
Design Patterns for Communication Components
of Parallel Programs

Jorge L. Ortega Arjona
Departmento de Matemáticas
Facultad de Ciencias, UNAM
jloa@fciencias.unam.mx

Abstract
This paper introduces an approach to describing and selecting design patterns for developing
communication components of parallel programs. The approach uses the kind of communication
requirements of a proposed architectural pattern for parallel programming along with characteristics
of the parallel hardware platform in order to make selections between different design patterns.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure and/or a set of actions,
among multiple processing components that operate simultaneously. The expected result is a more
efficient completion of the solution to the problem. Its main advantage is the ability to handle tasks of
a scale that would be unrealistic or not cost-effective for other systems [CG90, Fos94, Pan96]. Thus, a
parallel program is defined as the specification of a set of software components that simultaneously
process and communicate among themselves, in order to achieve a common objective. Hence, a
parallel program can be normally described in terms of two types of software components [CG90]:

• Processing components. Processing components make up the parallel software system, and
their design and implementation focus on actually perform the simultaneous operations on
data.

• Communication components. Communication components represent the actual cooperation —
through exchange of data or the request for operations— between processing components.
Communication components are the linking software that allow the information exchange
between the processing components of the parallel software system.

The present paper attempts to describe communication components as design patterns, aiding parallel
software designers and engineers with an overview of the common structures used for communication,
and providing guidelines in their selection during the design stages of a parallel software system.

2. Design Patterns

Design patterns are defined as follows:

“The design patterns ... are descriptions of communicating objects and classes that are customized to
solve a general design problem in a particular context” [GHJV95].

“A design pattern provides a scheme for refining the subsystems or components of a software system,
or the relationships between them. It describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular context” [POSA96].

The design patterns in this paper focus on describing and refining the communication components of a
parallel program, by describing common structures used for communicating, by exchanging data or
requesting operations, between processing components.

The design patterns here share a formal structure (using the POSA form, as described in [POSA96]),
containing a name, a summary, a context (presenting the design situation in which apply the pattern), a

problem statement (including a description of its forces), a solution statement (covering descriptions of
its structure, participants, basic dynamics and implementation), consequences (describing benefits and
liabilities), known uses and related patterns. These elements provide a uniform template for browsing
pattern descriptions contained in several pattern systems, making it easy to look for and find
information about when and how to use each pattern.

3. Classification of Design Patterns for Communication Components

The design patterns for communication components of parallel programs can be classified taking into
consideration several characteristics of the communication they perform. Hence, design patterns for
parallel programming are defined and classified according to:

• The parallelism of the overall parallel software system. The communication components have to

be designed to allow communications in parallel systems with (a) functional parallelism [OR98,
Ort05, Ort07], (b) domain parallelism [OR98, Ort00], or (c) activity parallelism [OR98, Ort03,
Ort04]. These types of parallelism arise from partitioning the algorithm and/or data among the
processing components of a parallel program. Hence, functional parallelism focuses on
decomposing the algorithm, domain parallelism on dividing data, and activity parallelism on
partitioning both, algorithm and data [OR98]. The type of parallelism used in the overall parallel
software system is an important contextual indicator of the type of communication component to
be designed.

• The memory organisation of the parallel hardware platform. The communication components are
designed and implemented through programming mechanisms that cope with a parallel hardware
platform with (a) shared memory, or (b) distributed memory [Har98]. In a shared memory parallel
system, all memory can be accessed by every processor; in a distributed memory parallel system,
each processor counts with a local memory, and it is able to access another processor’s memory
only through I/O requests. The type of memory organisation is an indicator of the kind of
programming mechanisms to be used when designing and implementing communication
components.

• The type of synchronisation. Depending on the memory organisation, communication components
are implemented through programming mechanisms that involve (a) synchronous
communications, or (b) asynchronous communications. Synchronous communications imply
blocking the sender or the receiver until its counterpart in the communication is available;
asynchronous communications imply that neither the sender nor the receiver waits for its
communication counterpart — it continues without blocking [Har98].

Based on this classification criteria, this paper presents eight design patterns commonly used for
designing and implementing the communication components of parallel software systems. Table 1
presents these design patterns, classified only regarding to the parallelism of the overall parallel
software system, the memory organisation of the parallel hardware platform, the type of
synchronisation, and the type of programming mechanisms used for their implementation.

 Parallelism Memory
Organisation

Synchronisation

Shared Variable Pipe Functional Shared Memory Asynchronous
Multiple Local Call Functional Shared Memory Synchronous
Message Passing Pipe Functional Distributed Memory Asynchronous
Multiple Remote Call Functional Distributed Memory Synchronous
Shared Variable Channel Domain Shared Memory Asynchronous
Message Passing Channel Domain Distributed Memory Asynchronous
Local Rendezvous Activity Shared Memory Synchronous
Remote Rendezvous Activity Distributed Memory Synchronous

Table 1: Design patterns classification.

4. Design Patterns for Communication Components of Parallel Programs

Parallel programming is characterised by a growing set of parallel architectures, paradigms and
programming languages. This situation makes difficult to propose just one approach containing all the
details to design and implement communication components for all parallel software systems. The
design patterns proposed here are an effort to help a programmer to design the communication
components depending on particular characteristics and features of the communication to be carried
out between the processing components, when designing a parallel program.

The Shared Variable Pipe pattern
The Shared Variable Pipe pattern describes the design of a pipe component based on shared variables
and synchronisation mechanisms, which serve for implementing send and receive operations that
emulate the behaviour of a pipe component for a shared memory parallel system.

Context

A parallel program is being developed using the Parallel Pipes and Filters architectural pattern
[OR98, Ort05] as a functional parallelism approach in which an algorithm is partitioned among
autonomous filters as the processing components of the parallel program. The parallel program is
developed for a shared memory computer. The programming language to be used counts with
synchronisation mechanisms for process communication, such as semaphores [Dij68, Har98] or
monitors [Hoa74, Har98].

Problem

A collection of parallel filters require to communicate by exchanging messages, following a single
direction data flow; every data and operation over it is carried out inside some filter.

Forces

The following forces should be considered for the Shared Variable Pipe pattern:

• Maintain the precise order of the transferred data through the pipe, using a FIFO policy.
• Communication should be point to point and unidirectional.
• Keep the integrity of transferred data.
• The implementation has to consider the shared memory as programming environment.
• The communication should be asynchronous.

Solution

The idea is to emulate the behaviour of a pipe component using a shared variable. Hence, use the
shared variable to implement the pipe component, considering it as a one-directional, shared
memory communication means between filters. Such a shared variable requires to be safely
modified by read and write operations from the filters. Hence, a programming language
synchronisation mechanism (such as semaphores or monitors) has to be considered to preserve the
order and integrity of the transferred data, along with sending (writing) and receiving (reading)
operations.

Structure

The participants and relations that compose the structure of this pattern are shown using a UML
Collaboration Diagram [Fow97] for the description (Figure 1).

SynchronisationMechanism

SharedVariable

Sending Filter Receiving Filter

1. send()

2. write()

4. receive()

3. read()

Shared Variable Pipe

Figure 1. UML Collaboration Diagram for the Shared Variable Pipe pattern.

Participants

• Synchronisation Mechanism. The responsibility of the synchronisation mechanism is to
synchronise the access to the shared variable, translating the send and receive operations into
adequate operations for writing to and reading from the shared variable.

• Shared Variable. The responsibility of the shared variable is to serve as a repository for the
data to be transferred. It can be designed as a buffer (an array of a particular type) with an
specific size, for accomplishing with the use of asynchronous communication between the
sending filter and the receiving filter. The shared variable is, then, in charge of keeping the
order and integrity of the shared data.

Dynamics

The behaviour of this pattern is expected to emulate the operation of a pipe component within a
shared memory parallel system. Hence, Figure 2 shows the behaviour of the participants of this
pattern, aiming to carry out such an emulation.

Sending Filter
Synchronisation
Mechanism

Shared
Variable Receiving Filter

send(data)

write(data)

receive(data)

read(data)

return data

return data

Figure 2. UML Sequence Diagram for the Shared Variable Pipe pattern.

In the scenario shown in Figure 2, the following steps are followed for communicating data from
Sending Filter to Receiving Filter:

• The Sending Filter sends the data item to be piped to the Shared Variable Pipe, issuing a
send(data)operation to the Synchronisation Mechanism.

• The Synchronisation Mechanism verifies if the Receiving Filter is not accessing the Shared
Variable. If this is the case, then it translates the sending operation, allowing a
write(data)operation of the data item on the Shared Variable. Otherwise, it blocks sending
the operation until the Shared Variable can be modified.

• On the other hand, when the Receiving Filter attempts to receive data from the Shared Variable
Pipe, it does it so by issuing a receive(data) request to the Synchronisation Mechanism.
Again, only if the Sending Filter is not modifying the Shared Variable, the Synchronisation
Mechanism grants a read() operation from the Shared Variable, returning the requested data
item.

