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Abstract

The  Parallel Pipes and Filters pattern is an architectural pattern for parallel programming, used when a
problem can be understood in terms of functional parallelism. It is an extension with aspects of parallelism
of the original  Pipes and Filters pattern presented in the Pattern-Oriented Software Architecture book, by
Buschmann, Meunier,  Rohnert,  Sommerland,  and Stal. The Parallel  Pipes  and Filters  pattern proposes a
solution in which different operations are actually simultaneously performed on different ordered pieces of
data,  that  “flow” through the operations.  Operations carried out by each component  depend only on the
availability of results from preceding components.

1. Introduction

Parallel  processing  is  the  division  of  a  problem,  described  as  data  and  an  algorithm,  among
multiple  processing  components  that  operate  simultaneously.  The  expected  result  is  a  more
efficient completion of the solution to the problem. The main advantage of parallel processing is its
ability to handle tasks of a scale that would be unrealistic or not cost-effective for other systems
[CG88, Fos94, ST96, Pan96, OR98, And00]. The power of parallelism centres on partitioning a
big  problem in  order  to  deal  with  complexity.  Partitioning  is  necessary  to  divide  such  a  big
problem into  smaller  sub-problems  that  are  more  easily  understood,  and  may  be  worked  on
separately,  on  a  more  “comfortable”  level.  Partitioning  is  especially  important  for  parallel
processing, because it  enables software components to be not only created separately but also
executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation has
to be performed, and therefore, impact on the parallel software design [OR98]. Depending on how
the order and dependence of both, data and operations, are present in the problem description, it is
possible to consider  that  most parallel applications fall  into one of  three forms of parallelism:
domain parallelism,  activity parallelism,  and  functional parallelism [OR98]. Examples of each
form of parallelism are the Communicating Sequential Elements pattern [OR00], as an example of
domain parallelism; the Shared Resource pattern [OR03], as an instance of activity parallelism;
and the Parallel Pipes and Filters pattern, representing functional parallelism.

The pipes and filters (or pipeline) structure has been  commonly used and described in parallel
programming by many authors [CT92, NHST94, Fos94, KSS96, HPCN98, And00]. Moreover, it
has been previously presented or referred to in a pattern form by several other authors [VBT95,
POSA96, Lea96, OR98, MSM04]. Nevertheless, the objective of the present paper is to search for
a  pattern  description  for  the  Parallel  Pipes  and  Filters  which  focuses  on  the  particular
characteristics of a parallel programming context and the description of its problem in terms of a
division of the algorithm and the data to be operated on. The  main idea is to discuss about the
characteristics of both, problem and context, aiming to find the reasons for using the Parallel Pipes
and Filters  as  a  feasible  solution  in  terms  of  a  flow  organisation  of  parallel  communicating
software  components.  The objective is  to  help  the parallel  programmer  when  considering  the
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development of a solution based on the Parallel Pipes and Filters pattern, providing a selection
criteria in the context of parallel programming.   

2. The Parallel Pipes and Filters Pattern

The Parallel Pipes and Filters pattern presented here extends the original Pipes and Filters pattern
[POSA96,  Shaw95,  SG96] with  aspects  of  functional  parallelism.  Each  parallel  component
simultaneously  performs  a  different  step  of  the  computation,  following  a  precise  order  of
operations  on ordered data that is  passed from one computation stage to another,  as  a flow
through the whole structure  [OR98].

Functional parallelism is the form of parallelism that involves problems where a computation can
be described in terms of  a  series  of simultaneous time-step ordered operations,  on a series of
ordered  values  or  data,  with  predictable  organization  and  interdependencies.  As  each  step
represents a change of the input for value or effect over time, a high amount of communication
between components in the solution (in the form of a flow) should be considered. Conceptually, a
single data value or transformation is performed repeatedly [CG88, Fos94, Pan96, OR98].

