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Abstract 
This paper introduces an approach to describing and selecting design patterns for developing 
communication components of parallel programs. The approach uses the kind of communication 
requirements of a proposed architectural pattern for parallel programming along with characteristics 
of the parallel hardware platform in order to make selections between different design patterns. 
 
1. Introduction 
 
Parallel processing is the division of a problem, presented as a data structure and/or a set of actions, 
among multiple processing components that operate simultaneously. The expected result is a more 
efficient completion of the solution to the problem. Its main advantage is the ability to handle tasks of 
a scale that would be unrealistic or not cost-effective for other systems [CG90, Fos94, Pan96]. Thus, a 
parallel program is defined as the specification of a set of software components that simultaneously 
process and communicate among themselves, in order to achieve a common objective. Hence, a 
parallel program can be normally described in terms of two types of software components [CG90]: 
 

• Processing components. Processing components make up the parallel software system, and 
their design and implementation focus on actually perform the simultaneous operations on 
data. 

• Communication components. Communication components represent the actual cooperation  — 
through exchange of data or the request for operations— between processing components. 
Communication components are the linking software that allow the information exchange 
between the processing components of the parallel software system. 

 
The present paper attempts to describe communication components as design patterns, aiding parallel 
software designers and engineers with an overview of the common structures used for communication, 
and providing guidelines in their selection during the design stages of a parallel software system. 
 
2. Design Patterns 
 
Design patterns are defined as follows: 
 
“The design patterns ... are descriptions of communicating objects and classes that are customized to 
solve a general design problem in a particular context” [GHJV95]. 
 
“A design pattern provides a scheme for refining the subsystems or components of a software system, 
or the relationships between them. It describes a commonly-recurring structure of communicating 
components that solves a general design problem within a particular context” [POSA96]. 
 
The design patterns in this paper focus on describing and refining the communication components of a 
parallel program, by describing common structures used for communicating, by exchanging data or 
requesting operations, between processing components. 
 
The design patterns here share a formal structure (using the POSA form, as described in [POSA96]), 
containing a name, a summary, a context (presenting the design situation in which apply the pattern), a 



problem statement (including a description of its forces), a solution statement (covering descriptions of 
its structure, participants, basic dynamics and implementation), consequences (describing benefits and 
liabilities), known uses and related patterns. These elements provide a uniform template for browsing 
pattern descriptions contained in several pattern systems, making it easy to look for and find 
information about when and how to use each pattern. 
 
3. Classification of Design Patterns for Communication Components  
 
The design patterns for communication components of parallel programs can be classified taking into 
consideration several characteristics of the communication they perform. Hence, design patterns for 
parallel programming are defined and classified according to: 
 
• The parallelism of the overall parallel software system. The communication components have to 

be designed to allow communications in parallel systems with (a) functional parallelism [OR98, 
Ort05, Ort07], (b) domain parallelism [OR98, Ort00], or (c) activity parallelism [OR98, Ort03, 
Ort04]. These types of parallelism arise from partitioning the algorithm and/or data among the 
processing components of a parallel program. Hence, functional parallelism focuses on 
decomposing the algorithm, domain parallelism on dividing data, and activity parallelism on 
partitioning both, algorithm and data [OR98]. The type of parallelism used in the overall parallel 
software system is an important contextual indicator of the type of communication component to 
be designed. 

• The memory organisation of the parallel hardware platform. The communication components are 
designed and implemented through programming mechanisms that cope with a parallel hardware 
platform with (a) shared memory, or (b) distributed memory [Har98]. In a shared memory parallel 
system, all memory can be accessed by every processor; in a distributed memory parallel system, 
each processor counts with a local memory, and it is able to access another processor’s memory 
only through I/O requests. The type of memory organisation is an indicator of the kind of 
programming mechanisms to be used when designing and implementing communication 
components. 

• The type of synchronisation. Depending on the memory organisation, communication components 
are implemented through programming mechanisms that involve (a) synchronous 
communications, or (b) asynchronous communications. Synchronous communications imply 
blocking the sender or the receiver until its counterpart in the communication is available; 
asynchronous communications imply that neither the sender nor the receiver waits for its 
communication counterpart — it continues without blocking [Har98]. 

 
Based on this classification criteria, this paper presents eight design patterns commonly used for 
designing and implementing the communication components of parallel software systems. Table 1 
presents these design patterns, classified only regarding to the parallelism of the overall parallel 
software system, the memory organisation of the parallel hardware platform, the type of 
synchronisation, and the type of programming mechanisms used for their implementation. 
 

 Parallelism Memory 
Organisation 

Synchronisation 

Shared Variable Pipe Functional Shared Memory Asynchronous 
Multiple Local Call Functional Shared Memory Synchronous 
Message Passing Pipe Functional Distributed Memory Asynchronous 
Multiple Remote Call Functional Distributed Memory Synchronous 
Shared Variable Channel Domain Shared Memory Asynchronous 
Message Passing Channel Domain Distributed Memory Asynchronous 
Local Rendezvous Activity Shared Memory Synchronous 
Remote Rendezvous Activity Distributed Memory Synchronous 

Table 1: Design patterns classification. 



4. Design Patterns for Communication Components of Parallel Programs  
 
Parallel programming is characterised by a growing set of parallel architectures, paradigms and 
programming languages. This situation makes difficult to propose just one approach containing all the 
details to design and implement communication components for all parallel software systems. The 
design patterns proposed here are an effort to help a programmer to design the communication 
components depending on particular characteristics and features of the communication to be carried 
out between the processing components, when designing a parallel program. 
 
The Shared Variable Pipe pattern 
The Shared Variable Pipe pattern describes the design of a pipe component based on shared variables 
and synchronisation mechanisms, which serve for implementing send and receive operations that 
emulate the behaviour of a pipe component for a shared memory parallel system.   
 
Context 
 

A parallel program is being developed using the Parallel Pipes and Filters architectural pattern 
[OR98, Ort05] as a functional parallelism approach in which an algorithm is partitioned among 
autonomous filters as the processing components of the parallel program. The parallel program is 
developed for a shared memory computer. The programming language to be used counts with 
synchronisation mechanisms for process communication, such as semaphores [Dij68, Har98] or 
monitors [Hoa74, Har98]. 

 
Problem 

 
A collection of parallel filters require to communicate by exchanging messages, following a single 
direction data flow; every data and operation over it is carried out inside some filter. 
 

Forces 
 
The following forces should be considered for the Shared Variable Pipe pattern: 
 
• Maintain the precise order of the transferred data through the pipe, using a FIFO policy. 
• Communication should be point to point and unidirectional. 
• Keep the integrity of transferred data. 
• The implementation has to consider the shared memory as programming environment. 
• The communication should be asynchronous. 

 
Solution 

 
The idea is to emulate the behaviour of a pipe component using a shared variable. Hence, use the 
shared variable to implement the pipe component, considering it as a one-directional, shared 
memory communication means between filters. Such a shared variable requires to be safely 
modified by read and write operations from the filters. Hence, a programming language 
synchronisation mechanism (such as semaphores or monitors) has to be considered to preserve the 
order and integrity of the transferred data, along with sending (writing) and receiving (reading) 
operations.  

 
Structure 

 
The participants and relations that compose the structure of this pattern are shown using a UML 
Collaboration Diagram [Fow97] for the description (Figure 1). 
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Shared Variable Pipe 

 
Figure 1. UML Collaboration Diagram for the Shared Variable Pipe pattern. 