• The communication flow is kept unidirectional by allowing only send operations to the Sending
Filter, and receive operations to the Receiving Filter.

Implementation

The implementation of the Shared Variable Pipe requires the construction of the Synchronisation
Mechanism and the Shared Variable. Both software components exist and execute on a shared
memory environment.

The Synchronisation Mechanism can be implemented using semaphores [Dij68, Har98] to
synchronise the access to the Shared Variable, considering the P and V operations, respectively just
before and after invoking the write()or read()operations that modify the state of the Shared
Variable. Another possibility is the use of monitors [Hoa74, Har98], which consider the
synchronisation over the very write()or read() operations.

The Shared Variable can be implemented as a bounded buffer of a particular type, which can be
modified by reading or writing operations from the Synchronisation Mechanism, considering an
asynchronous communication approach. The Shared Variable, hence, is capable of keeping several
data values in order to cope both the Sending Filter and the Receiving Filter, if both perform
processing activities at different speeds.

Consequences

Benefits

• The Shared Variable Pipe keeps a FIFO policy, by synchronising the access to the Shared
Variable. If the Sending Filter is faster than the Receiving Filter, then the Synchronisation
Component would block the Sending Filter if the Shared Variable, as a buffer, is full.
Otherwise, if the Receiving Filter is faster than the Sending Filter, the Synchronisation
Component would block the Receiving Filter if the Shared Variable is empty.

• The Shared Variable Pipe is designed to deal with point to point and unidirectional
communication. However, it can be extended to a one-to-many, many-to-one, and many-to-
many communications, by using several Synchronisation Mechanisms over several Shared
Variables. Also, it keeps a unidirectional flow of data by allowing only sending operations to
the Sending Filter, and receiving operations to the Receiving Filter.

• The Synchronisation Mechanism is in charge of keeping the integrity of transferred data, by
assuring that, at any given moment, only one filter has actual access to Shared Variable.

• The implementation is particularly developed for a shared memory programming environment.
• The Shared Variable Pipe uses asynchronous communications, by implementing the Shared

Variable as a bounded buffer.

Liabilities

• The communication speed of the Shared Variable Pipe is as slow as the slowest filter it
connects. Therefore, to improve communication performance, changes to the amount of
processing of the filters have to be considered.

• The Shared Variable Pipe can be used for one-to-many, many-to-one, and many-to-many
communications, although the implementation could require the use of several semaphores or
monitors. This fact could make it difficult to implement the whole communication component.

• If the Sending Filter or the Receiving Filter is a lot faster that its communication counterpart,
this could produce a great unbalance on the whole computation. This is a signal that the division
of the algorithm into steps could be wrong. If it is the case, perhaps removing the pipe and
considering both processing components into one could solve the unbalance situation.

• The implementation based on semaphores and monitors makes this pattern only to be used into
a shared memory environment. Porting it to a distributed memory parallel platform would
require to replace each Shared Variable Pipe by a Message Passing Pipe.

• There could be potential problems if the sending operations are not restricted to the Sending
Pipe, and /or the receiving operations to the Receiving Filter. The structure would not act as a
pipe.

Known uses

The Shared Variable Pipe is normally used when the parallel solution of a problem is developed
using the Parallel Pipes and Filters architectural pattern [OR98, Ort05] within a shared memory
parallel platform. Hence, it has as many known uses as the Parallel Pipes and Filters pattern.
Particularly, the following known uses are relevant:

• The Shared Variable Pipe pattern is used when implementing the Pipes and Filters version of

the Sieve of Eratosthenes for a shared memory computer, in order to allow the flow of integers
between the filters in which the test, whether an integer is a prime number or not, is carried out
[Har98].

• The Shared Variable Pipe pattern is commonly used when describing a solution based on
semaphores or monitors as a bounded buffer communication, in which a producer produces data
items and a consumers consumes them [Dij68, Hoa74, And91, Har98, And00].

• The Shared Variable Pipe pattern can be considered a variation of the pipe operation common in
several Unix and Unix-based operating systems for communicating processes [And91, And00].

Related patterns

The Shared Variable Pipe pattern is directly related with any parallel software system developed
on a shared memory environment from the Parallel Pipes and Filters pattern [OR98, Ort05]. It is
also related with the pattern for selecting locking primitives, originally proposed by McKenney
[McK95], and lately included as part of the POSA 2 book, Patterns for Concurrent and Networked
Objects [POSA00].

Multiple Local Call
The Multiple Local Call pattern describes the design of multiple programming modules that
encapsulate services or access procedures, which are called or invoked by another component, in order
to operate over global and/or local variables. Such an operation is related with delegating a part of a
whole processing activity to such a programming module. Both components are allowed to execute
simultaneously, and thus, they require a synchronous communication during each call. The call is
considered local since all components are designed to exist and execute on a shared memory parallel
system.

Context

A parallel program is being developed using the Parallel Layers architectural pattern [OR98, Ort07]
as a functional parallelism approach in which an algorithm is partitioned among autonomous
processes (layer components) as the processing components of the parallel program. The parallel
program is developed for a shared memory computer. The programming language to be used
counts with synchronisation mechanisms for process communication like semaphores [Dij68,
Har98] or monitors [Hoa74, Har98].

Problem

A collection of parallel layers require to communicate by issuing operation calls, and waiting to
receive results; every data is locked inside some layer component.

Forces

The following forces should be considered for the Multiple Local Call pattern:

• Maintain the precise order operations.
• Communication commonly should be one to many.
• Keep the integrity and order of the results.
• The implementation has to consider shared memory as programming environment.
• The communication should be synchronous.

Solution

Design the programming modules as a set or array of monitors, encapsulating service procedures
able to carry out some processing. Each module receives synchronised calls from a caller
component, which delegates it a part of a whole processing activity. By allowing a one to many
communication, the whole processing activity tends to be partitioned among several programming
modules, which at the same time are able to create further modules, in order to continue
partitioning the processing activity until it can be serviced by a single programming module. All
these components are designed to exist and execute simultaneously on a shared memory parallel
system, synchronising their action during the cascade of calls, so the precise order of operations
and the integrity and order of results are kept.

Structure

Figure 3 shows the participants and relations that compose the structure of this pattern at only a
single stage of communication, using a UML Collaboration Diagram [Fow97].

Module 1

Caller

Module1.service()

Module 2

Module N

Module2.service()

ModuleN.service()

Result

Result

Result

Figure 3. UML Collaboration Diagram for the Local Call pattern.

Participants

• Caller. The responsibilities of the caller component is to generate a set of calls to the module
components, providing local arguments for each module (and thus, partitioning the processing
among the modules) and waiting to receive results from the modules.

• Module. The responsibilities of each module component are to re-distribute the call (and the
arguments) to another set or array of components, or to carry out the part of the whole
processing activity over the local arguments, and hence, produce results which are collected by
its caller.

Dynamics

This pattern is expected to operate between components at different layers within a shared memory
parallel system. Figure 4 shows the behaviour of the participants of this pattern at a single stage,
considering a 1 to N communication.

Caller Module 1 Module 2 Module N

return data

ModuleN.service()
Module2.service()

Module1.service()

return data
return data

Figure 4. UML Sequence Diagram for the Multiple Local Call pattern.

In this scenario, the following steps are followed:

• The Caller produces a group of calls for service to each one of the Module components, and

• proceeds to perform the service. As potentially another call

• ults, and continues processing.

plementation

he implementation of the Multiple Local Call pattern requires the construction of the Module

he Modules can be implemented using semaphores [Dij68, Har98] to synchronise the access to

onsequences

enefits

• The Multiple Local Call pattern maintains the precise order operations since it represents a

• ller is used to call and synchronise several modules, communication is kept one

• ly synchronous calls are allowed between the caller and the modules, the integrity and

• e of shared memory synchronisation mechanisms, such as

• t until it receives all results from

Liabilities

• The use of the Multiple Local Call pattern can produce long delays in the communication

nown uses

he Multiple Local Call is normally used when the parallel solution of a problem is developed

waits until they all provide results.
Each Module receives the call, and
can arrive to the Module while it is operating, the Module is developed using semaphores or a
monitor to avoid racing conditions. Once the local operation is finished, every Module sends
back a result.
The Caller receives the res

Im

T
components to take into consideration its synchronous behaviour. Module software components are
allowed to exist and execute on a shared memory environment, as part of a cascade of calls.
Commonly, Module components of the same type are used within the same layer.

T
the service, considering the P and V operations, respectively just before and after invoking the
service. A better possibility is to consider each Module as a monitor [Hoa74, Har98], which
synchronises the access to the service.

C

B

single stage within a cascade of synchronous calls. Hence, only once all the Modules at a layer
have completed their operation, the caller is able to continue, perhaps as a single module within
another layer.
As only one ca
to many.
Due to on
order of the results are locally kept.
The implementation considers the us
semaphores and monitors. This simplifies the implementation.
As modules are implemented as monitors, the caller has to wai
the modules, and thus, the communication is kept synchronous.

between components at different layers. Since the caller has to wait until the whole operations
are carried out, the communication through the whole hierarchical structure could be slowed
down due to the number of modules per caller and the amount of communication between caller
and modules.