Example: Graphics Rendering

In image processing, graphics rendering is a jargon phrase that has come to mean “the collection
of operations necessary to project a view of an object or a scene onto a view surface”. In common
applications for the film and video industry, rendering a special effect scene of 10 seconds using a
standard resolution of 2048×1536 pixels takes up to 130 hours of processing time, using the C
programming language on a single high-end Macintosh or PC platform [HPCN98]. 

The input to a polygonal renderer is a geometry, presented as a list of polygons, and the output is
an image, in which a colour for each pixel on the screen is obtained. The problem, hence, is to
transform the list of polygons into an image. For example, in order to build up a 3D scene, five
general tasks are considered to be performed (Figure 1) [KSS96].  Such stages are specialised in
order to (a) enumerate the objects in the scene and generate geometric descriptions of each one; (b)
apply a coordinate transformation to the geometry to account for the camera's viewing position,
direction, and focal length; (c) clip the geometry so that elements outside the field of view of the
camera are excluded; (d) apply a lighting model to compute a shade for each of the objects; and (e)
scan-convert each face of the objects, drawing the faces in a frame buffer to obtain the final raster
image. Hence, creating shaded renderings of 3D geometric objects can be described as a series of
independent processing stages on ordered data. 

The time required to render a scene usually can be decreased using a parallel pipes and filters
approach. We can potentially carry out this computation more efficiently by overlapping each one
of the tasks in time:

1. Each component is able to independently process different pieces of data through time until
completion, so each component represents a processing unit or stage, which can potentially
execute simultaneously with the rest of components, and

2. Allowing a simultaneous flow of data from one stage to the next, receiving ordered data from
the previous stage and sending results to the next one.  

Using a parallel approach, with a 16 node CYCORE (a Parsytec parallel machine) programmed in
C, this process is reduced to 10.5 hours [HPCN98].
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Figure 1. A 3D rendering pipeline.

Notice  that  this  example  is  composed of  heterogeneous  stages,  where  each stage  performs a
different kind of activity, producing different types of data between stages. Moreover, the number
of stages is fixed by the problem description, and cannot necessarily be increased. To make matters
still worse, the different activities carried out by each stage are likely to require different amounts
of time, so if each stage is considered to be executed in parallel, the result will not be balanced: one
stage will be the bottleneck, and others will be partially idle. Thus, it is very helpful to gauge at the
outset the amount of work that each stage will do.

A contrasting approach is composed of homogeneous stages, where each stage carries out the same
activity. In effect, the pipes and filters structure of  n stages divides the work into  n pieces. This
situation  seems  to  relief  some  of  the  difficulties  of  the  heterogeneous  pipeline,  but  still,
synchronisation between stages is a difficult problem to deal with.

Notice that often it is needed to think carefully about the problem to view the decomposition of the
algorithm as potentially simultaneous activities. Occasionally, it is required to completely re-state
the problem, or to re-structure how it is described, in order to obtain a suitable solution. 

Context

Start the design of a coordination organisation of a parallel system, using a specific programming
language for a particular parallel hardware. Consider the following contextual assumptions: 

• The  parallel  platform  and  programming  environment  to  be  used  are  known,  offering  a
reasonably level of parallelism in terms of number of processors or parallel cycles available.
For the Graphics Rendering example, a parallel solution is proposed to be executed using a
given 16 node CYCORE parallel computer.

• The programming language to be used, based on a certain paradigm, is determined, and a
compiler  is  commonly  available  for  the  parallel  platform.  Today,  many  programming
languages have parallel extensions for many parallel platforms [Pan96], as it is the case of C,
which can be extended for a particular parallel computer or use libraries (like PVM or MPI) to
achieve process communication.

• The problem to solve, expressed as an algorithm and data, is found to be an open ended one,
that  is,  involving tasks of  a  scale that  would be unrealistic  or  not  cost-effective for other
systems to handle. Consider the Graphics Rendering  example: a common applications for the
film industry to render a special effect scene of 10 seconds requires 130 hours of processing
time on a single high-end Macintosh or PC platform. A complete feature film, or even a short
film, would require several thousands hours only for rendering each scene.