 
Participants 
 

• Synchronisation Mechanism. The responsibility of the synchronisation mechanism is to 
synchronise the access to the shared variable, translating the send and receive operations into 
adequate operations for writing to and reading from the shared variable. 

• Shared Variable. The responsibility of the shared variable is to serve as a repository for the 
data to be transferred. It can be designed as a buffer (an array of a particular type) with an 
specific size, for accomplishing with the use of asynchronous communication between the 
sending filter and the receiving filter. The shared variable is, then, in charge of keeping the 
order and integrity of the shared data. 

 
Dynamics 

 
The behaviour of this pattern is expected to emulate the operation of a pipe component within a 
shared memory parallel system. Hence, Figure 2 shows the behaviour of the participants of this 
pattern, aiming to carry out such an emulation. 
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Figure 2. UML Sequence Diagram for the Shared Variable Pipe pattern. 

 
In the scenario shown in Figure 2, the following steps are followed for communicating data from 
Sending Filter to Receiving Filter: 
 



• The Sending Filter sends the data item to be piped to the Shared Variable Pipe, issuing a 
send(data)operation to the Synchronisation Mechanism. 

• The Synchronisation Mechanism verifies if the Receiving Filter is not accessing the Shared 
Variable. If this is the case, then it translates the sending operation, allowing a 
write(data)operation of the data item on the Shared Variable. Otherwise, it blocks sending 
the operation until the Shared Variable can be modified. 

• On the other hand, when the Receiving Filter attempts to receive data from the Shared Variable 
Pipe, it does it so by issuing a receive(data) request to the Synchronisation Mechanism. 
Again, only if the Sending Filter is not modifying the Shared Variable, the Synchronisation 
Mechanism grants a read() operation from the Shared Variable, returning the requested data 
item. 

• The communication flow is kept unidirectional by allowing only send operations to the Sending 
Filter, and receive operations to the Receiving Filter. 

 
Implementation 

 
The implementation of the Shared Variable Pipe requires the construction of the Synchronisation 
Mechanism and the Shared Variable. Both software components exist and execute on a shared 
memory environment. 
 
The Synchronisation Mechanism can be implemented using semaphores [Dij68, Har98] to 
synchronise the access to the Shared Variable, considering the P and V operations, respectively just 
before and after invoking the write()or read()operations that modify the state of the Shared 
Variable. Another possibility is the use of monitors [Hoa74, Har98], which consider the 
synchronisation over the very write()or read() operations. 
 
The Shared Variable can be implemented as a bounded buffer of a particular type, which can be 
modified by reading or writing operations from the Synchronisation Mechanism, considering an 
asynchronous communication approach. The Shared Variable, hence, is capable of keeping several 
data values in order to cope both the Sending Filter and the Receiving Filter, if both perform 
processing activities at different speeds.  

 
Consequences 
 
Benefits 
 

• The Shared Variable Pipe keeps a FIFO policy, by synchronising the access to the Shared 
Variable. If the Sending Filter is faster than the Receiving Filter, then the Synchronisation 
Component would block the Sending Filter if the Shared Variable, as a buffer, is full. 
Otherwise, if the Receiving Filter is faster than the Sending Filter, the Synchronisation 
Component would block the Receiving Filter if the Shared Variable is empty. 

• The Shared Variable Pipe is designed to deal with point to point and unidirectional 
communication. However, it can be extended to a one-to-many, many-to-one, and many-to-
many communications, by using several Synchronisation Mechanisms over several Shared 
Variables. Also, it keeps a unidirectional flow of data by allowing only sending operations to 
the Sending Filter, and receiving operations to the Receiving Filter. 

• The Synchronisation Mechanism is in charge of keeping the integrity of transferred data, by 
assuring that, at any given moment, only one filter has actual access to Shared Variable. 

• The implementation is particularly developed for a shared memory programming environment. 
• The Shared Variable Pipe uses asynchronous communications, by implementing the Shared 

Variable as a bounded buffer. 
 
 



Liabilities 
 

• The communication speed of the Shared Variable Pipe is as slow as the slowest filter it 
connects. Therefore, to improve communication performance, changes to the amount of 
processing of the filters have to be considered. 

• The Shared Variable Pipe can be used for one-to-many, many-to-one, and many-to-many 
communications, although the implementation could require the use of several semaphores or 
monitors. This fact could make it difficult to implement the whole communication component. 

• If the Sending Filter or the Receiving Filter is a lot faster that its communication counterpart, 
this could produce a great unbalance on the whole computation. This is a signal that the division 
of the algorithm into steps could be wrong. If it is the case, perhaps removing the pipe and 
considering both processing components into one could solve the unbalance situation. 

• The implementation based on semaphores and monitors makes this pattern only to be used into 
a shared memory environment. Porting it to a distributed memory parallel platform would 
require to replace each Shared Variable Pipe by a Message Passing Pipe. 

• There could be potential problems if the sending operations are not restricted to the Sending 
Pipe, and /or the receiving operations to the Receiving Filter. The structure would not act as a 
pipe. 

 
Known uses 

 
The Shared Variable Pipe is normally used when the parallel solution of a problem is developed 
using the Parallel Pipes and Filters architectural pattern [OR98, Ort05] within a shared memory 
parallel platform. Hence, it has as many known uses as the Parallel Pipes and Filters pattern. 
Particularly, the following known uses are relevant: 
 
• The Shared Variable Pipe pattern is used when implementing the Pipes and Filters version of 

the Sieve of Eratosthenes for a shared memory computer, in order to allow the flow of integers 
between the filters in which the test, whether an integer is a prime number or not, is carried out 
[Har98]. 

• The Shared Variable Pipe pattern is commonly used when describing a solution based on 
semaphores or monitors as a bounded buffer communication, in which a producer produces data 
items and a consumers consumes them [Dij68, Hoa74, And91, Har98, And00]. 

• The Shared Variable Pipe pattern can be considered a variation of the pipe operation common in 
several Unix and Unix-based operating systems for communicating processes [And91, And00]. 

 
Related patterns 

 
The Shared Variable Pipe pattern is directly related with any parallel software system developed 
on a shared memory environment from the Parallel Pipes and Filters pattern [OR98, Ort05]. It is 
also related with the pattern for selecting locking primitives, originally proposed by McKenney 
[McK95], and lately included as part of the POSA 2 book, Patterns for Concurrent and Networked 
Objects [POSA00]. 

 
Multiple Local Call 
The Multiple Local Call pattern describes the design of multiple programming modules that 
encapsulate services or access procedures, which are called or invoked by another component, in order 
to operate over global and/or local variables. Such an operation is related with delegating a part of a 
whole processing activity to such a programming module. Both components are allowed to execute 
simultaneously, and thus, they require a synchronous communication during each call. The call is 
considered local since all components are designed to exist and execute on a shared memory parallel 
system. 
 



Context 
 
A parallel program is being developed using the Parallel Layers architectural pattern [OR98, Ort07] 
as a functional parallelism approach in which an algorithm is partitioned among autonomous 
processes (layer components) as the processing components of the parallel program. The parallel 
program is developed for a shared memory computer. The programming language to be used 
counts with synchronisation mechanisms for process communication like semaphores [Dij68, 
Har98] or monitors [Hoa74, Har98].  

 
Problem 

 
A collection of parallel layers require to communicate by issuing operation calls, and waiting to 
receive results; every data is locked inside some layer component. 