K

T
using the Parallel Hierarchies architectural pattern [OR98, Ort07] within a shared memory parallel
platform. Hence, it has as many known uses as the Parallel Hierarchies pattern. Particularly, the
following known uses are relevant:

• The Multiple Local Call pattern is used in tree-like algorithms, such as searches, in which the
data of the problem is provided as arguments to each branch in the tree, and multiple calls are
required [Ort07].

• The Multiple Local Call pattern is commonly used when describing a solution based on a
divide-and-conquer approach, in which the computation is divided into sub-computations over
and over, until a simple operation is required to obtain a result. Assembling all the results
provide the global result [And91, And00].

• The Multiple Local Call pattern can be considered a variation of a client-server operation with a
simple synchronised call operation, in which a single component acts as a server for a single
client [And91, And00].

Related patterns

The Multiple Local Call pattern is directly related with any parallel software system developed on a
shared memory environment from the Parallel Hierarchies pattern [OR98, Ort07]. It is also related
with the pattern for selecting locking primitives, originally proposed by McKenney [McK95], and
lately included as part of the POSA 2 book, Patterns for Concurrent and Networked Objects
[POSA00].

The Message Passing Pipe pattern
The Message Passing Pipe pattern describes the design of a pipe component based on message
passing, by implementing send and receive operations that perform the communications of the pipe
component for a distributed memory parallel system (although it can be used for a shared memory
parallel system as well).

Context

A parallel program is being developed using the Parallel Pipes and Filters architectural pattern
[OR98, Ort05] as a functional parallelism approach in which an algorithm is partitioned among
autonomous processes (filters) as the processing components of the parallel program. The parallel
program is developed for a distributed memory computer, even though it also can be used for a
shared memory computer. The programming language to be used counts with synchronisation
mechanisms for process communication through message passing [Hoa78, Har98].

Problem

A collection of parallel filters require to communicate by exchanging messages, following a single
direction data flow; every data is operated inside some filter.

Forces

The following forces should be considered for the Message Passing Pipe pattern:

• Maintain the order of the transferred data through the pipe, using a FIFO policy.
• Communication should be point to point and unidirectional.
• The implementation has to consider a distributed memory as programming environment.
• The data should be transferred asynchronously.

Solution

Design a pipe component as a distributed software structure connecting the filters that execute on
two different processors or computers. The software structure is composed of communication end
points (often, sockets), some synchronisation mechanisms, and a couple of data streams. These

components are put together in order to achieve a one-directional, distributed memory
communication component between filters executing on different processors or computers.

Structure

Figure 5 shows the participants and relations that compose the structure of this pattern, using a
UML Collaboration Diagram [Fow97].

OutputDataStream

Receiving
 Filter

1. send()

2. write()

6. receive()

3. writeData()

Message Passing Pipe

Sending
 Filter OutSynchronisationMechanism

OutEndPoint (Socket)

InputDataStream

InSynchronisationMechanism

InEndPoint (Socket)

Buffer

4. readData()

5. read()

NETWORK
Figure 5. UML Collaboration Diagram for the Message Passing Pipe pattern.

Participants

• OutSynchronisationMechanism and InSynchronisationMechanism. The responsibility of the
synchronisation mechanisms is to synchronise the access to the data streams (OutDataStream
and InDataStream), so only one processing component has access to any of them at a given
moment. The synchronisation mechanism is, then, in charge of keeping the order and integrity
of the data written to or read from the data streams.

• OutDataStream and InDataStream. The responsibility of the data streams is to transiently
store the serialised data to be passed through the pipe. Every data item must be serialized, that
is, converted into a stream of bytes, which is the way in which data is transferred through a
network connecting processors or computers. Data streams can be written to and read from
communication end points (OutEndPoint and InEndPoint).

• OutEndPoint and InEndPoint. The responsibility of the communication end points is to send
data back and forth between the processors or computers. These sort of communication end
points are commonly implemented as sockets.

• Buffer. The responsibility of the buffer is to serve as a repository for the data to be received. It
is normally designed as an array of a particular type with an specific size. The buffer allows the
use of asynchronous communication between the sending filter and the receiving filter.

Dynamics

This pattern is expected to operate as a pipe component for a distributed memory parallel system.
Hence, Figure 6 shows the behaviour of the participants of this pattern, aiming to carry out such an
operation.

Sending
 Filter

Out Synch.
Mechanism

Out Data
Stream

Receiving
Filter

send(data)

Out End
Point

In End
Point

In Data
Stream

In Synch.
Mechanism

Buffer

NETWORK

writeData()
write(data)

readData()
read(data)

read(data)
receive(data)

Figure 6. UML Sequence Diagram for the Message Passing Pipe pattern.

In this scenario, the following steps are followed:

• The Sending Filter sends the data item to be piped to the Message Passing Pipe, issuing a

send(data)operation to the Out Synchronisation Mechanism.
• The Out Synchronisation Mechanism verifies if no other process is accessing the Out Data

Stream. If this is the case, then it translates the sending operation, allowing a
write(data)operation of the data item on the Out Data Stream. Otherwise, it blocks the
operation until the Out Data Stream can be written.

• The Out Data Stream generates a writeData() operation over the Out End Point (normally, a
socket), so the data item is sent through the network to the appropriate processor or computer.

• The data item is received by the In End Point (a socket) which is read by the In Data Stream
by issuing a readData() operation. The data item is allocated into the Buffer, so the
communication is kept asynchronous. From the Buffer, the Receiving Filter is able to receive
data by issuing a receive(data) request to the In Synchronisation Mechanism. Again, only if
no other process is reading from the Buffer, the Synchronisation Mechanism grants a read()
operation from the Buffer, allowing to the Receiving Filter to read the requested data item.

Implementation

The implementation of the Message Passing Pipe requires the use or construction of the
Synchronisation Mechanisms, the Data Streams, the Buffer, and the End Points. All these software
components exist and execute on a distributed memory environment, between two communicating
processor or computers.

The Synchronisation Mechanism can be implemented using semaphores [Dij68, Har98] to
synchronise the access to the Data Streams and the Buffer, considering the P and V operations,
respectively just before and after invoking the write()or read()operations that modify the state of
the Data Streams and the Buffer. Another possibility is the use of monitors [Hoa74, Har98], which
consider the synchronisation over the very write()or read() operations.

Data Streams are a common communication form in many programming languages, used to
serialise data, that is, converted into a stream of bytes, which is the way in which data is transferred
through a network connecting processors or computers.

The End Points are commonly sockets, which is a network communication mechanism common in
several programming languages. Sockets are able to send data back and forth between the
processors or computers of a network system.

The Buffer can be implemented as an array of a particular type, which can be modified by reading
or writing operations from the Synchronisation Mechanism, considering an asynchronous
communication approach. The Buffer should be able of keeping several data values in order to cope
both the Sending Filter and the Receiving Filter, since both perform processing activities at
different speeds.

Consequences

Benefits

• The Message Passing Pipe keeps a FIFO policy, by synchronising the access to the Buffer on
the receiving side.

• The Message Passing Pipe is designed to deal with point to point and unidirectional
communication. However, it can be extended to a one-to-many, many-to-one, and many-to-
many communications, by using several Synchronisation Mechanisms over several Data
Stream, Buffer, and End Point. Also, it keeps a unidirectional flow of data through the Data
Streams.

• The implementation based on Data Streams and End Points is explicitly developed for a
distributed memory programming environment. However, it can be used within a shared
memory programming environment as well.

• The Message Passing Pipe uses asynchronous communications, by implementing a bounded
buffer on the receiving side.

Liabilities

• The communication speed of the Message Passing Pipe depends not only on the slowest filter it
connects, but also on features and characteristics of the communication network on which it
executes. Therefore, communication performance is commonly affected by non-determinism
issues which can be determinant on the communication speed.

• The Message Passing Pipe can be used for one-to-many, many-to-one, and many-to-many
communications, although the implementation could require the use of several semaphores or
monitors. This fact could make it difficult to implement the whole distributed communication
components.

• If the Sending Filter or the Receiving Filter is a lot faster that its communication counterpart,
this could produce a great unbalance on the whole computation. This is a signal that the division
of the algorithm into steps could be wrong. If it is the case, perhaps removing the pipe and
considering both processing components into one could solve the unbalance situation.

• The implementation based on data streams and end points makes this pattern to be suitable for a
distributed memory environment. Nevertheless, it can also be used within a shared memory
environment, in which, however, it may not have a good performance due to the many
communications involved. Hence, for a shared memory parallel platform and to keep a better
performance, it would be advisable to replace each Message Passing Pipe by a Shared Variable
Pipe.