• The main objective is how to execute the task in the most time-efficient way. In the Graphics
Rendering problem, the time is reduced from 130 hours to 10.5 hours.
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Problem

An algorithm,  composed of  ordered and independent  computations,  is  required to  operate  on
regular and ordered data. The computations are ordered but independent from each other, in the
sense  that,  if  data  is  available,  each computation can be  carried  out  until  completion without
interference (so there is an opportunity to overlap successive computations).  If the computations
were carried out serially, the output data set  of the first  operation would serve as input to the
operations during the next step, whose output would in turn serve as input to the subsequent step-
operations.  Hence,  the focus of the problem analysis  should be on a potential  division of the
algorithm into independent computations, which have to be executed in the order prescribed by the
algorithm itself.

On the other hand, the data is regular and ordered, meaning that, at first, it may not be properly
considered for division. The only criteria for data division is driven by the independence between
successive  computations:  there  should  be  an  adequate  amount  of  data  available  for  each
computation so each computation can be carried out without interference. Moreover, notice that
along the whole set  of  computations,  data can be transformed, even producing new data of a
different type. Hence, the amount of data passed from one computation to the next also may have
influence on the whole processing, as a group of simultaneous computations. 

For instance, consider the Graphics Rendering example: for each polygon of the list, it is required
to (a) generate its geometric description, (b) apply a transformation to account for the camera, (c)
clip the geometry,  (d) shade, and  (e) scan-convert, drawing the faces to obtain the final image.
When this rendering process is executed serially, it requires that all data is processed in a particular
stage before the following stage starts processing. Notice as well that the data input of each stage is
used to produce a different type of output data, which is passed to the next stage throughout the
rendering process. 

Forces

Considering the problem description and granularity and load balance as other elements of parallel
design [Fos94, CT92] the following forces should be considered:
• Maintain the precise order of computations. Such an order represent the very algorithm to be

applied to each piece of data. For example, in the Graphics Rendering example, it is important
to control the order of where and when data is operated, by allowing it to “flow” through each
rendering stage. This allows obtaining the effect of operation overlapping through time.

• Preserve the order of data among all operations. The result of the whole computation is the
effect of applying each algorithm step on each piece of data, so the order of data is a basic
feature  that  should  be  preserved  for  obtaining  ordered  results.  In  the  Graphics  Rendering
example, each stage receives data from the previous stage, processes it, and produces more data
that serves as input to the next stage. Nevertheless, data must be operated in a strict order, so
the result of the whole computation is orderly obtained.

• Consider  the  independence  among  step-operations,  which  potentially  can  be  carried  out
processing different pieces of data. In the Graphics Rendering example, each rendering stage
performs autonomously a different computation on different pieces of data. The objective is to
obtain the best possible benefit from a functional parallelism.

• Distribute process into regular amounts among all step-operation.  In the Graphics Rendering
example, a different operation must be performed on each stage to obtain data to be processed
at the next stage. All data is  incrementally and simultaneously operated on. Nevertheless, if one
stage takes more time than the others, it would represent a bottleneck for the flowing data. 

• Improvement in performance is achieved when execution time decreases. Our main objective is
to carry out the computation in the most time-efficient way.
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Solution

Introduce  parallelism  by  allowing  the  overlap  through  time  of  the  ordered  but  independent
computations. The operations represent each stage of the whole computation, as incrementally
ordered steps which are simultaneously executed. Data from different steps are used to generate
change of the input over time. Conceptually, a single data object is transformed. The first set of
components begins to compute as soon as the first data are available, during the first time-step.
When its computation is finished, the result data is passed to another set of components in the
second time-step, following the order of the algorithm. Then, while this computation takes place on
the data, the first set of components is free to accept more new data. The results from the second
time-step components can also be passed forward, to be operated on by a set of components in a
third-step,  while  now the first  time-step can accept  more new data,  and the second time-step
operates on the second group of data, and so forth [POSA96, CG88, Shaw95, Pan96].

Structure

This  pattern  is  called  “Parallel  Pipes  and  Filters”  since  data  is  passed  as  a  flow  from  one
component (representing a computation stage) to another along a pipeline of different simultaneous
processing components. The key feature is that data results are passed just one way through the
structure. The complete parallel execution incrementally builds up, when data becomes available at
each stage.  Different  components  simultaneously  exist  and  process  during  the  execution  time
(Figure 2).