 
Forces 

 
The following forces should be considered for the Multiple Local Call pattern: 
 
• Maintain the precise order operations. 
• Communication commonly should be one to many. 
• Keep the integrity and order of the results. 
• The implementation has to consider shared memory as programming environment. 
• The communication should be synchronous. 

 
Solution 

 
Design the programming modules as a set or array of monitors, encapsulating service procedures 
able to carry out some processing. Each module receives synchronised calls from a caller 
component, which delegates it a part of a whole processing activity. By allowing a one to many 
communication, the whole processing activity tends to be partitioned among several programming 
modules, which at the same time are able to create further modules, in order to continue 
partitioning the processing activity until it can be serviced by a single programming module. All 
these components are designed to exist and execute simultaneously on a shared memory parallel 
system, synchronising their action during the cascade of calls, so the precise order of operations 
and the integrity and order of results are kept. 
 

Structure 
 
Figure 3 shows the participants and relations that compose the structure of this pattern at only a 
single stage of communication, using a UML Collaboration Diagram [Fow97]. 
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Figure 3. UML Collaboration Diagram for the Local Call pattern. 

 
Participants 
 

• Caller. The responsibilities of the caller component is to generate a set of calls to the module 
components, providing local arguments for each module (and thus, partitioning the processing 
among the modules) and waiting to receive results from the modules. 

• Module. The responsibilities of each module component are to re-distribute the call (and the 
arguments) to another set or array of components, or to carry out the part of the whole 
processing activity over the local arguments, and hence, produce results which are collected by 
its caller. 

 
Dynamics 

 
This pattern is expected to operate between components at different layers within a shared memory 
parallel system. Figure 4 shows the behaviour of the participants of this pattern at a single stage, 
considering a 1 to N communication. 
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Figure 4. UML Sequence Diagram for the Multiple Local Call pattern. 

 
In this scenario, the following steps are followed: 
 



• The Caller produces a group of calls for service to each one of the Module components, and 

•  proceeds to perform the service. As potentially another call 

• ults, and continues processing. 
 

plementation 

he implementation of the Multiple Local Call pattern requires the construction of the Module 
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Liabilities 

• The use of the Multiple Local Call pattern can produce long delays in the communication 
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components to take into consideration its synchronous behaviour. Module software components are 
allowed to exist and execute on a shared memory environment, as part of a cascade of calls. 
Commonly, Module components of the same type are used within the same layer. 
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the service, considering the P and V operations, respectively just before and after invoking the 
service. A better possibility is to consider each Module as a monitor [Hoa74, Har98], which 
synchronises the access to the service. 
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single stage within a cascade of synchronous calls. Hence, only once all the Modules at a layer 
have completed their operation, the caller is able to continue, perhaps as a single module within 
another layer. 
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between components at different layers. Since the caller has to wait until the whole operations 
are carried out, the communication through the whole hierarchical structure could be slowed 
down due to the number of modules per caller and the amount of communication between caller 
and modules. 

K
 
T
using the Parallel Hierarchies architectural pattern [OR98, Ort07] within a shared memory parallel 
platform. Hence, it has as many known uses as the Parallel Hierarchies pattern. Particularly, the 
following known uses are relevant: 
 



• The Multiple Local Call pattern is used in tree-like algorithms, such as searches, in which the 
data of the problem is provided as arguments to each branch in the tree, and multiple calls are 
required [Ort07]. 

• The Multiple Local Call pattern is commonly used when describing a solution based on a 
divide-and-conquer approach, in which the computation is divided into sub-computations over 
and over, until a simple operation is required to obtain a result. Assembling all the results 
provide the global result [And91, And00]. 

• The Multiple Local Call pattern can be considered a variation of a client-server operation with a 
simple synchronised call operation, in which a single component acts as a server for a single 
client [And91, And00]. 

 
Related patterns 

 
The Multiple Local Call pattern is directly related with any parallel software system developed on a 
shared memory environment from the Parallel Hierarchies pattern [OR98, Ort07]. It is also related 
with the pattern for selecting locking primitives, originally proposed by McKenney [McK95], and 
lately included as part of the POSA 2 book, Patterns for Concurrent and Networked Objects 
[POSA00]. 

 
The Message Passing Pipe pattern 
The Message Passing Pipe pattern describes the design of a pipe component based on message 
passing, by implementing send and receive operations that perform the communications of the pipe 
component for a distributed memory parallel system (although it can be used for a shared memory 
parallel system as well). 
 
Context 

 
A parallel program is being developed using the Parallel Pipes and Filters architectural pattern 
[OR98, Ort05] as a functional parallelism approach in which an algorithm is partitioned among 
autonomous processes (filters) as the processing components of the parallel program. The parallel 
program is developed for a distributed memory computer, even though it also can be used for a 
shared memory computer. The programming language to be used counts with synchronisation 
mechanisms for process communication through message passing [Hoa78, Har98].  

 
Problem 

 
A collection of parallel filters require to communicate by exchanging messages, following a single 
direction data flow; every data is operated inside some filter. 
 

Forces 
 
The following forces should be considered for the Message Passing Pipe pattern: 
 
• Maintain the order of the transferred data through the pipe, using a FIFO policy. 
• Communication should be point to point and unidirectional. 
• The implementation has to consider a distributed memory as programming environment. 
• The data should be transferred asynchronously. 

 
Solution 

 
Design a pipe component as a distributed software structure connecting the filters that execute on 
two different processors or computers. The software structure is composed of communication end 
points (often, sockets), some synchronisation mechanisms, and a couple of data streams. These 



components are put together in order to achieve a one-directional, distributed memory 
communication component between filters executing on different processors or computers. 

 
Structure 

 
Figure 5 shows the participants and relations that compose the structure of this pattern, using a 
UML Collaboration Diagram [Fow97]. 
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Figure 5. UML Collaboration Diagram for the Message Passing Pipe pattern. 

 
Participants 
 

• OutSynchronisationMechanism and InSynchronisationMechanism. The responsibility of the 
synchronisation mechanisms is to synchronise the access to the data streams (OutDataStream 
and InDataStream), so only one processing component has access to any of them at a given 
moment. The synchronisation mechanism is, then, in charge of keeping the order and integrity 
of the data written to or read from the data streams. 

• OutDataStream and InDataStream. The responsibility of the data streams is to transiently 
store the serialised data to be passed through the pipe. Every data item must be serialized, that 
is, converted into a stream of bytes, which is the way in which data is transferred through a 
network connecting processors or computers. Data streams can be written to and read from 
communication end points (OutEndPoint and InEndPoint). 

• OutEndPoint and InEndPoint. The responsibility of the communication end points is to send 
data back and forth between the processors or computers. These sort of communication end 
points are commonly implemented as sockets. 

• Buffer. The responsibility of the buffer is to serve as a repository for the data to be received. It 
is normally designed as an array of a particular type with an specific size. The buffer allows the 
use of asynchronous communication between the sending filter and the receiving filter. 

 
 
 
 



Dynamics 
 
This pattern is expected to operate as a pipe component for a distributed memory parallel system. 
Hence, Figure 6 shows the behaviour of the participants of this pattern, aiming to carry out such an 
operation. 
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Figure 6. UML Sequence Diagram for the Message Passing Pipe pattern. 