Known uses

The Message Passing Pipe is commonly used when the parallel solution of a problem is developed
using the Parallel Pipes and Filters architectural pattern [OR98, Ort05] within a distributed memory
parallel platform. Hence, it has as many known uses as the Parallel Pies and Filters pattern.
Particularly, the following known uses are relevant:

• The Message Passing Pipe pattern has been used when implementing the Pipes and Filters

version of the graphics rendering for a distributed memory system, in order to allow the flow
data between the filters in which the rendering of a scene is carried out [Ort05].

• The Message Passing Pipe pattern is used when describing a distributed memory solution for
the Matrix Multiplication problem [Har98].

• The Message Passing Pipe pattern can be used for a point-to-point, unidirectional
communication between processes executing on different computers of a network system
[And91, Har98, And00].

Related patterns

The Message Passing Pipe pattern is related with any parallel software system developed for a
point-to-point, unidirectional communication on a distributed memory environment from the
Parallel Pipes and Filters pattern [OR98, Ort05]. It is also related with the pattern for networking
included as part of the POSA 2 book, Patterns for Concurrent and Networked Objects [POSA00].

Multiple Remote Call
The Multiple Remote Call pattern describes the design of multiple remote programming modules that
encapsulate services or access procedures, which are called or invoked by another component, in order
to operate over global and/or local variables. Such an operation is related with delegating a part of a
whole processing activity to such a programming module. Components are allowed to execute
simultaneously, and thus, they require a synchronous communication during each call. The call is
considered remote since components are designed to exist and execute on a distributed memory
parallel system.

Context

A parallel program is being developed using the Parallel Layers architectural pattern [OR98, Ort07]
as a functional parallelism approach in which an algorithm is partitioned among autonomous
processes (layer components) as the processing components of the parallel program. The parallel
program is developed for a distributed memory computer, even though it also can be used for a
shared memory computer. The programming language to be used counts with synchronisation
mechanisms for process communication through remote calls [Bri78, Har98].

Problem

A collection of parallel layers require to communicate by issuing operation calls, and waiting to
receive results; every data is locked inside some layer component.

Forces

The following forces should be considered for the Multiple Remote Call pattern:

• Maintain the precise order operations.
• Communication commonly should be one to many.
• Keep the integrity and order of the results.

• The implementation has to consider distributed memory as programming environment.
• The communication should be synchronous.

Solution

Design the caller component and the group of programming modules to communicate while they
reside in different, remote machines, using remote calls. Each module receives synchronised calls
from the caller component, delegating a part of a whole processing activity. In essence, instead of
creating a local programming module, a local stub is created and bint to a remote programming
module. The local stub is sent messages as if it were the programming module. It receives the
messages sent to it and sends the messages onto the remote module, which invokes the adequate
service. The result is sent back to the stub, which returns it to the caller. By allowing a one to many
communication, the whole processing activity tends to be partitioned among several programming
modules, which at the same time are able to create further modules, in order to continue
partitioning the processing activity until it can be serviced by a single programming module. All
these components are designed to exist and execute simultaneously on a distributed memory
parallel system, synchronising their action during the cascade of calls, so the precise order of
operations and the integrity and order of results are kept.

Structure

Figure 7 shows the participants and relations that compose the structure of this pattern at only a
single stage of communication, using a UML Collaboration Diagram [Fow97].

Local Stub 1

Caller

Module1.service()

Local Stub 2

Local Stub N

Module2.service()

ModuleN.service()

Result

Result

Result

Module 1

Module 2

Module N

NETWORK
Module1.service()

Module2.service()

ModuleN.service()

Result

Result

Result

Figure 7. UML Collaboration Diagram for the Multiple Remote Call pattern.

Participants

• Caller. The responsibilities of the caller component is to generate a set of calls to the module
components, providing local arguments for each module (and thus, partitioning the processing
among the modules) and waiting to receive results from the modules.

• Remote Module. The responsibilities of each remote module component are to re-distribute the
call (and the arguments) to another set or array of components, or to carry out the part of the
whole processing activity over the local arguments, and hence, produce results which are
collected by its caller.

• Local Stub. The responsibilities of is to serve as a local representative of a remote module in a
distant computer, receiving calls and re-directing them to its correspondent remote module, as
well as receiving the result from the remote module and provide it to the local caller.

Dynamics

This pattern is expected to operate between components at different layers within a distributed
memory parallel system. Figure 8 shows the behaviour of the participants of this pattern at a single
stage, considering a 1 to N communication.

Caller Module 1 Module 2 Module N

return data

Module2.service()

return data

NETWORK
Local
Stub 2

return data

Local
Stub 1

Local
Stub N

Module1.service()
Module1.service()

Module2.service()

ModuleN.service()
ModuleN.service()

return data

return data

return data

Figure 8. Scenario of Pipes and filters pattern.

In this scenario, the following steps are followed:

• The Caller produces a group of calls for service to each one of the Module components through

the Local Stubs locally available. The Caller waits until all the Local Stubs provide results.
• The Local Stubs receive the call and re-direct it through the network to the adequate Module,

and waits for a result.
• Each Module receives the call, and proceeds to perform the service. Once its local operation is

finished, every Module sends back a result.
• The Local Stubs receive the result from its correspondent Module through the network, and

makes it available to the Caller.
• The Caller receives the results, and continues processing.

Implementation

The implementation of the Multiple Remote Call pattern requires the construction of the Local
Stubs and the Module components, taking into consideration their synchronous behaviour. Both,
Local Stubs and Module software components are allowed to exist and execute on a distributed
memory environment, as part of a cascade of calls. Commonly, Local Stubs and Module
components of the same type are used within the same layer.

Local Stubs and Modules can be implemented as counterparts of remote calls [Bri78, Har98] to
carry out the communication and synchronise the access to the service. Particularly, Local Stubs
can be implemented to act as monitors [Hoa74, Har98], synchronising the access to the remote
service.

Consequences

Benefits

• The Multiple Remote Call pattern maintains the precise order operations since it represents a
single stage within a cascade of synchronous calls. Hence, only once all the Modules at a layer
have completed their operation, the caller is able to continue, perhaps as a single module within
another layer.

• As only one caller is used to call and synchronise several local stubs correspondent to several
modules, communication is kept one to many.

• Due to only synchronous calls are allowed between the caller and the local stubs, the integrity
and order of the results are locally kept.

• The implementation considers the use of shared memory synchronisation mechanisms, such as
monitors, for the local stubs. This simplifies their implementation.

• As local stubs are implemented as monitors, the caller has to wait until it receives all results
from them, and thus, the communication is kept locally synchronous.

Liabilities

• The use of the Multiple Remote Call pattern can produce long delays in the communication
between components at different layers, due to the use of components related with the remote
calls through the network. Also, since the caller has to wait until the whole operations are
carried out, the communication through the whole distributed hierarchical structure could be
slowed down due to the number of modules per caller and the amount of communication
between local stubs and modules.

• The Multiple Remote Call pattern can be used in a shared memory environment. However, due
to the calls are considered remote, synchronisation problems could arise which could slow down
the operation of the whole structure. In such a case, the use of the Multiple Local Call pattern
could simplify the operation, providing a more efficient response.

Known uses

The Multiple Remote Call is normally used when the parallel solution of a problem is developed
using the Parallel Hierarchies architectural pattern [OR98, Ort07] within a distributed memory
parallel platform (although it can be also used for a shared memory system). Hence, it has as many
known uses as the Parallel Hierarchies pattern. Particularly, the following known uses are relevant:

• The Multiple Remote Call pattern is used in hypercube-like platforms to carry out search

computations, in which the data of the problem is provided as arguments to processors within a
dimension in the hypercube, and multiple remote calls are required to distribute computations to
and retrieve data from processors [Ort07].

• The Multiple Remote Call pattern is commonly used when describing a distributed Java
program based on a Remote Method Invocation approach, in which the computation is divided
into sub-computations among distributed computing resources [Har98].

• The Multiple Remote Call pattern can be considered a variation of a remote procedure call
operation, in which a single component acts as a server for a single client [Bri78, And91,
And00].

Related patterns

The Multiple Remote Call pattern is directly related with any parallel software system developed on
a shared memory environment from the Parallel Hierarchies pattern [OR98, Ort07]. It is also
related with the Multiple Local Call pattern, as a version for distributed memory systems.

Shared Variable Channel
The Shared Variable Channel pattern describes the design of a channel component based on shared
variables and synchronisation mechanisms, which serve for implementing send and receive operations
that emulate the behaviour of a channel component for a shared memory parallel system.

Context

A parallel program is being developed using the Communicating Sequential Elements architectural
pattern [OR98, Ort00] as a domain parallelism approach in which the data is partitioned among
autonomous processes (elements) as the processing components of the parallel program. The
parallel program is developed for a shared memory computer. The programming language to be
used counts with synchronisation mechanisms for process communication such as semaphores
[Dij68, Har98] and monitors [Hoa74, Har98].

Problem

An element needs to exchange values with its neighbouring elements. Every data is locked inside
an element, which is responsible for processing that data and only that data.

