource to requests. Most of the computation activity is meant to be performed by the
sharer components.

4. Mapping. In the best case, trying to maximize processor utilization and minimize communication
costs, each component should be assigned to a different processor. As the number of components
is usually expected to be not too large, enough parallel processors can be commonly available.
Also, the independent nature of sharers allows for each sharer component to be executed on a
different processor. The shared resource also is expected to be executed on a single processor, and
all sharers should have communication access to it. However, if the number of processors is
limited and less than the number of components, it tends to be difficult and complex to load-
balance the whole structure. To solve this, mapping can be determined at run-time by load-
balancing algorithms. As a "rule of thumb", systems based on the Shared Resource pattern are very
difficult to implement for a SIMD (single-instruction, multiple-data) computer. However, when
executed on a MIMD (multiple-instruction, multiple-data) computer, systems based on the Shared
Resource pattern tend to have an acceptable performance [Pan96, Pfis95].

Example Resolved

A version of the token space that incorporates mechanisms for process creation has been implemented
as a Java class, named class TokenSpace [Gray99, CN01]. In particular, this version uses threads
rather than parallel processes. In the time when this class was developed, in most standard Java
runtime systems, the thread packages were unable to use multiple processors, so the token space
system of this example is simply a demonstration in which concurrency is simulated. Furthermore, in
such a threaded example there is a further simplification: there is no need for a thread in the shared
resource itself; the put() and request() functions are executed by the threads that simulate the
quasi-parallel processes [Gray99].

In this example, an instance of the class Token contains a name string and a collection of token items.
Client processes use instances of a class Request to retrieve required tokens. A Request instance
contains vectors specifying the required tokens, and their dispositions. Also, a Request instance may
specify a “termination token”. After a failed attempt to match a request for tokens, the matching
checks for any specified termination token. Such a token is normally left in the TokenSpace. Its
presence may affect the operation of many other processes, allowing a process (like, for instance, a
data source) to mark the end of data with a token.

A simple parallel sorting program is used to test the TokenSpace implementation, which controls the
instantiation of processes (more likely, threads) and sequences the phases of a computation. The
program includes data generation (a single instance of a class Source), sorting of subsets of the data
(one or more instances of a class Sorter), merging of sorted subsets of data (one or more instances of
a class Merger), and a final reporting element that uses the sorted data (an instance of a class
Reporter). Notice that the computation is comparable to a pipeline processing. Nevertheless, it is
considered that decomposing a sorting task into several smaller sorting and merging tasks will have a
large enhancement for a an O(N2) sort, and a slight enhancement for a more realistic O(NlogN) sort
[Gray99]. Distributing subtasks does add to the computational cost, but if multiprocessors are
available, many of the separate sort and merge steps can proceed in parallel, resulting in a shorter
elapsed time which is the main interest here, as it is mentioned in the context.

Partitioning

Partitioning refers to defining the computations to be performed on the data contained in the shared
resource. In the TokenSpace example, a typical client (as a thread) has a run() function that may
initially submit a number of requests for special initialization tokens. Then, it loops processing further
data tokens until some termination condition is met. The run() function must end with a call to the
TokenSpace, notifying the termination of this thread. This allows the record of threads to be
maintained correctly. The data identifying a class include information on any token that should be
added to the TokenSpace when the last instance of a client class is removed. Such tokens can mark
the completion of particular phases in a computation and can also trigger the instantiation of objects
that will perform a subsequent phase. As it is mentioned above, the parallel sorting example considers
four types of clients: a class Source for data generation, a class Sorter for sorting subsets of the
data, a class Merger for merging sorted subsets of data, and a class Reporter as a reporting
element.

Communication

The communication is represented by a communication interface that allows access to the shared
resource. In the TokenSpace implementation in Java, the access to the token space is based on the
modifier synchronized. When applied to a method, this modifier causes that such a method only can
be invoked when there is no lock held on the TokenSpace. If TokenSpace is locked, the client is
temporary halted till the TokenSpace is unlocked. So, TokenSpace is locked by the invocation of a
synchronized method, and unlocked when the method is exited. Additionally, in this
implementation, the placement of a token in the TokenSpace triggers a check against a table of data
that relates token names to the Java classes that may need to be instantiated.