 
In this scenario, the following steps are followed: 
 
• The Sending Filter sends the data item to be piped to the Message Passing Pipe, issuing a 

send(data)operation to the Out Synchronisation Mechanism. 
• The Out Synchronisation Mechanism verifies if no other process is accessing the Out Data 

Stream. If this is the case, then it translates the sending operation, allowing a 
write(data)operation of the data item on the Out Data Stream. Otherwise, it blocks the 
operation until the Out Data Stream can be written. 

• The Out Data Stream generates a writeData() operation over the Out End Point (normally, a 
socket), so the data item is sent through the network to the appropriate processor or computer. 

• The data item is received by the In End Point (a socket) which is read by the In Data Stream 
by issuing a readData() operation. The data item is allocated into the Buffer, so the 
communication is kept asynchronous. From the Buffer, the Receiving Filter is able to receive 
data by issuing a receive(data) request to the In Synchronisation Mechanism. Again, only if 
no other process is reading from the Buffer, the Synchronisation Mechanism grants a read() 
operation from the Buffer, allowing to the Receiving Filter  to read the requested data item. 

 
Implementation 

 
The implementation of the Message Passing Pipe requires the use or construction of the 
Synchronisation Mechanisms, the Data Streams, the Buffer, and the End Points. All these software 
components exist and execute on a distributed memory environment, between two communicating 
processor or computers. 
 
The Synchronisation Mechanism can be implemented using semaphores [Dij68, Har98] to 
synchronise the access to the Data Streams and the Buffer, considering the P and V operations, 
respectively just before and after invoking the write()or read()operations that modify the state of 
the Data Streams and the Buffer. Another possibility is the use of monitors [Hoa74, Har98], which 
consider the synchronisation over the very write()or read() operations. 
 



Data Streams are a common communication form in many programming languages, used to 
serialise data, that is, converted into a stream of bytes, which is the way in which data is transferred 
through a network connecting processors or computers. 
 
The End Points are commonly sockets, which is a network communication mechanism common in 
several programming languages. Sockets are able to send data back and forth between the 
processors or computers of a network system.  
 
The Buffer can be implemented as an array of a particular type, which can be modified by reading 
or writing operations from the Synchronisation Mechanism, considering an asynchronous 
communication approach. The Buffer should be able of keeping several data values in order to cope 
both the Sending Filter and the Receiving Filter, since both perform processing activities at 
different speeds.  

 
Consequences 
 
Benefits 
 

• The Message Passing Pipe keeps a FIFO policy, by synchronising the access to the Buffer on 
the receiving side. 

• The Message Passing Pipe is designed to deal with point to point and unidirectional 
communication. However, it can be extended to a one-to-many, many-to-one, and many-to-
many communications, by using several Synchronisation Mechanisms over several Data 
Stream, Buffer, and End Point. Also, it keeps a unidirectional flow of data through the Data 
Streams. 

• The implementation based on Data Streams and End Points is explicitly developed for a 
distributed memory programming environment. However, it can be used within a shared 
memory programming environment as well. 

• The Message Passing Pipe uses asynchronous communications, by implementing a bounded 
buffer on the receiving side. 

 
Liabilities 
 

• The communication speed of the Message Passing Pipe depends not only on the slowest filter it 
connects, but also on features and characteristics of the communication network on which it 
executes. Therefore, communication performance is commonly affected by non-determinism 
issues which can be determinant on the communication speed. 

• The Message Passing Pipe can be used for one-to-many, many-to-one, and many-to-many 
communications, although the implementation could require the use of several semaphores or 
monitors. This fact could make it difficult to implement the whole distributed communication 
components. 

• If the Sending Filter or the Receiving Filter is a lot faster that its communication counterpart, 
this could produce a great unbalance on the whole computation. This is a signal that the division 
of the algorithm into steps could be wrong. If it is the case, perhaps removing the pipe and 
considering both processing components into one could solve the unbalance situation. 

• The implementation based on data streams and end points makes this pattern to be suitable for a 
distributed memory environment. Nevertheless, it can also be used within a shared memory 
environment, in which, however, it may not have a good performance due to the many 
communications involved. Hence, for a shared memory parallel platform and to keep a better 
performance, it would be advisable to replace each Message Passing Pipe by a Shared Variable 
Pipe. 

 
 



Known uses 
 
The Message Passing Pipe is commonly used when the parallel solution of a problem is developed 
using the Parallel Pipes and Filters architectural pattern [OR98, Ort05] within a distributed memory 
parallel platform. Hence, it has as many known uses as the Parallel Pies and Filters pattern. 
Particularly, the following known uses are relevant: 
 
• The Message Passing Pipe pattern has been used when implementing the Pipes and Filters 

version of the graphics rendering for a distributed memory system, in order to allow the flow 
data between the filters in which the rendering of a scene is carried out [Ort05]. 

• The Message Passing Pipe pattern is used when describing a distributed memory solution for 
the Matrix Multiplication problem [Har98]. 

• The Message Passing Pipe pattern can be used for a point-to-point, unidirectional 
communication between processes executing on different computers of a network system 
[And91, Har98, And00]. 

 
Related patterns 

 
The Message Passing Pipe pattern is related with any parallel software system developed for a 
point-to-point, unidirectional communication on a distributed memory environment from the 
Parallel Pipes and Filters pattern [OR98, Ort05]. It is also related with the pattern for networking 
included as part of the POSA 2 book, Patterns for Concurrent and Networked Objects [POSA00]. 

 
Multiple Remote Call 
The Multiple Remote Call pattern describes the design of multiple remote programming modules that 
encapsulate services or access procedures, which are called or invoked by another component, in order 
to operate over global and/or local variables. Such an operation is related with delegating a part of a 
whole processing activity to such a programming module. Components are allowed to execute 
simultaneously, and thus, they require a synchronous communication during each call. The call is 
considered remote since components are designed to exist and execute on a distributed memory 
parallel system. 
 
Context 

 
A parallel program is being developed using the Parallel Layers architectural pattern [OR98, Ort07] 
as a functional parallelism approach in which an algorithm is partitioned among autonomous 
processes (layer components) as the processing components of the parallel program. The parallel 
program is developed for a distributed memory computer, even though it also can be used for a 
shared memory computer. The programming language to be used counts with synchronisation 
mechanisms for process communication through remote calls [Bri78, Har98]. 

 
Problem 

 
A collection of parallel layers require to communicate by issuing operation calls, and waiting to 
receive results; every data is locked inside some layer component. 
 

Forces 
 
The following forces should be considered for the Multiple Remote Call pattern: 
 
• Maintain the precise order operations. 
• Communication commonly should be one to many. 
• Keep the integrity and order of the results. 



• The implementation has to consider distributed memory as programming environment. 
• The communication should be synchronous. 

 
Solution 

 
Design the caller component and the group of programming modules to communicate while they 
reside in different, remote machines, using remote calls. Each module receives synchronised calls 
from the caller component, delegating a part of a whole processing activity. In essence, instead of 
creating a local programming module, a local stub is created and bint to a remote programming 
module. The local stub is sent messages as if it were the programming module. It receives the 
messages sent to it and sends the messages onto the remote module, which invokes the adequate 
service. The result is sent back to the stub, which returns it to the caller. By allowing a one to many 
communication, the whole processing activity tends to be partitioned among several programming 
modules, which at the same time are able to create further modules, in order to continue 
partitioning the processing activity until it can be serviced by a single programming module. All 
these components are designed to exist and execute simultaneously on a distributed memory 
parallel system, synchronising their action during the cascade of calls, so the precise order of 
operations and the integrity and order of results are kept. 
 