Forces

The following forces should be considered for the Shared Variable Channel pattern:

• Maintain the precise order of the transferred data through the channel.
• Communication should be point to point and bidirectional.
• Keep the integrity of transferred data.
• The implementation has to consider the shared memory as programming environment.
• The communication should be asynchronous.

Solution

The idea is to emulate the behaviour of a channel component using shared variables. Thus, use a
couple of shared variables to implement the channel component, considering it as a bi-directional,
shared memory communication means between elements. Such shared variables require to be
safely modified by read and write operations from the elements. Hence, programming language
synchronisation mechanisms (such as semaphores or monitors) have to be considered to preserve
the order and integrity of the transferred data, along with sending (writing) and receiving (reading)
operations.

Structure

The participants and relations that compose the structure of this pattern are shown using a UML
Collaboration Diagram [Fow97] for the description (Figure 9).

SynchronisationMechanism

SharedVariable

Element A Element B

1. send()

2. write()

4. receive()

3. read()

SynchronisationMechanism

SharedVariable

1. send()

2. write()

4. receive()

3. read()

Shared Variable Channel

Figure 9. UML Collaboration Diagram for the Shared Variable Channel pattern.

Participants

• Synchronisation Mechanisms. The responsibility of the synchronisation mechanisms is to
synchronise the access to the shared variables, translating the send and receive operations into
adequate operations for writing to and reading from the shared variables. The synchronisation
mechanism is, then, in charge of keeping the order and integrity of the shared data.

• Shared Variables. The responsibility of the shared variables is to serve as a repositories for the
data to be transferred. Both can be designed as buffers (arrays of a particular type) with an
specific size, for accomplishing with the use of asynchronous communication between the
communicating elements.

Dynamics

The behaviour of this pattern is expected to emulate the operation of a channel component within a
shared memory parallel system. Hence, Figure 10 shows the behaviour of the participants of this
pattern, aiming to carry out such an emulation.

Element A
Synchronisation
Mechanism

Shared
Variable Element B

send(data)

return data

Synchronisation
Mechanism

Shared
Variable

write(data)

read(data)

return data

receive(data)

send(data)
write(data)

receive(data)

read(data)

Figure 10. UML Sequence Diagram for the Shared Variable Channel pattern.

In the scenario shown in Figure 10, the following steps are followed for communicating data from
Element A to Element B, and vice versa:

• Element A sends a data item by issuing a send(data)operation to the Synchronisation

Mechanism.
• The Synchronisation Mechanism verifies if the Element B is not reading the Shared Variable.

If this is the case, then it translates the sending operation, allowing a write(data)operation of
the data item on the Shared Variable. Otherwise, it blocks the operation until the Shared
Variable can be modified.

• On the other hand, when the Element B attempts to receive the data item, it does so by issuing a
receive(data) request to the Synchronisation Mechanism. Again, only if the Element A is
not writing the Shared Variable, the Synchronisation Mechanism grants a read() operation
from the Shared Variable, returning the requested data item.

• On the other hand, when Element B sends a data item to Element A, a similar procedure is
carried out: data is sent by issuing a send(data)operation to the Synchronisation Mechanism.

• The Synchronisation Mechanism verifies if the Element A is not accessing the Shared
Variable. If this is the case, then it translates the sending operation, allowing a
write(data)operation of the data item on the Shared Variable. Otherwise, it blocks the
operation until the Shared Variable can be modified.

• Element A reads the data item by issuing a receive(data) request to the Synchronisation
Mechanism. Again, only if the Element B is not writing the Shared Variable, the
Synchronisation Mechanism grants a read() operation from the Shared Variable, returning
the requested data item.

• The communication flow is bidirectional, allowing the exchange of data to and from
neighbouring elements.

Implementation

The implementation of the Shared Variable Channel requires the implementation of the
Synchronisation Mechanisms and the Shared Variables. Both types of software components exist
and execute on a shared memory environment.

The Synchronisation Mechanisms can be implemented using semaphores [Dij68, Har98] to
synchronise the access to the Shared Variables, considering the P and V operations, respectively
just before and after invoking the write()or read()operations that modify the state of each Shared
Variable. Another possibility is the use of monitors [Hoa74, Har98], which consider the
synchronisation over the very write()or read() operations.

The Shared Variables can be implemented as bounded buffers of a particular type, which can be
modified by reading or writing operations from the Synchronisation Mechanisms, considering an
asynchronous communication approach. The Shared Variables, hence, are capable of keeping
several data values in order to allow a bidirectional communication between Element A and
Element B.

Consequences

Benefits

• The Shared Variable Channel keeps the precise order of the transferred data by implementing a
two directional FIFO policy, synchronising the access to both Shared Variables.

• The Shared Variable Channel is designed to deal with point to point and bidirectional
communication.

• Both Synchronisation Mechanisms are in charge of keeping the integrity of transferred data, by
assuring that, at any given moment, only one element has actual access to any of the Shared
Variables.

• The implementation is particularly developed for a shared memory programming environment.
• The Shared Variable Channel uses asynchronous communications, by implementing the Shared

Variables as two bounded buffers.

Liabilities

• The communication speed of the Shared Variable Channel is as slow as the elements it
connects. Therefore, to improve communication performance, changes to the amount of
processing of the elements have to be considered.

• The Shared Variable Channel is difficult to extent to one-to-many, many-to-one, and many-to-
many communications.

• The implementation based on semaphores and monitors makes this pattern only to be used into
a shared memory environment. Porting it to a distributed memory parallel platform would
require to replace each Shared Variable Channel by a Message Passing Channel.

Known uses

The Shared Variable Channel is normally used when the parallel solution of a problem is
developed using the Communicating Sequential Elements architectural pattern [OR98, Ort00]
within a shared memory parallel platform. Hence, it has as many known uses as the
Communicating Sequential Elements pattern. Particularly, the following known uses are relevant:

• The Shared Variable Channel pattern is used when implementing a domain parallelism program

that solves the Laplace Equation for a shared memory computer. Each element is expected to
solve a Laplace Equation locally, exchanging results with its neighbours in a one-, two-, or n-
dimensional mesh [KSS96, Har98].

• The Shared Variable Channel pattern is used when using the Communicating Sequential
Elements pattern to solve a systolic matrix multiplication. Channels are used to allow the flow
of matrix data through components that go on multiplying them, and locally adding the products
[Har98].

• The Shared Variable Channel pattern is used in a shared memory computer model of climate, in
which each element (or set of elements) compute the variation through time of one or several
variables (temperature, humidity, pressure, etc.), and exchange data in order to model the effect
of, say, the atmospheric model over the ocean model, and vice versa [Fos94].

Related patterns

The Shared Variable Channel pattern is directly related with any parallel software system
developed on a shared memory environment from the Communicating Sequential Elements pattern
[OR98, Ort00]. It can be considered as a two-directional version of the Shared Variable Pipe
pattern. As so, it is related with the pattern for selecting locking primitives, originally proposed by
McKenney [McK95], and lately included as part of the POSA 2 book, Patterns for Concurrent and
Networked Objects [POSA00].

Message Passing Channel
The Message Passing Channel pattern describes the design of a channel component based on message
passing, by implementing send and receive operations that perform the communications of the channel
component for a distributed memory parallel system (although it can be used for a shared memory
parallel system as well).

Context

A parallel program is being developed using the Communicating Sequential Elements architectural
pattern [OR98, Ort00] as a domain parallelism approach in which the data is partitioned among
autonomous processes (elements) as the processing components of the parallel program. The
parallel program is developed within a distributed memory computer, but it also can be used within
a shared memory computer. The programming language to be used counts with synchronisation
mechanisms for process communication through message passing [Hoa78, Har98] or rendezvous
[Bri78, Har98].

Problem

An element needs to exchange values with its neighbouring elements. Every data is locked inside
an element, which is responsible for processing that data and only that data.

Forces

The following forces should be considered for the Message Passing Channel pattern:

• Maintain the order of the transferred data through the channel.
• Communication should be point to point and bidirectional.
• The implementation has to consider a distributed memory as programming environment.
• The data transference should be performed asynchronously.

Solution

Design a channel component as a distributed software structure connecting the elements executing
on two different processors or computers. The software structure is composed of communication
end points (commonly, sockets), some synchronisation mechanisms, and data streams. These
components are put together in order to achieve a two-directional, distributed memory
communication component between elements executing on different processors or computers.

Structure

Figure 11 shows the participants and relations that compose the structure of this pattern, using a
UML Collaboration Diagram [Fow97].

OutputDataStream

Element B

1. send()

2. write()

6. receive()

3. writeData()

Message Passing Channel

Element A

OutSynchronisationMechanism

OutEndPoint (Socket)

InputDataStream

InSynchronisationMechanism

InEndPoint (Socket)

Buffer

4. readData()

5. read()

NETWORK

OutputDataStream

OutSynchronisationMechanism

OutEndPoint (Socket)

InputDataStream

InSynchronisationMechanism

InEndPoint (Socket)

Buffer

1. send()
2. write()

3. writeData()
4. readData()

5. read()

6. receive()

Figure 11. UML Collaboration diagram for the Message Passing Channel pattern.