Agglomeration and Mapping

The main process starts and initiates processing. After creating the TokenSpace object, it declares
data structures that must be instantiated to handle them. In the present example, the class Source
handles a StartToken (only a single instance of this class can be created), the class Sorter handles
sort tokens (there can be as many instances of this class as seem useful), the class Merger handles
merge tokens (again, there can be more than one instance of this class), and the class Reporter
responds to the token marking the end of the merging process. Also, an endData token should be
considered, so it marks the end of data processing in the TokenSpace. Figure 4 shows a test program
for the token space example [Gray99].

Figure 4. Class Test for testing the TokenSpace Example.

public class Test{
public static void main (String[] args) {

TokenSpace tSpace = new TokenSpace();

TokenHandlerIdentifier thi = new
TokenHandlerIdentifier(

“Source”,
“StartToken”,
“sort”,
“endData”,
TokenHandlerIdentifier.SINGLETON_HANDLER);

tSpace.addTokenHandlerInfo(thi);

thi = new TokenHandlerIdentifier(
“Sorter”,
“sort”,
“merge”,
“endSort”,
TokenHandlerIdentifier.VAR_LOAD_HANDLER);

tSpace.addTokenHandlerInfo(thi);

thi = new TokenHandlerIdentifier(
“Merger”,
“merge”,
“merge”,
“endMerge”,
TokenHandlerIdentifier.VAR_LOAD_HANDLER);

tSpace.addTokenHandlerInfo(thi);

thi = new TokenHandlerIdentifier(
“Reporter”,
“endMerge”,
null,
“endReport”,
TokenHandlerIdentifier.SINGLETON_HANDLER);

tSpace.addTokenHandlerInfo(thi);

Token t = new Token();
t.fTokenName = “StartToken”;
t.fItems = null;

tSpace.put(t,false);
}

}

A more detailed operation of this program is described as follows:

1. The action of placing a StartToken in the TokenSpace triggers the creation of a Source object
with associated thread (or Source process). The main thread can now terminate leaving the
TokenSpace object in existence with running Source objects.

2. Each Source takes a very large array of randomly ordered doubles, and partitions it into subarrays;
each subarray forms the token_item of a separate sort token placed into the TokenSpace. Flow
control limits each Source from leaving more than ten unprocessed sort tokens in the
TokenSpace. Each put() action on the TokenSpace results in a re-evaluation of the state of
known processes against the data provided in the TokenHandlerIdentifiers. The first
appearance of a sort token in the TokenSpace triggers the creation of a Sorter; as this class is
marked as a VAR_LOAD_HANDLER (“variable load handler”), further instances of the class Sorter
may get created in response to subsequent put(sort) actions.

3. The function Sorter.run() builds a Request object that specifies the need for a sort token
(this requires no identification or other token_items), or the alternative of an endData
termination token. This request is repeatedly reissued from a loop; if a sort token is returned, its
subarray is sorted and placed back in the TokenSpace as a merge token. The loop ends if this
termination token is matched.

4. The placement of a merge token triggers the creation of a Merger. The Merge.run() function is
similar to that of the Sorter, save that its Request object involves two merge tokens, or an
endSort termination token. The Merger combines the data in the two merge tokens that it
removes from the TokenSpace, and puts back another merge token containing an array with their
combined data.

5. A Reporter object is created when an endMerge token appears in the TokenSpace. It removes
the last remaining merge token from the TokenSpace. This token contains all elements of the
original array (partitioned by the Source) and outputs the sorted array or performs any other
processing required.