Structure 
 
Figure 7 shows the participants and relations that compose the structure of this pattern at only a 
single stage of communication, using a UML Collaboration Diagram [Fow97]. 
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Figure 7. UML Collaboration Diagram for the Multiple Remote Call pattern. 

 
Participants 
 

• Caller. The responsibilities of the caller component is to generate a set of calls to the module 
components, providing local arguments for each module (and thus, partitioning the processing 
among the modules) and waiting to receive results from the modules. 

• Remote Module. The responsibilities of each remote module component are to re-distribute the 
call (and the arguments) to another set or array of components, or to carry out the part of the 
whole processing activity over the local arguments, and hence, produce results which are 
collected by its caller. 

• Local Stub. The responsibilities of is to serve as a local representative of a remote module in a 
distant computer, receiving calls and re-directing them to its correspondent remote module, as 
well as receiving the result from the remote module and provide it to the local caller. 



 
Dynamics 

 
This pattern is expected to operate between components at different layers within a distributed 
memory parallel system. Figure 8 shows the behaviour of the participants of this pattern at a single 
stage, considering a 1 to N communication. 
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Figure 8. Scenario of Pipes and filters pattern. 

 
In this scenario, the following steps are followed: 
 
• The Caller produces a group of calls for service to each one of the Module components through 

the Local Stubs locally available. The Caller waits until all the Local Stubs provide results. 
• The Local Stubs receive the call and re-direct it through the network to the adequate Module, 

and waits for a result. 
• Each Module receives the call, and proceeds to perform the service. Once its local operation is 

finished, every Module sends back a result. 
• The Local Stubs receive the result from its correspondent Module through the network, and 

makes it available to the Caller. 
• The Caller receives the results, and continues processing. 

 
Implementation 

 
The implementation of the Multiple Remote Call pattern requires the construction of the Local 
Stubs and the Module components, taking into consideration their synchronous behaviour. Both, 
Local Stubs and Module software components are allowed to exist and execute on a distributed 
memory environment, as part of a cascade of calls. Commonly, Local Stubs and Module 
components of the same type are used within the same layer. 
 
Local Stubs and Modules can be implemented as counterparts of remote calls [Bri78, Har98] to 
carry out the communication and synchronise the access to the service. Particularly, Local Stubs 
can be implemented to act as monitors [Hoa74, Har98], synchronising the access to the remote 
service. 

 
 
 
 
 



Consequences 
 
Benefits 
 

• The Multiple Remote Call pattern maintains the precise order operations since it represents a 
single stage within a cascade of synchronous calls. Hence, only once all the Modules at a layer 
have completed their operation, the caller is able to continue, perhaps as a single module within 
another layer. 

• As only one caller is used to call and synchronise several local stubs correspondent to several 
modules, communication is kept one to many. 

• Due to only synchronous calls are allowed between the caller and the local stubs, the integrity 
and order of the results are locally kept. 

• The implementation considers the use of shared memory synchronisation mechanisms, such as 
monitors, for the local stubs. This simplifies their implementation. 

• As local stubs are implemented as monitors, the caller has to wait until it receives all results 
from them, and thus, the communication is kept locally synchronous. 

 
Liabilities 
 

• The use of the Multiple Remote Call pattern can produce long delays in the communication 
between components at different layers, due to the use of components related with the remote 
calls through the network. Also, since the caller has to wait until the whole operations are 
carried out, the communication through the whole distributed hierarchical structure could be 
slowed down due to the number of modules per caller and the amount of communication 
between local stubs and modules. 

• The Multiple Remote Call pattern can be used in a shared memory environment. However, due 
to the calls are considered remote, synchronisation problems could arise which could slow down 
the operation of the whole structure. In such a case, the use of the Multiple Local Call pattern 
could simplify the operation, providing a more efficient response.  

 
Known uses 

 
The Multiple Remote Call is normally used when the parallel solution of a problem is developed 
using the Parallel Hierarchies architectural pattern [OR98, Ort07] within a distributed memory 
parallel platform (although it can be also used for a shared memory system). Hence, it has as many 
known uses as the Parallel Hierarchies pattern. Particularly, the following known uses are relevant: 
 
• The Multiple Remote Call pattern is used in hypercube-like platforms to carry out search 

computations, in which the data of the problem is provided as arguments to processors within a 
dimension in the hypercube, and multiple remote calls are required to distribute computations to 
and retrieve data from processors [Ort07]. 

• The Multiple Remote Call pattern is commonly used when describing a distributed Java 
program based on a Remote Method Invocation approach, in which the computation is divided 
into sub-computations among distributed computing resources [Har98]. 

• The Multiple Remote Call pattern can be considered a variation of a remote procedure call 
operation, in which a single component acts as a server for a single client [Bri78, And91, 
And00]. 

 
Related patterns 

 
The Multiple Remote Call pattern is directly related with any parallel software system developed on 
a shared memory environment from the Parallel Hierarchies pattern [OR98, Ort07]. It is also 
related with the Multiple Local Call pattern, as a version for distributed memory systems. 



 
Shared Variable Channel 
The Shared Variable Channel pattern describes the design of a channel component based on shared 
variables and synchronisation mechanisms, which serve for implementing send and receive operations 
that emulate the behaviour of a channel component for a shared memory parallel system.   
 
Context 

 
A parallel program is being developed using the Communicating Sequential Elements architectural 
pattern [OR98, Ort00] as a domain parallelism approach in which the data is partitioned among 
autonomous processes (elements) as the processing components of the parallel program. The 
parallel program is developed for a shared memory computer. The programming language to be 
used counts with synchronisation mechanisms for process communication such as semaphores 
[Dij68, Har98] and monitors [Hoa74, Har98].  

 
Problem 

 
An element needs to exchange values with its neighbouring elements. Every data is locked inside 
an element, which is responsible for processing that data and only that data.  
 

Forces 
 
The following forces should be considered for the Shared Variable Channel pattern: 
 
• Maintain the precise order of the transferred data through the channel. 
• Communication should be point to point and bidirectional. 
• Keep the integrity of transferred data. 
• The implementation has to consider the shared memory as programming environment. 
• The communication should be asynchronous. 

 
Solution 

 
The idea is to emulate the behaviour of a channel component using shared variables. Thus, use a 
couple of shared variables to implement the channel component, considering it as a bi-directional, 
shared memory communication means between elements. Such shared variables require to be 
safely modified by read and write operations from the elements. Hence, programming language 
synchronisation mechanisms (such as semaphores or monitors) have to be considered to preserve 
the order and integrity of the transferred data, along with sending (writing) and receiving (reading) 
operations. 
 

Structure 
 
The participants and relations that compose the structure of this pattern are shown using a UML 
Collaboration Diagram [Fow97] for the description (Figure 9). 
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Figure 9. UML Collaboration Diagram for the Shared Variable Channel pattern. 
 
Participants 
 

• Synchronisation Mechanisms. The responsibility of the synchronisation mechanisms is to 
synchronise the access to the shared variables, translating the send and receive operations into 
adequate operations for writing to and reading from the shared variables. The synchronisation 
mechanism is, then, in charge of keeping the order and integrity of the shared data. 