Participants

• OutSynchronisationMechanisms and InSynchronisationMechanisms. The responsibility of
the synchronisation mechanisms is to synchronise the access to the data streams
(OutDataStreams and InDataStreams), so only one processing component has access to any
of them at a given moment. The synchronisation mechanisms are, then, in charge of keeping the
order and integrity of the data written to or read from the data streams.

• OutDataStreams and InDataStreams. The responsibility of the data streams is to transiently
store the serialised data to be passed through the channel. Every data item must be serialized,

that is, converted into a stream of bytes, which is the way in which data is transferred through a
network connecting processors or computers. Data streams can be written to and read from
communication end points (OutEndPoints and InEndPoints).
OutEndPoints and InEndPoints. The responsibility of the communication end points is to send
data back and forth between the processors or computers. Th

•
ese sort of communication end

•
rticular type with an specific size. The buffers

Dynam

ttern is expected to operate as a channel component for a distributed memory parallel

ystem. Hence, Figure 12 shows the behaviour of the participants of this pattern, aiming to carry

In th

ssing Pipe, issuing a send(data)operation to the
Out Synchronisation Mechanism A.

en it translates the sending operation, allowing a

•
 network to the appropriate processor or

•
readData() operation. The data item is allocated into the Buffer B, so

points are commonly implemented as sockets.
Buffers. The responsibility of the buffers is to serve as repositories for the data to be received.
They are normally designed as arrays of a pa
allow the use of asynchronous communication between elements.

ics

This pa
s
out such an operation.

Figure 12. UML Sequence Diagram for the Message Passing Channel pattern.

is scenario, the following steps are followed:

• Element A sends a data item to the Message Pa

• The Out Synchronisation Mechanism A verifies if no other process is accessing the Out Data
Stream A. If this is the case, th
write(data)operation of the data item on the Out Data Stream A. Otherwise, it blocks the
operation until the Out Data Stream A can be written.
The Out Data Stream A generates a writeData() operation over the Out End Point A
(normally, a socket), so the data item is sent through the
computer.
The data item is received by the In End Point B (a socket) which is read by the In Data
Stream B by issuing a

Element A Out Synch.
Mech. B

Out Data
Stream B

Element B

NETWORK
Out End
Point B

In Data
Stream B

In Synch.
Mech. B

Buffer
B

readData()
read(data)

read(data)

In End
Point A

In End
Point B

Out End
Point A

In Data
Stream A

Out Data
Stream A

Buffer
A

Out Synch.
Mech. A

In Synch.
Mech. A

write(data)
send(data)

writeData()

receive(data)

send(data)

riteData()

writeData()

w

receive(data)
read(data)

read(data)
readData()

the communication is kept asynchronous. From the Buffer B, Element B is able to receive data
by issuing a receive(data) request to the In Synchronisation Mechanism B. Again, only if
no other process is reading from the Buffer B, the Synchronisation Mechanism B grants a
read() operation from the Buffer B, allowing to Element B to read the requested data item.
On the other hand, Element B is able to send a data item to the Message Passing Pipe, by issuing
a send(data)operation to the Out Synchronisation Mechanism B.

•

g operation, allowing a

•
 network to the appropriate processor or

•
by issuing a readData() operation. The data item is allocated into the Buffer A, so

Implem

ntation of the Message Passing Channel requires the use or construction of the

ynchronisation Mechanisms, the Data Streams, the Buffers, and the End Points. All these software

plemented using semaphores [Dij68, Har98] to
ynchronise the access to the Data Streams and the Buffers, considering the P and V operations,

ing languages, used to
erialise data, that is, converted into a stream of by way in which data is transferred

rk communication mechanism common in
everal programming languages. Sockets are able to send data back and forth between the

particular type, which can be modified by reading or
riting operations from the Synchronisation Mechanisms, considering an asynchronous

Co

e Message Passing Channel keeps a FIFO policy in each one of both directions, by
synchronising the access to the Buffers on both communicating sides.

• The Out Synchronisation Mechanism B verifies if no other process is accessing the Out Data
Stream B. If this is the case, then it translates the sendin
write(data)operation of the data item on the Out Data Stream B. Otherwise, it blocks the
operation until the Out Data Stream B can be written.
The Out Data Stream B generates a writeData() operation over the Out End Point B
(normally, a socket), so the data item is sent through the
computer.
The data item is received by the In End Point A (a socket) which is read by the In Data
Stream A
the communication is kept asynchronous. From the Buffer A, Element A receives the data item
by issuing a receive(data) request to the In Synchronisation Mechanism A. Again, only if
no other process is reading from the Buffer A, the Synchronisation Mechanism A grants a
read() operation from the Buffer A, allowing Element A to read the requested data item.

entation

The impleme
S
components should exist and execute on a distributed memory environment, between two
communicating processor or computers.

The Synchronisation Mechanisms can be im
s
respectively just before and after invoking the write()or read()operations that modify the state of
the Data Streams and the Buffers. Another possibility is the use of monitors [Hoa74, Har98], which
consider the synchronisation over the very write()or read() operations.

Data Streams are a common communication form in many programm

tes, which is the s
through a network connecting processors or computers.

The End Points are commonly sockets, which is a netwo
s
processors or computers of a network system.

The Buffers can be implemented as arrays of a
w
communication approach. The Buffers should be able of keeping several data values in order to
cope Elements executing processing activities on different processors, and hence, very likely at
different speeds.

nsequences

Benefits

• Th

• The Message Passing Channel is designed to deal with point to point and bidirectional
communication. However, it can be extended to a one-to-many, many-to-one, and many-to-

•
e used within a shared

•

Liabil

communication speed of the Message Passing Channel depends not only on the slowest
element it connects, but also on features and characteristics of the communication network on

•
eral semaphores or

•
ce on the whole computation. This is a signal that the division of the data among

•
used within a shared memory

Know

ge Passing Channel is commonly used when the parallel solution of a problem is

eveloped using the Communicating Sequential Elements architectural pattern [OR98, Ort00]

solutions for the One-dimensional Heat Equation, allowing the data exchange among processing

•
r the Two-dimensional Wave Equation [DW96].

 network system [And91,

many communications, by using several Synchronisation Mechanisms over several Data
Streams, Buffers, and End Points. Also, it able to keep a simultaneous bidirectional flow of data
by using two different Data Streams between processing components.
The implementation based on Data Streams and End Points is explicitly developed for a
distributed memory programming environment. However, it can b
memory programming environment as well.
The Message Passing Channel uses asynchronous communications, by implementing a bounded
buffer on the receiving side.

ities

• The

which it executes. Therefore, communication performance is commonly affected by non-
determinism issues which can be determinant on the communication speed.
The Message Passing Channel can be used for one-to-many, many-to-one, and many-to-many
communications, although the implementation could require the use of sev
monitors. This fact could make it difficult to implement the whole distributed communication
components.
If any element is a lot faster than any of its communicating counterparts, this could produce a
great unbalan
elements could be wrong. If it is the case, perhaps removing the channel and a change on the
granularity of the processing components, by considering a different distribution of data among
the processing components, could solve the unbalance situation.
The implementation based on data streams and end points makes this pattern to be suitable for a
distributed memory environment. Nevertheless, it can also be
environment, in which, however, it may not have a good performance due to the many
communications involved. Hence, for a shared memory parallel platform and to keep a better
performance, it would be advisable to replace each Message Passing Channel by a Shared
Variable Channel.

n uses

The Messa
d
within a distributed memory parallel platform. Hence, it has as many known uses as the
Communicating Sequential Elements pattern. Particularly, the following known uses are relevant:

• The Message Passing Channel pattern has been used when implementing the distributed

components that compute the Heat Equation for an interval of a one-dimensional substrate, such
as a wire [Ort05].
The Message Passing Channel pattern is used when describing a domain parallelism, distributed
memory solution fo

• The Message Passing Channel pattern can be used for a point-to-point, bidirectional data
exchange between processes executing on different computers of a
Har98, And00].

Related patterns

assing Channel pattern is directly related with any parallel software system
eveloped on a distributed memory environment from the Communicating Sequential Elements

Local Rendezvous

he Local Rendezvous pattern describes the design of a local, point-to-point, bi-direction, and
ion component that allows the exchange of information between a manager

llel program is being developed using the Manager-Workers architectural pattern [OR98,

rt04] or the Shared Resource architectural pattern [OR98, Ort03] as activity parallelism

Pr

s by reading and writing data objects from the

anager or the shared resource, within a shared memory system.

Fo

ollowing forces should be considered for the Local Rendezvous pattern:

 Communication commonly should be point-to-point, bi-directional, and synchronous.
ing environment.