Testing this program on an uniprocesor computer (for a particular size of the data set) employed one or
two Sorters and a Merger as “parallel” (concurrent) objects. In general, measured computation
times were just a little longer than using a simple quicksort of the entire data set. These increased times
reflect the cost of the more elaborated data ordering (the creation of the various dynamically allocated
tokens and subarrays) and the overheads of switching amongst threads.

Known uses

� A Tuple space, used to contain data, presents the parallel programming structure of the Shared
Resource pattern. Sharers can generate asynchronous requests to read, remove and add tuples. The
tuple space is encapsulated in a single shared resource component that maintains the set of tuples,
preventing two parallel sharers from acting simultaneously on the same tuple [Fos94].

� JavaSpaces is a distributed object-sharing structure, constituted as a set of abstractions for
distributed programming, which together compose a shared resource structure. In a distributed
application, the JavaSpaces structure acts as a virtual space between providers and requesters of
network resources or objects, allowing participants in a distributed solution to exchange tasks,

requests and information in the form of Java technology-based objects. Briefly, a JavaSpace is an
environment that provides object persistence and facilitates the design of distributed algorithms.
Basically, JavaSpaces are client/server systems, with clients calling one set of interfaces - those of
the JavaSpace. Clients are encapsulated from details of object-transfer and distributed-function calls.
Clients may write and read objects to JavaSpaces and look up the JavaSpace for objects that match
some template. JavaSpaces provide developers with the ability to create and store objects with
persistence, which allows for process integrity. For a more detailed technical overview of
JavaSpaces, refer to [FHA99].

� Mobile robotics control is another concurrent application example of the Shared Resource pattern.
The software functions for a mobile robotics system has to deal with external sensors for acquiring
input and actuators for controlling its motion and planning its future path in real-time. Unpredictable
events may demand a rapid response, for example, imperfect sensor input, power failures, and
mechanical limitations in the motion. As an example, the CODGER system uses the Shared
Resource pattern to model the cooperation of tasks for coordination and resolution of uncertain
situations in a flexible form. CODGER is composed of a "captain", a "map navigator", a "lookout", a
"pilot" and a perception system, each one sharing information through a common shared resource
[SG96].

� A real-time scheduler is another concurrent application of the Shared Resource pattern. The
application is a process control system, in which a number of independent processes are executed,
each having its own real-time requirements, and therefore, no process can make assumptions about
the relative speed of other processes. Conceptually, they are regarded as different concurrent
processes coordinated by a real-time scheduler, accessing, for instance, computer resources
(Consoles, printers, I/O devices, etc.) which are shared among them. The real-time scheduler is
implemented as a shared resource component to give processes exclusive access to a computer
resource, but does not perform any operation on the resource itself. Each different process performs
its activities, requiring from time to time the use of computer resources. The shared resource grants
the use of resources, maintaining the integrity of the data read from or written to a resource by each
different process [Han77].

Consequences

Benefits

� Integrity of data structure within the shared resource is preserved.

� From the perspective of a parallel designer, this pattern is the "simplest" to design and execute, due
to the minimal dependence between sharer components. Fundamentally, the operations on each data
element are completely independent. That is, each piece of data can be operated in different
machines, running independently as long as the appropriate input data are available to each one. It is
relatively easy to achieve significant performance in an application that fits the pattern [Pan96].

� As its components (the shared resource and the sharers) are strictly separated, the Shared Resource
pattern supports changeability and maintainability [POSA96, Pan96].

	 The Shared Resource pattern supports several levels of granularity. If required, the shared resource
can provide operations for different data sizes.

 As sharer components perform different and independent operations, they can be reused in different
structures. The only requirement for reuse is that the sharer to be reused is able to perform certain
operations on the data type in the new shared resource [POSA96, Pan96].

� A shared resource can provide fault tolerance for noise in data [POSA96, SG96].

Liabilities

� Due to the different nature of each component, load-balance is difficult to achieve, even when
executing each component on a different processor. The difficulty increases if several components
run together on a processor [Pan96].