Participants

• Filter. The responsibilities of a filter component are to get input data from a pipe, to perform an
operation on its local data, and to send output result data to one or several pipes. In the Graphics
Rendering example, each time step a parallel filter is expected to receive data from the previous
filter (through an input pipe), perform a step of the actual rendering, and send partial results to
the next filter (through another output pipe).

• Pipe. The responsibilities of a pipe component are to transfer data between filters, sometimes to
buffer data or to synchronise activity between neighbouring filters. In order to synchronise the
activities, pipe components should take into consideration the amount of data that has to be
communicated from one filter to the next one, so both their operations do not conflict with each
other. In the Graphics Rendering problem, pipes are expected to handle the communication and
synchronisation of data values between neighbouring stages, giving the impression of a flow
through the processing structure.

• Source. The responsibility of a source component is to provide initial data to the first filter. In
the Graphics Rendering  example,  this  may  be  simply  to  open a  file  containing  the list  of
polygons to be rendered, and provide it to the “Geometry” stage.

• Sink. The responsibility of a sink component is to get and gather the final result of the whole
computation. In the Graphics Rendering problem, this means to preserve the data of the image
produced, perhaps saving it into a file after the “Scan-convert” stage.
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Figure 2. Object Diagram of the Pipes and Filters pattern.

Dynamics

Due to the parallel execution of the components of the pattern, the following typical scenario is
proposed  to  describe  its  basic  run-time  behaviour.  As  all  filters  and  pipes  are  active
simultaneously, they accept data, operate on it in the case of filters, and send it to the next step.
Pipes synchronise the activity between filters. This approach is based on the dynamic behaviour
exposed by the  Pipes and Filters pattern  in  [POSA96],  adding the simultaneous  execution of
software components that parallel programming allows.

In this simple scenario, the operation of the source and sink components are avoided, in order to
stress the overlapping through time of the following general steps (figure 3):

• Pipe  A receives  data  from  a  Data  Source  or  another  previous  filter,  synchronising  and
transferring it to the Filter N.

• Filter N receives the package of data, performs operation Op.n on it, and delivers the results to
Pipe B. At the same time, new data arrives to the Pipe A, which delivers it as soon as it can
synchronise with Filter N. Pipe B synchronises and transfers the data to Filter M.

• Filter M receives the data, performs Op.m on it, and delivers it to Pipe C, which sends it to the
next filter or Data Sink. Simultaneously, Filter N has received the new data, performed Op.n on
it, and synchronising with Pipe B to deliver it.

• The previous steps are repeated over and over until no further data is received from the previous
Data Source or filter.
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Figure 3. Interaction Diagram of the Pipes and Filters pattern.

Implementation

An  architectural  exploratory  approach  to  design  is  described  below,  in  which  hardware-
independent  features  are  considered  early,  and  hardware-specific  issues  are  delayed  in  the
implementation process. This method structures the implementation process of parallel software
based  on  four  stages  [Fops94,  OR98].  During  the  first  two  stages,  attention  is  focused  on
concurrency and scalability characteristics. In the last two stages, attention is aimed to shift locality
and other performance-related issues. Nevertheless, it is preferred to present each stage as general
considerations  for  design  instead  of  providing  details  about  precise  implementation.  These
implementation details are pointed more precisely in the form of references to design patterns for
concurrent,  parallel,  and distributed systems of  several  other  authors  [Sch95,  Sch98a,  Sch98b,
POSA00].