• Shared Variables. The responsibility of the shared variables is to serve as a repositories for the 
data to be transferred. Both can be designed as buffers (arrays of a particular type) with an 
specific size, for accomplishing with the use of asynchronous communication between the 
communicating elements. 

 
Dynamics 

 
The behaviour of this pattern is expected to emulate the operation of a channel component within a 
shared memory parallel system. Hence, Figure 10 shows the behaviour of the participants of this 
pattern, aiming to carry out such an emulation. 
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Figure 10. UML Sequence Diagram for the Shared Variable Channel pattern. 

 
In the scenario shown in Figure 10, the following steps are followed for communicating data from 
Element A to Element B, and vice versa: 
 
• Element A sends a data item by issuing a send(data)operation to the Synchronisation 

Mechanism. 
• The Synchronisation Mechanism verifies if the Element B is not reading the Shared Variable. 

If this is the case, then it translates the sending operation, allowing a write(data)operation of 
the data item on the Shared Variable. Otherwise, it blocks the operation until the Shared 
Variable can be modified. 

• On the other hand, when the Element B attempts to receive the data item, it does so by issuing a 
receive(data) request to the Synchronisation Mechanism. Again, only if the Element A is 
not writing the Shared Variable, the Synchronisation Mechanism grants a read() operation 
from the Shared Variable, returning the requested data item. 

• On the other hand, when Element B sends a data item to Element A, a similar procedure is 
carried out: data is sent by issuing a send(data)operation to the Synchronisation Mechanism. 

• The Synchronisation Mechanism verifies if the Element A is not accessing the Shared 
Variable. If this is the case, then it translates the sending operation, allowing a 
write(data)operation of the data item on the Shared Variable. Otherwise, it blocks the 
operation until the Shared Variable can be modified. 

• Element A reads the data item by issuing a receive(data) request to the Synchronisation 
Mechanism. Again, only if the Element B is not writing the Shared Variable, the 
Synchronisation Mechanism grants a read() operation from the Shared Variable, returning 
the requested data item. 

• The communication flow is bidirectional, allowing the exchange of data to and from 
neighbouring elements. 

 
Implementation 

 
The implementation of the Shared Variable Channel requires the implementation of the 
Synchronisation Mechanisms and the Shared Variables. Both types of software components exist 
and execute on a shared memory environment. 
 



The Synchronisation Mechanisms can be implemented using semaphores [Dij68, Har98] to 
synchronise the access to the Shared Variables, considering the P and V operations, respectively 
just before and after invoking the write()or read()operations that modify the state of each Shared 
Variable. Another possibility is the use of monitors [Hoa74, Har98], which consider the 
synchronisation over the very write()or read() operations. 
 
The Shared Variables can be implemented as bounded buffers of a particular type, which can be 
modified by reading or writing operations from the Synchronisation Mechanisms, considering an 
asynchronous communication approach. The Shared Variables, hence, are capable of keeping 
several data values in order to allow a bidirectional communication between Element A and 
Element B.  

 
Consequences 
 
Benefits 
 

• The Shared Variable Channel keeps the precise order of the transferred data by implementing a 
two directional FIFO policy, synchronising the access to both Shared Variables. 

• The Shared Variable Channel is designed to deal with point to point and bidirectional 
communication. 

• Both Synchronisation Mechanisms are in charge of keeping the integrity of transferred data, by 
assuring that, at any given moment, only one element has actual access to any of the Shared 
Variables. 

• The implementation is particularly developed for a shared memory programming environment. 
• The Shared Variable Channel uses asynchronous communications, by implementing the Shared 

Variables as two bounded buffers. 
 

Liabilities 
 

• The communication speed of the Shared Variable Channel is as slow as the elements it 
connects. Therefore, to improve communication performance, changes to the amount of 
processing of the elements have to be considered. 

• The Shared Variable Channel is difficult to extent to one-to-many, many-to-one, and many-to-
many communications. 

• The implementation based on semaphores and monitors makes this pattern only to be used into 
a shared memory environment. Porting it to a distributed memory parallel platform would 
require to replace each Shared Variable Channel by a Message Passing Channel. 

 
Known uses 

 
The Shared Variable Channel is normally used when the parallel solution of a problem is 
developed using the Communicating Sequential Elements architectural pattern [OR98, Ort00] 
within a shared memory parallel platform. Hence, it has as many known uses as the 
Communicating Sequential Elements pattern. Particularly, the following known uses are relevant: 
 
• The Shared Variable Channel pattern is used when implementing a domain parallelism program 

that solves the Laplace Equation for a shared memory computer. Each element is expected to 
solve a Laplace Equation locally, exchanging results with its neighbours in a one-, two-, or n-
dimensional mesh [KSS96, Har98]. 

• The Shared Variable Channel pattern is used when using the Communicating Sequential 
Elements pattern to solve a systolic matrix multiplication. Channels are used to allow the flow 
of matrix data through components that go on multiplying them, and locally adding the products 
[Har98]. 



• The Shared Variable Channel pattern is used in a shared memory computer model of climate, in 
which each element (or set of elements) compute the variation through time of one or several 
variables (temperature, humidity, pressure, etc.), and exchange data in order to model the effect 
of, say, the atmospheric model over the ocean model, and vice versa [Fos94]. 

 
Related patterns 

 
The Shared Variable Channel pattern is directly related with any parallel software system 
developed on a shared memory environment from the Communicating Sequential Elements pattern 
[OR98, Ort00]. It can be considered as a two-directional version of the Shared Variable Pipe 
pattern. As so, it is related with the pattern for selecting locking primitives, originally proposed by 
McKenney [McK95], and lately included as part of the POSA 2 book, Patterns for Concurrent and 
Networked Objects [POSA00]. 

 
Message Passing Channel 
The Message Passing Channel pattern describes the design of a channel component based on message 
passing, by implementing send and receive operations that perform the communications of the channel 
component for a distributed memory parallel system (although it can be used for a shared memory 
parallel system as well). 
  
Context 

 
A parallel program is being developed using the Communicating Sequential Elements architectural 
pattern [OR98, Ort00] as a domain parallelism approach in which the data is partitioned among 
autonomous processes (elements) as the processing components of the parallel program. The 
parallel program is developed within a distributed memory computer, but it also can be used within 
a shared memory computer. The programming language to be used counts with synchronisation 
mechanisms for process communication through message passing [Hoa78, Har98] or rendezvous 
[Bri78, Har98]. 

 
Problem 

 
An element needs to exchange values with its neighbouring elements. Every data is locked inside 
an element, which is responsible for processing that data and only that data.  

 
Forces 

 
The following forces should be considered for the Message Passing Channel pattern: 
 
• Maintain the order of the transferred data through the channel. 
• Communication should be point to point and bidirectional. 
• The implementation has to consider a distributed memory as programming environment. 
• The data transference should be performed asynchronously. 

 
Solution 

 
Design a channel component as a distributed software structure connecting the elements executing 
on two different processors or computers. The software structure is composed of communication 
end points (commonly, sockets), some synchronisation mechanisms, and data streams. These 
components are put together in order to achieve a two-directional, distributed memory 
communication component between elements executing on different processors or computers. 
 
 



Structure 
 
Figure 11 shows the participants and relations that compose the structure of this pattern, using a 
UML Collaboration Diagram [Fow97]. 
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Figure 11. UML Collaboration diagram for the Message Passing Channel pattern. 