 The trace of stages for producing a result in a shared resource application is difficult to reproduce.
Inherently, computations are not necessarily ordered following a deterministic algorithm [POSA96].
Furthermore, the parallelism of its components introduces a non-deterministic feature to the
execution [Pan96].

� Even when parallelism is straightforward, often the shared resource does not consider the use of
control strategies to exploit the parallelism of shared and to synchronise their actions. In order to
preserve its integrity, the design of the shared resource must consider extra mechanisms or
synchronisation constraints to access its data. An alternative is using the Blackboard pattern
[POSA96].

Related patterns

The Shared Resource pattern is considered a specialization of the Blackboard pattern [POSA96]
without control component, and introducing aspects of activity parallelism. Also, it is related to the
Repository architectural style [Shaw95, SG96]. Other patterns that can be considered related to this
pattern are the Compatible Heterogeneous Agents pattern [ABM96] and the Object Group pattern
[Maf96].

3. Summary

The goal of the present paper is to provide software designers and engineers with an overview of a
common structure used for activity parallel software systems. The architectural pattern described here
can be linked with other current pattern developments for concurrent, parallel and distributed systems.
Work on patterns that support the design and implementation of such systems has been addressed
previously by several authors [Sch95, Sch98a, Sch98b, POSA00].

4. Acknowledgements

I wish to express my acknowledgements and gratitude to Berna Massingill, who shepherded this paper
always providing insights and comments for its improvement. Also, I would like to thank Ralph
Jonhnson, for his accurate comments during the shepherding of this paper.

5. References

[ABM96] Amund Aarsten, David Brugali and Giuseppe Menga. Patterns for Cooperation. Pattern Languages of
Programming Conference (PLoP'96). Allerton Park, Illinois, USA. September 1996.

[AEM95] Aarsten, A., Gabriele Elia, G., and Giuseppe Menga, G. G++: A Pattern Language for the Object
Oriented Design of Concurrent and Distributed Information Systems, with Applications to Computer Integrated
Manufacturing. Department of Automatica e Informatica, Politecnico de Torino. In J. Coplien and D. Schmidt
(eds.) Pattern Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[CG88] Nicholas Carriero and David Gelernter. How to Write Parallel Programs. A Guide to the Perplexed. Yale
University, Department of Computer Science, New Heaven, Connecticut. May 1988.

[CN01] Peter Carmichael and Joyce Ng. DSpace Workflow Design Description. DSpace Durable Digital Documents
project, MIT Libraries, 2001. http://www.dspace.org/

[CT92] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones and Bartlett
Publishers, Inc., Boston, 1992.

[Fos94] Ian Foster. Designing and Building Parallel Programs, Concepts and Tools for Parallel Software
Engineering. Addison-Wesley Publishing Company, 1994.

[FHA99] Freeman, E., Hupfer, S., and Arnold K. JavaSpaces. Principles, Patterns and Practice. Addison Wesley
Publishing Co., 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Systems. Addison-Wesley, Reading, MA, 1994.

[Gray99] Neil Gray. Architectural Patterns for Parallel Programming. Personal communication, 1999.
[Han77] Brinch Hansen, P. The Architecture of Concurrent Programs. Series in Automatic Computetion. Prentice-

Hall, Inc. Englewood Cliffs, New Jersey, 1977.
[HS97] Harrison, T., and Schmidt, D. C. Thread-Specific Storage, An Object Behavioral Pattern for Efficiently

Accesing per-Thread State. Department of Computer Science, Washington University. 2nd annual European
Pattern Languages of Programming Conference, in Kloster Irsee, Germany, 1997.

[JS96] Prashant Jain and Douglas C. Schmidt. Service Configurator. A Pattern for DynamicConfiguration and
Reconfiguration of Communication Services. Third Annual Pattern Languages of Programming Conference,
Allerton Park, Illinois. September 1996.

[LS95] R. Greg Lavender and Douglas C. Schmidt. Active Object. An Object Behavioral Pattern for Concurrent
Programming .In Patterns Languages of Programming 2 (PLOP'95). Addison-Wesley, 1996.