1. Partitioning. The computation that is to be performed is decomposed, attending the ordered
operations to be performed into a sequence of different operation stages, in which orderly data
is  received,  operated  on  and  passed  to  the  next  stage.  Attention  focuses  on  recognising
opportunities for simultaneous execution between subsequent operations, to assign and define
potential  filter  components.  Initially,  filter  components  are  defined  by  gathering operation
stages, considering characteristics of granularity and load-balance. As each stage represents a
transformational  relation  between  input/output  data,  filters  can  be  composed  of  a  single
processing element  (for instance,  a  process,  task,  function,  object,  etc.)  or  a  subsystem of
processing elements. Design patterns [GHJV95, POSA96, PLoP94, PLoP95] can be useful to
implement the latter ones; particularly, consider the Active Object pattern [LS95, POSA00] and
the "Ubiquitous Agent" pattern [JP96].
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2. Communication. The communication  required to  coordinate  the  simultaneous execution of
stages is determined, considering communication structures and procedures to define the pipe
components. Common characteristics that should be carefully considered are the type and size
of the data to be passed, and the synchronous or asynchronous coordination schema, trying to
reduce the costs of communication and synchronisation. Usually, a synchronous coordination
is  commonly  used.  The  implementation  of  pipe  components  obeys  to  features  of  the
programming  language  used.  If  the  programming  language  has  defined  the  necessary
communication structures for the size and type of the data, a pipe in general can be usually
defined in  terms of  a  single  communicating  element  (for  instance,  a  process,  a  stream,  a
channel, etc.). However, in case that more complexity in data size and type is required, a pipe
component can be implemented as a subsystem of elements, using design patterns. Especially,
patterns like the Broker pattern [POSA96] and the Composite Messages pattern [SC95].

3. Agglomeration.  The  filter  and  pipe  structures  defined  in  the  previous  stages  should  be
evaluated with respect to the performance requirements and implementation costs. Once initial
filters are defined, pipes are considered simply to allow data flow between filters. If an initial
proposed agglomeration does not accomplish the expected performance,  the conjecture-test
approach can be used to propose another agglomeration schema. Recombining the operations
by replacing pipes between them modifies the granularity and load balance, aiming to balance
the workload and to reduce communication costs.

4. Mapping.  Each  component  is  assigned  to  a  processor,  attempting  to  maximise  processor
utilisation and minimise communication costs. Usually, mapping is specified as static. As a
"rule of thumb", these systems may have a good performance when implemented using shared-
memory machines, or can be adapted to distributed-memory systems, if the communication
network is fast enough to pipe data sets from one filter to the next [Pan96]. 

Example Resolved

The Parallel Pipes an Filters pattern can be used in a parallel program that computes a rendering of
a scene from a geometric description. The program structure can take several forms, depending on
many factors, including the choice of rendering algorithm. The example here presents five stages
[KSS96], as outlined below. Typed tokens are passed down. For example, a polygon is one kind of
token  passed  down the  entire  length  of  the  pipes  and  filters  structure,  with  an  attached  data
structure defining the geometry and colour of the polygon. 

Partitioning 

The Parallel Pipes and Filters pattern is used to obtain a Software Structure that deals with the
Graphics Rendering problem, describing the actual processing as a cooperation between different
sequential  filters,  which  simultaneously  perform calculations  and  communicate  partial  results
through pipes with their neighbours. The main stages of the Software Structure follow the steps of
the algorithm already described. So, the filter stages in which the rendering computation is divided
are [KSS96]:

1. GEN. The first stage of the pipeline is really the main function, which determines the viewing
parameters  of the scene,  generates  the geometric  descriptions of  objects,  and so on.  These
functions call a few routines in the graphics package to compute a rendering. In our example,
the graphics package controls the pipeline structure, which is hidden from the client.

2. TRAN. The second stage of the pipe performs geometric transformations. For example, each
vertex of a polygon is transformed first into a camera coordinate system to position the polygon
relative to the camera and then into a  perspective coordinate system, which accounts for the
perspective projection of the camera.
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3. CLIP. The third stage clips polygons to the limits of the viewing region of the camera. Polygons
or portions of polygons that lie outside the field of view or behind the camera are rejected.

4. EDGE.  The  fourth  stage  computes  a  colour,  or  shade,  appropriate  for  each  vertex  of  the
polygon. This computation requires knowing the colour and surface properties assigned to the
polygon, the normal vector at the vertex, and details of lights specified for the scene. This stage
also builds an edge data structure and attaches it to the polygon token.  