 
Participants 
 

• OutSynchronisationMechanisms and InSynchronisationMechanisms. The responsibility of 
the synchronisation mechanisms is to synchronise the access to the data streams 
(OutDataStreams and InDataStreams), so only one processing component has access to any 
of them at a given moment. The synchronisation mechanisms are, then, in charge of keeping the 
order and integrity of the data written to or read from the data streams. 

• OutDataStreams and InDataStreams. The responsibility of the data streams is to transiently 
store the serialised data to be passed through the channel. Every data item must be serialized, 



that is, converted into a stream of bytes, which is the way in which data is transferred through a 
network connecting processors or computers. Data streams can be written to and read from 
communication end points (OutEndPoints and InEndPoints). 
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Figure 12. UML Sequence Diagram for the Message Passing Channel pattern. 

 
is scenario, the following steps are followed: 

 
• Element A sends a data item to the Message Pa

• The Out Synchronisation Mechanism A verifies if no other process is accessing the Out Data 
Stream A. If this is the case, th
write(data)operation of the data item on the Out Data Stream A. Otherwise, it blocks the 
operation until the Out Data Stream A can be written. 
The Out Data Stream A generates a writeData() operation over the Out End Point A 
(normally, a socket), so the data item is sent through the
computer. 
The data item is received by the In End Point B (a socket) which is read by the In Data 
Stream B by issuing a 

Element A Out Synch. 
Mech. B 

Out Data 
Stream B 

Element B 

NETWORK
Out End 
Point B 

In Data 
Stream B 

In Synch. 
Mech. B 

Buffer 
B 

readData()
read(data) 

read(data)

In End 
Point A 

In End 
Point B 

Out End 
Point A 

In Data 
Stream A 

Out Data 
Stream A 

Buffer 
A

Out Synch. 
Mech. A 

In Synch. 
Mech. A 

write(data) 
send(data) 

writeData()

receive(data)

send(data)

riteData() 

writeData() 

w

receive(data) 
read(data) 

read(data) 
readData()



the communication is kept asynchronous. From the Buffer B, Element B is able to receive data 
by issuing a receive(data) request to the In Synchronisation Mechanism B. Again, only if 
no other process is reading from the Buffer B, the Synchronisation Mechanism B grants a 
read() operation from the Buffer B, allowing to Element B  to read the requested data item. 
On the other hand, Element B is able to send a data item to the Message Passing Pipe, by issuing 
a send(data)operation to the Out Synchronisation Mechanism B. 
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synchronous communicat
and a worker or between a shared resource and a sharer. The manager and/or shared resource 
encapsulate a data structure, whose parts or pieces can be synchronously read or written at a precise 
moment by a single worker and/or a single sharer component. Data is allowed to flow from the 
manager/shared resource to the worker/sharer, and vice versa. Components are allowed to execute 
simultaneously. The rendezvous is considered local since components are designed to exist and 
execute on a shared memory parallel system. 
 
Context 

A para
O
approaches in which algorithm and data are partitioned among the autonomous processes (workers 
or sharers) as the processing components of the parallel program. The parallel program is 
developed within a shared memory computer. The programming language to be used counts with 
synchronisation mechanisms for process communication, such as semaphores [Dij68, Har98] or 
monitors [Hoa74, Har98].  
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The f
 
• Keep the integrity and order of the encapsulated data structure. 
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• The implementation has to consider shared memory as programm

lution 
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resource and a sharer. The communication considers the isolated case of communication between a 
single worker and the manager, or a single sharer and the shared resource. A worker or a sharer 
read or write a piece of data from the manager or shared resource synchronously. This keeps the 
integrity and order of the encapsulated data structure. Components (manager and workers, or 
shared resource and sharers) are allowed to simultaneously exist and execute on a shared memory 
parallel system. 
 
 
 



Structure 

13 shows the participants and relations that compose the structure of this pattern, using a 
ML Collaboration Diagram [Fow97]. 

 
Particip

Client component can be a worker or a sharer, whose responsibilities are to requests 
read operations to get pieces of the data structure from the Server, process them, and request 

• 
 the read and write 

• 
unication between a client and a server. It does so by 

 
Dynam

 
4 shows the behaviour of the participants of this pattern, considering a single client for the 

erver. 

uests a read operation of data from a Server 
(whether a manager or a shared resource). So, it directs a read operation to the Rendezvous 

 
Figure 
U

 
Figure 13. UML Collaborarion Diagram for the Local Rendezvous pattern. 
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write operations of the resulting data to the data structure within the Server. 
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are to keep the integrity and order of its local data structure and to server
requests from the Clients. 
Rendezvous. The Rendezvous component is in charge of allowing the point-to-point, bi-
directional, and synchronous comm
encapsulating the read and write calls, so the client can only direct requests to the Rendezvous. 
There should be as many Rendezvous components as Clients within the Manager-Workers 
structure or the Shared Resource-Sharers structure. 
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Figure 14. UML Sequence Diagram for the Local Rendezvous pattern. 

 
In this scenario, the following steps are followed: 
 
• A Client (whether a worker or a sharer) req
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component, so it re-directs the read call to the proper Server. Once the Server makes the data 
available to the Rendezvous component, this provides the data to the Client, finishing a single 
read operation.  
On the other hand, when the Client (whether a worker or a sharer) requests a write operation of 
data to the Serve

• 
r (whether a manager or a shared resource), it directs a write operation to the 
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Know

 
endezvous is normally used when the parallel solution of a problem is developed using 
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parallelism program that solves a matrix multiplication for a shared memory computer. Each 

Rendezvous component. This re-directs the write call to the proper Server. Once the Server 
receives the data from the Rendezvous component, it provides an acknowledgement message to 
the Client, finishing a single write operation. 

entation 

The impleme
c
created as a common component accessible to Client and Server as well, using a synchronisation 
mechanism such as semaphores [Dij68, Har98] to synchronise the access to the Rendezvous 
component, considering the P and V operations, respectively just before and after invoking the 
write()or read()operations. Another possibility is the use of monitors [Hoa74, Har98], which 
consider the synchronisation over the very write()or read() operations. 

nsequences 
 
Benefits 
 

• Th

• The Rendezvous component is developed to keep a point-to-point, bi-directional, and 
synchronous communication. 

• The implementation is carried out using semaphores or monitors, considering a shared memory 
programming environment. 

 
ities 

• The 

communications are very frequent. This can be mitigated by changing the granularity of the 
pieces of data which are made available in read operations and/or included to the data structure 
due to a write operation.  

n uses 

The Local R
th
Ort03] within a shared memory parallel platform. Hence, it has as many known uses as these 
architectural patterns. Particularly, the following known uses are relevant: 
 
• The Local Rendezvous pattern is used when implementing a Ma

element is expected to solve a local scalar product of a row from the first matrix and a column 
from the second. Both sub-arrays have to be read by the workers from the manager. The result 
of such a product is a number which is returned to the manager, who writes it on the proper 
position within the resulting matrix [KSS96, Har98]. 



• The Local Rendezvous pattern is used when using the Shared Resource pattern for creating a 
Token Space. It is used to allow reading and writing over the token space by the source, sorter, 
merger, and reporter components [Ort03]. 

• The Local Rendezvous pattern is used in a shared memory computer to model the Dinning 
Philosophers problem, originally proposed by E.W. Dijkstra, and developed as a Shared 
Resource. Every time a philosopher takes the forks, it reads data from a dinning server. 
Synchronisation and communication is carried out by Rendezvous component, which allow the 
execution of take and deposit procedures [Har98]. 