So

common component called rendezvous to carry out a point-to-point, bi-direction, and

ynchronous exchange of information between a manager and a worker or between a shared

The Message P
d
pattern [OR98, Ort00]. It can be considered as a two-directional version of the Message Passing
Pipe pattern.

T
synchronous communicat
and a worker or between a shared resource and a sharer. The manager and/or shared resource
encapsulate a data structure, whose parts or pieces can be synchronously read or written at a precise
moment by a single worker and/or a single sharer component. Data is allowed to flow from the
manager/shared resource to the worker/sharer, and vice versa. Components are allowed to execute
simultaneously. The rendezvous is considered local since components are designed to exist and
execute on a shared memory parallel system.

Context

A para
O
approaches in which algorithm and data are partitioned among the autonomous processes (workers
or sharers) as the processing components of the parallel program. The parallel program is
developed within a shared memory computer. The programming language to be used counts with
synchronisation mechanisms for process communication, such as semaphores [Dij68, Har98] or
monitors [Hoa74, Har98].

oblem

Communication is required for workers or sharer
m

rces

The f

• Keep the integrity and order of the encapsulated data structure.
•
• The implementation has to consider shared memory as programm

lution

Use a
s
resource and a sharer. The communication considers the isolated case of communication between a
single worker and the manager, or a single sharer and the shared resource. A worker or a sharer
read or write a piece of data from the manager or shared resource synchronously. This keeps the
integrity and order of the encapsulated data structure. Components (manager and workers, or
shared resource and sharers) are allowed to simultaneously exist and execute on a shared memory
parallel system.

Structure

13 shows the participants and relations that compose the structure of this pattern, using a
ML Collaboration Diagram [Fow97].

Particip

Client component can be a worker or a sharer, whose responsibilities are to requests
read operations to get pieces of the data structure from the Server, process them, and request

•
 the read and write

•
unication between a client and a server. It does so by

Dynam

4 shows the behaviour of the participants of this pattern, considering a single client for the

erver.

uests a read operation of data from a Server
(whether a manager or a shared resource). So, it directs a read operation to the Rendezvous

Figure
U

Figure 13. UML Collaborarion Diagram for the Local Rendezvous pattern.

ants

• Client. The

write operations of the resulting data to the data structure within the Server.
Server. The Server component can be a manager or a shared resource, whose responsibilities
are to keep the integrity and order of its local data structure and to server
requests from the Clients.
Rendezvous. The Rendezvous component is in charge of allowing the point-to-point, bi-
directional, and synchronous comm
encapsulating the read and write calls, so the client can only direct requests to the Rendezvous.
There should be as many Rendezvous components as Clients within the Manager-Workers
structure or the Shared Resource-Sharers structure.

ics

Figure 1
s

Figure 14. UML Sequence Diagram for the Local Rendezvous pattern.

In this scenario, the following steps are followed:

• A Client (whether a worker or a sharer) req

Client Rendezvous Server

return data

Server.read()
read()

return data

acknowledge

Server.write(Data)
write(Data)

acknowledge

read()/write(Dat Server.read()/

Server Client

Server.write(Data)

Rendezvous

Data Data

a)

component, so it re-directs the read call to the proper Server. Once the Server makes the data
available to the Rendezvous component, this provides the data to the Client, finishing a single
read operation.
On the other hand, when the Client (whether a worker or a sharer) requests a write operation of
data to the Serve

•
r (whether a manager or a shared resource), it directs a write operation to the

Implem

ntation is mainly based on the creation of the Rendezvous component. Since it is

onsidered to be developed for a shared memory parallel system, the Rendezvous component is

Co

e integrity and order of the encapsulated data structure is kept by allowing only point-to-
point, synchronous read/write operations between clients and server.

Liabil

use of synchronous communications between server and clients may slow down the
performance of the whole structure, particularly if the number of clients tends to be large, or the

Know

endezvous is normally used when the parallel solution of a problem is developed using

e Manager-Workers architectural pattern [OR98, Ort04] or the Shared Resource pattern [OR98,

nager-Workers activity
parallelism program that solves a matrix multiplication for a shared memory computer. Each

Rendezvous component. This re-directs the write call to the proper Server. Once the Server
receives the data from the Rendezvous component, it provides an acknowledgement message to
the Client, finishing a single write operation.

entation

The impleme
c
created as a common component accessible to Client and Server as well, using a synchronisation
mechanism such as semaphores [Dij68, Har98] to synchronise the access to the Rendezvous
component, considering the P and V operations, respectively just before and after invoking the
write()or read()operations. Another possibility is the use of monitors [Hoa74, Har98], which
consider the synchronisation over the very write()or read() operations.

nsequences

Benefits

• Th

• The Rendezvous component is developed to keep a point-to-point, bi-directional, and
synchronous communication.

• The implementation is carried out using semaphores or monitors, considering a shared memory
programming environment.

ities

• The

communications are very frequent. This can be mitigated by changing the granularity of the
pieces of data which are made available in read operations and/or included to the data structure
due to a write operation.

n uses

The Local R
th
Ort03] within a shared memory parallel platform. Hence, it has as many known uses as these
architectural patterns. Particularly, the following known uses are relevant:

• The Local Rendezvous pattern is used when implementing a Ma

element is expected to solve a local scalar product of a row from the first matrix and a column
from the second. Both sub-arrays have to be read by the workers from the manager. The result
of such a product is a number which is returned to the manager, who writes it on the proper
position within the resulting matrix [KSS96, Har98].

• The Local Rendezvous pattern is used when using the Shared Resource pattern for creating a
Token Space. It is used to allow reading and writing over the token space by the source, sorter,
merger, and reporter components [Ort03].

• The Local Rendezvous pattern is used in a shared memory computer to model the Dinning
Philosophers problem, originally proposed by E.W. Dijkstra, and developed as a Shared
Resource. Every time a philosopher takes the forks, it reads data from a dinning server.
Synchronisation and communication is carried out by Rendezvous component, which allow the
execution of take and deposit procedures [Har98].

Related patterns

The Local Rendezvous pattern is directly related with any parallel software system developed on a
shared memory environment from the Manager-Workers pattern [OR98, Ort04] or the Shared
Resource pattern [OR98, Ort03]. It is related with the pattern for selecting locking primitives,
originally proposed by McKenney [McK95], and lately included as part of the POSA 2 book,
Patterns for Concurrent and Networked Objects [POSA00].

Remote Rendezvous
The Remote Rendezvous pattern describes the design of a remote, point-to-point, bi-direction, and
synchronous communication component that allows the exchange of information between a manager
and a worker, or between a shared resource and a sharer. The manager and/or shared resource
encapsulate a data structure, whose parts or pieces can be synchronously read or written at a precise
moment by a single remote worker and/or a single remote sharer component. Data is allowed to flow
from the manager/shared resource to the worker/sharer, and vice versa. Components execute
simultaneously. The rendezvous is considered remote since components are designed to exist and
execute on a distributed memory parallel system (although they can be used within a shared memory
parallel platform).

Context

A parallel program is being developed using the Manager-Workers architectural pattern [OR98,
Ort04] or the Shared Resource architectural pattern [OR98, Ort03] as activity parallelism
approaches in which data is partitioned among the autonomous processes (workers or sharers) as
the processing components of the parallel program. The parallel program is developed within a
distributed memory computer, but it also can be used within a shared memory computer. The
programming language to be used counts with synchronisation mechanisms for process
communication through remote calls [Bri78, Har98].

Problem

Communication is required so workers or sharers are able to read and write data by sending and
receiving data objects from the manager or the shared resource, within a distributed memory
system.

Forces

The following forces should be considered for the Remote Rendezvous pattern:

• Keep the integrity and order of the encapsulated data structure.
• Communication commonly should be point-to-point, bi-directional, and synchronous.
• The implementation has to consider distributed memory as programming environment, although

it could be used on a shared memory system.

Solution

Design a remote, point-to-point, bi-direction, and synchronous rendezvous component to allow the
exchange of information between a manager and a worker, or between a shared resource and a
sharer. Such a component allows data to flow from the manager/shared resource to the
worker/sharer, and vice versa. The rendezvous is considered remote since components are designed
to exist and execute on a distributed memory parallel system (although they can be used within a
shared memory parallel platform).

Structure

Figure 15 shows the participants and relations that compose the structure of this pattern, using a
UML Collaboration Diagram [Fow97].

Server Client

Server.read()/Server.write(Data)

Rendezvous

Data/ Acknowledgement

Data/ Acknowledgement

read()/write(Data)

Local Stub

Socket Socket

Local Stub

NETWORK

Figure 15. UML Collaboration Diagram for the Remote Rendezvous pattern.

Participants

• Client. The Client component can be a worker or a sharer, whose responsibilities are to requests
read operations to get pieces of the data structure from the Server, process them, and request
write operations of the resulting data to the data structure within the Server.

• Server. The Server component can be a manager or a shared resource, whose responsibilities
are to keep the integrity and order of its local data structure and to server the read and write
requests from the Clients.