5. PIXEL. The final stage executes a scan-line algorithm to enumerate the pixels covered by the
polygon and to compute the depth and colour of the polygon at each pixel. At each pixel, the
depth is compared to the depth recorded in a z-buffer, to determine whether the polygon's pixel
is closer to the camera than whatever other object has been previously recorded in the z-buffer,
and if so, the polygon's colour and depth replace those of the other polygon. In simplified form,
the algorithm within this stage is: 

Communication

Communication between filters, as stages within the Graphics Rendering algorithm, is carried out
by allowing data to flow down the pipes, in the form of tokens [KSS96]. Thus, in order to maintain
proper synchronisation, the state held by a filter is changed only as a consequence of processing a
token in such a filter. This strategy avoids any data locking, save for that embodied in the pipes
between filters: filters refer only to data that they “own”. For example, the routine in the graphics
package responsible for initialisation sends a  begin token down the whole structure. This token
specifies the width and height of the output image, in pixels. Each filter that needs to know this
information copies  these  two parameters  into static  variables  accessible only  to  that  filter.  Of
course, the begin token also affords each filter the opportunity to do any initialisation required. As
another example, the light token is sent down with information about a light used to illuminate the
scene; this information is captured in the EDGE filter.

Not all tokens flow down the full length of the pipeline structure. Of course, tokens such as the
begin, end, and polygon proceed through all filters. Each filter that processes one of these tokens is
responsible for forwarding the token onward by putting it on its output pipe, which sends it to the
next filter. However, the transformation token, used to update the current transformation held in
the TRAN filter, need to flow only as fas as the TRAN filter. After the token is processed, the filter
simply returns the token to the free storage rather than placing it on its output pipe. 

The token flow is also data-dependent. The polygon token is abandoned if a filter determines that
the polygon described by a token need not to be communicated further. There are two cases: (a)
back-face culling, if the TRAN filter determines that the polygon faces away from the camera; and
(b) clipping,  if the  CLIP filter determines that no part of the polygon falls within the viewing
region.

Agglomeration and Mapping

The uneven processing duties of the filters at different stages of the computation, coupled with the
potential for early rejection of polygons, make it difficult to balance the pipeline structure. In most
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for (y = top of polygon; y > = bottom of the polygon; y) {
    for (each pair of polygon edges crossing scanline y) {
        for (x = left edge; x < = right edge; x++) {
            if (z > = z_buffer[x,y]) {
                z_buffer[x,y] = z;
                image[x,y] = polygon_colour;
            }
        }
    }
} 



cases,  the  PIXEL filter  will  require  the  most  computation.  Indeed,  to  balance  the  processor
utilisation, it may be necessary to further divide the PIXEL filter, for example by splitting the main
loop illustrated above, so that several threads can compute concurrently. Such a hybrid approach is
often found in parallel application, combining several algorithm paradigms. 

Known uses

• The butterfly communication structure, used in many parallel systems to obtain the Fast Fourier
Transform  (FFT),  presents  a  basic  Parallel  Pipes  and  Filters pattern.  Input  values  are
propagated through intermediate stages, where filters perform calculations on data when it is
available. The whole computation can be viewed as a flow through crossing pipes that connect
filters [Fos94]. 

• Parallel  search  algorithms  mainly  present  a  pipes  and filters  structure.  An example  is  the
parallel implementation of the CYK Algorithm (Cocke, Younger and Kasami), used to answer
the membership question: "Given a string and a grammar, is the string member of the language
generated by the grammar?" [CG88, NHST94].

• Operations for image processing, like convolution, where two images are passed as streams of
data through several filters (FFT, multiplication and inverse FFT) in order to calculate their
convolution [Fos94].

• Video decompression. A three-stage pipes and filters organisation is used to read compressed
data from a disk file, decompress the data into a raster image format, and copy the raster image
to  the  display,  perhaps  re-formatting  the  pixel  data  to  conform  to  the  display  hardware
requirements. Some implementations might divide the decompression stage into a stage that
does  the  detailed  bit  manipulation  to  decode  the  video  stream  and  a  stage  to  do  image
processing, such as inverse discrete cosine transform (IDTC) [KSS96].