[Maf96] Maffeis, S. Object Group, An Object Behavioral Pattern for Fault-Tolerance and Group Communication
in Distributed Systems. Department of Computer Science, Cornell University. Proceedings of the USENIX
Conference on Object-Oriented Technologies. Toronto, Canada, 1996.

[McKe95] McKenney, P. E. Selecting Locking Primitives for Parallel Programs. Sequent Computer Systems, Inc.
In J. Vlissides, J. Coplien and N. Kerth (eds.) Pattern Languages of Program Design 2. Reading, MA: Addison-
Wesley, 1996.

[OR98] Jorge L. Ortega-Arjona and Graham Roberts. Architectural Patterns for Parallel Programming.
Proceedings of the 3rd European Conference on Pattern Languages of Programming and Computing,
EuroPloP'98. Jens Coldewey and Paul Dyson (editors), Universitätsverlag Konstantz GmbH, 1999.

[OR00] Jorge L. Ortega-Arjona. The Communicating Sequential Elements Pattern. Proceedings of the 7th Annual
Conference on Pattern Languages of Programming, PLoP'98. Eugene Wallingford and Alejandra Garrido
(editors), Washigton University Technical Report wucs-00 29, 2000.

[Pan96] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Originally published in
Computational Science and Engineering, Vol. 3, No. 2. Summer, 1996.

[Pfis95] Gregory F. Pfister. In Search of Clusters. The Coming Battle in Lowly Parallel Computing. Prentice Hall
Inc. 1995.

[PLoP94] James O. Coplien and Douglas C. Schmidt (editors). Patterns Languages of Programming. Addison-
Wesley, 1995.

[PLoP95] James O. Coplien, Norman L. Kerth and John M. Vlissides (editors). Patterns Languages of
Programming 2. Addison-Wesley, 1996.

[POSA96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, Michael Stal. Pattern-Oriented
Software Architecture. John Wiley & Sons, Ltd., 1996.

[POSA00] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented Software
Architecture, Vol. 2 - Patterns for Concurrent and Distributed Objects. John Wiley and Sons, Ltd., 2000.

[SC95] Aamond Sane and Roy Campbell. Composite Messages: A Structural Pattern for Communication Between
Components. OOPSLA'95, Workshop on Design Patterns for Concurrent, Parallel and Distributed Object-
Oriented Systems. October 1995.

[Sch95] Douglas Schmidt. Accepted Patterns Papers. OOPSLA'95 Workshop on Design Patterns for Concurrent,
Parallel and Distributed Object-Oriented Systems. http://www.cs.wustl.edu/~schmidt/OOPSLA-
95/html/papers.html. October, 1995.

[Sch98a] Douglas Schmidt. Design Patterns for Concurrent, Parallel and Distributed Systems.
http://www.cs.wustl.edu/~schmidt/patterns-ace.html. January, 1998.

[Sch98b] Douglas Schmidt. Other Pattern URL's. Information on Concurrent, Parallel and Distributed Patterns.
http://www.cs.wustl.edu/~schmidt/patterns-info.html. January, 1998.

[SH96] Schmidt, D. C., and Harrison, T. Double-Checked Locking, An Object Behavioral Pattern for Initializing
and Accesing Thread-safe Objects Efficiently. Department of Computer Science, Washington University. 3rd
Pattern Languages of Programming Conference, Allerton Park, Illinois, February 1997.

[Shaw95] Mary Shaw. Patterns for Software Architectures. Carnegie Mellon University. In J. Coplien and D.
Schmidt (eds.) Pattern Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall Publishing, 1996.

[ST96] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel Computation. Computing and
Information Science, Queen's University and Universita della Calabria. October 1996.

[VBT95] Allan Vermeulen, Gabe Beged-Dov and Patrick Thompson. The Pipeline Design Pattern. OOPSLA'95,
Workshop on Design Patterns for Concurrent, Parallel and Distributed Object-Oriented Systems. October 1995.