 
Related patterns 

 
The Local Rendezvous pattern is directly related with any parallel software system developed on a 
shared memory environment from the Manager-Workers pattern [OR98, Ort04] or the Shared 
Resource pattern [OR98, Ort03]. It is related with the pattern for selecting locking primitives, 
originally proposed by McKenney [McK95], and lately included as part of the POSA 2 book, 
Patterns for Concurrent and Networked Objects [POSA00]. 

 
Remote Rendezvous 
The Remote Rendezvous pattern describes the design of a remote, point-to-point, bi-direction, and 
synchronous communication component that allows the exchange of information between a manager 
and a worker, or between a shared resource and a sharer. The manager and/or shared resource 
encapsulate a data structure, whose parts or pieces can be synchronously read or written at a precise 
moment by a single remote worker and/or a single remote sharer component. Data is allowed to flow 
from the manager/shared resource to the worker/sharer, and vice versa. Components execute 
simultaneously. The rendezvous is considered remote since components are designed to exist and 
execute on a distributed memory parallel system (although they can be used within a shared memory 
parallel platform). 
  
Context 

 
A parallel program is being developed using the Manager-Workers architectural pattern [OR98, 
Ort04] or the Shared Resource architectural pattern [OR98, Ort03] as activity parallelism 
approaches in which data is partitioned among the autonomous processes (workers or sharers) as 
the processing components of the parallel program. The parallel program is developed within a 
distributed memory computer, but it also can be used within a shared memory computer. The 
programming language to be used counts with synchronisation mechanisms for process 
communication through remote calls [Bri78, Har98]. 

 
Problem 

 
Communication is required so workers or sharers are able to read and write data by sending and 
receiving data objects from the manager or the shared resource, within a distributed memory 
system. 

 
Forces 

 
The following forces should be considered for the Remote Rendezvous pattern: 
 
• Keep the integrity and order of the encapsulated data structure. 
• Communication commonly should be point-to-point, bi-directional, and synchronous. 
• The implementation has to consider distributed memory as programming environment, although 

it could be used on a shared memory system. 
 



Solution 
 
Design a remote, point-to-point, bi-direction, and synchronous rendezvous component to allow the 
exchange of information between a manager and a worker, or between a shared resource and a 
sharer. Such a component allows data to flow from the manager/shared resource to the 
worker/sharer, and vice versa. The rendezvous is considered remote since components are designed 
to exist and execute on a distributed memory parallel system (although they can be used within a 
shared memory parallel platform). 

 
Structure 

 
Figure 15 shows the participants and relations that compose the structure of this pattern, using a 
UML Collaboration Diagram [Fow97]. 
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Figure 15. UML Collaboration Diagram for the Remote Rendezvous pattern. 
 
Participants 
 

• Client. The Client component can be a worker or a sharer, whose responsibilities are to requests 
read operations to get pieces of the data structure from the Server, process them, and request 
write operations of the resulting data to the data structure within the Server. 

• Server. The Server component can be a manager or a shared resource, whose responsibilities 
are to keep the integrity and order of its local data structure and to server the read and write 
requests from the Clients. 

• Local Stubs. The Local Stubs are in charge of controlling the communication between a client 
and a server. It does so by issuing read and write calls through the Sockets. There should be a 
Local Stub and a Socket for the server and for each client. 

• Sockets. The responsibility of the Sockets is to send data back and forth between the processors 
or computers. 

 
Dynamics 

 
Figure 16 shows the behaviour of the participants of this pattern, considering a single client for the 
server. 
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Figure 16. UML Sequence Diagram for the Remote Rendezvous pattern. 

 
In this scenario, the following steps are followed: 
 
• The Client requests reading data from the Server, so it issues a read operation to its Local 

Stub. This re-directs the call to the Server through its correspondent Socket. 
• The Server receives the request, and makes available the data requested by the Client, issuing a 

call to its Local Stub. This re-directs the call to the Client through its correspondent Socket. 
The read data is now available to the Client. 

• On the other hand, the Client requests writing data to the Server, so it issues a write operation 
to its Local Stub. This re-directs the call to the Server through its correspondent Socket. 

• The Server receives the request, and takes the data sent by the Client, issuing a call to its Local 
Stub in order to acknowledge the operation. This re-directs the call to the Client through its 
correspondent Socket. The written data is now on the Server. 

 
Implementation 

 
The implementation is mainly based on the creation of the Local Stub components. Each Local 
Stub has to be created to be locally accessible, using a synchronisation mechanism such as 
semaphores [Dij68, Har98] to synchronise the access, considering the P and V operations, 
respectively just before and after invoking the write()or read()operations. Another possibility is 
the use of monitors [Hoa74, Har98], which consider the synchronisation over the very write()or 
read() operations. 
 
The Sockets are network communication mechanisms common in several programming languages. 
Sockets are able to send data back and forth between the processors or computers of a network 
system.  
 

Consequences 
 
Benefits 
 

• The integrity and order of the encapsulated data structure is kept by allowing only point-to-
point, synchronous read/write operations between clients and server. 



• The Rendezvous component is developed to keep a point-to-point, bi-directional, and 
synchronous communication. 

• The implementation is carried out considering a distributed memory programming environment, 
although it can be used on a shared memory platform. 

 
Liabilities 
 

• The use of synchronous communications between remote server and clients slows down the 
performance of the whole structure, particularly if the number of clients tends to be large and 
located far from the server, or when the communications are very frequent. This problem can be 
mitigated by changing the granularity of the pieces of data which are made available in read 
operations and/or included to the data structure due to a write operation. 

• Even though this pattern can be used on a shared memory platform, due to the number of 
components, it tends to make communications between server and clients complex and slow. An 
alternative would be to use the Local Rendezvous pattern instead. 

 
Known uses 

 
The Remote Rendezvous is normally used when the parallel solution of a problem is developed 
using the Manager-Workers architectural pattern [OR98, Ort04] or the Shared Resource pattern 
[OR98, Ort03] within a distributed memory parallel platform. Hence, it has as many known uses as 
these architectural patterns. Particularly, the following known uses are relevant: 
 
• The Remote Rendezvous pattern is used when implementing a Manager-Workers activity 

parallelism program that solves the N-Queens problem for a distributed memory system 
[Har98]. 

• The Remote Rendezvous pattern is used when using the Manager-Workers pattern for solving 
the Polygon Overlay problem [Ort04]. 

• The Remote Rendezvous pattern is used in the JavaSpaces system that acts like a Shared 
Resource on a distributed environment, allowing reading and writing operations over the virtual 
space [Ort03]. 

 
Related patterns 

 
The Remote Rendezvous pattern is directly related with any parallel software system developed on 
a distributed memory environment from the Manager-Workers pattern [OR98, Ort04] or the Shared 
Resource pattern [OR98, Ort03]. 

 
5. Summary 
 
The goal of the present work is to provide software designers and engineers with an overview of the 
common structures used as communication components of parallel programs, and provide a guidelines 
on the selection during the initial design stages of parallel software applications. However, as a first 
attempt at the creation of a more organised pattern system for parallel programming it is not complete 
or detailed enough to consider every issue of parallel programming. The patterns described here can be 
linked with other current pattern developments for concurrent, parallel and distributed systems. Work 
on patterns that support the design and implementation of such systems has been addressed previously 
by several authors [POSA00]. 
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