Consequences

Benefits

• The use of Parallel Pipes and Filters pattern allows the description of a parallel computation in
terms of the composition of ordered and simultaneous operations of its component filters. It is a
simple solution in which every operation can be understood in terms of input/output relations of
ordered data [SG96].

• If the computation can be divided into stages with similar amounts of execution time, pipes and
filters  systems  are  relatively  easy  to  enhance  and  maintain  by  filter  exchange  and
recombination. For parallel systems, reuse is enhanced as filters and pipes are composed as
active components. Flexibility is introduced by the addition of new filters, and replacement of
old filters by improved ones. As filters and pipes present a simple interface, it is relatively easy
to exchange and recombine them within the same architecture [POSA96, SG96].

• The performance of pipes and filters architectures depends mostly on the number of steps to be
computed. Once all components are active, the processing efficiency is expected to be constant
[POSA96, NHST94].

• Pipes  and filters  structures  permit  certain  specialised  analysis  methods relevant  to  parallel
systems, such as throughput and deadlock analysis [SG96].
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Liabilities

• The use of pipes and filters introduces potential execution and performance problems if they are
not properly load-balanced; this is, if the stages do not all present a similar execution speed. As
faster stages will finish processing before slower ones, the parallel system will be as fast as its
slowest  stage.  A  common  solution  to  this  problem  is  to  execute  slow  stages  on  faster
processors, but load balancing can still  be quite difficult. Another solution is to modify the
mapping of software components to hardware processors, and test each stage to get a similar
speed. If  it  is not possible to balance the work load, performance that could potentially be
obtained from a pipes and filters system may not be worth the programming effort [Pan96,
NHST94].

• Synchronisation is  another  potential  problem of pipes and filters  systems related with  load
balance.  If  each  stage  causes  delay  during  execution,  this  delay  is  spread  through all  the
following filters. Furthermore, if feedback to previous stages is used, there is a potential danger
of  deadlock  [KSS96]which is  noticed as  the  whole system tends  to  slow down after  each
operation.

• Granularity (the ratio between processing time and communication time) of pipes and filters
parallel systems is usually set medium or coarse. This is due to the efficiency of these systems
is based on the supposition that pipe communication is a simple action compared to the filters
operation. If the time spent communicating tends to be larger than the time required to operate
on the flow of data, the performance of the system decreases.
 

• Pipes and Filters systems can degenerate to the point where they become a batch sequential
system, this is each step processes all data as a single entity. In this case, each stage does not
incrementally process a stream of data. To avoid this situation each filter must be designed to
provide a complete incremental parallel transformation of input data to output data [SG96].

• The most difficult aspect of pipes and filters systems in general is error handling. An error
reporting  strategy  should  at  least  be  defined  throughout  the  system.  However,  concrete
strategies  for  error  recovery  or  handling  depend  directly  on  the  problem  to  solve.  Most
applications consider that if an error occurs, the system either restarts the pipe, or ignores it. If
none of these are possible the use of alternative patterns, such as the Layers pattern [POSA96]
is advised.

Related patterns

The Parallel Pipes and Filters pattern for parallel programming is presented as an extension of the
original  Pipes and Filters pattern [POSA96] and  Pipes and Filters architectural style [Shaw95,
SG96].  Other  patterns that  share the similar  ordered transformation approach can be found in
[PLoP94]; especially consider the Pipe and Filters  pattern, the Streams pattern, and the Pipeline
pattern [MSM04]. Another pattern that can be consulted for implementation issues using C++ is
the Pipeline Design Pattern [VBT95].

3. Summary

The goal of the present work is to provide software designers and engineers with an overview of a
common structure used for activity parallel software systems. The architectural pattern described
here can be linked with other current pattern developments for concurrent, parallel and distributed
systems. Work on patterns that support the design and implementation of such systems has been
addressed previously by several authors [Sch95, Sch98a, Sch98b, POSA00].
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