• Local Stubs. The Local Stubs are in charge of controlling the communication between a client
and a server. It does so by issuing read and write calls through the Sockets. There should be a
Local Stub and a Socket for the server and for each client.

• Sockets. The responsibility of the Sockets is to send data back and forth between the processors
or computers.

Dynamics

Figure 16 shows the behaviour of the participants of this pattern, considering a single client for the
server.

Client Server

read()

return data

acknowledge

write(Data)

acknowledge

Socket Socket Local Stub Local Stub

NETWORK

Server.read()

return data

Server.write(Data)

Figure 16. UML Sequence Diagram for the Remote Rendezvous pattern.

In this scenario, the following steps are followed:

• The Client requests reading data from the Server, so it issues a read operation to its Local

Stub. This re-directs the call to the Server through its correspondent Socket.
• The Server receives the request, and makes available the data requested by the Client, issuing a

call to its Local Stub. This re-directs the call to the Client through its correspondent Socket.
The read data is now available to the Client.

• On the other hand, the Client requests writing data to the Server, so it issues a write operation
to its Local Stub. This re-directs the call to the Server through its correspondent Socket.

• The Server receives the request, and takes the data sent by the Client, issuing a call to its Local
Stub in order to acknowledge the operation. This re-directs the call to the Client through its
correspondent Socket. The written data is now on the Server.

Implementation

The implementation is mainly based on the creation of the Local Stub components. Each Local
Stub has to be created to be locally accessible, using a synchronisation mechanism such as
semaphores [Dij68, Har98] to synchronise the access, considering the P and V operations,
respectively just before and after invoking the write()or read()operations. Another possibility is
the use of monitors [Hoa74, Har98], which consider the synchronisation over the very write()or
read() operations.

The Sockets are network communication mechanisms common in several programming languages.
Sockets are able to send data back and forth between the processors or computers of a network
system.

Consequences

Benefits

• The integrity and order of the encapsulated data structure is kept by allowing only point-to-
point, synchronous read/write operations between clients and server.

• The Rendezvous component is developed to keep a point-to-point, bi-directional, and
synchronous communication.

• The implementation is carried out considering a distributed memory programming environment,
although it can be used on a shared memory platform.

Liabilities

• The use of synchronous communications between remote server and clients slows down the
performance of the whole structure, particularly if the number of clients tends to be large and
located far from the server, or when the communications are very frequent. This problem can be
mitigated by changing the granularity of the pieces of data which are made available in read
operations and/or included to the data structure due to a write operation.

• Even though this pattern can be used on a shared memory platform, due to the number of
components, it tends to make communications between server and clients complex and slow. An
alternative would be to use the Local Rendezvous pattern instead.

Known uses

The Remote Rendezvous is normally used when the parallel solution of a problem is developed
using the Manager-Workers architectural pattern [OR98, Ort04] or the Shared Resource pattern
[OR98, Ort03] within a distributed memory parallel platform. Hence, it has as many known uses as
these architectural patterns. Particularly, the following known uses are relevant:

• The Remote Rendezvous pattern is used when implementing a Manager-Workers activity

parallelism program that solves the N-Queens problem for a distributed memory system
[Har98].

• The Remote Rendezvous pattern is used when using the Manager-Workers pattern for solving
the Polygon Overlay problem [Ort04].

• The Remote Rendezvous pattern is used in the JavaSpaces system that acts like a Shared
Resource on a distributed environment, allowing reading and writing operations over the virtual
space [Ort03].

Related patterns

The Remote Rendezvous pattern is directly related with any parallel software system developed on
a distributed memory environment from the Manager-Workers pattern [OR98, Ort04] or the Shared
Resource pattern [OR98, Ort03].

5. Summary

The goal of the present work is to provide software designers and engineers with an overview of the
common structures used as communication components of parallel programs, and provide a guidelines
on the selection during the initial design stages of parallel software applications. However, as a first
attempt at the creation of a more organised pattern system for parallel programming it is not complete
or detailed enough to consider every issue of parallel programming. The patterns described here can be
linked with other current pattern developments for concurrent, parallel and distributed systems. Work
on patterns that support the design and implementation of such systems has been addressed previously
by several authors [POSA00].

6. Acknowledgements

The author wishes to thank Dietmar Schuetz, my shepherd for EuroPLoP 2007, for his suggestions of
improvement to this paper. This paper has been developed as part of the Subproject EN101603 of the
Support Program to Institutional Projects for Teaching Improvement (PAPIME), supported by
DGAPA-UNAM.

References

[And91] Gregory R. Andrews. Concurrent Programming. Principles and Practice. The Benjamin/Cummings

Publishing Company, 1991.
[And00] Gregory R. Andrews. Multithread, Parallel, and Distributed Programming. Addison-Wesley, 2000.
[Bri78] P. Brinch-Hansen. Distributed Processes: A Concurrent Programming Concept. Communications of the

ACM, Vol. 21, No. 11, November 1978.
[CG90] Nicholas Carriero and David Gelernter. How to Write Parallel Programs. A First Course. The MIT

Press, 1990.
[CSG97] David Culler, Jaswinder Pal Singh and Anoop Gupta. Parallel Computer Architecture. A

Hardware/Software Approach (Preliminary draft). Morgan Kaufmann Publishers, 1997
[Dij68] Edsger W. Dijkstra. Co-operating Sequential Processes. Programming Languages, Academic Press,

1968.
[DW96] S. Dobson and C.P. Wadsworth. Towards a Theory of Shared Data in Distributed Systems. In Software

Engineering for Parallel and Distributed Systems, Chapman & Hall, 1996.
[Fos94] Ian Foster. Designing and Building Parallel Programs, Concepts and Tools for Parallel Software

Engineering. Addison-Wesley Publishing Company, 1994.
[Fow97] Martin Fowler. UML Distilled. Addison-Wesley Longman Inc., 1997.
[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Systems. Addison-Wesley, Reading, MA, 1994.
[Har98] Stephen J. Hartley. Concurrent Programming. The Java Programming Language. Oxford University

Press, 1998.
[Hoa74] C.A.R. Hoare. Monitors: An Operating System Strucutring Concept. Communications of the ACM,

Vol. 17, No. 10, October 1974.
[Hoa78] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, Vol. 21, No. 8,

August 1978.
[KSS96] Steve Kleiman, Devang Shah, and Bart Smaalders. Programming with Threads. SunSoft Press, 1996.
[McK95] Paul E. McKenney. Selecting Locking Primitives for Parallel Programs. In Patterns Languages of

Programming 2 (PLoP’95). Addison-Wesley, 1996.
[OR98] Jorge L. Ortega-Arjona and Graham Roberts. Architectural Patterns for Parallel Programming.

Proceedings of the 3rd European Conference on Pattern Languages of Programming and Computing,
EuroPLoP’98. 9-12 july, 1998. Irsee, Germany.

[Ort00] Jorge L. Ortega-Arjona. The Communicating Sequential Elements Pattern. An Architectural Pattern for
Domain Parallelism. Proceedings of the 7th Conference on Pattern Languages of Programming, PLoP 2000.
13-15 august, 2000. Allerton Park, Illinois, USA..

[Ort03] Jorge L. Ortega-Arjona. The Shared Resource Pattern. An Activity Parallelism Architectural Pattern for
Parallel Programming. Proceedings of the 10th Conference on Pattern Languages of Programming, PLoP
2003. 8-12 september, 2003. Allerton Park, Illinois, USA.

[Ort04] Jorge L. Ortega-Arjona. The Manager-Workers Pattern. An Activity Parallelism Architectural Pattern
for Parallel Programming. Proceedings of the 9th European Conference on Pattern Languages of
Programming and Computing, EuroPLoP 2004. 7-11 july, 2004. Irsee, Germany.

[Ort05] Jorge L. Ortega-Arjona. The Parallel Pipes and Filters Pattern. A Functional Parallelism Architectural
Pattern for Parallel Programming. Proceedings of the 10th European Conference On Pattern Languages of
Programming and Computing, EuroPLoP 2005. 6-10 july, 2005. Irsee, Germany.

[Ort07] Jorge L. Ortega-Arjona. The Parallel Layers Pattern. A Functional Parallelism Architectural Pattern for
Parallel Programming. Accepted to the 6th Latinamerican Conference On Pattern Languages of
Programming and Computing, SugarLoafPLoP 2007. 27-30 may, 2007. Porto de Galinhas, Brazil.

[Pan96] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Originally published in
Computational Science and Engineering, Vol. 3, No. 2. Summer, 1996.

[PB90] Cherri M. Pancake and Donna Bergmark. Do Parallel Languages Respond to the Needs of Scientific
Programmers? Computer magazine, IEEE Computer Society. December 1990.

[POSA96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, Michael Stal. Pattern-
Oriented Software Architecture. John Wiley & Sons, Ltd., 1996.

[POSA00] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented Software
Architecture. Patterns for Concurrent and Netwroked Objects. John Wiley & Sons, Ltd., 2000.

